1
|
Qin X, Zhang X, He X, Xu H, Yao Q, Li Z, Feng Y, Zhong Y, Li Z, Lv G, Wang Y. Neuron-derived Netrin-1 deficiency aggravates spinal cord injury through activating the NF-κB signaling pathway. Heliyon 2024; 10:e37388. [PMID: 39290272 PMCID: PMC11407054 DOI: 10.1016/j.heliyon.2024.e37388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 08/24/2024] [Accepted: 09/02/2024] [Indexed: 09/19/2024] Open
Abstract
Netrin-1 (NTN1) is involved in psychological alterations caused by central nerve system diseases. The primary objective of this research was to investigate whether a deficiency of neuron-derived NTN1 in the remote brain regions affects SCI outcomes. To examine the roles and mechanisms of neuron-derived NTN1 during SCI, Western blots, Nissl staining, immunochemical technique, RNA-sequence, and related behavioral tests were conducted in the study. Our study revealed that mice lacking NTN1 exhibited normal morphological structure of the spinal cords, hippocampus, and neurological function. While neuron-derived NTN1deletion mechanistically disrupted neuronal regeneration and aggregates neuronal apoptosis and ferroptosis in the intermediate phase following SCI. Additionally, neuroinflammation was significantly enhanced in the early phase, which could be related to activation of the NF-κB signaling pathway. Overall, our findings indicate that the deletion of neuron-derived NTN1 leads to the activation of the NF-κB pathway, contributing to the promotion of neuronal apoptosis and ferroptosis, and the pathological progression of SCI.
Collapse
Affiliation(s)
- Xiaojian Qin
- Department of Orthopaedics. The First Affiliated Hospital, China Medical University, Shenyang, 110001, Liaoning Province, China
| | - Xiaolan Zhang
- Department of Pharmacology, Life Science and Biopharmaceutical Institution, Shenyang Pharmaceutical University, Shenyang, 110016, Liaoning Province, China
| | - Xiaodong He
- Department of Pharmacology, Life Science and Biopharmaceutical Institution, Shenyang Pharmaceutical University, Shenyang, 110016, Liaoning Province, China
| | - Hui Xu
- Department of Pharmacology, Life Science and Biopharmaceutical Institution, Shenyang Pharmaceutical University, Shenyang, 110016, Liaoning Province, China
| | - Qiannan Yao
- Department of Pharmacology, Life Science and Biopharmaceutical Institution, Shenyang Pharmaceutical University, Shenyang, 110016, Liaoning Province, China
| | - Zifeng Li
- Department of Pharmacology, Life Science and Biopharmaceutical Institution, Shenyang Pharmaceutical University, Shenyang, 110016, Liaoning Province, China
| | - Yayun Feng
- Department of Pharmacology, Life Science and Biopharmaceutical Institution, Shenyang Pharmaceutical University, Shenyang, 110016, Liaoning Province, China
| | - Yichen Zhong
- Department of Pharmacology, Life Science and Biopharmaceutical Institution, Shenyang Pharmaceutical University, Shenyang, 110016, Liaoning Province, China
| | - Ziyang Li
- Department of Orthopaedics. The First Affiliated Hospital, China Medical University, Shenyang, 110001, Liaoning Province, China
| | - Gang Lv
- Department of Orthopaedics. The First Affiliated Hospital, China Medical University, Shenyang, 110001, Liaoning Province, China
| | - Yanfeng Wang
- Department of Orthopaedics. The First Affiliated Hospital, China Medical University, Shenyang, 110001, Liaoning Province, China
| |
Collapse
|
2
|
Reimer ML, Kauer SD, Benson CA, King JF, Patwa S, Feng S, Estacion MA, Bangalore L, Waxman SG, Tan AM. A FAIR, open-source virtual reality platform for dendritic spine analysis. PATTERNS (NEW YORK, N.Y.) 2024; 5:101041. [PMID: 39568639 PMCID: PMC11573899 DOI: 10.1016/j.patter.2024.101041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 05/13/2024] [Accepted: 07/16/2024] [Indexed: 11/22/2024]
Abstract
Neuroanatomy is fundamental to understanding the nervous system, particularly dendritic spines, which are vital for synaptic transmission and change in response to injury or disease. Advancements in imaging have allowed for detailed three-dimensional (3D) visualization of these structures. However, existing tools for analyzing dendritic spine morphology are limited. To address this, we developed an open-source virtual reality (VR) structural analysis software ecosystem (coined "VR-SASE") that offers a powerful, intuitive approach for analyzing dendritic spines. Our validation process confirmed the method's superior accuracy, outperforming recognized gold-standard neural reconstruction techniques. Importantly, the VR-SASE workflow automatically calculates key morphological metrics, such as dendritic spine length, volume, and surface area, and reliably replicates established datasets from published dendritic spine studies. By integrating the Neurodata Without Borders (NWB) data standard, VR-SASE datasets can be preserved/distributed through DANDI Archives, satisfying the NIH data sharing mandate.
Collapse
Affiliation(s)
- Marike L. Reimer
- Department of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, CT, USA
- Rehabilitation Research Center, US Department of Veterans Affairs, West Haven, CT, USA
| | - Sierra D. Kauer
- Department of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, CT, USA
- Rehabilitation Research Center, US Department of Veterans Affairs, West Haven, CT, USA
| | - Curtis A. Benson
- Department of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, CT, USA
- Rehabilitation Research Center, US Department of Veterans Affairs, West Haven, CT, USA
| | - Jared F. King
- Department of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, CT, USA
- Rehabilitation Research Center, US Department of Veterans Affairs, West Haven, CT, USA
| | - Siraj Patwa
- Department of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, CT, USA
- Rehabilitation Research Center, US Department of Veterans Affairs, West Haven, CT, USA
| | - Sarah Feng
- Department of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, CT, USA
- Rehabilitation Research Center, US Department of Veterans Affairs, West Haven, CT, USA
| | - Maile A. Estacion
- Department of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, CT, USA
- Rehabilitation Research Center, US Department of Veterans Affairs, West Haven, CT, USA
| | - Lakshmi Bangalore
- Department of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, CT, USA
- Rehabilitation Research Center, US Department of Veterans Affairs, West Haven, CT, USA
| | - Stephen G. Waxman
- Department of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, CT, USA
- Rehabilitation Research Center, US Department of Veterans Affairs, West Haven, CT, USA
| | - Andrew M. Tan
- Department of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, CT, USA
- Rehabilitation Research Center, US Department of Veterans Affairs, West Haven, CT, USA
| |
Collapse
|
3
|
Shi YQ, Sun ZH, Wang ZZ, Su CY, Zhang W, Yu LY, Xu Y, Gao YL, Wang HB, Tian JW, Li CM. A novel role for microtubule affinity-regulating kinases in neuropathic pain. Br J Pharmacol 2024; 181:2012-2032. [PMID: 38112022 DOI: 10.1111/bph.16303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/15/2023] [Accepted: 10/03/2023] [Indexed: 12/20/2023] Open
Abstract
BACKGROUND AND PURPOSE Neuropathic pain affects millions of patients, but there are currently few viable therapeutic options available. Microtubule affinity-regulating kinases (MARKs) regulate the dynamics of microtubules and participate in synaptic remodelling. It is unclear whether these changes are involved in the central sensitization of neuropathic pain. This study examined the role of MARK1 or MARK2 in regulating neurosynaptic plasticity induced by neuropathic pain. EXPERIMENTAL APPROACH A rat spinal nerve ligation (SNL) model was established to induce neuropathic pain. The role of MARKs in nociceptive regulation was assessed by genetically knocking down MARK1 or MARK2 in amygdala and systemic administration of PCC0105003, a novel small molecule MARK inhibitor. Cognitive function, anxiety-like behaviours and motor coordination capability were also examined in SNL rats. Synaptic remodelling-associated signalling changes were detected with electrophysiological recording, Golgi-Cox staining, western blotting and qRT-PCR. KEY RESULTS MARK1 and MARK2 expression levels in amygdala and spinal dorsal horn were elevated in SNL rats. MARK1 or MARK2 knockdown in amygdala and PCC0105003 treatment partially attenuated pain-like behaviours along with improving cognitive deficit, anxiogenic-like behaviours and motor coordination in SNL rats. Inhibition of MARKs signalling reversed synaptic plasticity at the functional and structural levels by suppressing NR2B/GluR1 and EB3/Drebrin signalling pathways both in amygdala and spinal dorsal horn. CONCLUSION AND IMPLICATIONS These results suggest that MARKs-mediated synaptic remodelling plays a key role in the pathogenesis of neuropathic pain and that pharmacological inhibitors of MARKs such as PCC0105003 could represent a novel therapeutic strategy for the management of neuropathic pain.
