1
|
Yu SJ, Wu KJ, Wang YS, Bae E, Chianelli F, Bambakidis N, Wang Y. Neuroprotective effects of psilocybin in a rat model of stroke. BMC Neurosci 2024; 25:49. [PMID: 39379834 PMCID: PMC11462742 DOI: 10.1186/s12868-024-00903-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 10/01/2024] [Indexed: 10/10/2024] Open
Abstract
BACKGROUND Psilocybin is a psychedelic 5HT2A receptor agonist found in "magic mushrooms". Recent studies have indicated that 5HT2A agonists, such as dimethyltryptamine, given before middle cerebral artery occlusion (MCAo), improve staircase behavior, increased BDNF expression, and reduce brain infarction in stroke rats. The objective of this study is to determine the protective effect of psilocybin in cellular and animal models of stroke. METHODS Adult male and timed-pregnant Sprague-Dawley rats were used for this study. The neural protective effects of psilocybin were determined in primary rat cortical neurons and adult rats. Rats were subjected to a 60-min middle cerebral artery occlusion. Brain tissues were collected for histological and qRTPCR analysis. RESULTS Psilocybin reduced glutamate-mediated neuronal loss in rat primary cortical neuronal cultures. Psilocybin-mediated protection in culture was antagonized by the BDNF inhibitor ANA12. Pretreatment with psilocybin reduced brain infarction and neurological deficits in stroke rats. Early post-treatment with psilocybin improved locomotor behavior, upregulated the expression of MAP2 and synaptophysin, and down-regulated the expression of IBA1 in the stroke brain. ANA12 significantly attenuated psilocybin-mediated reduction in brain infarction and improvements in locomotor behavior. CONCLUSIONS Psilocybin reduced brain infarction and improved locomotor behavior in stroke rats; the protective mechanisms involve regulating BDNF expression. Our data support a novel therapeutic approach of psilocybin in stroke.
Collapse
Affiliation(s)
- Seong-Jin Yu
- Center for Neuropsychiatric Research, National Health Research Institutes, Zhunan, Taiwan.
| | - Kuo-Jen Wu
- Center for Neuropsychiatric Research, National Health Research Institutes, Zhunan, Taiwan
- School of Pharmacy, College of Pharmacy, China Medical University, Taichung, Taiwan
| | - Yu-Syuan Wang
- Center for Neuropsychiatric Research, National Health Research Institutes, Zhunan, Taiwan
| | - Eunkyung Bae
- Center for Neuropsychiatric Research, National Health Research Institutes, Zhunan, Taiwan
| | | | - Nicholas Bambakidis
- Department of Neurosurgery, University Hospitals of Cleveland, Cleveland, OH, USA
| | - Yun Wang
- Center for Neuropsychiatric Research, National Health Research Institutes, Zhunan, Taiwan
| |
Collapse
|
2
|
Estrogenic hormones receptors in Alzheimer's disease. Mol Biol Rep 2021; 48:7517-7526. [PMID: 34657250 DOI: 10.1007/s11033-021-06792-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 09/15/2021] [Indexed: 02/06/2023]
Abstract
Estrogens are hormones that play a critical role during development and growth for the adequate functioning of the reproductive system of women, as well as for maintaining bones, metabolism, and cognition. During menopause, the levels of estrogens are decreased, altering their signaling mediated by their intracellular receptors such as estrogen receptor alpha and beta (ERα and ERβ), and G protein-coupled estrogen receptor (GPER). In the brain, the reduction of molecular pathways mediated by estrogenic receptors seems to favor the progression of Alzheimer's disease (AD) in postmenopausal women. In this review, we investigate the participation of estrogen receptors in AD in women during aging.
Collapse
|
3
|
Farhadi Z, Esmailidehaj M, Rezvani ME, Shahbazian M, Jafary F, Ghafari MA, Alizade J, Azizian H. A review of the Effects of 17 β-Estradiol on Endoplasmic Reticulum Stress: Mechanisms and Pathway. PHYSIOLOGY AND PHARMACOLOGY 2021; 0:0-0. [DOI: 10.52547/phypha.26.3.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/07/2024]
|
4
|
Patil AA, Bhor SA, Rhee WJ. Cell death in culture: Molecular mechanisms, detections, and inhibition strategies. J IND ENG CHEM 2020. [DOI: 10.1016/j.jiec.2020.08.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
5
|
Vahidinia Z, Karimian M, Joghataei MT. Neurosteroids and their receptors in ischemic stroke: From molecular mechanisms to therapeutic opportunities. Pharmacol Res 2020; 160:105163. [DOI: 10.1016/j.phrs.2020.105163] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 08/17/2020] [Accepted: 08/17/2020] [Indexed: 01/09/2023]
|
6
|
Gao J, Zhao Y, Wang C, Ji H, Yu J, Liu C, Liu A. A novel synthetic chitosan selenate (CS) induces apoptosis in A549 lung cancer cells via the Fas/FasL pathway. Int J Biol Macromol 2020; 158:689-697. [PMID: 32387597 DOI: 10.1016/j.ijbiomac.2020.05.016] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 02/25/2020] [Accepted: 05/03/2020] [Indexed: 12/24/2022]
Abstract
Selenium is important to human health, particularly for immune response and cancer prevention. Chitosan has good biocompatibility and low toxicity. In this paper, we synthesized chitosan selenate (CS), a novel therapeutic compound, using chitosan and selenium. CS synthesis was evaluated using FTIR, which verified the presence of a characteristic SeO absorption peak at 892 cm-1, and with HPGPC, which calculated the molecular weight as approximately 41.8 kDa. Next, we evaluated the proliferation-inhibitory and apoptosis-inducing effects of CS on lung cancer A549 cells and explored its potential molecular mechanisms. MTT assay indicated that CS could significantly inhibit A549 cells viability in a dose-dependent manner. Typical morphological features of apoptosis were observed by Hoechst staining in A549 cells treated with CS, and Annexin V-FITC/PI staining confirmed that CS induced cell death via apoptosis and not necrosis. Cell cycle detection showed that CS triggered S and G2/M phase arrest in a dose-dependent manner. Finally, western blot analysis indicated that CS up-regulated the expression levels of Fas, FasL, and Fadd; subsequently, activated the caspase cascade in A549 cells. These results show that CS induces apoptosis in A549 cells via the Fas/FasL signaling pathway, and has potential chemopreventive effects for lung cancer treatment.
Collapse
Affiliation(s)
- Jiayue Gao
- College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Yana Zhao
- College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Chenxu Wang
- College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Haiyu Ji
- College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Juan Yu
- College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Chao Liu
- College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China; QingYunTang Biotech (Beijing) Co., Ltd., No. 14, Zhonghe Street, Beijing Economic-Technological Development Area, Beijing 100176, People's Republic of China
| | - Anjun Liu
- College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China.
| |
Collapse
|
7
|
Azcoitia I, Barreto GE, Garcia-Segura LM. Molecular mechanisms and cellular events involved in the neuroprotective actions of estradiol. Analysis of sex differences. Front Neuroendocrinol 2019; 55:100787. [PMID: 31513774 DOI: 10.1016/j.yfrne.2019.100787] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 08/27/2019] [Accepted: 09/07/2019] [Indexed: 12/12/2022]
Abstract
Estradiol, either from peripheral or central origin, activates multiple molecular neuroprotective and neuroreparative responses that, being mediated by estrogen receptors or by estrogen receptor independent mechanisms, are initiated at the membrane, the cytoplasm or the cell nucleus of neural cells. Estrogen-dependent signaling regulates a variety of cellular events, such as intracellular Ca2+ levels, mitochondrial respiratory capacity, ATP production, mitochondrial membrane potential, autophagy and apoptosis. In turn, these molecular and cellular actions of estradiol are integrated by neurons and non-neuronal cells to generate different tissue protective responses, decreasing blood-brain barrier permeability, oxidative stress, neuroinflammation and excitotoxicity and promoting synaptic plasticity, axonal growth, neurogenesis, remyelination and neuroregeneration. Recent findings indicate that the neuroprotective and neuroreparative actions of estradiol are different in males and females and further research is necessary to fully elucidate the causes for this sex difference.
Collapse
Affiliation(s)
- Iñigo Azcoitia
- Department of Cell Biology, Faculty of Biology, Universidad Complutense de Madrid, 28040 Madrid, Spain; Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludables (CIBERFES), Instituto de Salud Carlos III, Avenida Monforte de Lemos, 3-5, 28029 Madrid, Spain.
| | - George E Barreto
- Department of Biological Sciences, School of Natural Sciences, University of Limerick, Limerick, Ireland.
| | - Luis M Garcia-Segura
- Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludables (CIBERFES), Instituto de Salud Carlos III, Avenida Monforte de Lemos, 3-5, 28029 Madrid, Spain; Instituto Cajal, CSIC, Avenida Doctor Arce 37, 28002 Madrid, Spain.
| |
Collapse
|
8
|
Han ZW, Chang YC, Zhou Y, Zhang H, Chen L, Zhang Y, Si JQ, Li L. GPER agonist G1 suppresses neuronal apoptosis mediated by endoplasmic reticulum stress after cerebral ischemia/reperfusion injury. Neural Regen Res 2019; 14:1221-1229. [PMID: 30804253 PMCID: PMC6425826 DOI: 10.4103/1673-5374.251571] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Studies have confirmed a strong association between activation of the endoplasmic reticulum stress pathway and cerebral ischemia/reperfusion (I/R) injury. In this study, three key proteins in the endoplasmic reticulum stress pathway (glucose-regulated protein 78, caspase-12, and C/EBP homologous protein) were selected to examine the potential mechanism of endoplasmic reticulum stress in the neuroprotective effect of G protein-coupled estrogen receptor. Female Sprague-Dawley rats received ovariectomy (OVX), and then cerebral I/R rat models (OVX + I/R) were established by middle cerebral artery occlusion. Immediately after I/R, rat models were injected with 100 μg/kg E2 (OVX + I/R + E2), or 100 μg/kg G protein-coupled estrogen receptor agonist G1 (OVX + I/R + G1) in the lateral ventricle. Longa scoring was used to detect neurobehavioral changes in each group. Infarct volumes were measured by 2,3,5-triphenyltetrazolium chloride staining. Morphological changes in neurons were observed by Nissl staining. Terminal dexynucleotidyl transferase-mediated nick end-labeling staining revealed that compared with the OVX + I/R group, neurological function was remarkably improved, infarct volume was reduced, number of normal Nissl bodies was dramatically increased, and number of apoptotic neurons in the hippocampus was decreased after E2 and G1 intervention. To detect the expression and distribution of endoplasmic reticulum stress-related proteins in the endoplasmic reticulum, caspase-12 distribution and expression were detected by immunofluorescence, and mRNA and protein levels of glucose-regulated protein 78, caspase-12, and C/EBP homologous protein were determined by polymerase chain reaction and western blot assay. The results showed that compared with the OVX + I/R group, E2 and G1 treatment obviously decreased mRNA and protein expression levels of glucose-regulated protein 78, C/EBP homologous protein, and caspase-12. However, the G protein-coupled estrogen receptor antagonist G15 (OVX + I/R + E2 + G15) could eliminate the effect of E2 on cerebral I/R injury. These results confirm that E2 and G protein-coupled estrogen receptor can inhibit the expression of endoplasmic reticulum stress-related proteins and neuronal apoptosis in the hippocampus, thereby improving dysfunction caused by cerebral I/R injury. Every experimental protocol was approved by the Institutional Ethics Review Board at the First Affiliated Hospital of Shihezi University School of Medicine, China (approval No. SHZ A2017-171) on February 27, 2017.
