1
|
Li S, Hou Z, Ye T, Song X, Hu X, Chen J. Saponin components in Polygala tenuifolia as potential candidate drugs for treating dementia. Front Pharmacol 2024; 15:1431894. [PMID: 39050746 PMCID: PMC11266144 DOI: 10.3389/fphar.2024.1431894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 06/21/2024] [Indexed: 07/27/2024] Open
Abstract
Objective This study aims to elucidate the intervention effects of saponin components from Polygala tenuifolia Willd (Polygalaceae) on dementia, providing experimental evidence and new insights for the research and application of saponins in the field of dementia. Materials and Methods This review is based on a search of the PubMed, NCBI, and Google Scholar databases from their inception to 13 May 2024, using terms such as "P. tenuifolia," "P. tenuifolia and saponins," "toxicity," "dementia," "Alzheimer's disease," "Parkinson's disease dementia," and "vascular dementia." The article summarizes the saponin components of P. tenuifolia, including tenuigenin, tenuifolin, polygalasaponins XXXII, and onjisaponin B, as well as the pathophysiological mechanisms of dementia. Importantly, it highlights the potential mechanisms by which the active components of P. tenuifolia prevent and treat diseases and relevant clinical studies. Results The saponin components of P. tenuifolia can reduce β-amyloid accumulation, exhibit antioxidant effects, regulate neurotransmitters, improve synaptic function, possess anti-inflammatory properties, inhibit neuronal apoptosis, and modulate autophagy. Therefore, P. tenuifolia may play a role in the prevention and treatment of dementia. Conclusion The saponin components of P. tenuifolia have shown certain therapeutic effects on dementia. They can prevent and treat dementia through various mechanisms.
Collapse
Affiliation(s)
- Songzhe Li
- College of Basic Medicine, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Zhitao Hou
- College of Basic Medicine, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Ting Ye
- The Second Hospital Affiliated Heilongjiang University of Traditional Chinese Medicine, Harbin, China
| | - Xiaochen Song
- College of Basic Medicine, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xinying Hu
- College of Basic Medicine, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Jing Chen
- College of Basic Medicine, Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
2
|
Majou D, Dermenghem AL. Effects of DHA (omega-3 fatty acid) and estradiol on amyloid β-peptide regulation in the brain. Brain Res 2024; 1823:148681. [PMID: 37992797 DOI: 10.1016/j.brainres.2023.148681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/13/2023] [Accepted: 11/15/2023] [Indexed: 11/24/2023]
Abstract
In the early stages of sporadic Alzheimer's disease (SAD), there is a strong correlation between memory impairment and cortical levels of soluble amyloid-β peptide oligomers (Aβ). It has become clear that Aβ disrupt glutamatergic synaptic function, which can in turn lead to the characteristic cognitive deficits of SAD, but the actual pathways are still not well understood. This opinion article describes the pathogenic mechanisms underlying cerebral amyloidosis. These mechanisms are dependent on the amyloid precursor protein and concern the synthesis of Aβ peptides with competition between the non-amyloidogenic pathway and the amyloidogenic pathway (i.e. a competition between the ADAM10 and BACE1 enzymes), on the one hand, and the various processes of Aβ residue clearance, on the other hand. This clearance mobilizes both endopeptidases (NEP, and IDE) and removal transporters across the blood-brain barrier (LRP1, ABCB1, and RAGE). Lipidated ApoE also plays a major role in all processes. The disturbance of these pathways induces an accumulation of Aβ. The description of the mechanisms reveals two key molecules in particular: (i) free estradiol, which has genomic and non-genomic action, and (ii) free DHA as a preferential ligand of PPARα-RXRα and PPARɣ-RXRα heterodimers. DHA and free estradiol are also self-regulating, and act in synergy. When a certain level of chronic DHA and free estradiol deficiency is reached, a permanent imbalance is established in the central nervous system. The consequences of these deficits are revealed in particular by the presence of Aβ peptide deposits, as well as other markers of the etiology of SAD.
Collapse
Affiliation(s)
- Didier Majou
- ACTIA, 149, rue de Bercy, 75595 Paris Cedex 12, France.
| | | |
Collapse
|
3
|
Saleh O, Albakri K, Altiti A, Abutair I, Shalan S, Mohd OB, Negida A, Mushtaq G, Kamal MA. The Role of Non-coding RNAs in Alzheimer's Disease: Pathogenesis, Novel Biomarkers, and Potential Therapeutic Targets. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2024; 23:731-745. [PMID: 37211844 DOI: 10.2174/1871527322666230519113201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 03/24/2023] [Accepted: 03/29/2023] [Indexed: 05/23/2023]
Abstract
Long non-coding RNAs (IncRNAs) are regulatory RNA transcripts that have recently been associated with the onset of many neurodegenerative illnesses, including Alzheimer's disease (AD). Several IncRNAs have been found to be associated with AD pathophysiology, each with a distinct mechanism. In this review, we focused on the role of IncRNAs in the pathogenesis of AD and their potential as novel biomarkers and therapeutic targets. Searching for relevant articles was done using the PubMed and Cochrane library databases. Studies had to be published in full text in English in order to be considered. Some IncRNAs were found to be upregulated, while others were downregulated. Dysregulation of IncRNAs expression may contribute to AD pathogenesis. Their effects manifest as the synthesis of beta-amyloid (Aβ) plaques increases, thereby altering neuronal plasticity, inducing inflammation, and promoting apoptosis. Despite the need for more investigations, IncRNAs could potentially increase the sensitivity of early detection of AD. Until now, there has been no effective treatment for AD. Hence, InRNAs are promising molecules and may serve as potential therapeutic targets. Although several dysregulated AD-associated lncRNAs have been discovered, the functional characterization of most lncRNAs is still lacking.
Collapse
Affiliation(s)
- Othman Saleh
- Faculty of Medicine, The Hashemite University, Zarqa, Jordan
| | - Khaled Albakri
- Faculty of Medicine, The Hashemite University, Zarqa, Jordan
- Medical Research Group of Egypt, Cairo, Egypt
| | | | - Iser Abutair
- Faculty of Medicine, The Hashemite University, Zarqa, Jordan
| | - Suhaib Shalan
- Faculty of Medicine, The Hashemite University, Zarqa, Jordan
| | | | - Ahmed Negida
- Medical Research Group of Egypt, Cairo, Egypt
- Department of Global Health and Social Medicine, Harvard Medical School, 641 Huntington Ave, Boston, MA, 02115, USA
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, UK
- Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Gohar Mushtaq
- Center for Scientific Research, Faculty of Medicine, Idlib University, Idlib, Syria
| | - Mohammad A Kamal
- Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Sichuan, China
- King Fahd Medical Research Center, King Abdulaziz University, Saudi Arabia
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Daffodil Smart City, Birulia 1216, Bangladesh
- Enzymoics, 7 Peterlee place, Hebersham, NSW 2770, Novel Global Community Educational Foundation, Hebersham, Australia
| |
Collapse
|
4
|
Chen J, Su YH, Wang M, Zhang YC. Emerging Role of Sorting Nexin 17 in Human Health and Disease. Curr Protein Pept Sci 2024; 25:814-825. [PMID: 38874037 DOI: 10.2174/0113892037284582240522155112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/21/2024] [Accepted: 04/25/2024] [Indexed: 06/15/2024]
Abstract
The distortion of the cellular membrane transport pathway has a profound impact on cell dynamics and can drive serious physiological consequences during the process of cell sorting. SNX17 is a member of the Sorting Nexin (SNX) family and plays a crucial role in protein sorting and transport in the endocytic pathway. SNX17, SNX27, and SNX31 belong to the SNX-FERM subfamily and possess the FERM domain, which can assist in endocytic transport and lysosomal degradation. The binding partners of SNX27 have been discovered to number over 100, and SNX27 has been linked to the development of Alzheimer's disease progression, tumorigenesis, cancer progression, and metastasis. However, the role and potential mechanisms of SNX17 in human health and disease remain poorly understood, and the function of SNX17 has not been fully elucidated. In this review, we summarize the structure and basic functions of SNX protein, focusing on providing current evidence of the role and possible mechanism of SNX17 in human neurodegenerative diseases and cardiovascular diseases.
