1
|
Hardy PB, Wang BY, Chan KM, Webber CA, Senger JLB. The use of electrical stimulation to enhance recovery following peripheral nerve injury. Muscle Nerve 2024; 70:1151-1162. [PMID: 39347555 DOI: 10.1002/mus.28262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 09/04/2024] [Accepted: 09/07/2024] [Indexed: 10/01/2024]
Abstract
Peripheral nerve injury is common and can have devastating consequences. In severe cases, functional recovery is often poor despite surgery. This is primarily due to the exceedingly slow rate of nerve regeneration at only 1-3 mm/day. The local environment in the distal nerve stump supportive of nerve regrowth deteriorates over time and the target end organs become atrophic. To overcome these challenges, investigations into treatments capable of accelerating nerve regrowth are of great clinical relevance and are an active area of research. One intervention that has shown great promise is perioperative electrical stimulation. Postoperative stimulation helps to expedite the Wallerian degeneration process and reduces delays caused by staggered regeneration at the site of nerve injury. By contrast, preoperative "conditioning" stimulation increases the rate of nerve regrowth along the nerve trunk. Over the past two decades, a rich body of literature has emerged that provides molecular insights into the mechanism by which electrical stimulation impacts nerve regeneration. The end result is upregulation of regeneration-associated genes in the neuronal body and accelerated transport to the axon front for regrowth. The efficacy of brief electrical stimulation on patients with peripheral nerve injuries was demonstrated in a number of randomized controlled trials on compressive, transection and traction injuries. As approved equipment to deliver this treatment is becoming available, it may be feasible to deploy this novel treatment in a wide range of clinical settings.
Collapse
Affiliation(s)
- Paige B Hardy
- Department of Surgery, University of Alberta, Edmonton, Alberta, Canada
| | - Bonnie Y Wang
- Division of Physical Medicine and Rehabilitation, University of Alberta, Edmonton, Alberta, Canada
| | - K Ming Chan
- Division of Physical Medicine and Rehabilitation, University of Alberta, Edmonton, Alberta, Canada
| | | | - Jenna-Lynn B Senger
- Division of Plastic & Reconstructive Surgery, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
2
|
Ashna M, Senthilkumar N, Sanpui P. Human Hair Keratin-Based Hydrogels in Regenerative Medicine: Current Status and Future Directions. ACS Biomater Sci Eng 2023; 9:5527-5547. [PMID: 37734053 DOI: 10.1021/acsbiomaterials.3c00883] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/23/2023]
Abstract
Regenerative medicine (RM) is a multidisciplinary field that utilizes the inherent regenerative potential of human cells to generate functionally and physiologically acceptable human cells, tissues, and organs in vivo or ex vivo. An appropriate biomaterial scaffold with desired physicochemical properties constitutes an important component of a successful RM approach. Among various forms of biomaterials explored until the present day, hydrogels have emerged as a versatile candidate for tissue engineering and regenerative medicine (TERM) applications such as scaffolds for spatial patterning and delivering therapeutic agents, or substrates to enhance cell growth, differentiation, and migration. Although hydrogels can be prepared from a variety of synthetic polymers as well as biopolymers, the latter are preferred for their inherent biocompatibility. Specifically, keratins are fibrous proteins that have been recently explored for constructing hydrogels useful for RM purposes. The present review discusses the suitability of keratin-based biomaterials in RM, with a particular focus on human hair keratin hydrogels and their use in various RM applications.
Collapse
Affiliation(s)
- Mymuna Ashna
- Department of Biotechnology, BITS Pilani Dubai Campus, Dubai International Academic City, Dubai, United Arab Emirates
| | - Neeharika Senthilkumar
- Department of Biotechnology, BITS Pilani Dubai Campus, Dubai International Academic City, Dubai, United Arab Emirates
| | - Pallab Sanpui
- Department of Biotechnology, BITS Pilani Dubai Campus, Dubai International Academic City, Dubai, United Arab Emirates
| |
Collapse
|
3
|
Adler J. The Axon Initial Segment Plays a Dynamic Role in Peripheral Motor Neuron Synapse Regeneration following Injury. J Neurosci 2023; 43:3199-3201. [PMID: 37137706 PMCID: PMC10162451 DOI: 10.1523/jneurosci.2326-22.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 03/16/2023] [Accepted: 03/21/2023] [Indexed: 05/05/2023] Open
Affiliation(s)
- Joy Adler
- Anschutz Medical Neuroscience Graduate Training Program, University of Colorado, Aurora, Colorado 80045
| |
Collapse
|
4
|
Mesquida-Veny F, Martínez-Torres S, Del Río JA, Hervera A. Genetic control of neuronal activity enhances axonal growth only on permissive substrates. Mol Med 2022; 28:97. [PMID: 35978278 PMCID: PMC9387030 DOI: 10.1186/s10020-022-00524-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 08/03/2022] [Indexed: 11/19/2022] Open
Abstract
Background Neural tissue has limited regenerative ability. To cope with that, in recent years a diverse set of novel tools has been used to tailor neurostimulation therapies and promote functional regeneration after axonal injuries. Method In this report, we explore cell-specific methods to modulate neuronal activity, including opto- and chemogenetics to assess the effect of specific neuronal stimulation in the promotion of axonal regeneration after injury. Results Opto- and chemogenetic stimulations of neuronal activity elicited increased in vitro neurite outgrowth in both sensory and cortical neurons, as well as in vivo regeneration in the sciatic nerve, but not after spinal cord injury. Mechanistically, inhibitory substrates such as chondroitin sulfate proteoglycans block the activity induced increase in axonal growth. Conclusions We found that genetic modulations of neuronal activity on both dorsal root ganglia and corticospinal motor neurons increase their axonal growth capacity but only on permissive environments. Supplementary Information The online version contains supplementary material available at 10.1186/s10020-022-00524-2.
Collapse
Affiliation(s)
- Francina Mesquida-Veny
- Molecular and Cellular Neurobiotechnology, Institute for Bioengineering of Catalonia (IBEC), Barcelona, Spain.,Department of Cell Biology, Physiology and Immunology, University of Barcelona, Barcelona, Spain.,Network Centre of Biomedical Research of Neurodegenerative Diseases (CIBERNED), Institute of Health Carlos III, Ministry of Economy and Competitiveness, Madrid, Spain.,Institute of Neuroscience, University of Barcelona, Barcelona, Spain
| | - Sara Martínez-Torres
- Molecular and Cellular Neurobiotechnology, Institute for Bioengineering of Catalonia (IBEC), Barcelona, Spain.,Department of Cell Biology, Physiology and Immunology, University of Barcelona, Barcelona, Spain.,Network Centre of Biomedical Research of Neurodegenerative Diseases (CIBERNED), Institute of Health Carlos III, Ministry of Economy and Competitiveness, Madrid, Spain.,Institute of Neuroscience, University of Barcelona, Barcelona, Spain
| | - José Antonio Del Río
- Molecular and Cellular Neurobiotechnology, Institute for Bioengineering of Catalonia (IBEC), Barcelona, Spain.,Department of Cell Biology, Physiology and Immunology, University of Barcelona, Barcelona, Spain.,Network Centre of Biomedical Research of Neurodegenerative Diseases (CIBERNED), Institute of Health Carlos III, Ministry of Economy and Competitiveness, Madrid, Spain.,Institute of Neuroscience, University of Barcelona, Barcelona, Spain
| | - Arnau Hervera
- Molecular and Cellular Neurobiotechnology, Institute for Bioengineering of Catalonia (IBEC), Barcelona, Spain. .,Department of Cell Biology, Physiology and Immunology, University of Barcelona, Barcelona, Spain. .,Network Centre of Biomedical Research of Neurodegenerative Diseases (CIBERNED), Institute of Health Carlos III, Ministry of Economy and Competitiveness, Madrid, Spain. .,Institute of Neuroscience, University of Barcelona, Barcelona, Spain.
| |
Collapse
|
5
|
Jiang T, Yang T, Bao Q, Sun W, Yang M, Mao C. Construction of tissue-customized hydrogels from cross-linkable materials for effective tissue regeneration. J Mater Chem B 2022; 10:4741-4758. [PMID: 34812829 DOI: 10.1039/d1tb01935j] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Hydrogels are prevalent scaffolds for tissue regeneration because of their hierarchical architectures along with outstanding biocompatibility and unique rheological and mechanical properties. For decades, researchers have found that many materials (natural, synthetic, or hybrid) can form hydrogels using different cross-linking strategies. Traditional strategies for fabricating hydrogels include physical, chemical, and enzymatical cross-linking methods. However, due to the diverse characteristics of different tissues/organs to be regenerated, tissue-customized hydrogels need to be developed through precisely controlled processes, making the manufacture of hydrogels reliant on novel cross-linking strategies. Thus, hybrid cross-linkable materials are proposed to tackle this challenge through hybrid cross-linking strategies. Here, different cross-linkable materials and their associated cross-linking strategies are summarized. From the perspective of the major characteristics of the target tissues/organs, we critically analyze how different cross-linking strategies are tailored to fit the regeneration of such tissues and organs. To further advance this field, more appropriate cross-linkable materials and cross-linking strategies should be investigated. In addition, some innovative technologies, such as 3D bioprinting, the internet of medical things (IoMT), and artificial intelligence (AI), are also proposed to improve the development of hydrogels for more efficient tissue regeneration.