Collapse
Affiliation(s)
- Zi-Wei Han
- Department of Physiology, Medical College of Shihezi University; Key Laboratory of Xinjiang Endemic and Ethnic Disease, Shihezi University School of Medicine, Shihezi, Xinjiang Uygur Autonomous Region, China
| | - Yue-Chen Chang
- Department of Physiology, Medical College of Shihezi University; Key Laboratory of Xinjiang Endemic and Ethnic Disease, Shihezi University School of Medicine, Shihezi, Xinjiang Uygur Autonomous Region, China
| | - Ying Zhou
- Department of Physiology, Medical College of Shihezi University; Key Laboratory of Xinjiang Endemic and Ethnic Disease, Shihezi University School of Medicine, Shihezi, Xinjiang Uygur Autonomous Region, China
| | - Hang Zhang
- Key Laboratory of Xinjiang Endemic and Ethnic Disease, Shihezi University School of Medicine, Shihezi, Xinjiang Uygur Autonomous Region; Affiliated Teng Zhou Central People's Hospital, Jining Medical University, Jining, Shandong Province, China
| | - Long Chen
- Department of Physiology, Medical College of Shihezi University; Key Laboratory of Xinjiang Endemic and Ethnic Disease, Shihezi University School of Medicine, Shihezi, Xinjiang Uygur Autonomous Region, China
| | - Yang Zhang
- Department of Physiology, Medical College of Shihezi University; Key Laboratory of Xinjiang Endemic and Ethnic Disease, Shihezi University School of Medicine, Shihezi, Xinjiang Uygur Autonomous Region, China
| | - Jun-Qiang Si
- Department of Physiology, Medical College of Shihezi University; Key Laboratory of Xinjiang Endemic and Ethnic Disease, Shihezi University School of Medicine, Shihezi, Xinjiang Uygur Autonomous Region, China
| | - Li Li
- Department of Physiology, Medical College of Shihezi University; Key Laboratory of Xinjiang Endemic and Ethnic Disease, Shihezi University School of Medicine, Shihezi, Xinjiang Uygur Autonomous Region; Department of Physiology, Jiaxing College of Medicine, Jiaxing, Zhejiang Province, China
| |
Collapse
|
9
|
He J, Gao Y, Wu G, Lei X, Zhang Y, Pan W, Yu H. Molecular mechanism of estrogen-mediated neuroprotection in the relief of brain ischemic injury. BMC Genet 2018; 19:46. [PMID: 30029590 PMCID: PMC6053825 DOI: 10.1186/s12863-018-0630-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 06/20/2018] [Indexed: 12/23/2022] Open
Abstract
Background This study aimed to explore the molecular mechanism of estrogen-mediated neuroprotection in the relief of cerebral ischemic injury. The gene expression profiles were downloaded from Gene Expression Omnibus database, and differentially expressed genes (DEGs) were identified using limma package in R software. Further, DEGs were subjected to Gene Ontology (GO) cluster analysis using online Gene Ontology Enrichment Analysis Software Toolkit and to GO functional enrichment analysis using DAVID software. Using the Gene Set Analysis Toolkit V2, enrichment analysis of Kyoto Encyclopedia of Genes and Genomes pathways was performed. In addition, protein-protein interaction (PPI) network was constructed using STRING database, and submodule analysis of PPI network. Lastly, the significant potential target sites of microRNAs (miRNAs) were predicted using Molecular Signatures Database, and the function analysis of targets of predicted miRNA was also performed using DAVID software. Results In total, 321 DEGs were screened in the estrogen-treated sample. The DEGs were mainly associated with intracellular signaling and metabolic pathways, such as calcium channel, calcineurin complex, insulin secretion, low-density lipoprotein reconstruction, and starch or sugar metabolism. In addition, GO enrichment analysis indicated an altered expression of the genes related to starch and sucrose metabolism, retinol metabolism, anti-apoptosis (eg., BDNF and ADAM17) and response to endogenous stimulus. The constructed PPI network comprised of 243 nodes and 590 interaction pairs, and four submodules were obtained from PPI network. Among the module d, four glutamate receptors as Gria4, Gria3, Grin3a and Grik4 were highlighted. Further, 5 novel potential regulatory miRNAs were also predicted. MIR-338 and MIR520D were closely associated with cell cycle, while the targets of MIR-376A and MIR-376B were only involved in cell soma. Conclusions The DEGs in estrogen-treated samples are closely associated with calcium channel, glutamate induced excitotoxicity and anti-apoptotic activity. In addition, some functionally significant DEGs such as BDNF, ADAM17, Gria4, Gria3, Grin3a, Grik4, Gys2 and Ugtla2, and new miRNAs like MIR-338 and MIR-376A were identified, which may serve as potential therapeutic targets for the effective treatment of cerebral ischemic injury. Electronic supplementary material The online version of this article (10.1186/s12863-018-0630-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jiaxuan He
- Department of Anesthesia, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Ya Gao
- Department of Pediatric surgery, Second Affiliated Hospital of Xi'an Jiaotong University, No.157, XiWu Road, Xi'an, 710004, China.
| | - Gang Wu
- Department of Anesthesia, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Xiaoming Lei
- Department of Anesthesia, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Yong Zhang
- Department of Anesthesia, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Weikang Pan
- Department of Pediatric surgery, Second Affiliated Hospital of Xi'an Jiaotong University, No.157, XiWu Road, Xi'an, 710004, China
| | - Hui Yu
- Department of Pediatric surgery, Second Affiliated Hospital of Xi'an Jiaotong University, No.157, XiWu Road, Xi'an, 710004, China
| |
Collapse
|
10
|
Zhang C, Zhu Y, Wang S, Zachory Wei Z, Jiang MQ, Zhang Y, Pan Y, Tao S, Li J, Wei L. Temporal Gene Expression Profiles after Focal Cerebral Ischemia in Mice. Aging Dis 2018; 9:249-261. [PMID: 29896414 PMCID: PMC5963346 DOI: 10.14336/ad.2017.0424] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 04/24/2017] [Indexed: 01/27/2023] Open
Abstract
A cascade of pathological processes is triggered in the lesion area after ischemic stroke. Unfortunately, our understanding of these complicated molecular events is incomplete. In this investigation, we sought to better understand the detailed molecular and inflammatory events occurring after ischemic stroke. RNA-seq technology was used to identify whole gene expression profiles at days (D1, D3, D7, D14, D21) after focal cerebral ischemia in mice. Enrichment analyses based on Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) terms for the differentially expressed genes (DEGs) were then analyzed. Inflammation-related genes that were significantly expressed after stroke were selected for analysis and the temporal expression patterns of pro-inflammatory and anti-inflammatory genes were reported. These data illustrated that the number of DEGs increased accumulatively after cerebral ischemia. In summary, there were 1967 DEGs at D1, 2280 DEGs at D3, 2631 DEGs at D7, 5516 DEGs at D14 and 7093 DEGs at D21. The significantly enriched GO terms also increased. 58 GO terms and 18 KEGG pathways were significantly enriched at all inspected time points. We identified 87 DEGs which were functionally related to inflammatory responses. The expression levels of pro-inflammation related genes CD16, CD32, CD86, CD11b, Tumour necrosis factor α (TNF-α), Interleukin 1β (IL-1β) increased over time and peaked at D14. Anti-inflammation related genes Arginase 1 (Arg1) and Chitinase-like 3 (Ym1) peaked at D1 while IL-10, Transforming growth factor β (TGF-β) and CD206, which were induced at 1 day after cerebral ischemia, peaked by 7 to 14 days. These gene profile changes were potentially linked to microglia/macrophage phenotype changes and could play a role in astroglial activation. This study supplies new insights and detailed information on the molecular events and pathological mechanisms that occur after experimental ischemic stroke.
Collapse
Affiliation(s)
- Chengjie Zhang
- Department of Neurology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China.
- Laboratories of Stem Cell Biology and Neural Regeneration and Function Recovery, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China.
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA 30322, USA.
| | - Yanbing Zhu
- Laboratories of Stem Cell Biology and Neural Regeneration and Function Recovery, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China.
| | - Song Wang
- Laboratories of Stem Cell Biology and Neural Regeneration and Function Recovery, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China.
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA 30322, USA.
| | - Zheng Zachory Wei
- Department of Neurology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China.
- Laboratories of Stem Cell Biology and Neural Regeneration and Function Recovery, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China.
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA 30322, USA.
| | - Michael Qize Jiang
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA 30322, USA.
| | - Yongbo Zhang
- Department of Neurology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China.
- Laboratories of Stem Cell Biology and Neural Regeneration and Function Recovery, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China.
| | - Yuhualei Pan
- Department of Neurology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China.
- Laboratories of Stem Cell Biology and Neural Regeneration and Function Recovery, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China.
| | - Shaoxin Tao
- Department of Neurology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China.
- Laboratories of Stem Cell Biology and Neural Regeneration and Function Recovery, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China.
| | - Jimei Li
- Department of Neurology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China.