Collapse
Affiliation(s)
- Juan Chen
- Key Laboratory of Sports Human Science, College of Physical Education, Liaoning Normal University, Dalian, 116029, China
| | - Yan-Hong Su
- Key Laboratory of Sports Human Science, College of Physical Education, Liaoning Normal University, Dalian, 116029, China
| | - Meng Wang
- Key Laboratory of Sports Human Science, College of Physical Education, Liaoning Normal University, Dalian, 116029, China
| | - Yi-Chen Zhang
- Key Laboratory of Sports Human Science, College of Physical Education, Liaoning Normal University, Dalian, 116029, China
| |
Collapse
|
5
|
Hao Y, Xie B, Fu X, Xu R, Yang Y. New Insights into lncRNAs in Aβ Cascade Hypothesis of Alzheimer's Disease. Biomolecules 2022; 12:biom12121802. [PMID: 36551230 PMCID: PMC9775548 DOI: 10.3390/biom12121802] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/24/2022] [Accepted: 11/29/2022] [Indexed: 12/04/2022] Open
Abstract
Alzheimer's disease (AD) is the most common type of dementia, but its pathogenesis is not fully understood, and effective drugs to treat or reverse the progression of the disease are lacking. Long noncoding RNAs (lncRNAs) are abnormally expressed and deregulated in AD and are closely related to the occurrence and development of AD. In addition, the high tissue specificity and spatiotemporal specificity make lncRNAs particularly attractive as diagnostic biomarkers and specific therapeutic targets. Therefore, an in-depth understanding of the regulatory mechanisms of lncRNAs in AD is essential for developing new treatment strategies. In this review, we discuss the unique regulatory functions of lncRNAs in AD, ranging from Aβ production to clearance, with a focus on their interaction with critical molecules. Additionally, we highlight the advantages and challenges of using lncRNAs as biomarkers for diagnosis or therapeutic targets in AD and present future perspectives in clinical practice.
Collapse
Affiliation(s)
- Yitong Hao
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun 130021, China
| | - Bo Xie
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun 130021, China
| | - Xiaoshu Fu
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun 130021, China
| | - Rong Xu
- Department of Hepatobiliary and Pancreatic Surgery, The First Hospital of Jilin University, Changchun 130021, China
| | - Yu Yang
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun 130021, China
- Correspondence:
| |
Collapse
|
6
|
Zhou J, Benoit M, Sharoar MG. Recent advances in pre-clinical diagnosis of Alzheimer's disease. Metab Brain Dis 2022; 37:1703-1725. [PMID: 33900524 DOI: 10.1007/s11011-021-00733-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Accepted: 04/05/2021] [Indexed: 11/26/2022]
Abstract
Alzheimer's disease (AD) is the most common dementia with currently no known cures or disease modifying treatments (DMTs), despite much time and effort from the field. Diagnosis and intervention of AD during the early pre-symptomatic phase of the disease is thought to be a more effective strategy. Therefore, the detection of biomarkers has emerged as a critical tool for monitoring the effect of new AD therapies, as well as identifying patients most likely to respond to treatment. The establishment of the amyloid/tau/neurodegeneration (A/T/N) framework in 2018 has codified the contexts of use of AD biomarkers in neuroimaging and bodily fluids for research and diagnostic purposes. Furthermore, a renewed drive for novel AD biomarkers and innovative methods of detection has emerged with the goals of adding additional insight to disease progression and discovery of new therapeutic targets. The use of biomarkers has accelerated the development of AD drugs and will bring new therapies to patients in need. This review highlights recent methods utilized to diagnose antemortem AD.
Collapse
Affiliation(s)
- John Zhou
- Department of Neuroscience, University of Connecticut Health, Farmington, CT, 06030, USA
- Molecular Medicine Program, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH, 44195, USA
| | - Marc Benoit
- Department of Neuroscience, University of Connecticut Health, Farmington, CT, 06030, USA
| | - Md Golam Sharoar
- Department of Neuroscience, University of Connecticut Health, Farmington, CT, 06030, USA.
| |
Collapse
|
7
|
Aow J, Huang TR, Thinakaran G, Koo EH. Enhanced cleavage of APP by co-expressed Bace1 alters the distribution of APP and its fragments in neuronal and non-neuronal cells. Mol Neurobiol 2022; 59:3073-3090. [PMID: 35266114 DOI: 10.1007/s12035-022-02733-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 01/04/2022] [Indexed: 11/25/2022]
Abstract
BACKGROUND Alzheimer's disease amyloid-beta peptides (Aβ) are generated via sequential cleavage of the amyloid precursor protein (APP) by β-secretase (Bace1) and γ-secretase. Though the precise subcellular location(s) of Bace1-mediated APP cleavage remains unresolved, current models suggest APP internalization into Bace1-containing endosomes is a critical step. However, direct evidence for this model is lacking, and previous reports that probed the APP/Bace1 interaction (using co-expressed APP and Bace1 differentially labeled with fluorescent protein tags) did not determine if APP fluorescence originated from full-length APP (fl-APP) molecules that had internalized from the cell surface pool. METHODS We adapted the bungarotoxin-ligand (BTX) system to label surface APP and track internalized fluorescent APP/BTX puncta in rodent primary neurons co-expressing fluorescently-tagged Bace1. Subsequently, we employed imaging and biochemical-based approaches to measure N- and C-terminal APP epitope levels in primary neurons, N2a neuroblastoma, and HeLa cell lines. RESULTS We hypothesized that surface-labeled APP/BTX puncta would, upon internalization, colocalize with fluorescently-tagged Bace1. Unexpectedly, we observed a dramatic loss of internalized APP in co-transfected neurons and ~ 80-90% loss of surface-resident fl-APP, which we also observed in HeLa and N2a cells. Loss of surface fl-APP could be reversed by a Bace1 inhibitor, suggesting that enhanced Bace1-mediated APP cleavage was responsible for the altered processing and mis-sorting. Importantly, in a C-terminally-tagged APP construct, the majority of C-terminal fluorescence was preserved in HeLa cells despite the loss of N-terminal APP signal. This phenomenon was not only recapitulated in cultured neurons, but also showed a progressive disappearance of the APP N-terminal tag, reflecting continual cleavage of fl-APP by Bace1 away from the cell body. CONCLUSIONS Our results strongly suggested that in APP/Bace1 co-expression approaches, there was significant early and aberrant Bace1-mediated APP cleavage that perturbed fl-APP trafficking from the secretory pathway onwards, resulting in a substantial loss of surface fl-APP, which in turn led to a marked reduction in APP internalization. In C-terminally-tagged APP constructs, a large fraction of the APP fluorescence signal therefore likely arose from fluorescently-tagged β-C-terminal-fragment (β-CTF) or downstream proteolytic derivatives instead of fl-APP. Thus, care is needed in interpreting results where APP is detected only with a C-terminal tag in the presence of Bace1 co-expression, and previous findings may need to be reinterpreted if it is unclear whether fl-APP is present in normal physiological levels.
Collapse
Affiliation(s)
- Jonathan Aow
- Agency for Science, Technology and Research (A*STAR), Genome Institute of Singapore, Singapore, Singapore.