Collapse
Affiliation(s)
- Tongmeng Jiang
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, P. R. China
| | - Tao Yang
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, P. R. China
| | - Qing Bao
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, P. R. China
| | - Weilian Sun
- Department of Periodontology, The Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310009, P. R. China.
| | - Mingying Yang
- Institute of Applied Bioresource Research, College of Animal Science, Zhejiang University, Yuhangtang Road 866, Hangzhou, Zhejiang 310058, P. R. China.
| | - Chuanbin Mao
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK 73019, USA.
| |
Collapse
|
6
|
Gong B, Zhang X, Zahrani AA, Gao W, Ma G, Zhang L, Xue J. Neural tissue engineering: From bioactive scaffolds and in situ monitoring to regeneration. EXPLORATION (BEIJING, CHINA) 2022; 2:20210035. [PMID: 37323703 PMCID: PMC10190951 DOI: 10.1002/exp.20210035] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Accepted: 03/09/2022] [Indexed: 06/17/2023]
Abstract
Peripheral nerve injury is a large-scale problem that annually affects more than several millions of people all over the world. It remains a great challenge to effectively repair nerve defects. Tissue engineered nerve guidance conduits (NGCs) provide a promising platform for peripheral nerve repair through the integration of bioactive scaffolds, biological effectors, and cellular components. Herein, we firstly describe the pathogenesis of peripheral nerve injuries at different orders of severity to clarify their microenvironments and discuss the clinical treatment methods and challenges. Then, we discuss the recent progress on the design and construction of NGCs in combination with biological effectors and cellular components for nerve repair. Afterward, we give perspectives on imaging the nerve and/or the conduit to allow for the in situ monitoring of the nerve regeneration process. We also cover the applications of different postoperative intervention treatments, such as electric field, magnetic field, light, and ultrasound, to the well-designed conduit and/or the nerve for improving the repair efficacy. Finally, we explore the prospects of multifunctional platforms to promote the repair of peripheral nerve injury.
Collapse
Affiliation(s)
- Bowen Gong
- Beijing Laboratory of Biomedical MaterialsBeijing University of Chemical TechnologyBeijingChina
- State Key Laboratory of Organic–Inorganic CompositesBeijing University of Chemical TechnologyBeijingChina
| | - Xindan Zhang
- Beijing Laboratory of Biomedical MaterialsBeijing University of Chemical TechnologyBeijingChina
- State Key Laboratory of Organic–Inorganic CompositesBeijing University of Chemical TechnologyBeijingChina
| | - Ahmed Al Zahrani
- Department of Mechanical and Materials EngineeringUniversity of JeddahJeddahSaudi Arabia
| | - Wenwen Gao
- Department of RadiologyChina–Japan Friendship HospitalBeijingChina
| | - Guolin Ma
- Department of RadiologyChina–Japan Friendship HospitalBeijingChina
| | - Liqun Zhang
- Beijing Laboratory of Biomedical MaterialsBeijing University of Chemical TechnologyBeijingChina
- State Key Laboratory of Organic–Inorganic CompositesBeijing University of Chemical TechnologyBeijingChina
| | - Jiajia Xue
- Beijing Laboratory of Biomedical MaterialsBeijing University of Chemical TechnologyBeijingChina
- State Key Laboratory of Organic–Inorganic CompositesBeijing University of Chemical TechnologyBeijingChina
| |
Collapse
|
7
|
Staunton CA, Owen ED, Hemmings K, Vasilaki A, McArdle A, Barrett-Jolley R, Jackson MJ. Skeletal muscle transcriptomics identifies common pathways in nerve crush injury and ageing. Skelet Muscle 2022; 12:3. [PMID: 35093178 PMCID: PMC8800362 DOI: 10.1186/s13395-021-00283-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 11/24/2021] [Indexed: 12/16/2022] Open
Abstract
Motor unit remodelling involving repeated denervation and re-innervation occurs throughout life. The efficiency of this process declines with age contributing to neuromuscular deficits. This study investigated differentially expressed genes (DEG) in muscle following peroneal nerve crush to model motor unit remodelling in C57BL/6 J mice. Muscle RNA was isolated at 3 days post-crush, RNA libraries were generated using poly-A selection, sequenced and analysed using gene ontology and pathway tools. Three hundred thirty-four DEG were found in quiescent muscle from (26mnth) old compared with (4-6mnth) adult mice and these same DEG were present in muscle from adult mice following nerve crush. Peroneal crush induced 7133 DEG in muscles of adult and 699 DEG in muscles from old mice, although only one DEG (ZCCHC17) was found when directly comparing nerve-crushed muscles from old and adult mice. This analysis revealed key differences in muscle responses which may underlie the diminished ability of old mice to repair following nerve injury.
Collapse
Affiliation(s)
- C A Staunton
- MRC- Versus Arthritis Research Centre for Integrated research into Musculoskeletal Ageing (CIMA), Department of Musculoskeletal and Ageing Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, L7 8TX, UK
| | - E D Owen
- MRC- Versus Arthritis Research Centre for Integrated research into Musculoskeletal Ageing (CIMA), Department of Musculoskeletal and Ageing Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, L7 8TX, UK
| | - K Hemmings
- MRC- Versus Arthritis Research Centre for Integrated research into Musculoskeletal Ageing (CIMA), Department of Musculoskeletal and Ageing Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, L7 8TX, UK
| | - A Vasilaki
- MRC- Versus Arthritis Research Centre for Integrated research into Musculoskeletal Ageing (CIMA), Department of Musculoskeletal and Ageing Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, L7 8TX, UK
| | - A McArdle
- MRC- Versus Arthritis Research Centre for Integrated research into Musculoskeletal Ageing (CIMA), Department of Musculoskeletal and Ageing Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, L7 8TX, UK
| | - R Barrett-Jolley
- MRC- Versus Arthritis Research Centre for Integrated research into Musculoskeletal Ageing (CIMA), Department of Musculoskeletal and Ageing Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, L7 8TX, UK
| | - M J Jackson
- MRC- Versus Arthritis Research Centre for Integrated research into Musculoskeletal Ageing (CIMA), Department of Musculoskeletal and Ageing Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, L7 8TX, UK.
| |
Collapse
|
8
|
Yow YY, Goh TK, Nyiew KY, Lim LW, Phang SM, Lim SH, Ratnayeke S, Wong KH. Therapeutic Potential of Complementary and Alternative Medicines in Peripheral Nerve Regeneration: A Systematic Review. Cells 2021; 10:cells10092194. [PMID: 34571842 PMCID: PMC8472132 DOI: 10.3390/cells10092194] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 08/20/2021] [Accepted: 08/20/2021] [Indexed: 12/12/2022] Open
Abstract
Despite the progressive advances, current standards of treatments for peripheral nerve injury do not guarantee complete recovery. Thus, alternative therapeutic interventions should be considered. Complementary and alternative medicines (CAMs) are widely explored for their therapeutic value, but their potential use in peripheral nerve regeneration is underappreciated. The present systematic review, designed according to guidelines of Preferred Reporting Items for Systematic Review and Meta-Analysis Protocols, aims to present and discuss the current literature on the neuroregenerative potential of CAMs, focusing on plants or herbs, mushrooms, decoctions, and their respective natural products. The available literature on CAMs associated with peripheral nerve regeneration published up to 2020 were retrieved from PubMed, Scopus, and Web of Science. According to current literature, the neuroregenerative potential of Achyranthes bidentata, Astragalus membranaceus, Curcuma longa, Panax ginseng, and Hericium erinaceus are the most widely studied. Various CAMs enhanced proliferation and migration of Schwann cells in vitro, primarily through activation of MAPK pathway and FGF-2 signaling, respectively. Animal studies demonstrated the ability of CAMs to promote peripheral nerve regeneration and functional recovery, which are partially associated with modulations of neurotrophic factors, pro-inflammatory cytokines, and anti-apoptotic signaling. This systematic review provides evidence for the potential use of CAMs in the management of peripheral nerve injury.
Collapse
Affiliation(s)
- Yoon-Yen Yow
- Department of Biological Sciences, School of Medicine and Life Sciences, Sunway University, Petaling Jaya 47500, Malaysia; (T.-K.G.); (K.-Y.N.); (S.R.)
- Correspondence: (Y.-Y.Y.); (L.-W.L.); (K.-H.W.); Tel.: +603-7491-8622 (Y.-Y.Y.); +852-3917-6830 (L.-W.L.); +603-7967-4729 (K.-H.W.)
| | - Tiong-Keat Goh
- Department of Biological Sciences, School of Medicine and Life Sciences, Sunway University, Petaling Jaya 47500, Malaysia; (T.-K.G.); (K.-Y.N.); (S.R.)
| | - Ke-Ying Nyiew
- Department of Biological Sciences, School of Medicine and Life Sciences, Sunway University, Petaling Jaya 47500, Malaysia; (T.-K.G.); (K.-Y.N.); (S.R.)
| | - Lee-Wei Lim
- Neuromodulation Laboratory, School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, L4 Laboratory Block, Hong Kong
- Correspondence: (Y.-Y.Y.); (L.-W.L.); (K.-H.W.); Tel.: +603-7491-8622 (Y.-Y.Y.); +852-3917-6830 (L.-W.L.); +603-7967-4729 (K.-H.W.)
| | - Siew-Moi Phang
- Institute of Ocean and Earth Sciences, Universiti Malaya, Kuala Lumpur 50603, Malaysia;
- Faculty of Applied Sciences, UCSI University, Cheras, Kuala Lumpur 56000, Malaysia
| | - Siew-Huah Lim
- Department of Chemistry, Faculty of Science, Universiti Malaya, Kuala Lumpur 50603, Malaysia;
| | - Shyamala Ratnayeke
- Department of Biological Sciences, School of Medicine and Life Sciences, Sunway University, Petaling Jaya 47500, Malaysia; (T.-K.G.); (K.-Y.N.); (S.R.)