- Laboratories of Stem Cell Biology and Neural Regeneration and Function Recovery, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China.
| | - Ling Wei
- Department of Neurology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China.
- Laboratories of Stem Cell Biology and Neural Regeneration and Function Recovery, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China.
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA 30322, USA.
| |
Collapse
|
11
|
Liu H, Zhong L, Zhang Y, Liu X, Li J. Rutin attenuates cerebral ischemia-reperfusion injury in ovariectomized rats via estrogen-receptor-mediated BDNF-TrkB and NGF-TrkA signaling. Biochem Cell Biol 2018; 96:672-681. [PMID: 29420916 DOI: 10.1139/bcb-2017-0209] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Rutin, a flavonoid glycoside, has been reported to exert neuroprotective effects. Loss of endogenous estrogen and dysregulation of the estrogen receptor (ER) signaling pathway are associated with the increased risk of stroke in women after menopause. This study was performed to investigate whether rutin could protect against cerebral ischemia by modulating the ER pathway. Ovariectomized (OVX) rats were given intraperitoneal injections of vehicle (dimethyl sulfoxide), rutin (100 mg/kg body mass) or 17β-estradiol (100 μg/kg body mass) for 5 consecutive days. Then, the rats were subjected to middle cerebral artery occlusion (MCAO) for 1 h followed by a 24 h reperfusion to establish the cerebral ischemia-reperfusion (I/R) injury. We found that rutin improved the sensorimotor performance and recognition memory of rats subjected to I/R, decreased the infarct size, and attenuated neuron loss. Rutin treatment also increased the levels of ERα, ERβ, brain-derived neurotrophic factor (BDNF), nerve growth factor (NGF), tropomyosin receptor kinase A (TrkA), TrkB, and phospho-cAMP-responsive element binding protein (p-CREB) in rat hippocampus and cerebral cortex. The protective effects of rutin were comparable to that of 17β-estradiol, and were partially blocked by ICI182780, an ER antagonist. The above results suggest that rutin preconditioning ameliorates cerebral I/R injury in OVX rats through ER-mediated BDNF-TrkB and NGF-TrkA signaling.
Collapse
Affiliation(s)
- Hong Liu
- a Department of Pathology and Pathophysiology, School of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, Harbin 150040, Heilongjiang Province, P.R. China.,b Postdoctoral Program, Heilongjiang University of Chinese Medicine, Harbin 150040, Heilongjiang Province, P.R. China.,c Key Laboratory of Education Ministry for Myocardial Ischemia, Harbin Medical University, Harbin 150081, Heilongjiang Province, P.R. China
| | - Lili Zhong
- b Postdoctoral Program, Heilongjiang University of Chinese Medicine, Harbin 150040, Heilongjiang Province, P.R. China.,d Department of Pathology, The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin 150001, Heilongjiang Province, P.R. China
| | - Yuwei Zhang
- e Department of Physiology, School of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, Harbin 150040, Heilongjiang Province, P.R. China
| | - Xuewei Liu
- f Department of Neuropharmacology, Institute of Medicine and Pharmacy, Qiqihar Medical University, Qiqihar 161006, Heilongjiang Province, P.R. China
| | - Ji Li
- g Department of Formulaology, School of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, Harbin 150040, Heilongjiang Province, P.R. China
| |
Collapse
|
12
|
Glushakova OY, Glushakov AA, Wijesinghe DS, Valadka AB, Hayes RL, Glushakov AV. Prospective clinical biomarkers of caspase-mediated apoptosis associated with neuronal and neurovascular damage following stroke and other severe brain injuries: Implications for chronic neurodegeneration. Brain Circ 2017; 3:87-108. [PMID: 30276309 PMCID: PMC6126261 DOI: 10.4103/bc.bc_27_16] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 04/10/2017] [Accepted: 04/17/2017] [Indexed: 12/11/2022] Open
Abstract
Acute brain injuries, including ischemic and hemorrhagic stroke, as well as traumatic brain injury (TBI), are major worldwide health concerns with very limited options for effective diagnosis and treatment. Stroke and TBI pose an increased risk for the development of chronic neurodegenerative diseases, notably chronic traumatic encephalopathy, Alzheimer's disease, and Parkinson's disease. The existence of premorbid neurodegenerative diseases can exacerbate the severity and prognosis of acute brain injuries. Apoptosis involving caspase-3 is one of the most common mechanisms involved in the etiopathology of both acute and chronic neurological and neurodegenerative diseases, suggesting a relationship between these disorders. Over the past two decades, several clinical biomarkers of apoptosis have been identified in cerebrospinal fluid and peripheral blood following ischemic stroke, intracerebral and subarachnoid hemorrhage, and TBI. These biomarkers include selected caspases, notably caspase-3 and its specific cleavage products such as caspase-cleaved cytokeratin-18, caspase-cleaved tau, and a caspase-specific 120 kDa αII-spectrin breakdown product. The levels of these biomarkers might be a valuable tool for the identification of pathological pathways such as apoptosis and inflammation involved in injury progression, assessment of injury severity, and prediction of clinical outcomes. This review focuses on clinical studies involving biomarkers of caspase-3-mediated pathways, following stroke and TBI. The review further examines their prospective diagnostic utility, as well as clinical utility for improved personalized treatment of stroke and TBI patients and the development of prophylactic treatment chronic neurodegenerative disease.
Collapse
Affiliation(s)
- Olena Y Glushakova
- Department of Neurosurgery, Virginia Commonwealth University, Richmond, VA, USA
| | - Andriy A Glushakov
- Department of Neurosurgery, University of South Florida College of Medicine, Tampa, FL, USA
| | - Dayanjan S Wijesinghe
- Department of Pharmacotherapy and Outcomes Sciences, Laboratory of Pharmacometabolomics and Companion Diagnostics, Virginia Commonwealth University, Richmond, VA, USA
| | - Alex B Valadka
- Department of Neurosurgery, Virginia Commonwealth University, Richmond, VA, USA
| | - Ronald L Hayes
- Department of Neurosurgery, Virginia Commonwealth University, Richmond, VA, USA
- Banyan Biomarkers, Inc., Alachua, 32615, USA
| | | |
Collapse
|
13
|
Stanojlović M, Guševac I, Grković I, Mitrović N, Zlatković J, Horvat A, Drakulić D. Repeated Estradiol Treatment Attenuates Chronic Cerebral Hypoperfusion-Induced Neurodegeneration in Rat Hippocampus. Cell Mol Neurobiol 2016; 36:989-999. [PMID: 26689702 PMCID: PMC11482356 DOI: 10.1007/s10571-015-0289-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Accepted: 10/14/2015] [Indexed: 11/28/2022]
Abstract
Although a substantial number of pre-clinical and experimental studies have investigated effects of 17β-estradiol, its precise molecular mechanism of action in the early state of chronic cerebral hypoperfusion remains controversial. The present study attempted to verify whether post-ischemic estradiol treatment (33.3 μg/kg for seven consecutive days) affects previously reported number of hippocampal apoptotic cells and amount of DNA fragmentation characteristic for apoptosis as well as the expression of key elements within synaptosomal Akt and Erk signal transduction pathways (NF-κB, Bax, Bcl-2, cytochrome C, caspase 3, and PARP). Additionally, alterations of aforementioned molecules linked to protection in various neurodegenerative disorders were monitored in the cytosolic, mitochondrial, and nuclear fractions associating investigated kinases and NF-κB with gene expression of their downstream effectors-Bcl-2, Bax, and caspase 3. The results revealed that an initial increase in the number of apoptotic cells and amount of DNA fragmentation induced by chronic cerebral hypoperfusion was significantly reduced by 17β-estradiol. In synaptic regions, an altered profile with respect to the protein expression of Bcl-2 and phosphorylated Akt was detected, although the level of other examined proteins was not modified. In other investigated sub-cellular fractions, 17β-estradiol elicited phosphorylation and translocation of Akt and Erk along with modulation of the expression of their subsequent effectors. Our findings support the concept that repeated post-ischemic 17β-estradiol treatment attenuates neurodegeneration induced by chronic cerebral hypoperfusion in hippocampus through the activation of investigated kinases and regulation of their downstream molecules in sub-cellular manner indicating a time window and regime of its administration as a valid therapeutic intervention.
Collapse
Affiliation(s)
- Miloš Stanojlović
- Department of Molecular Biology and Endocrinology, VINCA Institute of Nuclear Sciences, University of Belgrade, P.O.Box 522, Belgrade, 11001, Republic of Serbia
| | - Ivana Guševac
- Department of Molecular Biology and Endocrinology, VINCA Institute of Nuclear Sciences, University of Belgrade, P.O.Box 522, Belgrade, 11001, Republic of Serbia
| | - Ivana Grković
- Department of Molecular Biology and Endocrinology, VINCA Institute of Nuclear Sciences, University of Belgrade, P.O.Box 522, Belgrade, 11001, Republic of Serbia
| | - Nataša Mitrović
- Department of Molecular Biology and Endocrinology, VINCA Institute of Nuclear Sciences, University of Belgrade, P.O.Box 522, Belgrade, 11001, Republic of Serbia
| | - Jelena Zlatković
- Department of Molecular Biology and Endocrinology, VINCA Institute of Nuclear Sciences, University of Belgrade, P.O.Box 522, Belgrade, 11001, Republic of Serbia
| | - Anica Horvat
- Department of Molecular Biology and Endocrinology, VINCA Institute of Nuclear Sciences, University of Belgrade, P.O.Box 522, Belgrade, 11001, Republic of Serbia
| | - Dunja Drakulić
- Department of Molecular Biology and Endocrinology, VINCA Institute of Nuclear Sciences, University of Belgrade, P.O.Box 522, Belgrade, 11001, Republic of Serbia.
| |
Collapse
|
14
|
Ingberg E, Dock H, Theodorsson E, Theodorsson A, Ström JO. Method parameters' impact on mortality and variability in mouse stroke experiments: a meta-analysis. Sci Rep 2016; 6:21086. [PMID: 26876353 PMCID: PMC4753409 DOI: 10.1038/srep21086] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 01/13/2016] [Indexed: 12/17/2022] Open
Abstract
Although hundreds of promising substances have been tested in clinical trials,
thrombolysis currently remains the only specific pharmacological treatment for
ischemic stroke. Poor quality, e.g. low statistical power, in the preclinical
studies has been suggested to play an important role in these failures. Therefore,
it would be attractive to use animal models optimized to minimize unnecessary
mortality and outcome variability, or at least to be able to power studies more
exactly by predicting variability and mortality given a certain experimental setup.