Collapse
Affiliation(s)
- Yao-Qin Shi
- From the school of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, Shandong Province, China
| | - Zhi-Hong Sun
- From the school of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, Shandong Province, China
| | - Zhe-Zhe Wang
- From the school of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, Shandong Province, China
| | - Chun-Yu Su
- From the school of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, Shandong Province, China
| | - Wei Zhang
- From the school of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, Shandong Province, China
| | - Lin-Yao Yu
- From the school of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, Shandong Province, China
| | - Yang Xu
- From the school of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, Shandong Province, China
| | - Yong-Lin Gao
- College of Life Sciences, Yantai University, Yantai, China
| | - Hong-Bo Wang
- From the school of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, Shandong Province, China
| | - Jing-Wei Tian
- From the school of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, Shandong Province, China
| | - Chun-Mei Li
- From the school of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, Shandong Province, China
| |
Collapse
|
4
|
Lin K, Zhang Y, Shen Y, Xu Y, Huang M, Liu X. Hydrogen Sulfide can Scavenge Free Radicals to Improve Spinal Cord Injury by Inhibiting the p38MAPK/mTOR/NF-κB Signaling Pathway. Neuromolecular Med 2024; 26:26. [PMID: 38907170 DOI: 10.1007/s12017-024-08794-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 05/31/2024] [Indexed: 06/23/2024]
Abstract
Spinal cord injury (SCI) causes irreversible cell loss and neurological dysfunctions. Presently, there is no an effective clinical treatment for SCI. It can be the only intervention measure by relieving the symptoms of patients such as pain and fever. Free radical-induced damage is one of the validated mechanisms in the complex secondary injury following primary SCI. Hydrogen sulfide (H2S) as an antioxidant can effectively scavenge free radicals, protect neurons, and improve SCI by inhibiting the p38MAPK/mTOR/NF-κB signaling pathway. In this report, we analyze the pathological mechanism of SCI, the role of free radical-mediated the p38MAPK/mTOR/NF-κB signaling pathway in SCI, and the role of H2S in scavenging free radicals and improving SCI.
Collapse
Affiliation(s)
- Kexin Lin
- Department of Histology and Embryology, School of Medicine, Shaoxing University, Shaoxing, 312000, Zhejiang Province, China
| | - Yong Zhang
- Department of Histology and Embryology, School of Medicine, Shaoxing University, Shaoxing, 312000, Zhejiang Province, China
| | - Yanyang Shen
- Department of Histology and Embryology, School of Medicine, Shaoxing University, Shaoxing, 312000, Zhejiang Province, China
| | - Yiqin Xu
- Department of Histology and Embryology, School of Medicine, Shaoxing University, Shaoxing, 312000, Zhejiang Province, China
| | - Min Huang
- Department of Histology and Embryology, School of Medicine, Shaoxing University, Shaoxing, 312000, Zhejiang Province, China
| | - Xuehong Liu
- Department of Histology and Embryology, School of Medicine, Shaoxing University, Shaoxing, 312000, Zhejiang Province, China.
| |
Collapse
|
5
|
Abstract
Neuropathic pain is a debilitating form of pain arising from injury or disease of the nervous system that affects millions of people worldwide. Despite its prevalence, the underlying mechanisms of neuropathic pain are still not fully understood. Dendritic spines are small protrusions on the surface of neurons that play an important role in synaptic transmission. Recent studies have shown that dendritic spines reorganize in the superficial and deeper laminae of the spinal cord dorsal horn with the development of neuropathic pain in multiple models of disease or injury. Given the importance of dendritic spines in synaptic transmission, it is possible that studying dendritic spines could lead to new therapeutic approaches for managing intractable pain. In this review article, we highlight the emergent role of dendritic spines in neuropathic pain, as well as discuss the potential for studying dendritic spines for the development of new therapeutics.
Collapse
Affiliation(s)
- Curtis A Benson
- Department of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, CT, USA
- Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, CT, USA
| | - Jared F King
- Department of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, CT, USA
- Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, CT, USA
| | - Marike L Reimer
- Department of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, CT, USA
- Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, CT, USA
| | - Sierra D Kauer
- Department of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, CT, USA
- Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, CT, USA
| | - Stephen G Waxman
- Department of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, CT, USA
- Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, CT, USA
| | - Andrew M Tan
- Department of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, CT, USA
- Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, CT, USA
| |
Collapse
|
6
|
Wan Y, Zhou J, Zhang P, Lin X, Li H. Inhibition of spinal Rac1 attenuates chronic inflammatory pain by regulating the activation of astrocytes. Cell Signal 2024; 114:110972. [PMID: 37984604 DOI: 10.1016/j.cellsig.2023.110972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/20/2023] [Accepted: 11/13/2023] [Indexed: 11/22/2023]
Abstract
BACKGROUND Spinal astrocyte-mediated neuroinflammation is an important mechanism for the maintenance of chronic inflammatory pain. Previous studies have investigated that Ras-related C3 botulinum toxin substrate 1 (Rac1) is closely related to astrocyte activation after central nervous system injury. However, the role of Rac1 in astrocyte activation in chronic inflammatory pain has not been reported. METHODS Complete Freund's adjuvant (CFA)-induced chronic inflammatory pain model and LPS-stimulated astrocytes were used to investigate the role of Rac1 in astrocyte activation and the underlying mechanism. Rac1-interfering adeno-associated virus (AAV) targeting astrocytes was delivered to spinal astrocytes by intrathecal administration and a Rac1 specific inhibitor, NSC23766, was used to block cultured astrocytes. The glial fibrillary acidic protein (GFAP), proinflammatory cytokines, p-NF-κB, and nod-like receptor thermal protein domain associated protein 3 (NLRP3) inflammasome were detected by RT-qPCR, Western blotting, and immunofluorescence to investigate the activation of astrocytes. RESULTS CFA induced spinal astrocyte activation and increased the expression of active Rac1 in spinal astrocytes. Knockdown of astrocyte Rac1 alleviated chronic inflammatory pain and inhibited astrocyte activation. Inhibition of Rac1 activation in cultured astrocytes decreased the expression of GFAP and proinflammatory cytokines. Knockdown of Rac1 inhibited the increase of expression of NLRP3 inflammasome and phosphorylation of NF-κB in the spinal lumbar enlargement after CFA injection. Similarly, the inhibition of Rac1 suppressed the increase of NLRP3 inflammasome and p-NF-κB protein level after LPS stimulation. CONCLUSION Knockdown of astrocyte Rac1 attenuated CFA-induced hyperalgesia and astrocyte activation possibly by blocking the expression of NLRP3 inflammasome and phosphorylation of NF-κB.
Collapse
Affiliation(s)
- Yantong Wan
- Department of Anesthesiology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China; Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, Sichuan, China
| | - Jieshu Zhou
- Department of Anesthesiology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China; Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, Sichuan, China
| | - Panpan Zhang
- Department of Anesthesiology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China; Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, Sichuan, China
| | - Xuemei Lin
- Department of Anesthesiology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China; Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, Sichuan, China.
| | - Hao Li
- Department of Anesthesiology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China; Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, Sichuan, China.
| |
Collapse
|
7
|
Benson CA, Olson KL, Patwa S, Kauer SD, King JF, Waxman SG, Tan AM. Conditional Astrocyte Rac1KO Attenuates Hyperreflexia after Spinal Cord Injury. J Neurosci 2024; 44:e1670222023. [PMID: 37963762 PMCID: PMC10851682 DOI: 10.1523/jneurosci.1670-22.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 08/24/2023] [Accepted: 09/19/2023] [Indexed: 11/16/2023] Open
Abstract
Spasticity is a hyperexcitability disorder that adversely impacts functional recovery and rehabilitative efforts after spinal cord injury (SCI). The loss of evoked rate-dependent depression (RDD) of the monosynaptic H-reflex is indicative of hyperreflexia, a physiological sign of spasticity. Given the intimate relationship between astrocytes and neurons, that is, the tripartite synapse, we hypothesized that astrocytes might have a significant role in post-injury hyperreflexia and plasticity of neighboring neuronal synaptic dendritic spines. Here, we investigated the effect of selective Rac1KO in astrocytes (i.e., adult male and female mice, transgenic cre-flox system) on SCI-induced spasticity. Three weeks after a mild contusion SCI, control Rac1wt animals displayed a loss of H-reflex RDD, that is, hyperreflexia. In contrast, transgenic animals with astrocytic Rac1KO demonstrated near-normal H-reflex RDD similar to pre-injury levels. Reduced hyperreflexia in astrocytic Rac1KO animals was accompanied by a loss of thin-shaped dendritic spine density on α-motor neurons in the ventral horn. In SCI-Rac1wt animals, as expected, we observed the development of dendritic spine dysgenesis on α-motor neurons associated with spasticity. As compared with WT animals, SCI animals with astrocytic Rac1KO expressed increased levels of the glial-specific glutamate transporter, glutamate transporter-1 in the ventral spinal cord, potentially enhancing glutamate clearance from the synaptic cleft and reducing hyperreflexia in astrocytic Rac1KO animals. Taken together, our findings show for the first time that Rac1 activity in astrocytes can contribute to hyperreflexia underlying spasticity following SCI. These results reveal an opportunity to target cell-specific molecular regulators of H-reflex excitability to manage spasticity after SCI.Significance Statement Spinal cord injury leads to stretch reflex hyperexcitability, which underlies the clinical symptom of spasticity. This study shows for the first time that astrocytic Rac1 contributes to the development of hyperreflexia after SCI. Specifically, astrocytic Rac1KO reduced SCI-related H-reflex hyperexcitability, decreased dendritic spine dysgenesis on α-motor neurons, and elevated the expression of the astrocytic glutamate transporter-1 (GLT-1). Overall, this study supports a distinct role for astrocytic Rac1 signaling within the spinal reflex circuit and the development of SCI-related spasticity.