| | - Kah-Hui Wong
- Department of Anatomy, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia
- Correspondence: (Y.-Y.Y.); (L.-W.L.); (K.-H.W.); Tel.: +603-7491-8622 (Y.-Y.Y.); +852-3917-6830 (L.-W.L.); +603-7967-4729 (K.-H.W.)
| |
Collapse
|
9
|
Towne J, Carter N, Neivandt DJ. COMSOL Multiphysics® modelling of oxygen diffusion through a cellulose nanofibril conduit employed for peripheral nerve repair. Biomed Eng Online 2021; 20:60. [PMID: 34130690 PMCID: PMC8204471 DOI: 10.1186/s12938-021-00897-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 06/09/2021] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Peripheral nerve injury can cause significant impairment, and the current methods for facilitating repair, particularly over distances greater than approximately 1 mm, are not entirely effective. Allografts, autografts, and synthetic conduits are three of the most common surgical interventions for peripheral nerve repair; however, each has limitations including poor biocompatibility, adverse immune responses, and the need for successive surgeries. A potential new method for promoting peripheral nerve repair that addresses the shortcomings of current interventions is a biocompatible cellulose nanofibril (CNF) conduit that degrades in-vivo over time. Preliminary testing in multiple animal models has yielded positive results, but more information is needed regarding how the CNF conduit facilitates nutrient and gas flow. RESULTS The current work employs 3D modelling and analysis via COMSOL Multiphysics® to determine how the CNF conduit facilitates oxygen movement both radially through the conduit walls and axially along the length of the conduit. Various CNF wall permeabilities, conduit lengths, and nerve-to-conduit diameter ratios have been examined; all of which were shown to have an impact on the resultant oxygen profile within the conduit. When the walls of the CNF conduit were modeled to have significant oxygen permeability, oxygen diffusion across the conduit was shown to dominate relative to axial diffusion of oxygen along the length of the conduit, which was otherwise the controlling diffusion mechanism. CONCLUSIONS The results of this study suggest that there is a complex relationship between axial and radial diffusion as the properties of the conduit such as length, diameter, and permeability are altered and when investigating various locations within the model. At low wall permeabilities the axial diffusion is dominant for all configurations, while for higher wall permeabilities the radial diffusion became dominant for smaller diameters. The length of the conduit did not alter the mechanism of diffusion, but rather had an inverse relationship with the magnitude of the overall concentration profile. As such the modeling results may be employed to predict and control the amount and distribution of oxygenation throughout the conduit, and hence to guide experimental conduit design.
Collapse
Affiliation(s)
- Julia Towne
- Department of Chemical and Biomedical Engineering, University of Maine, Orono, ME, 04469, USA
| | - Nicklaus Carter
- Department of Chemical and Biomedical Engineering, University of Maine, Orono, ME, 04469, USA
- Graduate School of Biomedical Science and Engineering, University of Maine, Orono, ME, 04469, USA
| | - David J Neivandt
- Department of Chemical and Biomedical Engineering, University of Maine, Orono, ME, 04469, USA.
- Graduate School of Biomedical Science and Engineering, University of Maine, Orono, ME, 04469, USA.
- Forest Bioproduct Research Institute, University of Maine, Orono, ME, 04469, USA.
| |
Collapse
|
10
|
Bellet P, Gasparotto M, Pressi S, Fortunato A, Scapin G, Mba M, Menna E, Filippini F. Graphene-Based Scaffolds for Regenerative Medicine. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:404. [PMID: 33562559 PMCID: PMC7914745 DOI: 10.3390/nano11020404] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/29/2021] [Accepted: 02/01/2021] [Indexed: 12/20/2022]
Abstract
Leading-edge regenerative medicine can take advantage of improved knowledge of key roles played, both in stem cell fate determination and in cell growth/differentiation, by mechano-transduction and other physicochemical stimuli from the tissue environment. This prompted advanced nanomaterials research to provide tissue engineers with next-generation scaffolds consisting of smart nanocomposites and/or hydrogels with nanofillers, where balanced combinations of specific matrices and nanomaterials can mediate and finely tune such stimuli and cues. In this review, we focus on graphene-based nanomaterials as, in addition to modulating nanotopography, elastic modulus and viscoelastic features of the scaffold, they can also regulate its conductivity. This feature is crucial to the determination and differentiation of some cell lineages and is of special interest to neural regenerative medicine. Hereafter we depict relevant properties of such nanofillers, illustrate how problems related to their eventual cytotoxicity are solved via enhanced synthesis, purification and derivatization protocols, and finally provide examples of successful applications in regenerative medicine on a number of tissues.
Collapse
Affiliation(s)
- Pietro Bellet
- Department of Biology, University of Padua, 35131 Padua, Italy; (P.B.); (M.G.)
| | - Matteo Gasparotto
- Department of Biology, University of Padua, 35131 Padua, Italy; (P.B.); (M.G.)
| | - Samuel Pressi
- Department of Chemical Sciences, University of Padua & INSTM, 35131 Padua, Italy; (S.P.); (A.F.)
| | - Anna Fortunato
- Department of Chemical Sciences, University of Padua & INSTM, 35131 Padua, Italy; (S.P.); (A.F.)
| | - Giorgia Scapin
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Miriam Mba
- Department of Chemical Sciences, University of Padua & INSTM, 35131 Padua, Italy; (S.P.); (A.F.)
| | - Enzo Menna
- Department of Chemical Sciences, University of Padua & INSTM, 35131 Padua, Italy; (S.P.); (A.F.)
| | - Francesco Filippini
- Department of Biology, University of Padua, 35131 Padua, Italy; (P.B.); (M.G.)
| |
Collapse
|
11
|
Chang C, Hisamoto N. Engulfment Genes Promote Neuronal Regeneration in
Caenorhabditis Elegans
: Two Divergent But Complementary Views. Bioessays 2020; 42:e1900185. [DOI: 10.1002/bies.201900185] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 04/23/2020] [Indexed: 12/25/2022]
Affiliation(s)
- Chieh Chang
- Department of Biological Sciences University of Illinois at Chicago Chicago Illinois 60607 USA
| | - Naoki Hisamoto
- Dept. of Biological Science Graduate School of Science Nagoya University Furo‐cho, Chikusa‐ku, Aichi Prefecture Nagoya 464‐8602 Japan
| |
Collapse
|
12
|
Posa A, Niśkiewicz I, Raescu V, Emmer A, Surov A, Kornhuber M. Spontaneous continuous motor unit single discharges. Muscle Nerve 2020; 61:387-390. [DOI: 10.1002/mus.26789] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 12/17/2019] [Accepted: 12/20/2019] [Indexed: 11/12/2022]
Affiliation(s)
- Andreas Posa
- Department of NeurologyUniversity Hospital of Halle Halle (Saale) Germany
| | - Izabela Niśkiewicz
- Department of NeurologyUniversity Hospital of Halle Halle (Saale) Germany
| | - Valerian Raescu
- Department of NeurologyUniversity Hospital of Halle Halle (Saale) Germany
| | - Alexander Emmer
- Department of NeurologyUniversity Hospital of Halle Halle (Saale) Germany
| | - Alexey Surov
- Department of Diagnostic and Interventional RadiologyUniversity Hospital of Leipzig Leipzig Germany
| | - Malte Kornhuber
- Department of NeurologyUniversity Hospital of Halle Halle (Saale) Germany
- Department of Neurology, Helios Hospital Sangerhausen Sangerhausen Germany
| |
Collapse
|
13
|
Zhong LY, Fan XR, Shi ZJ, Fan ZC, Luo J, Lin N, Liu YC, Wu L, Zeng XR, Cao JM, Wei Y. Hyperpolarization-Activated Cyclic Nucleotide-Gated Ion (HCN) Channels Regulate PC12 Cell Differentiation Toward Sympathetic Neuron. Front Cell Neurosci 2019; 13:415. [PMID: 31616252 PMCID: PMC6763607 DOI: 10.3389/fncel.2019.00415] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 08/28/2019] [Indexed: 12/15/2022] Open
Abstract
Hyperpolarization-activated cyclic nucleotide-gated ion channels (HCN channels) are widely expressed in the central and peripheral nervous systems and organs, while their functions are not well elucidated especially in the sympathetic nerve. The present study aimed to investigate the roles of HCN channel isoforms in the differentiation of sympathetic neurons using PC12 cell as a model. PC12 cells derived from rat pheochromocytoma were cultured and induced by nerve growth factor (NGF) (25 ng/ml) to differentiate to sympathetic neuron-like cells. Sympathetic directional differentiation of PC12 cells were evaluated by expressions of growth-associated protein 43 (GAP-43) (a growth cone marker), tyrosine hydroxylase (TH) (a sympathetic neuron marker) and neurite outgrowth. Results show that the HCN channel isoforms (HCN1-4) were all expressed in PC12 cells; blocking HCN channels with ivabradine suppressed NGF-induced GAP-43 expression and neurite outgrowth; silencing the expression of HCN2 and HCN4 using silenced using small interfering RNAs (siRNA), rather than HCN1 and HCN3, restrained GAP-43 expression and neurite outgrowth, while overexpression of HCN2 and HCN4 channels with gene transfer promoted GAP-43 expression and neurite outgrowth. Patch clamp experiments show that PC12 cells exhibited resting potentials (RP) of about −65 to −70 mV, and also presented inward HCN channel currents and outward (K+) currents, but no inward voltage-gated Na+ current was induced; NGF did not significantly affect the RP but promoted the establishment of excitability as indicated by the increased ability to depolarize and repolarize in the evoked suspicious action potentials (AP). We conclude that HCN2 and HCN4 channel isoforms, but not HCN1 and HCN3, promote the differentiation of PC12 cells toward sympathetic neurons. NGF potentiates the establishment of excitability during PC12 cell differentiation.