The possible combinations of methodological parameters are innumerous, and an
experimental comparison of them all is therefore not feasible. As an alternative
approach, we extracted data from 334 experimental mouse stroke articles and, using a
hypothesis-driven meta-analysis, investigated the method parameters’
impact on infarct size variability and mortality. The use of Swiss and C57BL6 mice
as well as permanent occlusion of the middle cerebral artery rendered the lowest
variability of the infarct size while the emboli methods increased variability. The
use of Swiss mice increased mortality. Our study offers guidance for researchers
striving to optimize mouse stroke models.
Collapse
Affiliation(s)
- Edvin Ingberg
- Division of Microbiology and Molecular Medicine, Department of Clinical and Experimental Medicine, Linköping University, Department of Clinical Chemistry, Center for Diagnostics, Region Östergötland, Sweden
| | - Hua Dock
- Division of Microbiology and Molecular Medicine, Department of Clinical and Experimental Medicine, Linköping University, Department of Clinical Chemistry, Center for Diagnostics, Region Östergötland, Sweden
| | - Elvar Theodorsson
- Division of Microbiology and Molecular Medicine, Department of Clinical and Experimental Medicine, Linköping University, Department of Clinical Chemistry, Center for Diagnostics, Region Östergötland, Sweden
| | - Annette Theodorsson
- Division of Microbiology and Molecular Medicine, Department of Clinical and Experimental Medicine, Linköping University, Department of Clinical Chemistry, Center for Diagnostics, Region Östergötland, Sweden.,Division of Neuro and Inflammation Science, Department of Clinical and Experimental Medicine, Linköping University, Department of Neurosurgery, Anaesthetics, Operations and Specialty Surgery Center, Region Östergötland, Sweden
| | - Jakob O Ström
- Division of Microbiology and Molecular Medicine, Department of Clinical and Experimental Medicine, Linköping University, Department of Clinical Chemistry, Center for Diagnostics, Region Östergötland, Sweden.,Vårdvetenskapligt Forskningscentrum/Centre for Health Sciences, Örebro University Hospital, County Council of Örebro, Örebro, Sweden.,School of Health and Medical Sciences, Örebro University, Örebro, Sweden
| |
Collapse
|
15
|
Turner RC, Lucke-Wold BP, Logsdon AF, Robson MJ, Lee JM, Bailes JE, Dashnaw ML, Huber JD, Petraglia AL, Rosen CL. Modeling Chronic Traumatic Encephalopathy: The Way Forward for Future Discovery. Front Neurol 2015; 6:223. [PMID: 26579067 PMCID: PMC4620695 DOI: 10.3389/fneur.2015.00223] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 10/09/2015] [Indexed: 02/05/2023] Open
Abstract
Despite the extensive media coverage associated with the diagnosis of chronic traumatic encephalopathy (CTE), our fundamental understanding of the disease pathophysiology remains in its infancy. Only recently have scientific laboratories and personnel begun to explore CTE pathophysiology through the use of preclinical models of neurotrauma. Some studies have shown the ability to recapitulate some aspects of CTE in rodent models, through the use of various neuropathological, biochemical, and/or behavioral assays. Many questions related to CTE development, however, remain unanswered. These include the role of impact severity, the time interval between impacts, the age at which impacts occur, and the total number of impacts sustained. Other important variables such as the location of impacts, character of impacts, and effect of environment/lifestyle and genetics also warrant further study. In this work, we attempt to address some of these questions by exploring work previously completed using single- and repetitive-injury paradigms. Despite some models producing some deficits similar to CTE symptoms, it is clear that further studies are required to understand the development of neuropathological and neurobehavioral features consistent with CTE-like features in rodents. Specifically, acute and chronic studies are needed that characterize the development of tau-based pathology.
Collapse
Affiliation(s)
- Ryan C. Turner
- Department of Neurosurgery, West Virginia University School of Medicine, Morgantown, WV, USA
- Center for Neuroscience, West Virginia University School of Medicine, Morgantown, WV, USA
| | - Brandon P. Lucke-Wold
- Department of Neurosurgery, West Virginia University School of Medicine, Morgantown, WV, USA
- Center for Neuroscience, West Virginia University School of Medicine, Morgantown, WV, USA
| | - Aric F. Logsdon
- Center for Neuroscience, West Virginia University School of Medicine, Morgantown, WV, USA
- Department of Basic Pharmaceutical Sciences, West Virginia University School of Pharmacy, Morgantown, WV, USA
| | - Matthew J. Robson
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - John M. Lee
- Department of Pathology and Laboratory Medicine, NorthShore University Health System, University of Chicago Pritzker School of Medicine, Evanston, IL, USA
| | - Julian E. Bailes
- Department of Neurosurgery, NorthShore University Health System, University of Chicago Pritzker School of Medicine, Evanston, IL, USA
| | - Matthew L. Dashnaw
- Department of Neurosurgery, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Jason D. Huber
- Center for Neuroscience, West Virginia University School of Medicine, Morgantown, WV, USA
- Department of Basic Pharmaceutical Sciences, West Virginia University School of Pharmacy, Morgantown, WV, USA
| | | | - Charles L. Rosen
- Department of Neurosurgery, West Virginia University School of Medicine, Morgantown, WV, USA
- Center for Neuroscience, West Virginia University School of Medicine, Morgantown, WV, USA
| |
Collapse
|
16
|
Calreticulin Binds to Fas Ligand and Inhibits Neuronal Cell Apoptosis Induced by Ischemia-Reperfusion Injury. BIOMED RESEARCH INTERNATIONAL 2015; 2015:895284. [PMID: 26583143 PMCID: PMC4637069 DOI: 10.1155/2015/895284] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Accepted: 07/07/2015] [Indexed: 11/17/2022]
Abstract
Background. Calreticulin (CRT) can bind to Fas ligand (FasL) and inhibit Fas/FasL-mediated apoptosis of Jurkat T cells. However, its effect on neuronal cell apoptosis has not been investigated. Purpose. We aimed to evaluate the neuroprotective effect of CRT following ischemia-reperfusion injury (IRI). Methods. Mice underwent middle cerebral artery occlusion (MCAO) and SH-SY5Y cells subjected to oxygen glucose deprivation (OGD) were used as models for IRI. The CRT protein level was detected by Western blotting, and mRNA expression of CRT, caspase-3, and caspase-8 was measured by real-time PCR. Immunofluorescence was used to assess the localization of CRT and FasL. The interaction of CRT with FasL was verified by coimmunoprecipitation. SH-SY5Y cell viability was determined by MTT assay, and cell apoptosis was assessed by flow cytometry. The measurement of caspase-8 and caspase-3 activity was carried out using caspase activity assay kits. Results. After IRI, CRT was upregulated on the neuron surface and bound to FasL, leading to increased viability of OGD-exposed SH-SY5Y cells and decreased activity of caspase-8 and caspase-3. Conclusions. This study for the first time revealed that increased CRT inhibited Fas/FasL-mediated neuronal cell apoptosis during the early stage of ischemic stroke, suggesting it to be a potential protector activated soon after IRI.
Collapse
|
17
|
The Effect of PSD-93 Deficiency on the Expression of Early Inflammatory Cytokines Induced by Ischemic Brain Injury. Cell Biochem Biophys 2015; 73:695-700. [DOI: 10.1007/s12013-015-0666-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
18
|
Ma Y, Bu J, Dang H, Sha J, Jing Y, Shan-jiang AI, Li H, Zhu Y. Inhibition of adenosine monophosphate-activated protein kinase reduces glial cell-mediated inflammation and induces the expression of Cx43 in astroglias after cerebral ischemia. Brain Res 2015; 1605:1-11. [DOI: 10.1016/j.brainres.2014.11.030] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Revised: 10/25/2014] [Accepted: 11/13/2014] [Indexed: 10/24/2022]
|
19
|
Wu X, Li L, Zhang L, Wu J, Zhou Y, Zhou Y, Zhao Y, Zhao J. Inhibition of thioredoxin-1 with siRNA exacerbates apoptosis by activating the ASK1-JNK/p38 pathway in brain of a stroke model rats. Brain Res 2014; 1599:20-31. [PMID: 25541364 DOI: 10.1016/j.brainres.2014.12.033] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2014] [Revised: 11/19/2014] [Accepted: 12/13/2014] [Indexed: 12/14/2022]
Abstract
Apoptosis is critical for the development of cerebral ischemia/reperfusion injury. Thioredoxin-1(Trx-1) protein has been reported to have anti-apoptotic effects in a variety of cell types, and it has been implicated in brain injury after middle cerebral artery occlusion (MCAO). Thus, we studied the effects of Trx1 silencing after MCAO in rats and examined whether inhibition of endogenous Trx1 could increase tissue levels of apoptosis. Male Sprague-Dawley rats (N=170) were subjected to 1h of middle cerebral arterial occlusion followed by 24h of reperfusion. Trx1 siRNAs were injected into rat brains 24h prior to MCAO. Then, 24h after MCAO, brains were collected from euthanized rats for investigation. Treatment with Trx1 siRNA significantly increased mortality, behavioral deficits, and cerebral infarction volume and exacerbated neuronal cell apoptotic death after MCAO injury. Western blot revealed increased expression of apoptotic proteins such as P-ASK1, P-JNK, P-p38, cleaved caspase-3 and increased the level of cytochrome c in the cytosolic fraction in the Trx1 siRNA-treated group. Co-immunoprecipitation assay suggested an interaction between Trx1 and ASK1 in normal rat brains and Trx1 siRNA dissociated ASK1-Trx1 binding complex. Our data suggest that Trx1 siRNA increases apoptotic stress-induced ASK1 activation and this represents further evidence that Trx1 is an endogenous anti-apoptotic molecule that diminishes focal cerebral ischemia/reperfusion injury. Its mechanism of action is likely related to attenuation of the ASK1-JNK/p38 signaling pathway.