- Department of Medicine, National University of Singapore, Singapore, Singapore.
| | - Tzu-Rung Huang
- Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore, Singapore
| | - Gopal Thinakaran
- USF Health Byrd Alzheimer's Center and Research Institute and Department of Molecular Medicine, University of South Florida, Tampa, FL, USA
| | - Edward H Koo
- Department of Medicine, National University of Singapore, Singapore, Singapore.
- Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore, Singapore.
- Department of Neurosciences, University of California San Diego, San Diego, CA, USA.
| |
Collapse
|
8
|
Schreiner TG, Popescu BO. Amyloid Beta Dynamics in Biological Fluids-Therapeutic Impact. J Clin Med 2021; 10:5986. [PMID: 34945282 PMCID: PMC8706225 DOI: 10.3390/jcm10245986] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 12/12/2021] [Accepted: 12/16/2021] [Indexed: 12/21/2022] Open
Abstract
Despite the significant impact of Alzheimer's disease (AD) at individual and socioeconomic levels and the numerous research studies carried out on this topic over the last decades, the treatments available in daily clinical practice remain less than satisfactory. Among the accepted etiopathogenic hypotheses, the amyloidogenic pathway theory, although intensively studied and even sometimes controversial, is still providing relevant theoretical elements for understanding the etiology of AD and for the further development of possible therapeutic tools. In this sense, this review aims to offer new insights related to beta amyloid (Aβ), an essential biomarker in AD. First the structure and function of Aβ in normal and pathological conditions are presented in detail, followed by a discussion on the dynamics of Aβ at the level of different biological compartments. There is focus on Aβ elimination modalities at central nervous system (CNS) level, and clearance via the blood-brain barrier seems to play a crucial/dominant role. Finally, different theoretical and already-applied therapeutic approaches for CNS Aβ elimination are presented, including the recent "peripheral sink therapeutic strategy" and "cerebrospinal fluid sinks therapeutic strategy". These data outline the need for a multidisciplinary approach designed to deliver a solution to stimulate Aβ clearance in more direct ways, including from the cerebrospinal fluid level.
Collapse
Affiliation(s)
- Thomas Gabriel Schreiner
- Faculty of Medicine, University of Medicine and Pharmacy “Carol Davila”, 050474 Bucharest, Romania;
- Neurology Department, University of Medicine and Pharmacy “Grigore T. Popa”, 700115 Iași, Romania
- Department of Electrical Measurements and Materials, Faculty of Electrical Engineering and Information Technology, Gheorghe Asachi Technical University of Iasi, 700050 Iasi, Romania
| | - Bogdan Ovidiu Popescu
- Faculty of Medicine, University of Medicine and Pharmacy “Carol Davila”, 050474 Bucharest, Romania;
- Neurology Department, Colentina Clinical Hospital, 020125 Bucharest, Romania
- Laboratory of Cell Biology, Neurosciences and Experimental Myology, ‘Victor Babes’ National Institute of Pathology, 050096 Bucharest, Romania
| |
Collapse
|
9
|
Lao K, Zhang R, Luan J, Zhang Y, Gou X. Therapeutic Strategies Targeting Amyloid-β Receptors and Transporters in Alzheimer's Disease. J Alzheimers Dis 2021; 79:1429-1442. [PMID: 33459712 DOI: 10.3233/jad-200851] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Alzheimer's disease (AD) is a chronic neurodegenerative disease that has been recognized as one of the most intractable medical problems with heavy social and economic costs. Amyloid-β (Aβ) has been identified as a major factor that participates in AD progression through its neurotoxic effects. The major mechanism of Aβ-induced neurotoxicity is by interacting with membrane receptors and subsequent triggering of aberrant cellular signaling. Besides, Aβ transporters also plays an important role by affecting Aβ homeostasis. Thus, these Aβ receptors and transporters are potential targets for the development of AD therapies. Here, we summarize the reported therapeutic strategies targeting Aβ receptors and transporters to provide a molecular basis for future rational design of anti-AD agents.
Collapse
Affiliation(s)
- Kejing Lao
- Institute of Basic and Translational Medicine & Shaanxi Key Laboratory of Brain Disorders, Xi'an Medical University, Xi'an, PR China
| | - Ruisan Zhang
- Institute of Basic and Translational Medicine & Shaanxi Key Laboratory of Brain Disorders, Xi'an Medical University, Xi'an, PR China
| | - Jing Luan
- Institute of Basic and Translational Medicine & Shaanxi Key Laboratory of Brain Disorders, Xi'an Medical University, Xi'an, PR China
| | - Yuelin Zhang
- Institute of Basic and Translational Medicine & Shaanxi Key Laboratory of Brain Disorders, Xi'an Medical University, Xi'an, PR China
| | - Xingchun Gou
- Institute of Basic and Translational Medicine & Shaanxi Key Laboratory of Brain Disorders, Xi'an Medical University, Xi'an, PR China
| |
Collapse
|
10
|
Li D, Zhang J, Li X, Chen Y, Yu F, Liu Q. Insights into lncRNAs in Alzheimer's disease mechanisms. RNA Biol 2021; 18:1037-1047. [PMID: 32605500 PMCID: PMC8216181 DOI: 10.1080/15476286.2020.1788848] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 06/19/2020] [Accepted: 06/22/2020] [Indexed: 12/12/2022] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder and the most common dementia among the elderly. The pathophysiology of AD is characterized by two hallmarks: amyloid plaques, produced by amyloid β (Aβ) aggregation, and neurofibrillary tangle (NFT), produced by accumulation of phosphorylated tau. The regulatory roles of non-coding RNAs (ncRNAs), particularly long noncoding RNAs (lncRNAs), have been widely recognized in gene expression at the transcriptional and posttranscriptional levels. Mounting evidence shows that lncRNAs are aberrantly expressed in AD progression. Here, we review the lncRNAs that implicated in the regulation of Aβ peptide, tau, inflammation, cell death, and other aspects which are the main mechanisms of AD pathology. We also discuss the possible clinical or therapeutic utility of lncRNA detection or targeting to help diagnose or possibly combat AD.
Collapse
Affiliation(s)
- Dingfeng Li
- Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, China
- Neurodegenerative Disease Research Center, University of Science and Technology of China, Hefei, China
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, China
- CAS Key Laboratory of Brain Function and Disease, University of Science and Technology of China, Hefei, China
| | - Juan Zhang
- Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, China
- Neurodegenerative Disease Research Center, University of Science and Technology of China, Hefei, China
- CAS Key Laboratory of Brain Function and Disease, University of Science and Technology of China, Hefei, China
| | - Xiaohui Li
- Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, China
- Neurodegenerative Disease Research Center, University of Science and Technology of China, Hefei, China
- CAS Key Laboratory of Brain Function and Disease, University of Science and Technology of China, Hefei, China
| | - Yuhua Chen
- Department of Neurology, The First Affiliated Hospital of University of Science and Technology of China, Hefei, China
| | - Feng Yu
- Department of Neurology, The First Affiliated Hospital of University of Science and Technology of China, Hefei, China
| | - Qiang Liu
- Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, China
- Neurodegenerative Disease Research Center, University of Science and Technology of China, Hefei, China
- CAS Key Laboratory of Brain Function and Disease, University of Science and Technology of China, Hefei, China
- CAS Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, China
| |
Collapse
|
11
|
Chen J, Su Y, Pi S, Hu B, Mao L. The Dual Role of Low-Density Lipoprotein Receptor-Related Protein 1 in Atherosclerosis. Front Cardiovasc Med 2021; 8:682389. [PMID: 34124208 PMCID: PMC8192809 DOI: 10.3389/fcvm.2021.682389] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 05/05/2021] [Indexed: 12/26/2022] Open
Abstract
Low-density lipoprotein receptor–related protein-1 (LRP1) is a large endocytic and signaling receptor belonging to the LDL receptor (LDLR) gene family and that is widely expressed in several tissues. LRP1 comprises a large extracellular domain (ECD; 515 kDa, α chain) and a small intracellular domain (ICD; 85 kDa, β chain). The deletion of LRP1 leads to embryonic lethality in mice, revealing a crucial but yet undefined role in embryogenesis and development. LRP1 has been postulated to participate in numerous diverse physiological and pathological processes ranging from plasma lipoprotein homeostasis, atherosclerosis, tumor evolution, and fibrinolysis to neuronal regeneration and survival. Many studies using cultured cells and in vivo animal models have revealed the important roles of LRP1 in vascular remodeling, foam cell biology, inflammation and atherosclerosis. However, its role in atherosclerosis remains controversial. LRP1 not only participates in the removal of atherogenic lipoproteins and proatherogenic ligands in the liver but also mediates the uptake of aggregated LDL to promote the formation of macrophage- and vascular smooth muscle cell (VSMC)-derived foam cells, which causes a prothrombotic transformation of the vascular wall. The dual and opposing roles of LRP1 may also represent an interesting target for atherosclerosis therapeutics. This review highlights the influence of LRP1 during atherosclerosis development, focusing on its dual role in vascular cells and immune cells.