Collapse
Affiliation(s)
- Li-Ying Zhong
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou, China.,Key Laboratory of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Xin-Rong Fan
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Zhang-Jing Shi
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou, China.,Key Laboratory of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Zhong-Cai Fan
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Jian Luo
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Na Lin
- Department of Respiratory Medicine, Rongcheng People's Hospital, Rongcheng, China
| | - Ying-Cai Liu
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Lin Wu
- Key Laboratory of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China.,Department of Cardiology, Peking University First Hospital, Beijing, China
| | - Xiao-Rong Zeng
- Key Laboratory of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Ji-Min Cao
- Key Laboratory of Cellular Physiology of Ministry of Education, Department of Physiology, Shanxi Medical University, Taiyuan, China
| | - Yan Wei
- Key Laboratory of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| |
Collapse
|
14
|
Luzhansky ID, Sudlow LC, Brogan DM, Wood MD, Berezin MY. Imaging in the repair of peripheral nerve injury. Nanomedicine (Lond) 2019; 14:2659-2677. [PMID: 31612779 PMCID: PMC6886568 DOI: 10.2217/nnm-2019-0115] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 08/20/2019] [Indexed: 12/25/2022] Open
Abstract
Surgical intervention followed by physical therapy remains the major way to repair damaged nerves and restore function. Imaging constitutes promising, yet underutilized, approaches to improve surgical and postoperative techniques. Dedicated methods for imaging nerve regeneration will potentially provide surgical guidance, enable recovery monitoring and postrepair intervention, elucidate failure mechanisms and optimize preclinical procedures. Herein, we present an outline of promising innovations in imaging-based tracking of in vivo peripheral nerve regeneration. We emphasize optical imaging because of its cost, versatility, relatively low toxicity and sensitivity. We discuss the use of targeted probes and contrast agents (small molecules and nanoparticles) to facilitate nerve regeneration imaging and the engineering of grafts that could be used to track nerve repair. We also discuss how new imaging methods might overcome the most significant challenges in nerve injury treatment.
Collapse
Affiliation(s)
- Igor D Luzhansky
- Department of Radiology, Washington University School of Medicine, St Louis, MO 63110, USA
- The Institute of Materials Science & Engineering, Washington University, St Louis, MO 63130, USA
| | - Leland C Sudlow
- Department of Radiology, Washington University School of Medicine, St Louis, MO 63110, USA
| | - David M Brogan
- Department of Orthopedic Surgery, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Matthew D Wood
- Department of Surgery, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Mikhail Y Berezin
- Department of Radiology, Washington University School of Medicine, St Louis, MO 63110, USA
- The Institute of Materials Science & Engineering, Washington University, St Louis, MO 63130, USA
| |
Collapse
|
15
|
Weng J, Wang YH, Li M, Zhang DY, Jiang BG. GSK3β inhibitor promotes myelination and mitigates muscle atrophy after peripheral nerve injury. Neural Regen Res 2018; 13:324-330. [PMID: 29557384 PMCID: PMC5879906 DOI: 10.4103/1673-5374.226403] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/09/2018] [Indexed: 12/21/2022] Open
Abstract
Delay of axon regeneration after peripheral nerve injury usually leads to progressive muscle atrophy and poor functional recovery. The Wnt/β-catenin signaling pathway is considered to be one of the main molecular mechanisms that lead to skeletal muscle atrophy in the elderly. We hold the hypothesis that the innervation of target muscle can be promoted by accelerating axon regeneration and decelerating muscle cell degeneration so as to improve functional recovery of skeletal muscle following peripheral nerve injury. This process may be associated with the Wnt/β-catenin signaling pathway. Our study designed in vitro cell models to simulate myelin regeneration and muscle atrophy. We investigated the effects of SB216763, a glycogen synthase kinase 3 beta inhibitor, on the two major murine cell lines RSC96 and C2C12 derived from Schwann cells and muscle satellite cells. The results showed that SB216763 stimulated the Schwann cell migration and myotube contraction. Quantitative polymerase chain reaction results demonstrated that myelin related genes, myelin associated glycoprotein and cyclin-D1, muscle related gene myogenin and endplate-associated gene nicotinic acetylcholine receptors levels were stimulated by SB216763. Immunocytochemical staining revealed that the expressions of β-catenin in the RSC96 and C2C12 cytosolic and nuclear compartments were increased in the SB216763-treated cells. These findings confirm that the glycogen synthase kinase 3 beta inhibitor, SB216763, promoted the myelination and myotube differentiation through the Wnt/β-catenin signaling pathway and contributed to nerve remyelination and reduced denervated muscle atrophy after peripheral nerve injury.
Collapse
Affiliation(s)
- Jian Weng
- Department of Orthopedics and Trauma, Peking University People's Hospital, Beijing, China
| | - Yan-hua Wang
- Department of Orthopedics and Trauma, Peking University People's Hospital, Beijing, China
| | - Ming Li
- Department of Orthopedics and Trauma, Peking University People's Hospital, Beijing, China
| | - Dian-ying Zhang
- Department of Orthopedics and Trauma, Peking University People's Hospital, Beijing, China
| | - Bao-guo Jiang
- Department of Orthopedics and Trauma, Peking University People's Hospital, Beijing, China
| |
Collapse
|
16
|
Valek L, Häussler A, Dröse S, Eaton P, Schröder K, Tegeder I. Redox-guided axonal regrowth requires cyclic GMP dependent protein kinase 1: Implication for neuropathic pain. Redox Biol 2016; 11:176-191. [PMID: 27978504 PMCID: PMC5156608 DOI: 10.1016/j.redox.2016.12.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 11/03/2016] [Accepted: 12/02/2016] [Indexed: 01/27/2023] Open
Abstract
Cyclic GMP-dependent protein kinase 1 (PKG1) mediates presynaptic nociceptive long-term potentiation (LTP) in the spinal cord and contributes to inflammatory pain in rodents but the present study revealed opposite effects in the context of neuropathic pain. We used a set of loss-of-function models for in vivo and in vitro studies to address this controversy: peripheral neuron specific deletion (SNS-PKG1-/-), inducible deletion in subsets of neurons (SLICK-PKG1-/-) and redox-dead PKG1 mutants. In contrast to inflammatory pain, SNS-PKG1-/- mice developed stronger neuropathic hyperalgesia associated with an impairment of nerve regeneration, suggesting specific repair functions of PKG1. Although PKG1 accumulated at the site of injury, its activity was lost in the proximal nerve due to a reduction of oxidation-dependent dimerization, which was a consequence of mitochondrial damage in injured axons. In vitro, PKG1 deficiency or its redox-insensitivity resulted in enhanced outgrowth and reduction of growth cone collapse in response to redox signals, which presented as oxidative hotspots in growing cones. At the molecular level, PKG1 deficiency caused a depletion of phosphorylated cofilin, which is essential for growth cone collapse and guidance. Hence, redox-mediated guidance required PKG1 and consequently, its deficiency in vivo resulted in defective repair and enhanced neuropathic pain after nerve injury. PKG1-dependent repair functions will outweigh its signaling functions in spinal nociceptive LTP, so that inhibition of PKG1 is no option for neuropathic pain. Axonal injury leads mitochondrial damage. The loss of signaling ROS is associated with a reduction of redox-dependent autoactivation of PKG1. Loss of PKG1 impairs peripheral nerve regeneration and aggravates neuropathic pain in mice. Oxidative hot spots are generated in spiky growth cones and trigger growth cone collapse via PKG1. Malfunctioning of this redox-PKG1 guided growth cone collapse leads to aberrant outgrowth.
Collapse
Affiliation(s)
- Lucie Valek
- Depts. of Clinical Pharmacology, Goethe-University Hospital, Frankfurt, Germany
| | - Annett Häussler
- Depts. of Clinical Pharmacology, Goethe-University Hospital, Frankfurt, Germany
| | - Stefan Dröse
- Depts. of Anaesthesiology, Goethe-University Hospital, Frankfurt, Germany
| | - Philipp Eaton
- King's College of London, Cardiovascular Division, The Rayne Institute, St. Thomas' Hospital, London, United Kingdom
| | - Katrin Schröder
- Depts. of Cardiovascular Physiology, Goethe-University Hospital, Frankfurt, Germany
| | - Irmgard Tegeder
- Depts. of Clinical Pharmacology, Goethe-University Hospital, Frankfurt, Germany.
| |
Collapse
|
17
|
Chandran V, Coppola G, Nawabi H, Omura T, Versano R, Huebner EA, Zhang A, Costigan M, Yekkirala A, Barrett L, Blesch A, Michaelevski I, Davis-Turak J, Gao F, Langfelder P, Horvath S, He Z, Benowitz L, Fainzilber M, Tuszynski M, Woolf CJ, Geschwind DH. A Systems-Level Analysis of the Peripheral Nerve Intrinsic Axonal Growth Program. Neuron 2016; 89:956-70. [PMID: 26898779 DOI: 10.1016/j.neuron.2016.01.034] [Citation(s) in RCA: 261] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Revised: 01/12/2016] [Accepted: 01/20/2016] [Indexed: 01/18/2023]
Abstract
The regenerative capacity of the injured CNS in adult mammals is severely limited, yet axons in the peripheral nervous system (PNS) regrow, albeit to a limited extent, after injury. We reasoned that coordinate regulation of gene expression in injured neurons involving multiple pathways was central to PNS regenerative capacity. To provide a framework for revealing pathways involved in PNS axon regrowth after injury, we applied a comprehensive systems biology approach, starting with gene expression profiling of dorsal root ganglia (DRGs) combined with multi-level bioinformatic analyses and experimental validation of network predictions. We used this rubric to identify a drug that accelerates DRG neurite outgrowth in vitro and optic nerve outgrowth in vivo by inducing elements of the identified network. The work provides a functional genomics foundation for understanding neural repair and proof of the power of such approaches in tackling complex problems in nervous system biology.