Collapse
Affiliation(s)
- Xiaoying Wu
- Department of Pathophysiology, Chongqing Medical University, Chongqing, People׳s Republic of China; Institute of Neuroscience, Chongqing Medical University, Chongqing, People׳s Republic of China
| | - Lingyu Li
- Department of Pathophysiology, Chongqing Medical University, Chongqing, People׳s Republic of China; Institute of Neuroscience, Chongqing Medical University, Chongqing, People׳s Republic of China
| | - Luyu Zhang
- Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing, People׳s Republic of China
| | - Jingxian Wu
- Department of Pathology, Chongqing Medical University, Chongqing, People׳s Republic of China; Institute of Neuroscience, Chongqing Medical University, Chongqing, People׳s Republic of China
| | - Yunchuan Zhou
- Department of Pathology, Chongqing Medical University, Chongqing, People׳s Republic of China; Institute of Neuroscience, Chongqing Medical University, Chongqing, People׳s Republic of China
| | - Yang Zhou
- Department of Pathology, Chongqing Medical University, Chongqing, People׳s Republic of China; Institute of Neuroscience, Chongqing Medical University, Chongqing, People׳s Republic of China
| | - Yong Zhao
- Department of Pathology, Chongqing Medical University, Chongqing, People׳s Republic of China; Institute of Neuroscience, Chongqing Medical University, Chongqing, People׳s Republic of China
| | - Jing Zhao
- Department of Pathophysiology, Chongqing Medical University, Chongqing, People׳s Republic of China; Institute of Neuroscience, Chongqing Medical University, Chongqing, People׳s Republic of China.
| |
Collapse
|
20
|
Estradiol and Progesterone Administration After pMCAO Stimulates the Neurological Recovery and Reduces the Detrimental Effect of Ischemia Mainly in Hippocampus. Mol Neurobiol 2014; 52:1690-1703. [DOI: 10.1007/s12035-014-8963-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Accepted: 10/23/2014] [Indexed: 10/24/2022]
|
21
|
Petrone A, Simpkins JW, Barr TL. 17β-estradiol and inflammation: implications for ischemic stroke. Aging Dis 2014; 5:340-5. [PMID: 25276492 DOI: 10.14336/ad.2014.0500340] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Revised: 06/26/2014] [Accepted: 07/08/2014] [Indexed: 01/17/2023] Open
Abstract
Although typically associated with maintenance of female reproductive function, estrogens mediate physiological processes in nearly every body tissue, including the central nervous system. Numerous pre-clinical studies have shown that estrogen, specifically 17-beta-estradiol (17β-E2), protects the brain from ischemic injury following stroke. There are multiple mechanisms of 17β-E2's neuroprotection, including activation of several neuroprotective pathways in the brain, but 17β-E2 also mediates the local and systemic immune response to ischemic stroke. This review summarizes the immune response to stroke, sex differences in stroke pathophysiology, and the role of estrogen as an immunomodulator. This review will focus almost entirely on the role of 17β-E2; however, there will be a brief review and comparison to other forms of estrogen. Understanding the immunomodulatory action of estrogens may provide an opportunity for the use of estrogens in treatment of stroke and other inflammatory disease.
Collapse
Affiliation(s)
| | - James W Simpkins
- Center for Neuroscience, West Virginia University School of Medicine, WV 26506, USA ; Center for Basic and Translational Stroke Research, West Virginia University School of Medicine, WV 26506, USA ; Department of Physiology and Pharmacology, West Virginia University School of Medicine, WV 26506, USA
| | - Taura L Barr
- Center for Neuroscience, West Virginia University School of Medicine, WV 26506, USA ; Center for Basic and Translational Stroke Research, West Virginia University School of Medicine, WV 26506, USA ; West Virginia University School of Nursing, Morgantown, WV 26506, USA
| |
Collapse
|
22
|
WANG HAIYING, DING WENYUAN, YANG DALONG, GU TIXIN, YANG SIDONG, BAI ZHILONG. Different concentrations of 17β-estradiol modulates apoptosis induced by interleukin-1β in rat annulus fibrosus cells. Mol Med Rep 2014; 10:2745-51. [DOI: 10.3892/mmr.2014.2514] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Accepted: 06/05/2014] [Indexed: 11/05/2022] Open
|
23
|
Ettcheto M, Junyent F, de Lemos L, Pallas M, Folch J, Beas-Zarate C, Verdaguer E, Gómez-Sintes R, Lucas JJ, Auladell C, Camins A. Mice Lacking Functional Fas Death Receptors Are Protected from Kainic Acid-Induced Apoptosis in the Hippocampus. Mol Neurobiol 2014; 52:120-9. [PMID: 25119776 DOI: 10.1007/s12035-014-8836-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Accepted: 07/25/2014] [Indexed: 01/08/2023]
Abstract
The Fas receptor (FasR)/Fas ligand (FasL) system plays a significant role in the process of neuronal loss in neurological disorders. Thus, in the present study, we used a real-time PCR array focused apoptosis (Mouse Apoptosis RT(2) PCR Array) to study the role of the Fas pathway in the apoptotic process that occurs in a kainic acid (KA) mice experimental model. In fact, significant changes in the transcriptional activity of a total of 23 genes were found in the hippocampus of wild-type C57BL/6 mice after 12 h of KA treatment compared to untreated mice. Among the up-regulated genes, we found key factors involved in the extrinsic apoptotic pathway, such as tnf, fas and fasL, and also in caspase genes (caspase -4, caspase-8 and caspase-3). To discern the importance of the FasR/FasL pathway, mice lacking the functional Fas death receptor (lpr) were also treated with KA. After 24 h of neurotoxin treatment, lpr mice exhibited a reduced number of apoptotic positive cells, determined by the terminal deoxynucleotidyl transferase dUTP nick end labelling (TUNEL) method in different regions of the hippocampus, when compared to wild-type mice. In addition, treatment of lpr mice with KA did not produce significant changes in the transcriptional activity of genes related to apoptosis in the hippocampus, either in the fas and fas ligand genes or in caspase-4 and caspase-8 and the executioner caspase-3 genes, as occurred in wild-type C57BL/6 mice. Thus, these data provide direct evidence that Fas signalling plays a key role in the induction of apoptosis in the hippocampus following KA treatment, making the inhibition of the death receptor pathway a potentially suitable target for excitotoxicity neuroprotection in neurological conditions such as epilepsy.
Collapse
Affiliation(s)
- Miren Ettcheto
- Unitat de Farmacologia i Farmacognòsia Facultat de Farmàcia, Institut de Biomedicina (IBUB), Universitat de Barcelona, Avda/Diagonal 643, E-08028, Barcelona, Spain
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Grzegorzewska AK, Hrabia A, Paczoska-Eliasiewicz HE. Localization of apoptotic and proliferating cells and mRNA expression of caspases and Bcl-2 in gonads of chicken embryos. Acta Histochem 2014; 116:795-802. [PMID: 24565327 DOI: 10.1016/j.acthis.2014.01.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Revised: 01/13/2014] [Accepted: 01/16/2014] [Indexed: 12/23/2022]
Abstract
The aim of the present study was to analyze participation of apoptosis and proliferation in gonadal development in the chicken embryo by: (1) localization of apoptotic (TUNEL) and proliferating (PCNA immunoassay) cells in male and female gonads and (2) examination of mRNA expression (RT-PCR) of caspase-3, caspase-6 and Bcl-2 in the ovary and testis during the second half of embryogenesis and in newly hatched chickens. Apoptotic cells were found in gonads of both sexes. At E18 the percentage of apoptotic cells (the apoptotic index, AI) in the ovarian medulla and the testis was lower (p<0.05) than in the ovarian cortex. In the ovarian medulla, the AI at E18 was lower (p<0.05) than on E12. In the testis, the AI was significantly lower (p<0.05) at E18 than at E15 and 1D. The percentage of proliferating cells (the proliferation index: PI) within the ovary significantly increased from E15 to 1D in the cortex, while proliferating cells in the medulla were detected only at E15. In the testis, the PI gradually increased from E12 to 1D. The mRNA expression of caspase-3 and -6 as well as Bcl-2 was detected in male and female gonads at days 12 (E12), 15 (E15) and 18 (E18) of embryogenesis and the day after hatching (1D). The expression of all analyzed genes on E12 was significantly higher (p<0.05) in female than in male gonads. This difference was also observed at E15 and E18, but only for the caspase-6. The results obtained showed tissue- and sex-dependent differences in the number of apoptotic and proliferating cells as well as mRNA expression of caspase-3, -6 and Bcl-2 genes in the gonads of chicken embryos. Significant increase in the number of proliferating cells in the ovarian cortex and lack of these cells in the ovarian medulla (stages E12, E18, 1D) simultaneous with decrease in the intensity of apoptosis only in the medulla indicates that proliferation is the dominant process involved in the cortical development, which constitutes the majority of the functional structure of the fully developed ovary. No pronounced changes in the expression of apoptosis-related genes found during embryogenesis suggest that they cannot be considered as important indicators of gonad development. The molecular mechanisms of the regulation of balance between apoptosis and proliferation in developing avian gonads need to be further investigated.
Collapse
Affiliation(s)
- Agnieszka K Grzegorzewska
- Department of Animal Physiology and Endocrinology, University of Agriculture in Krakow, Al. Mickiewicza 24/28, 30-059 Kraków, Poland.
| | - Anna Hrabia
- Department of Animal Physiology and Endocrinology, University of Agriculture in Krakow, Al. Mickiewicza 24/28, 30-059 Kraków, Poland
| | - Helena E Paczoska-Eliasiewicz
- Department of Animal Physiology and Endocrinology, University of Agriculture in Krakow, Al. Mickiewicza 24/28, 30-059 Kraków, Poland
| |
Collapse
|
25
|
van der Spuy WJ, Pretorius E. Interaction of red blood cells adjacent to and within a thrombus in experimental cerebral ischaemia. Thromb Res 2013; 132:718-23. [DOI: 10.1016/j.thromres.2013.08.024] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Revised: 08/05/2013] [Accepted: 08/13/2013] [Indexed: 01/18/2023]
|
26
|
Manwani B, Liu F, Scranton V, Hammond MD, Sansing LH, McCullough LD. Differential effects of aging and sex on stroke induced inflammation across the lifespan. Exp Neurol 2013; 249:120-31. [PMID: 23994069 PMCID: PMC3874380 DOI: 10.1016/j.expneurol.2013.08.011] [Citation(s) in RCA: 137] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Revised: 08/03/2013] [Accepted: 08/21/2013] [Indexed: 01/02/2023]
Abstract
Aging and biological sex are critical determinants of stroke outcome. Post-ischemic inflammatory response strongly contributes to the extent of ischemic brain injury, but how this response changes with age and sex is unknown. We subjected young (5-6 months), middle aged (14-15 months) and aged (20-22 months), C57BL/6 male and female mice to transient middle cerebral artery occlusion (MCAO) and found that a significant age by sex interaction influenced histological stroke outcomes. Acute functional outcomes were worse with aging. Neutrophils, inflammatory macrophages, macrophages, dendritic cells (DCs) and microglia significantly increased in the brain post MCAO. Cycling females had higher Gr1(-) non-inflammatory macrophages and lower T cells in the brain after stroke and these correlated with serum estradiol levels. Estrogen loss in acyclic aged female mice exacerbated stroke induced splenic contraction. Advanced age increased T cells, DCs and microglia at the site of injury, which may be responsible for the exacerbated behavioral deficits in the aged. We conclude that aging and sex have differential effects on the post stroke inflammatory milieu. Putative immunomodulatory therapies need to account for this heterogeneity.