Collapse
Affiliation(s)
- Curtis A Benson
- Department of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, Connecticut 06510
- Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut 06516
| | - Kai-Lan Olson
- Department of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, Connecticut 06510
- Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut 06516
| | - Siraj Patwa
- Department of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, Connecticut 06510
- Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut 06516
| | - Sierra D Kauer
- Department of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, Connecticut 06510
- Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut 06516
| | - Jared F King
- Department of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, Connecticut 06510
- Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut 06516
| | - Stephen G Waxman
- Department of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, Connecticut 06510
- Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut 06516
| | - Andrew M Tan
- Department of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, Connecticut 06510,
- Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut 06516
| |
Collapse
|
8
|
Li L, Ru Q, Lu Y, Fang X, Chen G, Saifullah AB, Yao C, Tolias KF. Tiam1 coordinates synaptic structural and functional plasticity underpinning the pathophysiology of neuropathic pain. Neuron 2023; 111:2038-2050.e6. [PMID: 37146610 PMCID: PMC10330505 DOI: 10.1016/j.neuron.2023.04.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 09/27/2022] [Accepted: 04/10/2023] [Indexed: 05/07/2023]
Abstract
Neuropathic pain is a common, debilitating chronic pain condition caused by damage or a disease affecting the somatosensory nervous system. Understanding the pathophysiological mechanisms underlying neuropathic pain is critical for developing new therapeutic strategies to treat chronic pain effectively. Tiam1 is a Rac1 guanine nucleotide exchange factor (GEF) that promotes dendritic and synaptic growth during hippocampal development by inducing actin cytoskeletal remodeling. Here, using multiple neuropathic pain animal models, we show that Tiam1 coordinates synaptic structural and functional plasticity in the spinal dorsal horn via actin cytoskeleton reorganization and synaptic NMDAR stabilization and that these actions are essential for the initiation, transition, and maintenance of neuropathic pain. Furthermore, an antisense oligonucleotides (ASO) targeting spinal Tiam1 persistently alleviate neuropathic pain sensitivity. Our findings suggest that Tiam1-coordinated synaptic functional and structural plasticity underlies the pathophysiology of neuropathic pain and that intervention of Tiam1-mediated maladaptive synaptic plasticity has long-lasting consequences in neuropathic pain management.
Collapse
Affiliation(s)
- Lingyong Li
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, AL 35025, USA; Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA.
| | - Qin Ru
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA; Department of Health and Kinesiology, School of Physical Education, Jianghan University, Wuhan 430056, China
| | - Yungang Lu
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA; Department of Pain Medicine, Anesthesiology, Critical Care and Pain Medicine Division, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Xing Fang
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | - Guanxing Chen
- Department of Pain Medicine, Anesthesiology, Critical Care and Pain Medicine Division, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Ali Bin Saifullah
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | - Changqun Yao
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, AL 35025, USA
| | - Kimberley F Tolias
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA; Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
9
|
Depolarization and Hyperexcitability of Cortical Motor Neurons after Spinal Cord Injury Associates with Reduced HCN Channel Activity. Int J Mol Sci 2023; 24:ijms24054715. [PMID: 36902146 PMCID: PMC10003573 DOI: 10.3390/ijms24054715] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/24/2023] [Accepted: 02/25/2023] [Indexed: 03/05/2023] Open
Abstract
A spinal cord injury (SCI) damages the axonal projections of neurons residing in the neocortex. This axotomy changes cortical excitability and results in dysfunctional activity and output of infragranular cortical layers. Thus, addressing cortical pathophysiology after SCI will be instrumental in promoting recovery. However, the cellular and molecular mechanisms of cortical dysfunction after SCI are poorly resolved. In this study, we determined that the principal neurons of the primary motor cortex layer V (M1LV), those suffering from axotomy upon SCI, become hyperexcitable following injury. Therefore, we questioned the role of hyperpolarization cyclic nucleotide gated channels (HCN channels) in this context. Patch clamp experiments on axotomized M1LV neurons and acute pharmacological manipulation of HCN channels allowed us to resolve a dysfunctional mechanism controlling intrinsic neuronal excitability one week after SCI. Some axotomized M1LV neurons became excessively depolarized. In those cells, the HCN channels were less active and less relevant to control neuronal excitability because the membrane potential exceeded the window of HCN channel activation. Care should be taken when manipulating HCN channels pharmacologically after SCI. Even though the dysfunction of HCN channels partakes in the pathophysiology of axotomized M1LV neurons, their dysfunctional contribution varies remarkably between neurons and combines with other pathophysiological mechanisms.
Collapse
|
10
|
Xu L, Yang L, Wu Y, Wan X, Tang X, Xu Y, Chen Q, Liu Y, Liu S. Rac1/PAK1 signaling contributes to bone cancer pain by Regulation dendritic spine remodeling in rats. Mol Pain 2023; 19:17448069231161031. [PMID: 36938611 PMCID: PMC10028669 DOI: 10.1177/17448069231161031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2023] Open
Abstract
Bone cancer pain (BCP) is severe chronic pain caused by tumor metastasis to the bones, often resulting in significant skeletal remodeling and fractures. Currently, there is no curative treatment. Therefore, insight into the underlying mechanisms could guide the development of mechanism-based therapeutic strategies for BCP. We speculated that Rac1/PAK1 signaling plays a critical role in the development of BCP. Tumor cells implantation (TCI) into the tibial cavity resulted in bone cancer-associated mechanical allodynia. Golgi staining revealed changes in the excitatory synaptic structure of WDR (Wide-dynamic range) neurons in the spinal cord, including increased postsynaptic density (PSD) length and thickness, and width of the cleft. Behavioral and western blotting test revealed that the development and persistence of pain correlated with Rac1/PAK1 signaling activation in primary sensory neurons. Intrathecal injection of NSC23766, a Rac1 inhibitor, reduced the persistence of BCP as well as reversed the remodeling of dendrites. Therefore, we concluded that activation of the Rac1/PAK1 signaling pathway in the spinal cord plays an important role in the development of BCP through remodeling of dendritic spines. Modulation of the Rac1/PAK1 pathway may be a potential strategy for BCP treatment.