Collapse
Affiliation(s)
- Vijayendran Chandran
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Giovanni Coppola
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Psychiatry, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Homaira Nawabi
- F.M. Kirby Neurobiology Center, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Takao Omura
- F.M. Kirby Neurobiology Center, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Revital Versano
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Eric A Huebner
- F.M. Kirby Neurobiology Center, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Alice Zhang
- Interdepartmental Program in Neuroscience, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Michael Costigan
- F.M. Kirby Neurobiology Center, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Ajay Yekkirala
- F.M. Kirby Neurobiology Center, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Lee Barrett
- F.M. Kirby Neurobiology Center, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Armin Blesch
- Department of Neurosciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Izhak Michaelevski
- Department of Biological Chemistry, Weizmann Institute of Science, 76100 Rehovot, Israel
| | - Jeremy Davis-Turak
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Fuying Gao
- Department of Psychiatry, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Peter Langfelder
- Department of Human Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Biostatistics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Steve Horvath
- Department of Human Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Biostatistics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Zhigang He
- F.M. Kirby Neurobiology Center, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Larry Benowitz
- F.M. Kirby Neurobiology Center, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Mike Fainzilber
- Department of Biological Chemistry, Weizmann Institute of Science, 76100 Rehovot, Israel
| | - Mark Tuszynski
- Department of Neurosciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Clifford J Woolf
- F.M. Kirby Neurobiology Center, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Daniel H Geschwind
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Human Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
18
|
Câmara CC, Araújo CV, de Sousa KKO, Brito GA, Vale ML, Raposo RDS, Mendonça FE, Mietto BS, Martinez AMB, Oriá RB. Gabapentin attenuates neuropathic pain and improves nerve myelination after chronic sciatic constriction in rats. Neurosci Lett 2015; 607:52-58. [DOI: 10.1016/j.neulet.2015.09.021] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Revised: 07/11/2015] [Accepted: 09/16/2015] [Indexed: 12/14/2022]
|
19
|
Cheng Q, Jiang C, Wang C, Yu S, Zhang Q, Gu X, Ding F. The Achyranthes bidentata polypeptide k fraction enhances neuronal growth in vitro and promotes peripheral nerve regeneration after crush injury in vivo. Neural Regen Res 2015; 9:2142-50. [PMID: 25657735 PMCID: PMC4316447 DOI: 10.4103/1673-5374.147948] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/10/2014] [Indexed: 11/04/2022] Open
Abstract
We have previously shown that Achyranthes bidentata polypeptides (ABPP), isolated from Achyranthes bidentata Blume (a medicinal herb), exhibit neurotrophic and neuroprotective effects on the nervous system. To identify the major active component of ABPP, and thus optimize the use of ABPP, we used reverse-phase high performance liquid chromatography to separate ABPP. We obtained 12 fractions, among which the fraction of ABPPk demonstrated the strongest neuroactivity. Immunocytochemistry and western blot analysis showed that ABPPk promoted neurite growth in cultured dorsal root ganglion explant and dorsal root ganglion neurons, which might be associated with activation of Erk1/2. A combination of behavioral tests, electrophysiological assessment, and histomorphometric analysis indicated that ABPPk enhanced nerve regeneration and function restoration in a mouse model of crushed sciatic nerve. All the results suggest that ABPPk, as the key component of ABPP, can be used for peripheral nerve repair to yield better outcomes than ABPP.
Collapse
Affiliation(s)
- Qiong Cheng
- Jiangsu Key Laboratory of Neuroregeneration, Co-innovation Center of Neuroregenration, Nantong University, Nantong, Jiangsu Province, China
| | - Chunyi Jiang
- Jiangsu Key Laboratory of Neuroregeneration, Co-innovation Center of Neuroregenration, Nantong University, Nantong, Jiangsu Province, China
| | - Caiping Wang
- Jiangsu Key Laboratory of Neuroregeneration, Co-innovation Center of Neuroregenration, Nantong University, Nantong, Jiangsu Province, China
| | - Shu Yu
- Jiangsu Key Laboratory of Neuroregeneration, Co-innovation Center of Neuroregenration, Nantong University, Nantong, Jiangsu Province, China
| | - Qi Zhang
- Jiangsu Key Laboratory of Neuroregeneration, Co-innovation Center of Neuroregenration, Nantong University, Nantong, Jiangsu Province, China
| | - Xiaosong Gu
- Jiangsu Key Laboratory of Neuroregeneration, Co-innovation Center of Neuroregenration, Nantong University, Nantong, Jiangsu Province, China
| | - Fei Ding
- Jiangsu Key Laboratory of Neuroregeneration, Co-innovation Center of Neuroregenration, Nantong University, Nantong, Jiangsu Province, China
| |
Collapse
|
20
|
Tsuboi Y, Honda K, Bae YC, Shinoda M, Kondo M, Katagiri A, Echizenya S, Kamakura S, Lee J, Iwata K. Morphological and functional changes in regenerated primary afferent fibres following mental and inferior alveolar nerve transection. Eur J Pain 2014; 19:1258-66. [PMID: 25523341 DOI: 10.1002/ejp.650] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/20/2014] [Indexed: 01/22/2023]
Abstract
BACKGROUND It is important to know the mechanisms underlying pain abnormalities associated with inferior alveolar nerve (IAN) regeneration in order to develop the appropriate treatment for orofacial neuropathic pain patients. However, peripheral mechanisms underlying orofacial pain abnormalities following IAN regeneration are not fully understood. METHODS Head withdrawal threshold (HWT), jaw opening reflex (JOR) thresholds, single-fibre recordings of the regenerated mental nerve (MN) fibres, calcitonin gene-related peptide (CGRP), isolectin B4 (IB4), peripherin, neurofilament-200 (NF-200) and transient receptor potential vanilloid 1 (TRPV1) expression in trigeminal ganglion (TG) cells, and electron microscopic (EM) observations of the regenerated MN fibres were studied in MN- and IAN-transected (M-IANX) rats. RESULTS HWT to mechanical or heat stimulation of the mental skin was significantly lower in M-IANX rats compared with sham rats. Mean conduction velocity of action potentials recorded from MN fibres (n = 124) was significantly slower in M-IANX rats compared with sham rats. The percentage of Fluoro-Gold (FG)-labelled CGRP-, peripherin- or TRPV1-immunoreactive (IR) cells was significantly larger in M-IANX rats compared with that of sham rats, whereas that of FG-labelled IB4- and NF-200-IR cells was significantly smaller in M-IANX rats compared with sham rats. Large-sized myelinated nerve fibres were rarely observed in M-IANX rats, whereas large-sized unmyelinated nerve fibres were frequently observed and were aggregated in the bundles at the distal portion of regenerated axons. CONCLUSIONS These findings suggest that the demyelination of MN fibres following regeneration may be involved in peripheral sensitization, resulting in the orofacial neuropathic pain associated with trigeminal nerve injury.
Collapse
Affiliation(s)
- Y Tsuboi
- Department of Physiology, Nihon University School of Dentistry, Tokyo, Japan.,Division of Functional Morphology, Dental Research Center, Nihon University School of Dentistry, Tokyo, Japan
| | - K Honda
- Department of Physiology, Nihon University School of Dentistry, Tokyo, Japan.,Department of Oral and Maxillofacial Surgery, Nihon University School of Dentistry, Tokyo, Japan
| | - Y C Bae
- Department of Oral Anatomy, School of Dentistry, Kyungpook National University, Daegu, Korea
| | - M Shinoda
- Department of Physiology, Nihon University School of Dentistry, Tokyo, Japan.,Division of Functional Morphology, Dental Research Center, Nihon University School of Dentistry, Tokyo, Japan
| | - M Kondo
- Department of Physiology, Nihon University School of Dentistry, Tokyo, Japan.,Division of Functional Morphology, Dental Research Center, Nihon University School of Dentistry, Tokyo, Japan
| | - A Katagiri
- Department of Physiology, Nihon University School of Dentistry, Tokyo, Japan.,Division of Functional Morphology, Dental Research Center, Nihon University School of Dentistry, Tokyo, Japan
| | - S Echizenya
- Department of Physiology, Nihon University School of Dentistry, Tokyo, Japan
| | - S Kamakura
- Department of Physiology, Nihon University School of Dentistry, Tokyo, Japan
| | - J Lee
- Department of Prosthodontics, Nihon University School of Dentistry, Tokyo, Japan
| | - K Iwata
- Department of Physiology, Nihon University School of Dentistry, Tokyo, Japan.,Division of Functional Morphology, Dental Research Center, Nihon University School of Dentistry, Tokyo, Japan
| |
Collapse
|
21
|
Chan KM, Gordon T, Zochodne DW, Power HA. Improving peripheral nerve regeneration: from molecular mechanisms to potential therapeutic targets. Exp Neurol 2014; 261:826-35. [PMID: 25220611 DOI: 10.1016/j.expneurol.2014.09.006] [Citation(s) in RCA: 127] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Revised: 08/29/2014] [Accepted: 09/05/2014] [Indexed: 11/19/2022]
Abstract
Peripheral nerve injury is common especially among young individuals. Although injured neurons have the ability to regenerate, the rate is slow and functional outcomes are often poor. Several potential therapeutic agents have shown considerable promise for improving the survival and regenerative capacity of injured neurons. These agents are reviewed within the context of their molecular mechanisms. The PI3K/Akt and Ras/ERK signaling cascades play a key role in neuronal survival. A number of agents that target these pathways, including erythropoietin, tacrolimus, acetyl-l-carnitine, n-acetylcysteine and geldanamycin have been shown to be effective. Trk receptor signaling events that up-regulate cAMP play an important role in enhancing the rate of axonal outgrowth. Agents that target this pathway including rolipram, testosterone, fasudil, ibuprofen and chondroitinase ABC hold considerable promise for human application. A tantalizing prospect is to combine different molecular targeting strategies in complementary pathways to optimize their therapeutic effects. Although further study is needed prior to human trials, these modalities could open a new horizon in the clinical arena that has so far been elusive.