Collapse
Affiliation(s)
- Bharti Manwani
- Department of Neurology, University of Connecticut Health Center, Farmington, CT, USA. Department of Neuroscience, University of Connecticut Health Center, Farmington, CT, USA
| | - Fudong Liu
- Department of Neurology, University of Connecticut Health Center, Farmington, CT, USA. Department of Neuroscience, University of Connecticut Health Center, Farmington, CT, USA
| | - Victoria Scranton
- Department of Neurology, University of Connecticut Health Center, Farmington, CT, USA. Department of Neuroscience, University of Connecticut Health Center, Farmington, CT, USA
| | - Matthew D. Hammond
- Department of Neurology, University of Connecticut Health Center, Farmington, CT, USA. Department of Neuroscience, University of Connecticut Health Center, Farmington, CT, USA
| | - Lauren H. Sansing
- Department of Neurology, University of Connecticut Health Center, Farmington, CT, USA. Department of Neuroscience, University of Connecticut Health Center, Farmington, CT, USA
| | - Louise D. McCullough
- Department of Neurology, University of Connecticut Health Center, Farmington, CT, USA. Department of Neuroscience, University of Connecticut Health Center, Farmington, CT, USA
| |
Collapse
|
27
|
Dayem SMAE, Ahmed HH, Metwally F, Foda FMA, Shalby AB, Zaazaa AM. Alpha-chymotrypcin ameliorates neuroinflammation and apoptosis characterizing Alzheimer's disease-induced in ovarictomized rats. ACTA ACUST UNITED AC 2013; 65:477-83. [DOI: 10.1016/j.etp.2012.02.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2011] [Revised: 12/05/2011] [Accepted: 02/21/2012] [Indexed: 01/07/2023]
|
28
|
Van Der Spuy WJ, Pretorius E. A place for ultrastructural analysis of platelets in cerebral ischemic research. Microsc Res Tech 2013; 76:795-802. [PMID: 23681827 DOI: 10.1002/jemt.22231] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Revised: 04/12/2013] [Accepted: 04/24/2013] [Indexed: 12/23/2022]
Abstract
It is well known that estrogen is neuroprotective through various mechanisms which suggest that sex hormone levels, thrombotic mechanisms, and inflammatory processes are strongly interconnected in predicting the outcome and consequences of cerebral ischemia. Because platelet ultrastructure is altered in conditions like thrombosis and associated with stroke, the question arises whether ultrastructural analyses of platelet morphology may provide further insight into the role of estrogen during ischemic insult. In the current study, a hyperglycemic modification to the two-vessel occlusion model for inducing experimental cerebral ischemia was employed, in order to correlate neural tissue integrity levels between three experimental groups to corresponding platelet ultrastructure so as to determine whether there is an association between cerebral ischemia and the presence of inflammatory or necrotic platelet ultrastructure. It is apparent in the results that under the influence of estrogen in cyclic or intact females, there is lesser neural tissue damage as well as a reduced degree of inflammation evident in platelet activation morphology when compared to males and acyclic or ovariectomized females. It is unmistakable that neural injury is closely shadowed, if not preceded, by inflammatory changes in the coagulation system, particularly manifested in platelet ultrastructure. It is therefore suggested that platelets may indeed be used successfully to follow the progression of events of cerebral ischemia and possibly assist in the assessment of treatment strategies and their effects on hemostasis.
Collapse
Affiliation(s)
- Wendy Jeannette Van Der Spuy
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, Parktown, South Africa.
| | | |
Collapse
|
29
|
Chen YT, Zang XF, Pan J, Zhu XL, Chen F, Chen ZB, Xu Y. Expression patterns of histone deacetylases in experimental stroke and potential targets for neuroprotection. Clin Exp Pharmacol Physiol 2013; 39:751-8. [PMID: 22651689 DOI: 10.1111/j.1440-1681.2012.05729.x] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
1. Histone deacetylase (HDAC) inhibitors exert neuroprotection in both cellular and animal models of ischaemic stroke. However, which HDAC isoform (or isoforms) mediates this beneficial effect has not yet been determined. 2. In the present study, gene levels of the HDAC isoforms were determined in the mouse cortex using reverse transcription-polymerase chain reaction (RT-PCR), whereas changes in the expression of individual zinc-dependent HDAC family members were evaluated by western blotting, 3, 12, 24 and 48 h after cerebral ischaemia induced by transient middle cerebral artery occlusion in male Kunming mice. 3. The HDAC isoforms HDAC1-11 were all expressed in the mouse cortex and differentially affected by cerebral ischaemia. Notably, there was a substantial increase in HDAC3, HDAC6 and HDAC11 expression during the early phases of experimental stroke, indicating their contribution to stroke pathogenesis. Furthermore, induction of HDAC3 and HDAC6 in cortical neurons by ischaemic stroke was confirmed in vivo and in vitro using double-labelled immunostaining and RT-PCR, respectively. Therefore, small hairpin (sh) RNAs were used to selectively knock down HDAC3 or HDAC6. This knockdown appreciably promoted the survival of cortical neurons subjected to oxygen and glucose deprivation. 4. The findings of the present study demonstrate the expression patterns of HDAC isoforms during experimental ischaemic stroke. Furthermore, HDAC3 and HDAC6 were identified as potential mediators in the neurotoxicity of ischaemic stroke, suggesting that specific therapeutic approaches may be considered according to HDAC subtype.
Collapse
Affiliation(s)
- Yan-Ting Chen
- Department of Neurology, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | | | | | | | | | | | | |
Collapse
|
30
|
Hou SZ, Li Y, Zhu XL, Wang ZY, Wang X, Xu Y. Ameliorative effects of Diammonium Glycyrrhizinate on inflammation in focal cerebral ischemic-reperfusion injury. Brain Res 2012; 1447:20-7. [DOI: 10.1016/j.brainres.2012.02.011] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2011] [Revised: 01/20/2012] [Accepted: 02/03/2012] [Indexed: 12/15/2022]
|
31
|
Kipp M, Berger K, Clarner T, Dang J, Beyer C. Sex steroids control neuroinflammatory processes in the brain: relevance for acute ischaemia and degenerative demyelination. J Neuroendocrinol 2012; 24:62-70. [PMID: 21592237 DOI: 10.1111/j.1365-2826.2011.02163.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Sex steroids have been demonstrated as powerful compounds to protect neurones and neural tissue from neurotoxic challenges and during neurodegeneration. A multitude of cellular actions have been attributed to female gonadal steroid hormones, including the regulation of pro-survival and anti-apoptotic factors, bioenergetic demands and radical elimination, growth factor allocation and counteracting against excitotoxicity. In recent years, immune-modulatory and anti-inflammatory characteristics of oestrogen and progesterone have also come under scrutiny. To date, each of these physiological responses has been considered to be partially and selectively integrated in the mediation of steroid-mediated cell protection and tested in suitable animal models and in vitro systems. To what extent these individual effects contribute to the overall neural protection remains sketchy. One idea is that a battery of cellular mechanisms operates at the same time. On the other hand, interactions and the control of the brain-intrinsic and peripheral immune system may play an additional and perhaps pioneering function in this scenario, notwithstanding the importance of secondary adjuvant mechanisms. In the present review, we highlight neuroprotective effects of oestrogen and progesterone in two different disease models of the brain, namely acute ischaemic and demyelination damage, which represent the most common acute and degenerative neurological disorders in humans. Besides other inflammatory parameters, we discuss the idea that chemokine expression and signalling appear to be early hallmarks in both diseases and are positively affected by sex steroids. In addition, the complex interplay with local brain-resident immune-competent cells appears to be controlled by the steroid environment.
Collapse
Affiliation(s)
- M Kipp
- Institute of Neuroanatomy, RWTH Aachen University, Aachen, Germany
| | | | | | | | | |
Collapse
|
32
|
Li M, Zhang Z, Sun W, Koehler RC, Huang J. 17β-estradiol attenuates breakdown of blood-brain barrier and hemorrhagic transformation induced by tissue plasminogen activator in cerebral ischemia. Neurobiol Dis 2011; 44:277-83. [PMID: 21816222 DOI: 10.1016/j.nbd.2011.07.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2011] [Revised: 06/24/2011] [Accepted: 07/06/2011] [Indexed: 10/18/2022] Open
Abstract
Tissue plasminogen activator (tPA) remains the only approved thrombolytic agent for the early treatment of ischemic stroke. However, treatment with tPA may lead to disruption of the blood-brain barrier and hemorrhagic transformation. 17β-estradiol (E2) has demonstrated efficacy in reduction of infarct volume in ischemic stroke models. The effects of acute administration of E2 on permeability of the blood-brain barrier and its ability to prevent hemorrhagic transformation in ischemic rats treated with tPA have not previously been studied. Here, we show that neurological deficits, brain water content, and Evan's blue extravasation were increased in ovariectomized female Wistar rats treated with tPA and attenuated in rats receiving E2+tPA. We also show that intracerebral hemoglobin and matrix metalloproteinase-9 activity were elevated with tPA treatment, and these increases were reduced by E2 treatment. Taken together, these data demonstrate that acute administration of E2 is capable of ameliorating some of the adverse effects of tPA administration, including the increase of matrix metalloproteinase-9 activity, blood-brain barrier permeability, and hemorrhagic transformation. These findings suggest a potential role for estrogen in thrombolytic treatment for ischemic stroke.