Collapse
Affiliation(s)
- Lingfei Xu
- Jiangsu Province Key Laboratory of
Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia
Application Technology, NMPA Key Laboratory for Research and Evaluation of
Narcotic and Psychotropic Drugs, Xuzhou Medical
University, Jiangsu, China
| | - Long Yang
- Jiangsu Province Key Laboratory of
Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia
Application Technology, NMPA Key Laboratory for Research and Evaluation of
Narcotic and Psychotropic Drugs, Xuzhou Medical
University, Jiangsu, China
| | - Yan Wu
- Jiangsu Province Key Laboratory of
Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia
Application Technology, NMPA Key Laboratory for Research and Evaluation of
Narcotic and Psychotropic Drugs, Xuzhou Medical
University, Jiangsu, China
- Department of Anesthesiology, The Affiliated Hospital of Xuzhou
Medical University, Jiangsu, China
| | - Xinxin Wan
- Department of Anesthesiology, Nanjing Drum Tower
Hospital, Jiangsu, China
| | - Xihui Tang
- Jiangsu Province Key Laboratory of
Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia
Application Technology, NMPA Key Laboratory for Research and Evaluation of
Narcotic and Psychotropic Drugs, Xuzhou Medical
University, Jiangsu, China
- Department of Anesthesiology, The Affiliated Hospital of Xuzhou
Medical University, Jiangsu, China
| | - Yuqing Xu
- Jiangsu Province Key Laboratory of
Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia
Application Technology, NMPA Key Laboratory for Research and Evaluation of
Narcotic and Psychotropic Drugs, Xuzhou Medical
University, Jiangsu, China
- Department of Anesthesiology, The Affiliated Hospital of Xuzhou
Medical University, Jiangsu, China
| | - Qingsong Chen
- Jiangsu Province Key Laboratory of
Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia
Application Technology, NMPA Key Laboratory for Research and Evaluation of
Narcotic and Psychotropic Drugs, Xuzhou Medical
University, Jiangsu, China
- Department of Anesthesiology, The Affiliated Hospital of Xuzhou
Medical University, Jiangsu, China
| | - Yuepeng Liu
- Institute of Xuzhou Medical
Science, Jiangsu, China
| | - Su Liu
- Jiangsu Province Key Laboratory of
Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia
Application Technology, NMPA Key Laboratory for Research and Evaluation of
Narcotic and Psychotropic Drugs, Xuzhou Medical
University, Jiangsu, China
- Department of Anesthesiology, The Affiliated Hospital of Xuzhou
Medical University, Jiangsu, China
| |
Collapse
|
11
|
Chen M, Chen Z, Xiao X, Zhou L, Fu R, Jiang X, Pang M, Xia J. Corticospinal circuit neuroplasticity may involve silent synapses: Implications for functional recovery facilitated by neuromodulation after spinal cord injury. IBRO Neurosci Rep 2022; 14:185-194. [PMID: 36824667 PMCID: PMC9941655 DOI: 10.1016/j.ibneur.2022.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 08/15/2022] [Indexed: 10/15/2022] Open
Abstract
Spinal cord injury (SCI) leads to devastating physical consequences, such as severe sensorimotor dysfunction even lifetime disability, by damaging the corticospinal system. The conventional opinion that SCI is intractable due to the poor regeneration of neurons in the adult central nervous system (CNS) needs to be revisited as the CNS is capable of considerable plasticity, which underlie recovery from neural injury. Substantial spontaneous neuroplasticity has been demonstrated in the corticospinal motor circuitry following SCI. Some of these plastic changes appear to be beneficial while others are detrimental toward locomotor function recovery after SCI. The beneficial corticospinal plasticity in the spared corticospinal circuits can be harnessed therapeutically by multiple contemporary neuromodulatory approaches, especially the electrical stimulation-based modalities, in an activity-dependent manner to improve functional outcomes in post-SCI rehabilitation. Silent synapse generation and unsilencing contribute to profound neuroplasticity that is implicated in a variety of neurological disorders, thus they may be involved in the corticospinal motor circuit neuroplasticity following SCI. Exploring the underlying mechanisms of silent synapse-mediated neuroplasticity in the corticospinal motor circuitry that may be exploited by neuromodulation will inform a novel direction for optimizing therapeutic repair strategies and rehabilitative interventions in SCI patients.
Collapse
Key Words
- AMPARs, α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors
- BDNF, brain-derived neurotrophic factor
- BMIs, brain-machine interfaces
- CPG, central pattern generator
- CST, corticospinal tract
- Corticospinal motor circuitry
- DBS, deep brain stimulation
- ESS, epidural spinal stimulation
- MEPs, motor-evoked potentials
- NHPs, non-human primates
- NMDARs, N-methyl-d-aspartate receptors
- Neuromodulation
- Neuroplasticity
- PSNs, propriospinal neurons
- Rehabilitation
- SCI, spinal cord injury
- STDP, spike timing-dependent plasticity
- Silent synapses
- Spinal cord injury
- TBS, theta burst stimulation
- TMS, transcranial magnetic stimulation
- TrkB, tropomyosin-related kinase B
- cTBS, continuous TBS
- iTBS, intermittent TBS
- mTOR, mammalian target of rapamycin
- rTMS, repetitive TMS
- tDCS, transcranial direct current stimulation
- tcSCS, transcutaneous spinal cord stimulation
Collapse
Affiliation(s)
- Mingcong Chen
- Department of Orthopedics and Traumatology, Shenzhen University General Hospital, Shenzhen, Guangdong 518055, China
| | - Zuxin Chen
- Shenzhen Key Laboratory of Drug Addiction, Shenzhen Neher Neural Plasticity Laboratory, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences (CAS); Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, Guangdong 518055, China
| | - Xiao Xiao
- Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, Ministry of Education; Behavioral and Cognitive Neuroscience Center, Institute of Science and Technology for Brain-Inspired Intelligence; MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200433, China
| | - Libing Zhou
- Guangdong-Hongkong-Macau CNS Regeneration Institute of Jinan University, Key Laboratory of CNS Regeneration (Jinan University)-Ministry of Education, Guangzhou, Guangdong 510632, China
| | - Rao Fu
- Department of Anatomy, School of Medicine, Sun Yat-sen University, Shenzhen, Guangdong 518100, China
| | - Xian Jiang
- Institute of Neurological and Psychiatric Disorder, Shenzhen Bay laboratory, Shenzhen, Guangdong 518000, China
| | - Mao Pang
- Department of Spine Surgery, the Third Affiliated Hospital of Sun Yat-sen University, Guangdong Provincial Center for Engineering and Technology Research of Minimally Invasive Spine Surgery, Guangzhou, Guangdong 510630, China
| | - Jianxun Xia
- Department of Basic Medical Sciences, Yunkang School of Medicine and Health, Nanfang College, Guangzhou, Guangdong 510970, China,Corresponding author.
| |
Collapse
|
12
|
Wang Y, Han T, Guo R, Song P, Liu Y, Wu Z, Ai J, Shen C. Micro-RNA let-7a-5p Derived From Mesenchymal Stem Cell-Derived Extracellular Vesicles Promotes the Regrowth of Neurons in Spinal-Cord-Injured Rats by Targeting the HMGA2/SMAD2 Axis. Front Mol Neurosci 2022; 15:850364. [PMID: 35401112 PMCID: PMC8990843 DOI: 10.3389/fnmol.2022.850364] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 03/01/2022] [Indexed: 12/28/2022] Open
Abstract
Spinal cord injury (SCI) often causes neuronal and axonal damage, resulting in permanent neurological impairments. Mesenchymal stem cells (MSCs) and extracellular vesicles (EVs) are promising treatments for SCI. However, the underlying mechanisms remain unclear. Herein, we demonstrated that EVs from bone marrow-derived MSCs promoted the differentiation of neural stem cells (NSCs) into the neurons and outgrowth of neurites that are extending into astrocytic scars in SCI rats. Further study found that let-7a-5p exerted a similar biological effect as MSC-EVs in regulating the differentiation of NSCs and leading to neurological improvement in SCI rats. Moreover, these MSC-EV-induced effects were attenuated by let-7a-5p inhibitors/antagomirs. When investigating the mechanism, bioinformatics predictions combined with western blot and RT-PCR analyses showed that both MSC-EVs and let-7a-5p were able to downregulate the expression of SMAD2 by inhibiting HMGA2. In conclusion, MSC-EV-secreted let-7a-5p promoted the regrowth of neurons and improved neurological recovery in SCI rats by targeting the HMGA2/SMAD2 axis.
Collapse
Affiliation(s)
- Ying Wang
- Department of Medical Imaging, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Tianyu Han
- Department of Orthopedics (Spinal Surgery), The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Ruocheng Guo
- Department of Orthopedics (Spinal Surgery), The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Peiwen Song
- Department of Orthopedics (Spinal Surgery), The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yunlei Liu
- Department of Medical Imaging, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Department of Clinical Laboratory, No. 2 People’s Hospital of Fuyang, Fuyang, China
| | - Zuomeng Wu
- Department of Orthopedics (Spinal Surgery), The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Jichao Ai
- Department of Medical Imaging, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Department of Orthopedics, No. 2 People’s Hospital of Fuyang, Fuyang, China
| | - Cailiang Shen
- Department of Orthopedics (Spinal Surgery), The First Affiliated Hospital of Anhui Medical University, Hefei, China
- *Correspondence: Cailiang Shen,
| |
Collapse
|
13
|
Singh R, Bartok A, Paillard M, Tyburski A, Elliott M, Hajnóczky G. Uncontrolled mitochondrial calcium uptake underlies the pathogenesis of neurodegeneration in MICU1-deficient mice and patients. SCIENCE ADVANCES 2022; 8:eabj4716. [PMID: 35302860 PMCID: PMC8932652 DOI: 10.1126/sciadv.abj4716] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 01/26/2022] [Indexed: 06/01/2023]
Abstract
Dysregulation of mitochondrial Ca2+ homeostasis has been linked to neurodegenerative diseases. Mitochondrial Ca2+ uptake is mediated via the calcium uniporter complex that is primarily regulated by MICU1, a Ca2+-sensing gatekeeper. Recently, human patients with MICU1 loss-of-function mutations were diagnosed with neuromuscular and cognitive impairments. While studies in patient-derived cells revealed altered mitochondrial calcium signaling, the neuronal pathogenesis was difficult to study. To fill this void, we created a neuron-specific MICU1-KO mouse model. These animals show progressive, abnormal motor and cognitive phenotypes likely caused by the degeneration of motor neurons in the spinal cord and the cortex. We found increased susceptibility to mitochondrial Ca2+ overload-induced excitotoxic insults and cell death in MICU1-KO neurons and MICU1-deficient patient-derived cells, which can be blunted by inhibiting the mitochondrial permeability transition pore. Thus, our study identifies altered neuronal mitochondrial Ca2+ homeostasis as causative in the clinical symptoms of MICU1-deficient patients and highlights potential therapeutic targets.