Collapse
Affiliation(s)
- K Ming Chan
- Division of Physical Medicine and Rehabilitation, University of Alberta, Edmonton, Alberta, Canada; Centre for Neuroscience, University of Alberta, Canada.
| | - Tessa Gordon
- Division of Physical Medicine and Rehabilitation, University of Alberta, Edmonton, Alberta, Canada; Centre for Neuroscience, University of Alberta, Canada; Division of Plastic Surgery, University of Toronto, Toronto, Ontario, Canada
| | - Douglas W Zochodne
- Department of Clinical Neuroscience, University of Calgary, Calgary, Alberta, Canada
| | - Hollie A Power
- Division of Plastic Surgery, University of Alberta, Canada
| |
Collapse
|
22
|
Ramburrun P, Kumar P, Choonara YE, Bijukumar D, du Toit LC, Pillay V. A review of bioactive release from nerve conduits as a neurotherapeutic strategy for neuronal growth in peripheral nerve injury. BIOMED RESEARCH INTERNATIONAL 2014; 2014:132350. [PMID: 25143934 PMCID: PMC4131113 DOI: 10.1155/2014/132350] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Accepted: 05/04/2014] [Indexed: 02/07/2023]
Abstract
Peripheral nerve regeneration strategies employ the use of polymeric engineered nerve conduits encompassed with components of a delivery system. This allows for the controlled and sustained release of neurotrophic growth factors for the enhancement of the innate regenerative capacity of the injured nerves. This review article focuses on the delivery of neurotrophic factors (NTFs) and the importance of the parameters that control release kinetics in the delivery of optimal quantities of NTFs for improved therapeutic effect and prevention of dose dumping. Studies utilizing various controlled-release strategies, in attempt to obtain ideal release kinetics, have been reviewed in this paper. Release strategies discussed include affinity-based models, crosslinking techniques, and layer-by-layer technologies. Currently available synthetic hollow nerve conduits, an alternative to the nerve autografts, have proven to be successful in the bridging and regeneration of primarily the short transected nerve gaps in several patient cases. However, current research emphasizes on the development of more advanced nerve conduits able to simulate the effectiveness of the autograft which includes, in particular, the ability to deliver growth factors.
Collapse
Affiliation(s)
- Poornima Ramburrun
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg 2193, South Africa
| | - Pradeep Kumar
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg 2193, South Africa
| | - Yahya E. Choonara
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg 2193, South Africa
| | - Divya Bijukumar
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg 2193, South Africa
| | - Lisa C. du Toit
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg 2193, South Africa
| | - Viness Pillay
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg 2193, South Africa
| |
Collapse
|
23
|
Coletti D, Teodori L, Lin Z, Beranudin JF, Adamo S. Restoration versus reconstruction: cellular mechanisms of skin, nerve and muscle regeneration compared. Regen Med Res 2013; 1:4. [PMID: 25984323 PMCID: PMC4375925 DOI: 10.1186/2050-490x-1-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Accepted: 02/20/2013] [Indexed: 01/24/2023] Open
Abstract
In tissues characterized by a high turnover or following acute injury, regeneration replaces damaged cells and is involved in adaptation to external cues, leading to homeostasis of many tissues during adult life. An understanding of the mechanics underlying tissue regeneration is highly relevant to regenerative medicine-based interventions. In order to investigate the existence a leitmotif of tissue regeneration, we compared the cellular aspects of regeneration of skin, nerve and skeletal muscle, three organs characterized by different types of anatomical and functional organization. Epidermis is a stratified squamous epithelium that migrates from the edge of the wound on the underlying dermis to rebuild lost tissue. Peripheral neurons are elongated cells whose neurites are organized in bundles, within an endoneurium of connective tissue; they either die upon injury or undergo remodeling and axon regrowth. Skeletal muscle is characterized by elongated syncytial cells, i.e. muscle fibers, that can temporarily survive in broken pieces; satellite cells residing along the fibers form new fibers, which ultimately fuse with the old ones as well as with each other to restore the previous organization. Satellite cell asymmetrical division grants a reservoir of undifferentiated cells, while other stem cell populations of muscle and non-muscle origin participate in muscle renewal. Following damage, all the tissues analyzed here go through three phases: inflammation, regeneration and maturation. Another common feature is the occurrence of cellular de-differentiation and/or differentiation events, including gene transcription, which are typical of embryonic development. Nonetheless, various strategies are used by different tissues to replace their lost parts. The epidermis regenerates ex novo, whereas neurons restore their missing parts; muscle fibers use a mixed strategy, based on the regrowth of missing parts through reconstruction by means of newborn fibers. The choice of either strategy is influenced by the anatomical, physical and chemical features of the cells as well as by the extracellular matrix typical of a given tissue, which points to the existence of differential, evolutionary-based mechanisms for specific tissue regeneration. The shared, ordered sequence of steps that characterize the regeneration processes examined suggests it may be possible to model this extremely important phenomenon to reproduce multicellular organisms.
Collapse
Affiliation(s)
- Dario Coletti
- UPMC Univ Paris 06, UR4 Ageing, Stress, Inflammation, 75005 Paris, France ; Department of Anatomical, Histological, Forensic & Orthopaedic Sciences, Section of Histology & Medical Embryology, 00161 Rome, Italy ; Interuniversity Institute of Myology, Kragujevac, Italy
| | - Laura Teodori
- ENEA-Frascati, UTAPRAD-DIM, Diagnostics and Metrology Laboratory, 00044 Rome, Italy
| | - Zhenlin Lin
- UPMC Univ Paris 06, UR4 Ageing, Stress, Inflammation, 75005 Paris, France
| | | | - Sergio Adamo
- Department of Anatomical, Histological, Forensic & Orthopaedic Sciences, Section of Histology & Medical Embryology, 00161 Rome, Italy ; Interuniversity Institute of Myology, Kragujevac, Italy
| |
Collapse
|
24
|
Pace LA, Plate JF, Smith TL, Van Dyke ME. The effect of human hair keratin hydrogel on early cellular response to sciatic nerve injury in a rat model. Biomaterials 2013; 34:5907-14. [DOI: 10.1016/j.biomaterials.2013.04.024] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2013] [Accepted: 04/10/2013] [Indexed: 01/09/2023]
|
25
|
Chung CL, Tsai HP, Lee KS, Chen KI, Wu SC, Kuo YH, Winardi W, Chen IC, Kwan AL. Assisted peripheral nerve recovery by KMUP-1, an activator of large-conductance Ca(2+)-activated potassium channel, in a rat model of sciatic nerve crush injury. Acta Neurochir (Wien) 2012; 154:1773-9. [PMID: 22772399 DOI: 10.1007/s00701-012-1433-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2012] [Accepted: 06/20/2012] [Indexed: 12/18/2022]
Abstract
BACKGROUND Axonal regeneration in peripheral nerves after injury is a complicated process. Numerous cytokines, growth factors, channels, kinases, and receptors are involved, and matrix metalloproteinase-9 (MMP-9) has been implicated in the pathogenesis subsequent to nerve injury. In this study, the effect of KMUP-1, an activator of large-conductance Ca(2+)-activated potassium channel, on functional recovery, myelinated axon growth, and immunoreactivity of MMP-9 was evaluated in rats subjected to sciatic nerve crush injury. METHOD A total of 144 male Sprague-Dawley rats were divided into the following six groups (n = 24/group): group 1, sham-operated; group 2, sciatic nerve injury without treatment; group 3, injured and vehicle-treated; group 4, injured and treated with 1 mM KMUP-1 by topical application; group 5, injured and treated with 10 mM KMUP-1; group 6, injured and treated with 50 mM KMUP-1. Functional recovery was evaluated using walking track analysis at 1, 2, 3, and 4 weeks (n = 6/group at each time point) after injury. In addition, the number of myelinated axons and MMP-9 in the nerve was also examined. FINDINGS Animals subjected to sciatic nerve crush injury had decreased motor function, a reduced number of myelinated axons, and increased MMP-9 in the nerve. Treatment with KMUP-1 concentration-dependently improved functional recovery, increased the number of myelinated axons, and decreased MMP-9. CONCLUSIONS These results suggest that KMUP-1 may be a novel agent for assisting peripheral nerve recovery after injury. The beneficial effect is probably due to known ability of the compound in activating the nitric oxide/cGMP/protein kinase G pathway.