Collapse
Affiliation(s)
- Mingchang Li
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | | | | | | | | |
Collapse
|
33
|
Postischemic administration of liposome-encapsulated luteolin prevents against ischemia-reperfusion injury in a rat middle cerebral artery occlusion model. J Nutr Biochem 2010; 22:929-36. [PMID: 21190830 DOI: 10.1016/j.jnutbio.2010.07.014] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2010] [Revised: 04/24/2010] [Accepted: 07/28/2010] [Indexed: 01/15/2023]
Abstract
Oxidative stress-induced neuronal cell death has been implicated in neurodegenerative diseases; one such disease is ischemic stroke. Using reactive oxygen species (ROS)-insulted primary neurons, we screened neuroprotectants with clinical potential and then, using ischemia/reperfusion (I/R) model, investigated the anti-ischemic potential of candidate neuroprotectants. Here, we showed that luteolin, isolated from the ripe fruit of Perilla frutescens (L.) Britt, exhibited a neuroprotective action upon the in vitro platform, thus serving as candidate for in vivo pharmacological evaluation. Liposome-encapsulated luteolin produced dramatic preventing effects on I/R-induced behavioral and histological injuries after a 13-day post-ischemic treatment. Furthermore, this phytochemical not only lowered the increased level of mitochondrial ROS but also substantially up-regulated the decreased activity of catalase and glutathione in I/R rat brains. Collectively, luteolin as a neuroprotectant acts by anti-ischemic activity likely through a rebalancing of pro-oxidant/antioxidant status. Its multitarget mechanisms implicate potential effectiveness for clinically treating ischemia stroke.
Collapse
|
34
|
Estrogen or estrogen receptor agonist inhibits lipopolysaccharide induced microglial activation and death. Neurochem Res 2010; 36:1587-93. [PMID: 21127968 DOI: 10.1007/s11064-010-0336-7] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/19/2010] [Indexed: 01/15/2023]
Abstract
Inflammation is an important pathogenic mechanism in many neurodegenerative disorders. Activated microglia play a pivotal role in releasing pro-inflammatory factors including interleukin-1 (IL-1), tumor necrosis factor-α (TNF-α), and cyclooxygenase-2 (COX-2) for inducing inflammation. While microglia mediated inflammation is essential in maintaining CNS homeostasis, chronic inflammation results in activation of proteases for cell death. Here, we examined the effect of PPT (estrogen receptor α agonist), DPN (estrogen receptor β agonist), and estrogen on rat primary microglia following exposure to lipopolysaccharide (LPS). Exposure of microglia to LPS (200 ng/ml) for 24 h induced cell death. After LPS toxicity for 15 min, microglia were treated with 25 nM PPT, 25 nM DPN, or 100 nM estrogen that prevented cell death by attenuating the release of IL-1α, IL-1β, TNF-α, and COX-2. Treatment of cells with 100 nM fulvestrant (estrogen receptor antagonist) prior to addition of PPT, DPN, or estrogen significantly decreased their ability to prevent cell death, indicating involvement of estrogen receptor (ER) in providing PPT, DPN, or estrogen mediated cytoprotection. Reverse transcriptase polymerase chain reaction (RT-PCR) analyses showed alterations in mRNA expression of Bax, Bcl-2, calpain, and calpastatin during apoptosis. We also examined mRNA expression of ERβ and ERα following exposure of microglia to LPS and subsequent treatment with PPT, DPN, or estrogen. We found that estrogen or estrogen receptor agonists upregulated expression of ERs. Overall, results indicate that estrogen receptor agonist or estrogen uses a receptor mediated pathway to protect microglia from LPS toxicity.
Collapse
|
35
|
Synthesis and biological evaluation of 3-substituted-benzofuran-2-carboxylic esters as a novel class of ischemic cell death inhibitors. Bioorg Med Chem Lett 2010; 20:6362-5. [DOI: 10.1016/j.bmcl.2010.09.102] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2010] [Revised: 09/08/2010] [Accepted: 09/21/2010] [Indexed: 01/05/2023]
|
36
|
Chu C, Xu B, Huang W. GnRH analogue attenuated apoptosis of rat hippocampal neuron after ischemia-reperfusion injury. J Mol Histol 2010; 41:387-93. [PMID: 20953819 DOI: 10.1007/s10735-010-9300-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2010] [Accepted: 10/05/2010] [Indexed: 12/12/2022]
Abstract
The expression and new functions of reproductive hormones in organs beyond hypothalamus-pituitary-gonad axis have been reported. So far, there is no report about the protective effects of GnRH analogue to hippocampal neurons suffering from ischemia-reperfusion injury. Middle cerebral artery occlusion model together with TUNEL staining were made in vivo and oxygen-glucose deprivation model together with double staining of Annexin V/PI with flow cytometer were made in vitro to observe the anti-apoptotic effects of GnRH analogue to hippocampal neurons after ischemia-reperfusion injury. The results found that the number of TUNEL positive pyramidal neurons in CA1 region in GnRH analogue experiment group was less than that in control group in vivo; the percentage of apoptotic neurons in GnRH analogue experiment group was less than that in control group in vitro. These findings suggested that pretreatment with certain concentration of GnRH analogue could attenuate apoptosis of hippocampal neurons. GnRH analogue has the protective effects to neurons.
Collapse
Affiliation(s)
- Chenyu Chu
- Department of Neurosurgery, Chinese PLA General Hospital, No. 28, FuXing Road, 100853 Beijing, China.
| | | | | |
Collapse
|
37
|
Zhu HR, Wang ZY, Zhu XL, Wu XX, Li EG, Xu Y. Icariin protects against brain injury by enhancing SIRT1-dependent PGC-1α Expression in experimental stroke. Neuropharmacology 2010; 59:70-6. [DOI: 10.1016/j.neuropharm.2010.03.017] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2010] [Revised: 03/24/2010] [Accepted: 03/26/2010] [Indexed: 12/13/2022]
|
38
|
Studies on expression of FSH and its anti-apoptotic effects on ischemia injury in rat spinal cord. J Mol Histol 2010; 41:165-76. [PMID: 20526669 DOI: 10.1007/s10735-010-9273-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2010] [Accepted: 05/26/2010] [Indexed: 10/19/2022]
Abstract
Studies indicated that many tissues could express FSH. New functions of FSH have been recognized beyond reproduction regulation. However, no report has been made about the expression and function of FSH in rat spinal cord. Double-labeled immunofluorescence stain and in situ hybridization were used to study the co-localization of FSH with its receptor and co-localization of FSH with GnRH receptor in rat spinal cord. Spinal cord ischemia injury models were built, TUNEL stain and Fas immunostaining were made to observe the anti-apoptotic effects of FSH to neurons induced by spinal cord ischemia injury. The results found that some neurons and glias of rat spinal cord showed both FSH immunoreactivity and FSH mRNA positive signals; not only FSH and its receptor but also FSH and GnRH receptor co-located in cells of both gray matter and white matter; treatment with certain concentration of FSH before ischemia-reperfusion injury, less TUNEL positive cells and Fas positive cells were found in motor neurons of ventral gray matter in FSH experiment group than that in control group. These suggested that rat spinal cord could express FSH, it is also a target organ of FSH; FSH might exert functions through its receptor by paracrine or autocrine effects; GnRH in spinal cord might regulate FSH positive neurons through GnRH receptor; FSH might inhibit ischemia induced neuron apoptosis by down-regulating Fas expression in spinal cord.
Collapse
|
39
|
Vasconsuelo A, Milanesi L, Boland R. Participation of HSP27 in the antiapoptotic action of 17beta-estradiol in skeletal muscle cells. Cell Stress Chaperones 2010; 15:183-92. [PMID: 19621276 PMCID: PMC2866980 DOI: 10.1007/s12192-009-0132-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2008] [Revised: 06/08/2009] [Accepted: 07/01/2009] [Indexed: 11/24/2022] Open
Abstract
Exposure to 17beta-estradiol prior to induction of apoptosis protects skeletal muscle cells against damage. The mechanism involved in this protective action of the hormone is poorly understood. In the present study, using the murine muscle cell line C2C12, evidence was obtained that inhibition of H(2)O(2)-induced apoptosis by the estrogen requires the participation of heat shock protein 27 (HSP27). Reverse transcriptase polymerase chain reaction, Western blot, and immunocytochemistry assays showed that 17beta-estradiol induces a time-dependent (5-60 min) increase in the expression of HSP27. In addition, in presence of quercetin, an inhibitor of HSPs, the antiapoptotic effect of the hormone was diminished. More specifically, blockage experiments with short interference RNA targeting HSP27 confirmed the role of this chaperone in the protective effect of the steroid. 17beta-Estradiol abolished caspase-3 cleavage elicited by H(2)O(2). Coimmunoprecipitation assays suggested physical interaction of HSP27 with caspase-3 in presence of estradiol. Furthermore, we observed that this chaperone interacts with estrogen receptors (ER) beta in mitochondria. Then, this study suggests that HSP27 plays a new role in the antiapoptotic action triggered by 17beta-estradiol by modulating caspase-3 activity and stabilizing ERbeta in skeletal muscle cells.
Collapse
Affiliation(s)
- Andrea Vasconsuelo
- Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur, Bahía Blanca, Argentina.
| | | | | |
Collapse
|
40
|
Tarawneh R, Galvin JE. Potential future neuroprotective therapies for neurodegenerative disorders and stroke. Clin Geriatr Med 2010; 26:125-47. [PMID: 20176298 PMCID: PMC2828394 DOI: 10.1016/j.cger.2009.12.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The cellular mechanisms underlying neuronal loss and neurodegeneration have been an area of interest in the last decade. Although neurodegenerative diseases such as Alzheimer disease, Parkinson disease, and Huntington disease each have distinct clinical symptoms and pathologies, they all share common mechanisms such as protein aggregation, oxidative injury, inflammation, apoptosis, and mitochondrial injury that contribute to neuronal loss. Although cerebrovascular disease has different causes from the neurodegenerative disorders, many of the same common disease mechanisms come into play following a stroke. Novel therapies that target each of these mechanisms may be effective in decreasing the risk of disease, abating symptoms, or slowing down their progression. Although most of these therapies are experimental, and require further investigation, a few seem to offer promise.