Collapse
Affiliation(s)
- Raghavendra Singh
- MitoCare Center, Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Adam Bartok
- MitoCare Center, Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, USA
- Departent of Biochemistry, Semmelweis University, Budapest, Hungary
| | - Melanie Paillard
- MitoCare Center, Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Ashley Tyburski
- Department of Neurological Surgery, Thomas Jefferson University, Philadelphia, PA, USA
| | - Melanie Elliott
- Department of Neurological Surgery, Thomas Jefferson University, Philadelphia, PA, USA
| | - György Hajnóczky
- MitoCare Center, Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, USA
| |
Collapse
|
14
|
Allahyari RV, Heinsinger NM, Hwang D, Jaffe DA, Rasouli J, Shiers S, Thomas SJ, Price TJ, Rostami A, Lepore AC. Response of Astrocyte Subpopulations Following Spinal Cord Injury. Cells 2022; 11:cells11040721. [PMID: 35203371 PMCID: PMC8870235 DOI: 10.3390/cells11040721] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/15/2022] [Accepted: 02/16/2022] [Indexed: 12/16/2022] Open
Abstract
There is growing appreciation for astrocyte heterogeneity both across and within central nervous system (CNS) regions, as well as between intact and diseased states. Recent work identified multiple astrocyte subpopulations in mature brain. Interestingly, one subpopulation (Population C) was shown to possess significantly enhanced synaptogenic properties in vitro, as compared with other astrocyte subpopulations of adult cortex and spinal cord. Following spinal cord injury (SCI), damaged neurons lose synaptic connections with neuronal partners, resulting in persistent functional loss. We determined whether SCI induces an enhanced synaptomodulatory astrocyte phenotype by shifting toward a greater proportion of Population C cells and/or increasing expression of relevant synapse formation-associated genes within one or more astrocyte subpopulations. Using flow cytometry and RNAscope in situ hybridization, we found that astrocyte subpopulation distribution in the spinal cord did not change to a selectively synaptogenic phenotype following mouse cervical hemisection-type SCI. We also found that spinal cord astrocytes expressed synapse formation-associated genes to a similar degree across subpopulations, as well as in an unchanged manner between uninjured and SCI conditions. Finally, we confirmed these astrocyte subpopulations are also present in the human spinal cord in a similar distribution as mouse, suggesting possible conservation of spinal cord astrocyte heterogeneity across species.
Collapse
Affiliation(s)
- R. Vivian Allahyari
- Department of Neuroscience, Vickie and Jack Farber Institute for Neuroscience, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA; (R.V.A.); (N.M.H.); (D.A.J.); (S.J.T.)
| | - Nicolette M. Heinsinger
- Department of Neuroscience, Vickie and Jack Farber Institute for Neuroscience, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA; (R.V.A.); (N.M.H.); (D.A.J.); (S.J.T.)
| | - Daniel Hwang
- Department of Neurology, Vickie and Jack Farber Institute for Neuroscience, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA; (D.H.); (J.R.); (A.R.)
| | - David A. Jaffe
- Department of Neuroscience, Vickie and Jack Farber Institute for Neuroscience, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA; (R.V.A.); (N.M.H.); (D.A.J.); (S.J.T.)
| | - Javad Rasouli
- Department of Neurology, Vickie and Jack Farber Institute for Neuroscience, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA; (D.H.); (J.R.); (A.R.)
| | - Stephanie Shiers
- Center for Advanced Pain Studies, Department of Neuroscience, University of Texas at Dallas, Richardson, TX 75080, USA; (S.S.); (T.J.P.)
| | - Samantha J. Thomas
- Department of Neuroscience, Vickie and Jack Farber Institute for Neuroscience, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA; (R.V.A.); (N.M.H.); (D.A.J.); (S.J.T.)
| | - Theodore J. Price
- Center for Advanced Pain Studies, Department of Neuroscience, University of Texas at Dallas, Richardson, TX 75080, USA; (S.S.); (T.J.P.)
| | - Abdolmohamad Rostami
- Department of Neurology, Vickie and Jack Farber Institute for Neuroscience, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA; (D.H.); (J.R.); (A.R.)
| | - Angelo C. Lepore
- Department of Neuroscience, Vickie and Jack Farber Institute for Neuroscience, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA; (R.V.A.); (N.M.H.); (D.A.J.); (S.J.T.)
- Correspondence: ; Tel.: +1-215-503-5864
| |
Collapse
|
15
|
Duman JG, Blanco FA, Cronkite CA, Ru Q, Erikson KC, Mulherkar S, Saifullah AB, Firozi K, Tolias KF. Rac-maninoff and Rho-vel: The symphony of Rho-GTPase signaling at excitatory synapses. Small GTPases 2022; 13:14-47. [PMID: 33955328 PMCID: PMC9707551 DOI: 10.1080/21541248.2021.1885264] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 01/22/2021] [Accepted: 01/28/2021] [Indexed: 01/15/2023] Open
Abstract
Synaptic connections between neurons are essential for every facet of human cognition and are thus regulated with extreme precision. Rho-family GTPases, molecular switches that cycle between an active GTP-bound state and an inactive GDP-bound state, comprise a critical feature of synaptic regulation. Rho-GTPases are exquisitely controlled by an extensive suite of activators (GEFs) and inhibitors (GAPs and GDIs) and interact with many different signalling pathways to fulfill their roles in orchestrating the development, maintenance, and plasticity of excitatory synapses of the central nervous system. Among the mechanisms that control Rho-GTPase activity and signalling are cell surface receptors, GEF/GAP complexes that tightly regulate single Rho-GTPase dynamics, GEF/GAP and GEF/GEF functional complexes that coordinate multiple Rho-family GTPase activities, effector positive feedback loops, and mutual antagonism of opposing Rho-GTPase pathways. These complex regulatory mechanisms are employed by the cells of the nervous system in almost every step of development, and prominently figure into the processes of synaptic plasticity that underlie learning and memory. Finally, misregulation of Rho-GTPases plays critical roles in responses to neuronal injury, such as traumatic brain injury and neuropathic pain, and in neurodevelopmental and neurodegenerative disorders, including intellectual disability, autism spectrum disorder, schizophrenia, and Alzheimer's Disease. Thus, decoding the mechanisms of Rho-GTPase regulation and function at excitatory synapses has great potential for combatting many of the biggest current challenges in mental health.
Collapse
Affiliation(s)
- Joseph G. Duman
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Francisco A. Blanco
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
- Integrative Molecular and Biomedical Science Graduate Program, Baylor College of Medicine, Houston, TX, USA
| | - Christopher A. Cronkite
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, USA
- Medical Scientist Training Program, Baylor College of Medicine, Houston, TX, USA
| | - Qin Ru
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Kelly C. Erikson
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Shalaka Mulherkar
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Ali Bin Saifullah
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Karen Firozi
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Kimberley F. Tolias
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
16
|
Beating Pain with Psychedelics: Matter over Mind? Neurosci Biobehav Rev 2021; 134:104482. [PMID: 34922987 DOI: 10.1016/j.neubiorev.2021.12.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 11/19/2021] [Accepted: 12/04/2021] [Indexed: 02/08/2023]
Abstract
Basic pain research has shed light on key cellular and molecular mechanisms underlying nociceptive and phenomenological aspects of pain. Despite these advances, [[we still yearn for] the discovery of novel therapeutic strategies to address the unmet needs of about 70% of chronic neuropathic pain patients whose pain fails to respond to opioids as well as to other conventional analgesic agents. Importantly, a substantial body of clinical observations over the past decade cumulatively suggests that the psychedelic class of drugs may possess heuristic value for understanding and treating chronic pain conditions. The present review presents a theoretical framework for hitherto insufficiently understood neuroscience-based mechanisms of psychedelics' potential analgesic effects. To that end, searches of PubMed-indexed journals were performed using the following Medical Subject Headings' terms: pain, analgesia, inflammatory, brain connectivity, ketamine, psilocybin, functional imaging, and dendrites. Recursive sets of scientific and clinical evidence extracted from this literature review were summarized within the following key areas: (1) studies employing psychedelics for alleviation of physical and emotional pain; (2) potential neuro-restorative effects of psychedelics to remediate the impaired connectivity underlying the dissociation between pain-related conscious states/cognitions and the subcortical activity/function leading to the eventual chronicity through immediate and long-term effects on dentritic plasticity; (3) anti-neuroinflammatory and pro-immunomodulatory actions of psychedelics as the may pertain to the role of these factors in the pathogenesis of neuropathic pain; (4) safety, legal, and ethical consideration inherent in psychedelics' pharmacotherapy. In addition to direct beneficial effects in terms of reduction of pain and suffering, psychedelics' inclusion in the analgesic armamentarium will contribute to deeper and more sophisticated insights not only into pain syndromes but also into frequently comorbid psychiatric condition associated with emotional pain, e.g., depressive and anxiety disorders. Further inquiry is clearly warranted into the above areas that have potential to evolve into further elucidate the mechanisms of chronic pain and affective disorders, and lead to the development of innovative, safe, and more efficacious neurobiologically-based therapeutic approaches.