Collapse
Affiliation(s)
- Chia-Li Chung
- Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Zhou S, Shen D, Wang Y, Gong L, Tang X, Yu B, Gu X, Ding F. microRNA-222 targeting PTEN promotes neurite outgrowth from adult dorsal root ganglion neurons following sciatic nerve transection. PLoS One 2012; 7:e44768. [PMID: 23028614 PMCID: PMC3441418 DOI: 10.1371/journal.pone.0044768] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Accepted: 08/06/2012] [Indexed: 12/28/2022] Open
Abstract
Dorsal root ganglia (DRG) neurons spontaneously undergo neurite growth after nerve injury. MicroRNAs (miRNAs), as small, non-coding RNAs, negatively regulate gene expression in a variety of biological processes. The roles of miRNAs in the regulation of responses of DRG neurons to injury stimuli, however, are not fully understood. Here, microarray analysis was performed to profile the miRNAs in L4-L6 DRGs following rat sciatic nerve transection. The 26 known miRNAs were differentially expressed at 0, 1, 4, 7, 14 d post injury, and the potential targets of the miRNAs were involved in nerve regeneration, as analyzed by bioinformatics. Among the 26 miRNAs, microRNA-222 (miR-222) was our research focus because its increased expression promoted neurite outgrowth while it silencing by miR-222 inhibitor reduced neurite outgrowth. Knockdown experiments confirmed that phosphatase and tensin homolog deleted on chromosome 10 (PTEN), a major inhibitor of nerve regeneration, was a direct target of miR-222 in DRG neurons. In addition, we found that miR-222 might regulate the phosphorylation of cAMP response element binding protein (CREB) through PTEN, and c-Jun activation might enhance the miR-222 expression. Collectively, our data suggest that miR-222 could regulate neurite outgrowth from DRG neurons by targeting PTEN.
Collapse
Affiliation(s)
- Songlin Zhou
- Jiangsu Key Laboratory of Neuroregeneration, Nantong University, Nantong, China
| | - Dingding Shen
- Jiangsu Key Laboratory of Neuroregeneration, Nantong University, Nantong, China
| | - Yongjun Wang
- Jiangsu Key Laboratory of Neuroregeneration, Nantong University, Nantong, China
| | - Leilei Gong
- Jiangsu Key Laboratory of Neuroregeneration, Nantong University, Nantong, China
| | - Xiaoyan Tang
- Key Lab of Systems Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Bin Yu
- Jiangsu Key Laboratory of Neuroregeneration, Nantong University, Nantong, China
| | - Xiaosong Gu
- Jiangsu Key Laboratory of Neuroregeneration, Nantong University, Nantong, China
- * E-mail: (XSG); (FD)
| | - Fei Ding
- Jiangsu Key Laboratory of Neuroregeneration, Nantong University, Nantong, China
- * E-mail: (XSG); (FD)
| |
Collapse
|
27
|
Moriya T, Kayano T, Kitamura N, Hosaka YZ, Asano A, Forostyak O, Verkhratsky A, Viero C, Dayanithi G, Toescu EC, Shibuya I. Vasopressin-induced intracellular Ca²⁺ concentration responses in non-neuronal cells of the rat dorsal root ganglion. Brain Res 2012; 1483:1-12. [PMID: 22975133 DOI: 10.1016/j.brainres.2012.08.028] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2012] [Revised: 08/10/2012] [Accepted: 08/15/2012] [Indexed: 01/03/2023]
Abstract
Arginine-vasopressin (AVP) is a nonapeptide of hypothalamic origin that has been shown to exert many important cognitive and physiological functions in neurons and terminals of both the central and peripheral nervous system (CNS and PNS). Here we report for the first time that AVP induced an increase in intracellular Ca²⁺ concentration ([Ca²⁺](i)) in non-neuronal cells isolated from the rat dorsal root ganglion (DRG) and cultured in vitro. The ratiometric [Ca²⁺](i) measurements showed that AVP evoked [Ca²⁺](i) responses in the non-neuronal cells and these concentration-dependent (100 pM to 1 μM) responses increased with days in vitro in culture, reaching a maximum amplitude after 4-5 day. Immunostaining by anti-S-100 antibody revealed that more than 70% of S-100 positive cells were AVP-responsive, indicating that glial cells responded to AVP and increased their [Ca²⁺](i). The responses were inhibited by depletion of the intracellular Ca²⁺ stores or in the presence of inhibitors of phospholipase C, indicating a metabotropic response involving inositol trisphosphate, and were mediated by the V₁ subclass of AVP receptors, as evidenced by the use of the specific blockers for V₁ and OT receptors, (d(CH₂)₅¹,Tyr(Me)²,Arg⁸)-Vasopressin and (d(CH₂)₅¹,Tyr(Me)²,Thr⁴,Orn⁸,des-Gly-NH₂⁹)-Vasotocin, respectively. V(1a) but not V(1b) receptor mRNA was expressed sustainably through the culture period in cultured DRG cells. These results suggest that AVP modulates the activity of DRG glial cells via activation of V(1a) receptor.
Collapse
Affiliation(s)
- Taiki Moriya
- Department of Veterinary Physiology, Faculty of Agriculture, Tottori University, Tottori 680-8553, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Bucci C, Bakke O, Progida C. Charcot-Marie-Tooth disease and intracellular traffic. Prog Neurobiol 2012; 99:191-225. [PMID: 22465036 PMCID: PMC3514635 DOI: 10.1016/j.pneurobio.2012.03.003] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2011] [Revised: 12/23/2011] [Accepted: 03/13/2012] [Indexed: 12/23/2022]
Abstract
Mutations of genes whose primary function is the regulation of membrane traffic are increasingly being identified as the underlying causes of various important human disorders. Intriguingly, mutations in ubiquitously expressed membrane traffic genes often lead to cell type- or organ-specific disorders. This is particularly true for neuronal diseases, identifying the nervous system as the most sensitive tissue to alterations of membrane traffic. Charcot-Marie-Tooth (CMT) disease is one of the most common inherited peripheral neuropathies. It is also known as hereditary motor and sensory neuropathy (HMSN), which comprises a group of disorders specifically affecting peripheral nerves. This peripheral neuropathy, highly heterogeneous both clinically and genetically, is characterized by a slowly progressive degeneration of the muscle of the foot, lower leg, hand and forearm, accompanied by sensory loss in the toes, fingers and limbs. More than 30 genes have been identified as targets of mutations that cause CMT neuropathy. A number of these genes encode proteins directly or indirectly involved in the regulation of intracellular traffic. Indeed, the list of genes linked to CMT disease includes genes important for vesicle formation, phosphoinositide metabolism, lysosomal degradation, mitochondrial fission and fusion, and also genes encoding endosomal and cytoskeletal proteins. This review focuses on the link between intracellular transport and CMT disease, highlighting the molecular mechanisms that underlie the different forms of this peripheral neuropathy and discussing the pathophysiological impact of membrane transport genetic defects as well as possible future ways to counteract these defects.
Collapse
Affiliation(s)
- Cecilia Bucci
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Via Provinciale Monteroni, 73100 Lecce, Italy.
| | | | | |
Collapse
|
29
|
Jianping P, Xiaofeng Y, Yanhua W, Zhenwei W, Yuhui K, Chungui X, Peixun Z, Baoguo J. Different multiple regeneration capacities of motor and sensory axons in peripheral nerve. ACTA ACUST UNITED AC 2012; 40:309-16. [PMID: 22409279 DOI: 10.3109/10731199.2012.657205] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
After peripheral nerve injury, axons often project sprouts from the node of Ranvier proximal to the damage site. It is well known that one parent axon can sprout and maintain several regenerating axons. If enough endoneurial tubes in the distal stump are present for the regenerating axons to grow along, then the number of mature myelinated nerve fibers in the distal stump will be greater than the number in the proximal stump. "Multiple regeneration" is used to describe this phenomenon in the peripheral nerve. According to previous studies, a prominent nerve containing many axons can be repaired by the multiple regenerating axons sprouting from another nerve that contains fewer axons. Most peripheral nerves contain a mixture of myelinated motor and sensory axons as well as unmyelinated sensory and autonomic axons. In this study, a multiple regeneration animal model was developed by bridging the proximal common peroneal nerve with the distal common peroneal nerve and the tibial nerve. Differences in the multiple regeneration ratio of motor and sensory nerves were evaluated using histomorphometry one month after ablating the dorsal root ganglion (DRGs) and ventral roots, respectively. The results suggest that the motor nerves have a significantly larger multiple regeneration ratio than the sensory nerves at two different time points.
Collapse
|
30
|
Chen L, Wang Z, Ghosh-Roy A, Hubert T, Yan D, O'Rourke S, Bowerman B, Wu Z, Jin Y, Chisholm AD. Axon regeneration pathways identified by systematic genetic screening in C. elegans. Neuron 2011; 71:1043-57. [PMID: 21943602 PMCID: PMC3183436 DOI: 10.1016/j.neuron.2011.07.009] [Citation(s) in RCA: 155] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/05/2011] [Indexed: 12/18/2022]
Abstract
The mechanisms underlying the ability of axons to regrow after injury remain poorly explored at the molecular genetic level. We used a laser injury model in Caenorhabditis elegans mechanosensory neurons to screen 654 conserved genes for regulators of axonal regrowth. We uncover several functional clusters of genes that promote or repress regrowth, including genes classically known to affect axon guidance, membrane excitability, neurotransmission, and synaptic vesicle endocytosis. The conserved Arf Guanine nucleotide Exchange Factor (GEF), EFA-6, acts as an intrinsic inhibitor of regrowth. By combining genetics and in vivo imaging, we show that EFA-6 inhibits regrowth via microtubule dynamics, independent of its Arf GEF activity. Among newly identified regrowth inhibitors, only loss of function in EFA-6 partially bypasses the requirement for DLK-1 kinase. Identification of these pathways significantly expands our understanding of the genetic basis of axonal injury responses and repair.