Collapse
Affiliation(s)
- Jiefang Chen
- Department of Neurology, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Ying Su
- Department of Neurology, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Shulan Pi
- Department of Neurology, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Bo Hu
- Department of Neurology, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Ling Mao
- Department of Neurology, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
12
|
Madadi S, Schwarzenbach H, Saidijam M, Mahjub R, Soleimani M. Potential microRNA-related targets in clearance pathways of amyloid-β: novel therapeutic approach for the treatment of Alzheimer's disease. Cell Biosci 2019; 9:91. [PMID: 31749959 PMCID: PMC6852943 DOI: 10.1186/s13578-019-0354-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 11/01/2019] [Indexed: 02/07/2023] Open
Abstract
Imbalance between amyloid-beta (Aβ) peptide synthesis and clearance results in Aβ deregulation. Failure to clear these peptides appears to cause the development of Alzheimer's disease (AD). In recent years, microRNAs have become established key regulators of biological processes that relate among others to the development and progression of neurodegenerative diseases, such as AD. This review article gives an overview on microRNAs that are involved in the Aβ cascade and discusses their inhibitory impact on their target mRNAs whose products participate in Aβ clearance. Understanding of the mechanism of microRNA in the associated signal pathways could identify novel therapeutic targets for the treatment of AD.
Collapse
Affiliation(s)
- Soheil Madadi
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Heidi Schwarzenbach
- Department of Tumor Biology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Massoud Saidijam
- Department of Genetics and Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Reza Mahjub
- Department of Pharmaceutics, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Meysam Soleimani
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
13
|
Fan YG, Guo T, Han XR, Liu JL, Cai YT, Xue H, Huang XS, Li YC, Wang ZY, Guo C. Paricalcitol accelerates BACE1 lysosomal degradation and inhibits calpain-1 dependent neuronal loss in APP/PS1 transgenic mice. EBioMedicine 2019; 45:393-407. [PMID: 31303501 PMCID: PMC6642335 DOI: 10.1016/j.ebiom.2019.07.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 07/01/2019] [Accepted: 07/04/2019] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Recent studies have revealed that vitamin D deficiency may increase the risk of Alzheimer's disease, and vitamin D supplementation may be effective strategy to ameliorate the neurodegenerative process in Alzheimer's disease patients. Paricalcitol (PAL), a low-calcemic vitamin D receptor agonist, is clinically used to treat secondary hyperparathyroidism. However, the potential application of PAL for treating neurodegenerative disorders remains unexplored. METHODS The APP/PS1 mice were intraperitoneally injected with PAL or vehicle every other day for 15 weeks. The β-amyloid (Aβ) production was confirmed using immunostaining and enzyme linked immunosorbent assay. The underlying mechanism was verified by western blot and immunostaining in vivo and in vitro. FINDINGS Long-term PAL treatment clearly reduced β-amyloid (Aβ) generation and neuronal loss in APP/PS1 transgenic mouse brains. PAL stimulated the expression of low-density lipoprotein receptor-related protein 1 (LRP1) possibly through inhibiting sterol regulatory element binding protein-2 (SREBP2); PAL also promoted LRP1-mediated β-site APP cleavage enzyme 1 (BACE1) transport to late endosomes, thus increasing the lysosomal degradation of BACE1. Furthermore, PAL diminished 8-hydroxyguanosine (8-OHdG) generation in neuronal mitochondria via enhancing base excision repair (BER), resulting in the attenuation of calpain-1-mediated neuronal loss. INTERPRETATION The present data demonstrate that PAL can reduce Aβ generation through accelerating BACE1 lysosomal degradation and can inhibit neuronal loss through suppressing mitochondrial 8-OHdG generation. Hence, PAL might be a promising agent for treating Alzheimer's disease. FUND: This study was financially supported by the Natural Science Foundation of China (U1608282).
Collapse
Affiliation(s)
- Yong-Gang Fan
- College of Life and Health Sciences, Northeastern University, NO.195, Chuangxin Road, Hunnan District, Shenyang 110169, China
| | - Tian Guo
- College of Life and Health Sciences, Northeastern University, NO.195, Chuangxin Road, Hunnan District, Shenyang 110169, China
| | - Xiao-Ran Han
- College of Life and Health Sciences, Northeastern University, NO.195, Chuangxin Road, Hunnan District, Shenyang 110169, China
| | - Jun-Lin Liu
- College of Life and Health Sciences, Northeastern University, NO.195, Chuangxin Road, Hunnan District, Shenyang 110169, China
| | - Yu-Ting Cai
- College of Life and Health Sciences, Northeastern University, NO.195, Chuangxin Road, Hunnan District, Shenyang 110169, China
| | - Han Xue
- College of Life and Health Sciences, Northeastern University, NO.195, Chuangxin Road, Hunnan District, Shenyang 110169, China
| | - Xue-Shi Huang
- College of Life and Health Sciences, Northeastern University, NO.195, Chuangxin Road, Hunnan District, Shenyang 110169, China
| | - Yan-Chun Li
- Department of Medicine, the University of Chicago, Chicago, IL 60637, USA
| | - Zhan-You Wang
- College of Life and Health Sciences, Northeastern University, NO.195, Chuangxin Road, Hunnan District, Shenyang 110169, China; Institute of Health Sciences, Key Laboratory of Medical Cell Biology of Ministry of Education, China Medical University, Shenyang 110122, China.
| | - Chuang Guo
- College of Life and Health Sciences, Northeastern University, NO.195, Chuangxin Road, Hunnan District, Shenyang 110169, China.
| |
Collapse
|
14
|
Yang H, Hou T, Wang W, Luo Y, Yan F, Jia J. The Effect of Chronic Cerebral Hypoperfusion on Amyloid-β Metabolism in a Transgenic Mouse Model of Alzheimer's Disease (PS1V97L). J Alzheimers Dis 2019; 62:1609-1621. [PMID: 29614686 DOI: 10.3233/jad-171094] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Alzheimer's disease (AD) and cerebrovascular disease often coexist. However, it is difficult to determine how chronic cerebral hypoperfusion affects the metabolism of amyloid-β peptides (Aβ) in a living patient with AD. Thus, we developed an animal model of this condition, using transgenic mice (PS1V97L) and right common carotid artery ligation to create chronic cerebral hypoperfusion. The metabolic processes associated with amyloid-β peptide (Aβ) were observed and evaluated in this PS1V97L plus hypoperfusion model. Compared with control mice, the model revealed significantly upregulated expression of Aβ (including Aβ oligomers), with decreased α-secretase activity and expression and increased β-secretase activity and expression. Furthermore, the model revealed increased mRNA and protein expression of the receptor for advanced glycation end products (RAGE) and decreased mRNA and protein expression of low-density lipoprotein receptor-related protein 1 (LRP-1); both these are Aβ transporters. Moreover, the model revealed decreased activity and expression of neprilysin, which is a peripheral Aβ degrading enzyme. These findings suggest that hypoperfusion may magnify the effect of AD on Aβ metabolism by aggravating its abnormal production, transport, and clearance.