Collapse
Affiliation(s)
- Rawan Tarawneh
- Alzheimer Disease Research Center, Washington University School of Medicine, St Louis, MO, 63108
- Department of Neurology, Washington University School of Medicine, St Louis, MO, 63108
| | - James E. Galvin
- Alzheimer Disease Research Center, Washington University School of Medicine, St Louis, MO, 63108
- Department of Neurobiology, Washington University School of Medicine, St Louis, MO, 63108
| |
Collapse
|
41
|
Focal Cerebral Ischemia Induces Decrease of Astrocytic Phosphoprotein PEA-15 in Brain Tissue and HT22 Cells. Lab Anim Res 2010. [DOI: 10.5625/lar.2010.26.3.311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
42
|
Du D, Ma X, Zhang J, Zhang Y, Zhou X, Li Y. Cellular and molecular mechanisms of 17beta-estradiol postconditioning protection against gastric mucosal injury induced by ischemia/reperfusion in rats. Life Sci 2009; 86:30-8. [PMID: 19931544 DOI: 10.1016/j.lfs.2009.11.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2009] [Revised: 10/29/2009] [Accepted: 10/30/2009] [Indexed: 12/15/2022]
Abstract
AIMS To investigate the protective effects of 17beta-estradiol postconditioning against ischemia/reperfusion (I-R)-induced gastric mucosal injury in rats. MAIN METHODS The animal model of gastric ischemia/reperfusion was established by clamping of the celiac artery for 30 min and reperfusion for 30 min, 1h, 3h, 6h, 12h or 24h. 17beta-estradiol at doses of 5, 50 or 100 microg/kg (rat) was administered via peripheral veins 2 min before reperfusion. In a subgroup of rats, the estrogen receptor antagonist fulvestrant (Ful, 2mg/kg) was intravenously injected prior to 17beta-estradiol administration. Histological and immunohistochemical methods were employed to assess the gastric mucosal injury index and gastric mucosal cell apoptosis and proliferation. The malondialdehyde (MDA) concentration, superoxide dismutase (SOD) activity, xanthine oxidase (XOD) activity and hydroxyl free radical (-OH) inhibitory ability were determined by colorimetric assays. Subsequently, the expression of Bcl-2 and Bax in rat gastric mucosa was examined by western blotting. KEY FINDINGS 17beta-estradiol dose-dependently inhibited gastric I-R (GI-R) injury, and 17beta-estradiol (50 microg/kg) markedly attenuated GI-R injury 1h after reperfusion. 17beta-estradiol inhibited gastric mucosal cell apoptosis and promoted gastric mucosal cell proliferation in addition to increasing SOD activity and -OH inhibitory ability and decreasing the MDA content and XOD activity. The Bax protein level increased 1h after GI-R and was markedly reduced by intravenous administration of 17beta-estradiol. In contrast, the level of Bcl-2 protein decreased 1h after GI-R and was restored to normal levels by intravenous administration of 17beta-estradiol. These effects of 17beta-estradiol were inhibited by pretreatment with fulvestrant. SIGNIFICANCE 17beta-estradiol postconditioning should be investigated further as a possible strategy against gastric mucosal injury.
Collapse
Affiliation(s)
- Dongshu Du
- Department of Physiology, Xuzhou Medical College, 84 West Huaihai Road, Xuzhou 221002, Jiangsu Province, China
| | | | | | | | | | | |
Collapse
|
43
|
Smith JA, Zhang R, Varma AK, Das A, Ray SK, Banik NL. Estrogen partially down-regulates PTEN to prevent apoptosis in VSC4.1 motoneurons following exposure to IFN-gamma. Brain Res 2009; 1301:163-70. [PMID: 19748493 DOI: 10.1016/j.brainres.2009.09.016] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2009] [Revised: 09/02/2009] [Accepted: 09/04/2009] [Indexed: 01/11/2023]
Abstract
PTEN is a tumor suppressor gene that is either mutated or deleted in a number of human cancers. PTEN acts as a negative regulator of the PI3K/Akt survival pathway and thus plays an important role in cell fate, proliferation, growth, and migration. Recent evidence suggests that PTEN may also be involved in the pathophysiology of neurodegenerative disorders such as spinal cord injury (SCI). Overexpression of PTEN appears to cause inactivation/dephosphorylation of Akt in neurons, resulting in increased cell death. Given this newly discovered role for PTEN, it has been identified as a potential molecular target for the development of novel therapeutic strategies against neurodegeneration. Motoneuron degeneration following SCI may occur due to up-regulation of pro-inflammatory and cytotoxic cytokines including IFN-gamma. Exposure of VSC4.1 motoneurons to IFN-gamma (10 ng/ml) for 24 h resulted in significant overexpression of PTEN and decreased levels of activated Akt. Up-regulation of PTEN following IFN-gamma exposure was associated with decreased overall cell viability due to increased apoptosis, as assessed by Wright staining and analysis of cell death markers including Bax, Bcl-2, calpain activity, and caspase-3 activity, indicating a prominent role for PTEN in suppression of the PI3K/Akt survival pathway to promote motoneuron death. Addition of estrogen (100 nM) to VSC4.1 cells for 1 h prior to IFN-gamma exposure partially decreased PTEN expression, allowing adequate activation or phosphorylation of Akt (p-Akt) to prevent apoptotic cell death. Thus, it appears that estrogen may mediate neuroprotection through decrease in PTEN expression. In conclusion, our studies suggest that PTEN inactivation may be used as an important parameter for evaluation of the efficacy of estrogen in prevention of neuronal loss in neurodegenerative disorders.
Collapse
Affiliation(s)
- Joshua A Smith
- Department of Neurosciences, Medical University of South Carolina, Charleston, 29425, USA
| | | | | | | | | | | |
Collapse
|
44
|
Rutin protects the neural damage induced by transient focal ischemia in rats. Brain Res 2009; 1292:123-35. [DOI: 10.1016/j.brainres.2009.07.026] [Citation(s) in RCA: 142] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2009] [Revised: 07/06/2009] [Accepted: 07/09/2009] [Indexed: 01/13/2023]
|
45
|
Kitamura N, Araya R, Kudoh M, Kishida H, Kimura T, Murayama M, Takashima A, Sakamaki Y, Hashikawa T, Ito S, Ohtsuki S, Terasaki T, Wess J, Yamada M. Beneficial effects of estrogen in a mouse model of cerebrovascular insufficiency. PLoS One 2009; 4:e5159. [PMID: 19357782 PMCID: PMC2664330 DOI: 10.1371/journal.pone.0005159] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2008] [Accepted: 03/05/2009] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND The M(5) muscarinic acetylcholine receptor is known to play a crucial role in mediating acetylcholine dependent dilation of cerebral blood vessels. Previously, we reported that male M(5) muscarinic acetylcholine knockout mice (M5R(-/-) mice) suffer from a constitutive constriction of cerebral arteries, reduced cerebral blood flow, dendritic atrophy, and short-term memory loss, without necrosis and/or inflammation in the brain. METHODOLOGY/PRINCIPAL FINDINGS We employed the Magnetic Resonance Angiography to study the area of the basilar artery in male and female M5R(-/-) mice. Here we show that female M5R(-/-) mice did not show the reduction in vascular area observed in male M5R(-/-) mice. However, ovariectomized female M5R(-/-) mice displayed phenotypic changes similar to male M5R(-/-) mice, strongly suggesting that estrogen plays a key role in the observed gender differences. We found that 17beta-estradiol (E2) induced nitric oxide release and ERK activation in a conditional immortalized mouse brain cerebrovascular endothelial cell line. Agonists of ERalpha, ERbeta, and GPR30 promoted ERK activation in this cell line. Moreover, in vivo magnetic resonance imaging studies showed that the cross section of the basilar artery was restored to normal in male M5R(-/-) mice treated with E2. Treatment with E2 also improved the performance of male M5R(-/-) mice in a cognitive test and reduced the atrophy of neural dendrites in the cerebral cortex and hippocampus. M5R(-/-) mice also showed astrocyte swelling in cortex and hippocampus using the three-dimensional reconstruction of electron microscope images. This phenotype was reversed by E2 treatment, similar to the observed deficits in dendrite morphology and the number of synapses. CONCLUSIONS/SIGNIFICANCE Our findings indicate that M5R(-/-) mice represent an excellent novel model system to study the beneficial effects of estrogen on cerebrovascular function and cognition. E2 may offer new therapeutic perspectives for the treatment of cerebrovascular insufficiency related memory dysfunction.
Collapse
Affiliation(s)
- Naohito Kitamura
- Yamada Research Unit, RIKEN Brain Science Institute, Saitama, Japan
| | - Runa Araya
- Yamada Research Unit, RIKEN Brain Science Institute, Saitama, Japan
| | - Moeko Kudoh
- Yamada Research Unit, RIKEN Brain Science Institute, Saitama, Japan
| | - Haruo Kishida
- Yamada Research Unit, RIKEN Brain Science Institute, Saitama, Japan
| | - Tetsuya Kimura
- Laboratory for Alzheimer's Diseases, RIKEN Brain Science Institute, Saitama, Japan
| | - Miyuki Murayama
- Laboratory for Alzheimer's Diseases, RIKEN Brain Science Institute, Saitama, Japan
| | - Akihiko Takashima
- Laboratory for Alzheimer's Diseases, RIKEN Brain Science Institute, Saitama, Japan
| | - Yuriko Sakamaki
- Research Resource Center, RIKEN Brain Science Institute, Saitama, Japan
| | - Tsutomu Hashikawa
- Research Resource Center, RIKEN Brain Science Institute, Saitama, Japan
| | - Shingo Ito
- Department of Molecular Biopharmacy and Genetics, Tohoku University, Sendai, Japan
| | - Sumio Ohtsuki
- Department of Molecular Biopharmacy and Genetics, Tohoku University, Sendai, Japan
| | - Tetsuya Terasaki
- Department of Molecular Biopharmacy and Genetics, Tohoku University, Sendai, Japan
| | - Jürgen Wess
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland, United States of America
| | - Masahisa Yamada
- Yamada Research Unit, RIKEN Brain Science Institute, Saitama, Japan
| |
Collapse
|