Collapse
|
17
|
Pietro GD, Stefano GD, Leone C, Lionardo AD, Sgrò E, Blockeel AJ, Caspani O, Garcia-Larrea L, Mouraux A, Phillips KG, Treede RD, Valeriani M, Truini A. The N13 spinal component of somatosensory evoked potentials is modulated by heterotopic noxious conditioning stimulation suggesting an involvement of spinal wide dynamic range neurons. Neurophysiol Clin 2021; 51:517-523. [PMID: 34756635 DOI: 10.1016/j.neucli.2021.09.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 09/03/2021] [Accepted: 09/03/2021] [Indexed: 12/17/2022] Open
Abstract
OBJECTIVES Although somatosensory evoked potentials (SEPs) after median nerve stimulation are widely used in clinical practice, the dorsal horn generator of the N13 SEP spinal component is not clearly understood. To verify whether wide dynamic range neurons in the dorsal horn of the spinal cord are involved in the generation of the N13 SEP, we tested the effect of heterotopic noxious conditioning stimulation, which modulates wide dynamic range neurons, on N13 SEP in healthy humans. METHODS In 12 healthy subjects, we performed the cold pressor test on the left foot as a heterotopic noxious conditioning stimulus to modulate wide dynamic range neurons. To verify the effectiveness of heterotopic noxious conditioning stimulation, we tested the pressure pain threshold at the thenar muscles of the right hand and recorded SEPs after right median nerve stimulation before, during and after the cold pressor test. RESULTS The cold pressor test increased pressure pain threshold by 15% (p = 0.04). During the cold pressor test, the amplitude of the N13 component was significantly lower than that recorded at baseline (by 25%, p = 0.04). DISCUSSION In this neurophysiological study in healthy humans, we showed that a heterotopic noxious conditioning stimulus significantly reduced N13 SEP amplitude. This finding suggests that the N13 SEP might be generated by the segmental postsynaptic response of dorsal horn wide dynamic range neurons.
Collapse
Affiliation(s)
| | | | - Caterina Leone
- Department of Human Neuroscience, University Sapienza, Rome, Italy
| | | | - Emanuele Sgrò
- Department of Human Neuroscience, University Sapienza, Rome, Italy
| | - Anthony James Blockeel
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, United Kingdom
| | - Ombretta Caspani
- Department of Neurophysiology, Mannheim Center for translational Neuroscience (MCTN), Medical Faculty Mannheim of Heidelberg University, Mannheim, Germany
| | - Luis Garcia-Larrea
- Lyon Neurosciences Center Research Unit Inserm U 1028, Pierre Wertheimer Hospital, Hospices Civils de Lyon, Lyon 1 University, Lyon, France; Pain Center, Pierre Wertheimer Hospital, Hospices Civils de Lyon, Lyon 1 University, Lyon, France
| | - André Mouraux
- Université Catholique de Louvain, Institute of Neuroscience (IoNS), Faculty of Medicine, Bruxelles, Belgium
| | - Keith Geoffrey Phillips
- Neuroscience Next Generation Therapeutics, Eli Lilly and Company, Lilly Innovation Center, Cambridge, MA 02142, USA
| | - Rolf-Detlef Treede
- Department of Neurophysiology, Mannheim Center for translational Neuroscience (MCTN), Medical Faculty Mannheim of Heidelberg University, Mannheim, Germany
| | - Massimiliano Valeriani
- Headache Center, Department of Neuroscience, Bambino Gesù Children's Hospital, Rome, Italy; Center for Sensory-Motor Interaction, Aalborg University, Aalborg, Denmark
| | - Andrea Truini
- Department of Human Neuroscience, University Sapienza, Rome, Italy.
| |
Collapse
|
18
|
Khanal P, Hotulainen P. Dendritic Spine Initiation in Brain Development, Learning and Diseases and Impact of BAR-Domain Proteins. Cells 2021; 10:cells10092392. [PMID: 34572042 PMCID: PMC8468246 DOI: 10.3390/cells10092392] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 09/08/2021] [Accepted: 09/09/2021] [Indexed: 02/08/2023] Open
Abstract
Dendritic spines are small, bulbous protrusions along neuronal dendrites where most of the excitatory synapses are located. Dendritic spine density in normal human brain increases rapidly before and after birth achieving the highest density around 2-8 years. Density decreases during adolescence, reaching a stable level in adulthood. The changes in dendritic spines are considered structural correlates for synaptic plasticity as well as the basis of experience-dependent remodeling of neuronal circuits. Alterations in spine density correspond to aberrant brain function observed in various neurodevelopmental and neuropsychiatric disorders. Dendritic spine initiation affects spine density. In this review, we discuss the importance of spine initiation in brain development, learning, and potential complications resulting from altered spine initiation in neurological diseases. Current literature shows that two Bin Amphiphysin Rvs (BAR) domain-containing proteins, MIM/Mtss1 and SrGAP3, are involved in spine initiation. We review existing literature and open databases to discuss whether other BAR-domain proteins could also take part in spine initiation. Finally, we discuss the potential molecular mechanisms on how BAR-domain proteins could regulate spine initiation.
Collapse
Affiliation(s)
- Pushpa Khanal
- Minerva Foundation Institute for Medical Research, Tukholmankatu 8, 00290 Helsinki, Finland;
- HiLIFE-Neuroscience Center, University of Helsinki, 00014 Helsinki, Finland
| | - Pirta Hotulainen
- Minerva Foundation Institute for Medical Research, Tukholmankatu 8, 00290 Helsinki, Finland;
- Correspondence:
| |
Collapse
|
19
|
Wang JL, Wang Y, Sun W, Yu Y, Wei N, Du R, Yang Y, Liang T, Wang XL, Ou CH, Chen J. Spinophilin modulates pain through suppressing dendritic spine morphogenesis via negative control of Rac1-ERK signaling in rat spinal dorsal horn. Neurobiol Dis 2021; 152:105302. [PMID: 33609640 DOI: 10.1016/j.nbd.2021.105302] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 01/07/2021] [Accepted: 02/14/2021] [Indexed: 01/07/2023] Open
Abstract
Both spinophilin (SPN, also known as neurabin 2) and Rac1 (a member of Rho GTPase family) are believed to play key roles in dendritic spine (DS) remodeling and spinal nociception. However, how SPN interacts with Rac1 in the above process is unknown. Here, we first demonstrated natural existence of SPN-protein phosphatase 1-Rac1 complex in the spinal dorsal horn (DH) neurons by both double immunofluorescent labeling and co-immunoprecipitation, then the effects of SPN over-expression and down-regulation on mechanical and thermal pain sensitivity, GTP-bound Rac1-ERK signaling activity, and spinal DS density were studied. Over-expression of SPN in spinal neurons by intra-DH pAAV-CMV-SPN-3FLAG could block both mechanical and thermal pain hypersensitivity induced by intraplantar bee venom injection, however it had no effect on the basal pain sensitivity. Over-expression of SPN also resulted in a significant decrease in GTP-Rac1-ERK activities, relative to naive and irrelevant control (pAAV-MCS). In sharp contrast, knockdown of SPN in spinal neurons by intra-DH pAAV-CAG-eGFP-U6-shRNA[SPN] produced both pain hypersensitivity and dramatic elevation of GTP-Rac1-ERK activities, relative to naive and irrelevant control (pAAV-shRNA [NC]). Moreover, knockdown of SPN resulted in increase in DS density while over-expression of it had no such effect. Collectively, SPN is likely to serve as a regulator of Rac1 signaling to suppress DS morphogenesis via negative control of GTP-bound Rac1-ERK activities at postsynaptic component in rat DH neurons wherein both mechanical and thermal pain sensitivity are controlled.