Collapse
Affiliation(s)
- Heyun Yang
- Department of Neurology, Innovation Center for Neurological Disorders, Xuan Wu Hospital, Capital Medical University, Beijing, P.R. China
| | - Tingting Hou
- Department of Neurology, Innovation Center for Neurological Disorders, Xuan Wu Hospital, Capital Medical University, Beijing, P.R. China
| | - Wei Wang
- Department of Neurology, Innovation Center for Neurological Disorders, Xuan Wu Hospital, Capital Medical University, Beijing, P.R. China.,Beijing Key Laboratory of Geriatric Cognitive Disorders, Beijing, P.R. China.,Clinical Center for Neurodegenerative Disease and Memory Impairment, Capital Medical University, Beijing, P.R. China.,Center of Alzheimer's Disease, Beijing Institute for Brain Disorders, Beijing, P.R. China.,Key Laboratory of Neurodegenerative Diseases, Ministry of Education, Beijing, P.R. China.,National Clinical Research Center for Geriatric Disorders, Beijing, P.R. China
| | - Yumin Luo
- Cerebrovascular Disease Research Institute, Xuan Wu Hospital, Capital Medical University, Beijing, P.R. China
| | - Feng Yan
- Cerebrovascular Disease Research Institute, Xuan Wu Hospital, Capital Medical University, Beijing, P.R. China
| | - Jianping Jia
- Department of Neurology, Innovation Center for Neurological Disorders, Xuan Wu Hospital, Capital Medical University, Beijing, P.R. China.,Beijing Key Laboratory of Geriatric Cognitive Disorders, Beijing, P.R. China.,Clinical Center for Neurodegenerative Disease and Memory Impairment, Capital Medical University, Beijing, P.R. China.,Center of Alzheimer's Disease, Beijing Institute for Brain Disorders, Beijing, P.R. China.,Key Laboratory of Neurodegenerative Diseases, Ministry of Education, Beijing, P.R. China.,National Clinical Research Center for Geriatric Disorders, Beijing, P.R. China
| |
Collapse
|
15
|
Bres EE, Faissner A. Low Density Receptor-Related Protein 1 Interactions With the Extracellular Matrix: More Than Meets the Eye. Front Cell Dev Biol 2019; 7:31. [PMID: 30931303 PMCID: PMC6428713 DOI: 10.3389/fcell.2019.00031] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 02/25/2019] [Indexed: 12/12/2022] Open
Abstract
The extracellular matrix (ECM) is a biological substrate composed of collagens, proteoglycans and glycoproteins that ensures proper cell migration and adhesion and keeps the cell architecture intact. The regulation of the ECM composition is a vital process strictly controlled by, among others, proteases, growth factors and adhesion receptors. As it appears, ECM remodeling is also essential for proper neuronal and glial development and the establishment of adequate synaptic signaling. Hence, disturbances in ECM functioning are often present in neurodegenerative diseases like Alzheimer’s disease. Moreover, mutations in ECM molecules are found in some forms of epilepsy and malfunctioning of ECM-related genes and pathways can be seen in, for example, cancer or ischemic injury. Low density lipoprotein receptor-related protein 1 (Lrp1) is a member of the low density lipoprotein receptor family. Lrp1 is involved not only in ligand uptake, receptor mediated endocytosis and lipoprotein transport—functions shared by low density lipoprotein receptor family members—but also regulates cell surface protease activity, controls cellular entry and binding of toxins and viruses, protects against atherosclerosis and acts on many cell signaling pathways. Given the plethora of functions, it is not surprising that Lrp1 also impacts the ECM and is involved in its remodeling. This review focuses on the role of Lrp1 and some of its major ligands on ECM function. Specifically, interactions with two Lrp1 ligands, integrins and tissue plasminogen activator are described in more detail.
Collapse
Affiliation(s)
- Ewa E Bres
- Department of Cell Morphology and Molecular Neurobiology, Ruhr University Bochum, Bochum, Germany
| | - Andreas Faissner
- Department of Cell Morphology and Molecular Neurobiology, Ruhr University Bochum, Bochum, Germany
| |
Collapse
|
16
|
Relationship between long non-coding RNAs and Alzheimer's disease: a systematic review. Pathol Res Pract 2018; 215:12-20. [PMID: 30470438 DOI: 10.1016/j.prp.2018.11.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 11/05/2018] [Accepted: 11/11/2018] [Indexed: 01/30/2023]
Abstract
Alzheimer disease (AD), is a typical progressive and destructive neurodegenerative disease. It is the leading cause of senile dementia that is mainly represented as neurocognitive symptoms, including progressive memory impairment, cognitive disorder, personality change and language barrier, etc. The pathogeny and nosogenesis of AD have not been clearly explained. AD is characterized by extracellular senile plaques (SP) formed by beta amyloid (Aβ) deposition and neurofibrillary tangles in neuronal cells formed by hyperphosphorylation of tau, as well as the deficiency of neuronal with gliosis. However, the complete spectrum of regulating factors in molecular level that affect the pathogenesis of AD is unclear. Long non-coding RNAs (lncRNAs) are involved in numerous neurodegenerative diseases, such as Parkinson's disease (PD) and AD. It is increasingly recognized that lncRNAs is tightly related to the pathogenesis and prevention and cure of AD. In the review, we highlighted the roles of lncRNAs in AD pathways and discussed increasing interest in targeting and regulating lncRNAs for the therapeutics of AD.
Collapse
|
17
|
ApoE isoforms and carboxyl-terminal-truncated apoE4 forms affect neuronal BACE1 levels and Aβ production independently of their cholesterol efflux capacity. Biochem J 2018; 475:1839-1859. [DOI: 10.1042/bcj20180068] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 04/25/2018] [Accepted: 05/02/2018] [Indexed: 01/14/2023]
Abstract
The β-site amyloid precursor protein-cleaving enzyme 1 (BACE1) initiates the production of amyloid-β peptide (Aβ), which is central to the pathogenesis of Alzheimer's disease (AD). Changes in brain cholesterol homeostasis have been suggested to affect Aβ metabolism. Cholesterol homeostasis is maintained in the brain by apolipoprotein E (apoE). The apoE4 isoform constitutes the major risk factor for AD. Here, we investigated the effect of apoE forms on Aβ generation and on BACE1 levels. We also examined the potential involvement in these processes of cholesterol transporters ABCG1 and ABCG4 or the lipoprotein receptor SR-BI, which are implicated in cholesterol efflux to apoE. It was found that reconstituted lipoprotein-associated apoE isoforms promoted the increase of Aβ production and oligomerization and of BACE1 levels in human neuroblastoma SK-N-SH cells, with an apoE4 ≥ apoE3 > apoE2 potency rank order. Progressive carboxyl-terminal apoE4 deletions between residues 230–299 decreased the protein's ability to increase BACE1, while further truncations up to residue 166 prevented apoE4 from increasing BACE1 and Aβ levels in SK-N-SH and primary mouse neuronal cells. ABCG1, but not ABCG4 or SR-BI, moderately increased Aβ production and BACE1 levels in SK-N-SH cells. All apoE forms affected Aβ production/oligomerization and BACE1 levels in a pattern that did not follow that of their capacity to promote ABCG1, ABCG4 or SR-BI-mediated cholesterol efflux. Overall, our data indicate that apoE-containing lipoprotein particles can have a direct effect on BACE1 levels and Aβ secretion and possibly contribute to AD pathogenetic processes, independently of their capacity to promote cholesterol efflux.