Collapse
Affiliation(s)
- Lizhen Chen
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Gaudet AD, Popovich PG, Ramer MS. Wallerian degeneration: gaining perspective on inflammatory events after peripheral nerve injury. J Neuroinflammation 2011; 8:110. [PMID: 21878126 PMCID: PMC3180276 DOI: 10.1186/1742-2094-8-110] [Citation(s) in RCA: 606] [Impact Index Per Article: 43.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2011] [Accepted: 08/30/2011] [Indexed: 01/15/2023] Open
Abstract
In this review, we first provide a brief historical perspective, discussing how peripheral nerve injury (PNI) may have caused World War I. We then consider the initiation, progression, and resolution of the cellular inflammatory response after PNI, before comparing the PNI inflammatory response with that induced by spinal cord injury (SCI).In contrast with central nervous system (CNS) axons, those in the periphery have the remarkable ability to regenerate after injury. Nevertheless, peripheral nervous system (PNS) axon regrowth is hampered by nerve gaps created by injury. In addition, the growth-supportive milieu of PNS axons is not sustained over time, precluding long-distance regeneration. Therefore, studying PNI could be instructive for both improving PNS regeneration and recovery after CNS injury. In addition to requiring a robust regenerative response from the injured neuron itself, successful axon regeneration is dependent on the coordinated efforts of non-neuronal cells which release extracellular matrix molecules, cytokines, and growth factors that support axon regrowth. The inflammatory response is initiated by axonal disintegration in the distal nerve stump: this causes blood-nerve barrier permeabilization and activates nearby Schwann cells and resident macrophages via receptors sensitive to tissue damage. Denervated Schwann cells respond to injury by shedding myelin, proliferating, phagocytosing debris, and releasing cytokines that recruit blood-borne monocytes/macrophages. Macrophages take over the bulk of phagocytosis within days of PNI, before exiting the nerve by the circulation once remyelination has occurred. The efficacy of the PNS inflammatory response (although transient) stands in stark contrast with that of the CNS, where the response of nearby cells is associated with inhibitory scar formation, quiescence, and degeneration/apoptosis. Rather than efficiently removing debris before resolving the inflammatory response as in other tissues, macrophages infiltrating the CNS exacerbate cell death and damage by releasing toxic pro-inflammatory mediators over an extended period of time. Future research will help determine how to manipulate PNS and CNS inflammatory responses in order to improve tissue repair and functional recovery.
Collapse
Affiliation(s)
- Andrew D Gaudet
- Department of Neuroscience and Center for Brain and Spinal Cord Repair, College of Medicine, The Ohio State University, 770 Biomedical Research Tower, 460 West 12th Ave, Columbus, OH, 43210, USA
- International Collaboration On Repair Discoveries (ICORD), Vancouver Coastal Health Research Institute, and Department of Zoology, University of British Columbia, 818 West 10th Ave, Vancouver, BC, V5T 1M9, Canada
| | - Phillip G Popovich
- Department of Neuroscience and Center for Brain and Spinal Cord Repair, College of Medicine, The Ohio State University, 770 Biomedical Research Tower, 460 West 12th Ave, Columbus, OH, 43210, USA
| | - Matt S Ramer
- International Collaboration On Repair Discoveries (ICORD), Vancouver Coastal Health Research Institute, and Department of Zoology, University of British Columbia, 818 West 10th Ave, Vancouver, BC, V5T 1M9, Canada
| |
Collapse
|
32
|
Petersen SM, Scott DR. Application of a classification system and description of a combined manual therapy intervention: a case with low back related leg pain. J Man Manip Ther 2011; 18:89-96. [PMID: 21655391 DOI: 10.1179/106698110x12640740712572] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Low back pain and leg pain commonly occur together. Multiple factors can cause low back related leg pain; therefore, identification of the source of symptoms is required in order to develop an appropriate intervention program. The patient in this case presented with low back and leg pain. A patho-mechanism based classification is described in combination with the patient's subjective and objective examination findings to guide treatment. The patient's symptoms improved marginally with intervention addressing primarily the musculoskeletal impairments and with intervention addressing primarily the neurodynamic impairments. Full functional improvements were attained with a manual therapy intervention directed at both mechanisms simultaneously. The approach described in this case address a mixed pathology utilizing passive accessory and passive physiological lumbar mobilizations in combination with lower extremity neurodynamic mobilization. The patient reported complete resolution of symptoms after a total of seven visits over a period of 6 weeks. While specific guidelines do not yet exist for treatment based on the classification approach utilized, this case report provides an example of manual therapy to address low back related leg pain of mixed pathology.
Collapse
|
33
|
Reduced BACE1 activity enhances clearance of myelin debris and regeneration of axons in the injured peripheral nervous system. J Neurosci 2011; 31:5744-54. [PMID: 21490216 DOI: 10.1523/jneurosci.6810-10.2011] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
β-Site amyloid precursor protein (APP) cleaving enzyme 1 (BACE1) is an aspartyl protease best known for its role in generating the amyloid-β peptides that are present in plaques of Alzheimer's disease. BACE1 has been an attractive target for drug development. In cultured embryonic neurons, BACE1-cleaved N-terminal APP is further processed to generate a fragment that can trigger axonal degeneration, suggesting a vital role for BACE1 in axonal health. In addition, BACE1 cleaves neuregulin 1 type III, a protein critical for myelination of peripheral axons by Schwann cells during development. Here, we asked whether axonal degeneration or axonal regeneration in adult nerves might be affected by inhibition or elimination of BACE1. We report that BACE1 knock-out and wild-type nerves degenerated at a similar rate after axotomy and to a similar extent in the experimental neuropathies produced by administration of paclitaxel and acrylamide. These data indicate N-APP is not the sole culprit in axonal degeneration in adult nerves. Unexpectedly, however, we observed that BACE1 knock-out mice had markedly enhanced clearance of axonal and myelin debris from degenerated fibers, accelerated axonal regeneration, and earlier reinnervation of neuromuscular junctions, compared with littermate controls. These observations were reproduced in part by pharmacological inhibition of BACE1. These data suggest BACE1 inhibition as a therapeutic approach to accelerate regeneration and recovery after peripheral nerve damage.
Collapse
|
34
|
Fei W, Aixi Y, Danmou X, Wusheng K, Zhengren P, Ting R. The mood stabilizer valproic acid induces proliferation and myelination of rat Schwann cells. Neurosci Res 2011; 70:383-90. [PMID: 21530595 DOI: 10.1016/j.neures.2011.04.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2011] [Revised: 04/06/2011] [Accepted: 04/08/2011] [Indexed: 01/26/2023]
Abstract
Schwann cells (SCs) within peripheral nerve respond robustly after exposure to neurotrophic factors. Recent results have revealed that valproic acid (VPA), at a clinically relevant therapeutic concentration, produces effects similar to neurotrophic factors, and promotes neurite growth and cell survival. We hypothesized that VPA could also induce Schwann cell response. In this study, we sought to determine how pure Schwann cells responded to VPA by evaluating for proliferation, expression of S-100, growth cone-associated protein 43 (GAP-43), myelin-associated glycoprotein (MAG), and myelin basic protein (MBP). Immunohistochemistry demonstrated that the Schwann cells were positive for S-100, GAP-43, MAG, and MBP greater than 99% of the experimental cells. The rate of proliferation was increased in experimental cells from MTT assay and Bromodeoxyuridine/DAPI double staining. Furthermore, Western blot showed an up-regulation in GAP-43, MAG and MBP protein expression in experimental cells, respectively. We also found that mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK) 1/2 pathway was involved in the enhanced cell proliferation of Schwann cells evoked by VPA. This study provides novel information regarding Schwann cell response to VPA, which might help the understanding of VPA-based treatment for peripheral nerve injury.
Collapse
Affiliation(s)
- Wu Fei
- Department of Hand Surgery & Microsurgery, Affiliated Pu Ai Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan City, Hu Bei Province, People's Republic of China
| | | | | | | | | | | |
Collapse
|
35
|
Yang TL. Chitin-based materials in tissue engineering: applications in soft tissue and epithelial organ. Int J Mol Sci 2011; 12:1936-63. [PMID: 21673932 PMCID: PMC3111643 DOI: 10.3390/ijms12031936] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2011] [Revised: 03/07/2011] [Accepted: 03/08/2011] [Indexed: 01/15/2023] Open
Abstract
Chitin-based materials and their derivatives are receiving increased attention in tissue engineering because of their unique and appealing biological properties. In this review, we summarize the biomedical potential of chitin-based materials, specifically focusing on chitosan, in tissue engineering approaches for epithelial and soft tissues. Both types of tissues play an important role in supporting anatomical structures and physiological functions. Because of the attractive features of chitin-based materials, many characteristics beneficial to tissue regeneration including the preservation of cellular phenotype, binding and enhancement of bioactive factors, control of gene expression, and synthesis and deposition of tissue-specific extracellular matrix are well-regulated by chitin-based scaffolds. These scaffolds can be used in repairing body surface linings, reconstructing tissue structures, regenerating connective tissue, and supporting nerve and vascular growth and connection. The novel use of these scaffolds in promoting the regeneration of various tissues originating from the epithelium and soft tissue demonstrates that these chitin-based materials have versatile properties and functionality and serve as promising substrates for a great number of future applications.
Collapse
Affiliation(s)
- Tsung-Lin Yang
- Department of Otolaryngology, National Taiwan University Hospital and College of Medicine, Taipei, 100, Taiwan; E-Mail: ; Tel.: +886-2-23123456 ext. 63526
| |
Collapse
|
36
|
Ahmed Z, Read ML, Berry M, Logan A. Satellite glia not DRG neurons constitutively activate EGFR but EGFR inactivation is not correlated with axon regeneration. Neurobiol Dis 2010; 39:292-300. [DOI: 10.1016/j.nbd.2010.04.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2009] [Revised: 04/12/2010] [Accepted: 04/26/2010] [Indexed: 01/16/2023] Open
|