Collapse
Affiliation(s)
- Jiang-Lin Wang
- Institute for Biomedical Sciences of Pain, Tangdu Hospital, The Fourth Military Medical University, Xi'an 710038, Shaanxi Province, PR China; Department of Pain Management, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan Province, PR China
| | - Yan Wang
- Institute for Biomedical Sciences of Pain, Tangdu Hospital, The Fourth Military Medical University, Xi'an 710038, Shaanxi Province, PR China; Key Laboratory of Brain Stress and Behavior, People's Liberation Army, Xi'an 710038, PR China
| | - Wei Sun
- Institute for Biomedical Sciences of Pain, Tangdu Hospital, The Fourth Military Medical University, Xi'an 710038, Shaanxi Province, PR China; Key Laboratory of Brain Stress and Behavior, People's Liberation Army, Xi'an 710038, PR China
| | - Yang Yu
- Institute for Biomedical Sciences of Pain, Tangdu Hospital, The Fourth Military Medical University, Xi'an 710038, Shaanxi Province, PR China; Key Laboratory of Brain Stress and Behavior, People's Liberation Army, Xi'an 710038, PR China
| | - Na Wei
- Institute for Biomedical Sciences of Pain, Tangdu Hospital, The Fourth Military Medical University, Xi'an 710038, Shaanxi Province, PR China; Key Laboratory of Brain Stress and Behavior, People's Liberation Army, Xi'an 710038, PR China
| | - Rui Du
- Institute for Biomedical Sciences of Pain, Tangdu Hospital, The Fourth Military Medical University, Xi'an 710038, Shaanxi Province, PR China; Key Laboratory of Brain Stress and Behavior, People's Liberation Army, Xi'an 710038, PR China
| | - Yan Yang
- Institute for Biomedical Sciences of Pain, Tangdu Hospital, The Fourth Military Medical University, Xi'an 710038, Shaanxi Province, PR China; Key Laboratory of Brain Stress and Behavior, People's Liberation Army, Xi'an 710038, PR China
| | - Ting Liang
- Institute for Biomedical Sciences of Pain, Tangdu Hospital, The Fourth Military Medical University, Xi'an 710038, Shaanxi Province, PR China; Key Laboratory of Brain Stress and Behavior, People's Liberation Army, Xi'an 710038, PR China
| | - Xiao-Liang Wang
- Institute for Biomedical Sciences of Pain, Tangdu Hospital, The Fourth Military Medical University, Xi'an 710038, Shaanxi Province, PR China; Key Laboratory of Brain Stress and Behavior, People's Liberation Army, Xi'an 710038, PR China
| | - Ce-Hua Ou
- Department of Pain Management, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan Province, PR China
| | - Jun Chen
- Institute for Biomedical Sciences of Pain, Tangdu Hospital, The Fourth Military Medical University, Xi'an 710038, Shaanxi Province, PR China; Key Laboratory of Brain Stress and Behavior, People's Liberation Army, Xi'an 710038, PR China.
| |
Collapse
|
20
|
Zhang KX, Zhao JJ, Chai W, Chen JY. Synaptic remodeling in mouse motor cortex after spinal cord injury. Neural Regen Res 2021; 16:744-749. [PMID: 33063737 PMCID: PMC8067930 DOI: 10.4103/1673-5374.295346] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Spinal cord injury dramatically blocks information exchange between the central nervous system and the peripheral nervous system. The resulting fate of synapses in the motor cortex has not been well studied. To explore synaptic reorganization in the motor cortex after spinal cord injury, we established mouse models of T12 spinal cord hemi-section and then monitored the postsynaptic dendritic spines and presynaptic axonal boutons of pyramidal neurons in the hindlimb area of the motor cortex in vivo. Our results showed that spinal cord hemi-section led to the remodeling of dendritic spines bilaterally in the motor cortex and the main remodeling regions changed over time. It made previously stable spines unstable and eliminated spines more unlikely to be re-emerged. There was a significant increase in new spines in the contralateral motor cortex. However, the low survival rate of the new spines demonstrated that new spines were still fragile. Observation of presynaptic axonal boutons found no significant change. These results suggest the existence of synapse remodeling in motor cortex after spinal cord hemi-section and that spinal cord hemi-section affected postsynaptic dendritic spines rather than presynaptic axonal boutons. This study was approved by the Ethics Committee of Chinese PLA General Hospital, China (approval No. 201504168S) on April 16, 2015.
Collapse
Affiliation(s)
- Ke-Xue Zhang
- Department of Pediatric Surgery, Chinese PLA General Hospital, Beijing, China
| | - Jia-Jia Zhao
- Department of Anesthesiology, Shunyi District Hospital, Beijing, China
| | - Wei Chai
- Department of Orthopedics, Chinese PLA General Hospital, Beijing, China
| | - Ji-Ying Chen
- Department of Orthopedics, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
21
|
Benson CA, Reimer ML, Tan AM. Dendritic Spines in the Spinal Cord: Live Action Pain. Neurosci Insights 2020; 15:2633105520951164. [PMID: 32864619 PMCID: PMC7432977 DOI: 10.1177/2633105520951164] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 07/29/2020] [Indexed: 12/30/2022] Open
Abstract
Dendritic spines are microscopic protrusions on neurons that house the postsynaptic machinery necessary for neurotransmission between neurons. As such, dendritic spine structure is intimately linked with synaptic function. In pathology, dendritic spine behavior and its contribution to disease are not firmly understood. It is well known that dendritic spines are highly dynamic in vivo. In our recent publication, we used an intravital imaging approach, which permitted us to repeatedly visualize the same neurons located in lamina II, a nociceptive processing region of the spinal cord. Using this imaging platform, we analyzed the intravital dynamics of dendritic spine structure before and after nerve injury-induced pain. This effort revealed a time-dependent relationship between the progressive increase in pain outcome, and a switch in the steady-state fluctuations of dendritic spine structure. Collectively, our in vivo study demonstrates how injury that leads to abnormal pain may also contribute to synapse-associated structural remodeling in nociceptive regions of the spinal cord dorsal horn. By combining our live-imaging approach with measures of neuronal activity, such as with the use of calcium or other voltage-sensitive dyes, we expect to gain a more complete picture of the relationship between dendritic spine structure and nociceptive physiology.
Collapse
Affiliation(s)
- Curtis A Benson
- Department of Neurology and Center for Neuroscience and Regeneration Research, Yale School of Medicine, Yale University, New Haven, CT, USA.,Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, CT, USA
| | - Marike L Reimer
- Department of Neurology and Center for Neuroscience and Regeneration Research, Yale School of Medicine, Yale University, New Haven, CT, USA.,Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, CT, USA
| | - Andrew M Tan
- Department of Neurology and Center for Neuroscience and Regeneration Research, Yale School of Medicine, Yale University, New Haven, CT, USA.,Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, CT, USA
| |
Collapse
|
22
|
Chen Z, Zhang S, Nie B, Huang J, Han Z, Chen X, Bai X, Ouyang H. Distinct roles of srGAP3‐Rac1 in the initiation and maintenance phases of neuropathic pain induced by paclitaxel. J Physiol 2020; 598:2415-2430. [DOI: 10.1113/jp279525] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Accepted: 03/19/2020] [Indexed: 11/08/2022] Open
Affiliation(s)
- Zihang Chen
- Department of AnesthesiologyGuangdong Provincial key Laboratory of Malignant Tumor Epigenetics and Gene Regulation. Sun Yat‐sen Memorial HospitalSun Yat‐sen University Guangzhou China
- Department of AnesthesiologyState Key Laboratory of Oncology in Southern ChinaSun Yat‐sen University Cancer CenterCollaborative Innovation Center for Cancer Medicine Guangzhou China
- Zhongshan School of MedicineSun Yat‐sen University Guangzhou China
| | - Subo Zhang
- Department of Rehabilitation MedicineSun Yat‐sen Memorial HospitalSun Yat‐sen University Guangzhou China
| | - Bilin Nie
- Department of AnesthesiologyGuangdong Women and Children Hospital Guangzhou China
| | - Jingxiu Huang
- Department of AnesthesiologyState Key Laboratory of Oncology in Southern ChinaSun Yat‐sen University Cancer CenterCollaborative Innovation Center for Cancer Medicine Guangzhou China
| | - Zhixiao Han
- Department of AnesthesiologyGuangdong Provincial key Laboratory of Malignant Tumor Epigenetics and Gene Regulation. Sun Yat‐sen Memorial HospitalSun Yat‐sen University Guangzhou China
| | - Xiaodi Chen
- Department of AnesthesiologyState Key Laboratory of Oncology in Southern ChinaSun Yat‐sen University Cancer CenterCollaborative Innovation Center for Cancer Medicine Guangzhou China
| | - Xiaohui Bai
- Department of AnesthesiologyGuangdong Provincial key Laboratory of Malignant Tumor Epigenetics and Gene Regulation. Sun Yat‐sen Memorial HospitalSun Yat‐sen University Guangzhou China
| | - Handong Ouyang
- Department of AnesthesiologyState Key Laboratory of Oncology in Southern ChinaSun Yat‐sen University Cancer CenterCollaborative Innovation Center for Cancer Medicine Guangzhou China
| |
Collapse
|
23
|
PCC0208009, an indirect IDO1 inhibitor, alleviates neuropathic pain and co-morbidities by regulating synaptic plasticity of ACC and amygdala. Biochem Pharmacol 2020; 177:113926. [PMID: 32217098 DOI: 10.1016/j.bcp.2020.113926] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Accepted: 03/19/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND AND PURPOSE Indoleamine 2, 3-dioxygenase 1 (IDO1) has been linked to neuropathic pain and IDO1 inhibitors have been shown to reduce pain in animals. Some studies have indicated that IDO1 expression increased after neuropathic pain in hippocampus and spinal cord, whether these changes existing in anterior cingulate cortex (ACC) and amygdala remains obscure and how IDO1 inhibition leads to analgesia is largely unknown. Here, we evaluated the antinociceptive effect of PCC0208009, an indirect IDO1 inhibitor, on neuropathic pain and examined the related neurobiological mechanisms. EXPERIMENTAL APPROACH The effects of PCC0208009 on pain, cognition and anxiogenic behaviors were evaluated in a rat model of neuropathic pain. Motor disorder, sedation and somnolence were also assessed. Biochemical techniques were used to measure IDO1-mediated signaling changes in ACC and amygdala. KEY RESULTS In rats receiving spinal nerve ligation (SNL), IDO1 expression level was increased in ACC and amygdala. PCC0208009 attenuated pain-related behaviors in the formalin test and SNL model and increased cognition and anxiogenic behaviors in SNL rats at doses that did not affect locomotor activity and sleeping. PCC0208009 inhibited IDO1 expression in ACC and amygdala by inhibiting the IL-6-JAK2/STAT3-IDO1-GCN2-IL-6 pathway. In addition, PCC0208009 reversed synaptic plasticity at the functional and structural levels by suppressing NMDA2B receptor and CDK5/MAP2 or CDK5/Tau pathway in ACC and amygdala. CONCLUSION AND IMPLICATIONS These results support the role of IDO1-mediated molecular mechanisms in neuropathic pain and suggest that the IDO1 inhibitor PCC0208009 demonstrates selective pain suppression and could be a useful pharmacological therapy for neuropathic pain.