Collapse
|
18
|
Evaluation of an Allosteric BACE Inhibitor Peptide to Identify Mimetics that Can Interact with the Loop F Region of the Enzyme and Prevent APP Cleavage. J Mol Biol 2018; 430:1566-1576. [DOI: 10.1016/j.jmb.2018.04.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 04/03/2018] [Accepted: 04/03/2018] [Indexed: 12/14/2022]
|
19
|
Idda ML, Munk R, Abdelmohsen K, Gorospe M. Noncoding RNAs in Alzheimer's disease. WILEY INTERDISCIPLINARY REVIEWS. RNA 2018; 9. [PMID: 29327503 PMCID: PMC5847280 DOI: 10.1002/wrna.1463] [Citation(s) in RCA: 126] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 11/24/2017] [Accepted: 11/29/2017] [Indexed: 12/12/2022]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder and the main cause of dementia among the elderly worldwide. Despite intense efforts to develop drugs for preventing and treating AD, no effective therapies are available as yet, posing a growing burden at the personal, medical, and socioeconomic levels. AD is characterized by the production and aggregation of amyloid β (Aβ) peptides derived from amyloid precursor protein (APP), the presence of hyperphosphorylated microtubule-associated protein Tau (MAPT), and chronic inflammation leading to neuronal loss. Aβ accumulation and hyperphosphorylated Tau are responsible for the main histopathological features of AD, Aβ plaques, and neurofibrillary tangles (NFTs), respectively. However, the full spectrum of molecular factors that contribute to AD pathogenesis is not known. Noncoding (nc)RNAs, including microRNAs (miRNAs), long noncoding RNAs (lncRNAs), and circular RNAs (circRNAs), regulate gene expression at the transcriptional and posttranscriptional levels in various diseases, serving as biomarkers and potential therapeutic targets. There is rising recognition that ncRNAs have been implicated in both the onset and pathogenesis of AD. Here, we review the ncRNAs implicated posttranscriptionally in the main AD pathways and discuss the growing interest in targeting regulatory ncRNAs therapeutically to combat AD pathology. WIREs RNA 2018, 9:e1463. doi: 10.1002/wrna.1463 This article is categorized under: RNA in Disease and Development > RNA in Disease.
Collapse
Affiliation(s)
- M Laura Idda
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, Maryland
| | - Rachel Munk
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, Maryland
| | - Kotb Abdelmohsen
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, Maryland
| | - Myriam Gorospe
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, Maryland
| |
Collapse
|
20
|
Trafficking in Alzheimer's Disease: Modulation of APP Transport and Processing by the Transmembrane Proteins LRP1, SorLA, SorCS1c, Sortilin, and Calsyntenin. Mol Neurobiol 2017; 55:5809-5829. [PMID: 29079999 DOI: 10.1007/s12035-017-0806-x] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 10/17/2017] [Indexed: 12/11/2022]
Abstract
The amyloid precursor protein (APP), one key player in Alzheimer's disease (AD), is extensively processed by different proteases. This leads to the generation of diverging fragments including the amyloid β (Aβ) peptide, which accumulates in brains of AD patients. Subcellular trafficking of APP is an important aspect for its proteolytic conversion, since the various secretases which cleave APP are located in different cellular compartments. As a consequence, altered subcellular targeting of APP is thought to directly affect the degree to which Aβ is generated. The mechanisms underlying intracellular APP transport are critical to understand AD pathogenesis and can serve as a target for future pharmacological interventions. In the recent years, a number of APP interacting proteins were identified which are implicated in sorting of APP, thereby influencing APP processing at different angles of the secretory or endocytic pathway. This review provides an update on the proteolytic processing of APP and the interplay of the transmembrane proteins low-density lipoprotein receptor-related protein 1, sortilin-receptor with A-type repeats, SorCS1c, sortilin, and calsyntenin. We discuss the specific interactions with APP, the capacity to modulate the intracellular itinerary and the proteolytic conversion of APP, a possible involvement in the clearance of Aβ, and the implications of these transmembrane proteins in AD and other neurodegenerative diseases.
Collapse
|
21
|
Yang T, Williams BO. Low-Density Lipoprotein Receptor-Related Proteins in Skeletal Development and Disease. Physiol Rev 2017; 97:1211-1228. [PMID: 28615463 DOI: 10.1152/physrev.00013.2016] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 03/07/2017] [Accepted: 03/15/2017] [Indexed: 02/06/2023] Open
Abstract
The identification of the low-density lipoprotein receptor (LDLR) provided a foundation for subsequent studies in lipoprotein metabolism, receptor-mediated endocytosis, and many other fundamental biological functions. The importance of the LDLR led to numerous studies that identified homologous molecules and ultimately resulted in the description of the LDL-receptor superfamily, a group of proteins that contain domains also found in the LDLR. Subsequent studies have revealed that members of the LDLR-related protein family play roles in regulating many aspects of signal transduction. This review is focused on the roles of selected members of this protein family in skeletal development and disease. We present background on the identification of this subgroup of receptors, discuss the phenotypes associated with alterations in their function in human patients and mouse models, and describe the current efforts to therapeutically target these proteins to treat human skeletal disease.
Collapse
Affiliation(s)
- Tao Yang
- Program in Skeletal Disease and Tumor Microenvironment, Center for Cancer and Cell Biology, Van Andel Research Institute, Grand Rapids, Michigan
| | - Bart O Williams
- Program in Skeletal Disease and Tumor Microenvironment, Center for Cancer and Cell Biology, Van Andel Research Institute, Grand Rapids, Michigan
| |
Collapse
|
22
|
Hu X, Hou H, Bastian C, He W, Qiu S, Ge Y, Yin X, Kidd GJ, Brunet S, Trapp BD, Baltan S, Yan R. BACE1 regulates the proliferation and cellular functions of Schwann cells. Glia 2017; 65:712-726. [PMID: 28191691 PMCID: PMC5357169 DOI: 10.1002/glia.23122] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 12/16/2016] [Accepted: 01/18/2017] [Indexed: 12/31/2022]
Abstract
BACE1 is an indispensable enzyme for generating β-amyloid peptides, which are excessively accumulated in brains of Alzheimer's patients. However, BACE1 is also required for proper myelination of peripheral nerves, as BACE1-null mice display hypomyelination. To determine the precise effects of BACE1 on myelination, here we have uncovered a role of BACE1 in the control of Schwann cell proliferation during development. We demonstrate that BACE1 regulates the cleavage of Jagged-1 and Delta-1, two membrane-bound ligands of Notch. BACE1 deficiency induces elevated Jag-Notch signaling activity, which in turn facilitates proliferation of Schwann cells. This increase in proliferation leads to shortened internodes and decreased Schmidt-Lanterman incisures. Functionally, evoked compound action potentials in BACE1-null nerves were significantly smaller and slower, with a clear decrease in excitability. BACE1-null nerves failed to effectively use lactate as an alternative energy source under conditions of increased physiological activity. Correlatively, BACE1-null mice showed reduced performance on rotarod tests. Collectively, our data suggest that BACE1 deficiency enhances proliferation of Schwann cell due to the elevated Jag1/Delta1-Notch signaling, but fails to myelinate axons efficiently due to impaired the neuregulin1-ErbB signaling, which has been documented.
Collapse
Affiliation(s)
- Xiangyou Hu
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195
| | - Hailong Hou
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195
| | - Chinthasagar Bastian
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195
| | - Wanxia He
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195
| | - Shupeng Qiu
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195
| | - Yingying Ge
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195
| | - Xinhua Yin
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195
| | - Grahame J. Kidd
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195
| | - Sylvain Brunet
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195
| | - Bruce D. Trapp
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195
| | - Selva Baltan
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195
| | - Riqiang Yan
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195
| |
Collapse
|
23
|
Ion channelopathies and migraine pathogenesis. Mol Genet Genomics 2017; 292:729-739. [DOI: 10.1007/s00438-017-1317-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 03/30/2017] [Indexed: 10/19/2022]
|
24
|
Shinohara M, Tachibana M, Kanekiyo T, Bu G. Role of LRP1 in the pathogenesis of Alzheimer's disease: evidence from clinical and preclinical studies. J Lipid Res 2017; 58:1267-1281. [PMID: 28381441 DOI: 10.1194/jlr.r075796] [Citation(s) in RCA: 197] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 04/02/2017] [Indexed: 12/16/2022] Open
Abstract
Among the LDL receptor (LDLR) family members, the roles of LDLR-related protein (LRP)1 in the pathogenesis of Alzheimer's disease (AD), especially late-onset AD, have been the most studied by genetic, neuropathological, and biomarker analyses (clinical studies) or cellular and animal model systems (preclinical studies) over the last 25 years. Although there are some conflicting reports, accumulating evidence from preclinical studies indicates that LRP1 not only regulates the metabolism of amyloid-β peptides (Aβs) in the brain and periphery, but also maintains brain homeostasis, impairment of which likely contributes to AD development in Aβ-independent manners. Several preclinical studies have also demonstrated an involvement of LRP1 in regulating the pathogenic role of apoE, whose gene is the strongest genetic risk factor for AD. Nonetheless, evidence from clinical studies is not sufficient to conclude how LRP1 contributes to AD development. Thus, despite very promising results from preclinical studies, the role of LRP1 in AD pathogenesis remains to be further clarified. In this review, we discuss the potential mechanisms underlying how LRP1 affects AD pathogenesis through Aβ-dependent and -independent pathways by reviewing both clinical and preclinical studies. We also discuss potential therapeutic strategies for AD by targeting LRP1.
Collapse
Affiliation(s)
| | | | | | - Guojun Bu
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL
| |
Collapse
|
25
|
Pohlkamp T, Wasser CR, Herz J. Functional Roles of the Interaction of APP and Lipoprotein Receptors. Front Mol Neurosci 2017; 10:54. [PMID: 28298885 PMCID: PMC5331069 DOI: 10.3389/fnmol.2017.00054] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 02/16/2017] [Indexed: 11/24/2022] Open
Abstract
The biological fates of the key initiator of Alzheimer’s disease (AD), the amyloid precursor protein (APP), and a family of lipoprotein receptors, the low-density lipoprotein (LDL) receptor-related proteins (LRPs) and their molecular roles in the neurodegenerative disease process are inseparably interwoven. Not only does APP bind tightly to the extracellular domains (ECDs) of several members of the LRP group, their intracellular portions are also connected through scaffolds like the one established by FE65 proteins and through interactions with adaptor proteins such as X11/Mint and Dab1. Moreover, the ECDs of APP and LRPs share common ligands, most notably Reelin, a regulator of neuronal migration during embryonic development and modulator of synaptic transmission in the adult brain, and Agrin, another signaling protein which is essential for the formation and maintenance of the neuromuscular junction (NMJ) and which likely also has critical, though at this time less well defined, roles for the regulation of central synapses. Furthermore, the major independent risk factors for AD, Apolipoprotein (Apo) E and ApoJ/Clusterin, are lipoprotein ligands for LRPs. Receptors and ligands mutually influence their intracellular trafficking and thereby the functions and abilities of neurons and the blood-brain-barrier to turn over and remove the pathological product of APP, the amyloid-β peptide. This article will review and summarize the molecular mechanisms that are shared by APP and LRPs and discuss their relative contributions to AD.
Collapse
Affiliation(s)
- Theresa Pohlkamp
- Department of Molecular Genetics, UT Southwestern Medical CenterDallas, TX, USA; Center for Translational Neurodegeneration Research, UT Southwestern Medical CenterDallas, TX, USA
| | - Catherine R Wasser
- Department of Molecular Genetics, UT Southwestern Medical CenterDallas, TX, USA; Center for Translational Neurodegeneration Research, UT Southwestern Medical CenterDallas, TX, USA
| | - Joachim Herz
- Department of Molecular Genetics, UT Southwestern Medical CenterDallas, TX, USA; Center for Translational Neurodegeneration Research, UT Southwestern Medical CenterDallas, TX, USA; Department of Neuroscience, UT Southwestern Medical CenterDallas, TX, USA; Department of Neurology and Neurotherapeutics, UT Southwestern Medical CenterDallas, TX, USA
| |
Collapse
|
26
|
BACE1 Physiological Functions May Limit Its Use as Therapeutic Target for Alzheimer's Disease. Trends Neurosci 2016; 39:158-169. [DOI: 10.1016/j.tins.2016.01.003] [Citation(s) in RCA: 122] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Revised: 01/07/2016] [Accepted: 01/08/2016] [Indexed: 01/21/2023]
|
27
|
LRP1 Downregulates the Alzheimer's β-Secretase BACE1 by Modulating Its Intraneuronal Trafficking. eNeuro 2015; 2:eN-NWR-0006-15. [PMID: 26464978 PMCID: PMC4596091 DOI: 10.1523/eneuro.0006-15.2015] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Revised: 03/26/2015] [Accepted: 03/30/2015] [Indexed: 01/02/2023] Open
Abstract
The β-secretase called BACE1 is a membrane-associated protease that initiates the generation of amyloid β-protein (Aβ), a key event in Alzheimer's disease (AD). However, the mechanism of intraneuronal regulation of BACE1 is poorly understood. Here, we present evidence that low-density lipoprotein receptor-related protein 1 (LRP1), a multi-functional receptor, has a previously unrecognized function to regulate BACE1 in neurons. We show that deficiency of LRP1 exerts promotive effects on the protein expression and function of BACE1, whereas expression of LRP-L4, a functional LRP1 mini-receptor, specifically decreases BACE1 levels in both human embryonic kidney (HEK) 293 cells and rat primary neurons, leading to reduced Aβ production. Our subsequent analyses further demonstrate that (1) both endogenous and exogenous BACE1 and LRP1 interact with each other and are colocalized in soma and neurites of primary neurons, (2) LRP1 reduces the protein stability and cell-surface expression of BACE1, and (3) LRP1 facilitates the shift in intracellular localization of BACE1 from early to late endosomes, thereby promoting lysosomal degradation. These findings establish that LRP1 specifically downregulates BACE1 by modulating its intraneuronal trafficking and stability through protein interaction and highlight LRP1 as a potential therapeutic target in AD.
Collapse
|
28
|
von Einem B, Weber P, Wagner M, Malnar M, Kosicek M, Hecimovic S, von Arnim CAF, Schneckenburger H. Cholesterol-dependent energy transfer between fluorescent proteins-insights into protein proximity of APP and BACE1 in different membranes in Niemann-Pick type C disease cells. Int J Mol Sci 2012; 13:15801-12. [PMID: 23443094 PMCID: PMC3546662 DOI: 10.3390/ijms131215801] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Revised: 11/14/2012] [Accepted: 11/15/2012] [Indexed: 12/27/2022] Open
Abstract
Förster resonance energy transfer (FRET) -based techniques have recently been applied to study the interactions between β-site APP-cleaving enzyme-GFP (BACE1-GFP) and amyloid precursor protein-mRFP (APP-mRFP) in U373 glioblastoma cells. In this context, the role of APP-BACE1 proximity in Alzheimer’s disease (AD) pathogenesis has been discussed. FRET was found to depend on intracellular cholesterol levels and associated alterations in membrane stiffness. Here, NPC1 null cells (CHO-NPC1−/−), exhibiting increased cholesterol levels and disturbed cholesterol transport similar to that observed in Niemann-Pick type C disease (NPC), were used to analyze the influence of altered cholesterol levels on APP-BACE1 proximity. Fluorescence lifetime measurements of whole CHO-wild type (WT) and CHO-NPC1−/− cells (EPI-illumination microscopy), as well as their plasma membranes (total internal reflection fluorescence microscopy, TIRFM), were performed. Additionally, generalized polarization (GP) measurements of CHO-WT and CHO-NPC1−/− cells incubated with the fluorescence marker laurdan were performed to determine membrane stiffness of plasma- and intracellular-membranes. CHO-NPC1−/− cells showed higher membrane stiffness at intracellular- but not plasma-membranes, equivalent to cholesterol accumulation in late endosomes/lysosomes. Along with higher membrane stiffness, the FRET efficiency between BACE1-GFP and APP-mRFP was reduced at intracellular membranes, but not within the plasma membrane of CHO-NPC1−/−. Our data show that FRET combined with TIRF is a powerful technique to determine protein proximity and membrane fluidity in cellular models of neurodegenerative diseases.
Collapse
Affiliation(s)
- Bjoern von Einem
- Department of Experimental Neurology, Ulm University, Helmholtz Str. 8/1, 89081 Ulm, Germany; E-Mails: (B.E.); (C.A.F.A.)
| | - Petra Weber
- Institut für Angewandte Forschung, Hochschule Aalen, Anton-Huber Str. 21, 73430 Aalen, Germany; E-Mails: (P.W.); (M.W.)
| | - Michael Wagner
- Institut für Angewandte Forschung, Hochschule Aalen, Anton-Huber Str. 21, 73430 Aalen, Germany; E-Mails: (P.W.); (M.W.)
| | - Martina Malnar
- Division of Molecular Medicine, Rudjer Boskovic Institute, Bijenicka 54, 10000 Zagreb, Croatia; E-Mails: (M.M.); (M.K.); (S.H.)
| | - Marko Kosicek
- Division of Molecular Medicine, Rudjer Boskovic Institute, Bijenicka 54, 10000 Zagreb, Croatia; E-Mails: (M.M.); (M.K.); (S.H.)
| | - Silva Hecimovic
- Division of Molecular Medicine, Rudjer Boskovic Institute, Bijenicka 54, 10000 Zagreb, Croatia; E-Mails: (M.M.); (M.K.); (S.H.)
| | - Christine A. F. von Arnim
- Department of Experimental Neurology, Ulm University, Helmholtz Str. 8/1, 89081 Ulm, Germany; E-Mails: (B.E.); (C.A.F.A.)
| | - Herbert Schneckenburger
- Institut für Angewandte Forschung, Hochschule Aalen, Anton-Huber Str. 21, 73430 Aalen, Germany; E-Mails: (P.W.); (M.W.)
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +49-7361-576-3401
| |
Collapse
|
29
|
Spuch C, Ortolano S, Navarro C. LRP-1 and LRP-2 receptors function in the membrane neuron. Trafficking mechanisms and proteolytic processing in Alzheimer's disease. Front Physiol 2012; 3:269. [PMID: 22934024 PMCID: PMC3429044 DOI: 10.3389/fphys.2012.00269] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Accepted: 06/26/2012] [Indexed: 11/13/2022] Open
Abstract
Low density lipoprotein receptor-related protein (LRP) belongs to the low-density lipoprotein receptor family, generally recognized as cell surface endocytic receptors, which bind and internalize extracellular ligands for degradation in lysosomes. Neurons require cholesterol to function and keep the membrane rafts stable. Cholesterol uptake into the neuron is carried out by ApoE via LRPs receptors on the cell surface. In neurons the most important are LRP-1 and LRP-2, even it is thought that a causal factor in Alzheimer's disease (AD) is the malfunction of this process which cause impairment intracellular signaling as well as storage and/or release of nutrients and toxic compounds. Both receptors are multifunctional cell surface receptors that are widely expressed in several tissues including neurons and astrocytes. LRPs are constituted by an intracellular (ICD) and extracellular domain (ECD). Through its ECD, LRPs bind at least 40 different ligands ranging from lipoprotein and protease inhibitor complex to growth factors and extracellular matrix proteins. These receptors has also been shown to interact with scaffolding and signaling proteins via its ICD in a phosphorylation-dependent manner and to function as a co-receptor partnering with other cell surface or integral membrane proteins. Thus, LRPs are implicated in two major physiological processes: endocytosis and regulation of signaling pathways, which are both involved in diverse biological roles including lipid metabolism, cell growth processes, degradation of proteases, and tissue invasion. Interestingly, LRPs were also localized in neurons in different stages, suggesting that both receptors could be implicated in signal transduction during embryonic development, neuronal outgrowth or in the pathogenesis of AD.
Collapse
Affiliation(s)
- Carlos Spuch
- Department of Pathology and Neuropathology, University Hospital of VigoVigo, Spain
| | | | | |
Collapse
|
30
|
The role of lipoprotein receptors on the physiological function of APP. Exp Brain Res 2011; 217:377-87. [PMID: 21947084 DOI: 10.1007/s00221-011-2876-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2011] [Accepted: 09/09/2011] [Indexed: 12/26/2022]
Abstract
In this review, we will primarily focus on the role of members of the low-density lipoprotein receptor (LDL-R) family that are involved in trafficking and processing of the amyloid precursor protein (APP). We will discuss the role of the LDL-receptor family members, low-density lipoprotein receptor-related protein 1 (LRP1), LRP1b, apolipoprotein E receptor 2, sortilin-related receptor (SorLA/LR11) and megalin/LRP2 on the physiological function of APP and its cellular localization. Additionally, we will focus on adaptor proteins that have been shown to influence the physiological function of LDL-R family members in combination with APP processing. The results in this review emphasize that the physiological function of APP cannot be explained by the focus on the APP protein alone but rather in combination with various direct or indirect interaction partners within the cellular environment.
Collapse
|
31
|
Strat D, Dolp F, von Einem B, Steinmetz C, von Arnim CAF, Rueck A. Spectrally resolved fluorescence lifetime imaging microscopy: Förster resonant energy transfer global analysis with a one- and two-exponential donor model. JOURNAL OF BIOMEDICAL OPTICS 2011; 16:026002. [PMID: 21361686 DOI: 10.1117/1.3533318] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
In many fields of life science, visualization of spatial proximity, as an indicator of protein interactions in living cells, is of outstanding interest. A method to accomplish this is the measurement of Förster resonant energy transfer (FRET) by means of spectrally resolved fluorescence lifetime imaging microscopy. The fluorescence lifetime is calculated using a multiple-wavelength fitting routine. The donor profile is assumed first to have a monoexponential time-dependent behavior, and the acceptor decay profile is solved analytically. Later, the donor profile is assumed to have a two-exponential time-dependent behavior and the acceptor decay profile is derived analytically. We develop and apply a multispectral fluorescence lifetime imaging microscopy analysis system for FRET global analysis with time-resolved and spectrally resolved techniques, including information from donor and acceptor channels in contrast to using just a limited spectral data set from one detector only and a model accounting only for the donor signal. This analysis is used to demonstrate close vicinity of β-secretase (BACE) and GGA1, two proteins involved in Alzheimer's disease pathology. We attempt to verify if an improvement in calculating the donor lifetimes could be achieved when time-resolved and spectrally resolved techniques are simultaneously incorporated.
Collapse
Affiliation(s)
- Daniela Strat
- University of Ulm, Institut for Lasertechnologies in Medicine, Helmholtzstrasse 12, Ulm, Baden-Wurttenberg 89081, Germany.
| | | | | | | | | | | |
Collapse
|