Collapse
|
24
|
Sex differences in central nervous system plasticity and pain in experimental autoimmune encephalomyelitis. Pain 2019; 160:1037-1049. [PMID: 30649100 DOI: 10.1097/j.pain.0000000000001483] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Multiple sclerosis (MS) is a neurodegenerative autoimmune disease with many known structural and functional changes in the central nervous system. A well-recognized, but poorly understood, complication of MS is chronic pain. Little is known regarding the influence of sex on the development and maintenance of MS-related pain. This is important to consider, as MS is a predominantly female disease. Using the experimental autoimmune encephalomyelitis (EAE) mouse model of MS, we demonstrate sex differences in measures of spinal cord inflammation and plasticity that accompany tactile hypersensitivity. Although we observed substantial inflammatory activity in both sexes, only male EAE mice exhibit robust staining of axonal injury markers and increased dendritic arborisation in morphology of deep dorsal horn neurons. We propose that tactile hypersensitivity in female EAE mice may be more immune-driven, whereas pain in male mice with EAE may rely more heavily on neurodegenerative and plasticity-related mechanisms. Morphological and inflammatory differences in the spinal cord associated with pain early in EAE progression supports the idea of differentially regulated pain pathways between the sexes. Results from this study may indicate future sex-specific targets that are worth investigating for their functional role in pain circuitry.
Collapse
|
25
|
Li N, Li C, Han R, Wang Y, Yang M, Wang H, Tian J. LPM580098, a Novel Triple Reuptake Inhibitor of Serotonin, Noradrenaline, and Dopamine, Attenuates Neuropathic Pain. Front Pharmacol 2019; 10:53. [PMID: 30837867 PMCID: PMC6382704 DOI: 10.3389/fphar.2019.00053] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 01/18/2019] [Indexed: 11/13/2022] Open
Abstract
Background and Purpose: Sedation and somnolence remain serious adverse effects of the existing analgesics (e.g., pregabalin, duloxetine) for neuropathic pain. The available evidence indicates that serotonin (5-HT), noradrenaline (NE), and dopamine (DA) play important roles in modulating the descending inhibitory pain pathway and sleep-wake cycle. The aim of this work was to test the hypothesis that LPM580098, a novel triple reuptake inhibitor (TRI) of 5-HT, NE, and DA, has analgesic effect, and does not induce significant adverse effects associated with central inhibition, such as sedation and somnolence. Methods: The analgesic activity of LPM580098 was assessed on formalin test and spinal nerve ligation (SNL)-induced neuropathic pain model. Locomotor activity, pentobarbital sodium-induced sleeping and rota-rod tests were also conducted. In vitro binding and uptake assays, and Western blotting were performed to examine the potential mechanisms. Results: LPM580098 suppressed the nocifensive behaviors during phase II of the formalin test in mice. In SNL rats, LPM580098 (16 mg kg-1) inhibited mechanical allodynia, thermal hyperalgesia and hyperexcitation of wide-dynamic range (WDR) neurons, in which the effect of LPM580098 was similar to pregabalin (30 mg kg-1). However, pregabalin altered the spontaneous locomotion, affected pentobarbital sodium-induced sleep, and showed a trend to perform motor dysfunction, which were not induced by LPM580098. Mechanistically, LPM580098 inhibited the uptake of 5-HT, NE, and DA, improved pain-induced changes of the synaptic functional plasticity and structural plasticity possibly via downregulating the NR2B/CaMKIIα/GluR1 and Rac1/RhoA signaling pathways. Conclusion: Our results suggest that LPM580098, a novel TRI, is effective in attenuating neuropathic pain without producing unwanted sedation and somnolence associated with central nervous system (CNS) depressants.
Collapse
Affiliation(s)
- Nannan Li
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, China
| | - Chunmei Li
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, China
| | - Rui Han
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, China
| | - Yu Wang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, China
| | - Mina Yang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, China
| | - Hongbo Wang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, China
| | - Jingwei Tian
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, China
| |
Collapse
|
26
|
Buen EPD, Salgado-Ceballos H, González-Tapia D, Leal-Cortés C, Mondragón-Lozano R, Sánchez-Torres S, Álvarez-Mejía L, Fabela-Sánchez O, Martínez-Torres NI, González-Ramírez MM, Vázquez-Hernández N, González-Burgos I. Spinogenesis and Plastic Changes in the Dendritic Spines of Spinal Cord Motoneurons After Traumatic Injury in Rats. Arch Med Res 2018. [PMID: 29530339 DOI: 10.1016/j.arcmed.2018.03.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
BACKGROUND Spinal cord injury (SCI) is highly incapacitating, and the neurobiological factors involved in an eventual functional recovery remain uncertain. Plastic changes to dendritic spines are closely related with the functional modifications of behavior. AIM OF THE STUDY To explore the plastic response of dendritic spines in motoneurons after SCI. METHODS Female rats were assigned to either of three groups: Intact (no manipulations), Sham (T9 laminectomy), and SCI (T9 laminectomy and spinal cord contusion). RESULTS Motor function according to a BBBscale was progressively recovered from 2 week through 8 week postinjury, reaching a plateau through week 16. Dendritic spine density was greater in SCI vs. control groups, rostral as well as caudal to the lesion, at 8 and 16 weeks postinjury. Thin and stubby/wide spines were more abundant at both locations and time points, whereas mushroom spines predominated at 2 and 4 months in rostral to the lesion. Filopodia and atypical structures resembling dendritic spines were observed. Synaptophysin expression was lower in SCI at the caudal portion at 8 weeks, and was higher at week 16. CONCLUSION Spinogenesis in spinal motoneurons may be a crucial plastic response to favor spontaneous recovery after SCI.
Collapse
Affiliation(s)
- Eliseo Portilla-de Buen
- Centro de Investigación Biomédica de Occidente, Instituto Mexicano del Seguro Social, Guadalajara, Jal., México
| | - Hermelinda Salgado-Ceballos
- Unidad de Investigación Médica en Enfermedades Neurológicas, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Ciudad de México, México; Proyecto Camina, A.C., Ciudad de México, México
| | - David González-Tapia
- Centro de Investigación Biomédica de Occidente, Instituto Mexicano del Seguro Social, Guadalajara, Jal., México; Universidad Politécnica de la Zona Metropolitana de Guadalajara, Tlajomulco de Zúñiga, Jal., México; Instituto de Ciencias de la Rehabilitación Integral, Guadalajara, Jal., México
| | - Caridad Leal-Cortés
- Centro de Investigación Biomédica de Occidente, Instituto Mexicano del Seguro Social, Guadalajara, Jal., México
| | - Rodrigo Mondragón-Lozano
- Unidad de Investigación Médica en Enfermedades Neurológicas, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Ciudad de México, México; Proyecto Camina, A.C., Ciudad de México, México; CONACyT- Instituto Mexicano del Seguro Social, Ciudad de México, México
| | - Stephanie Sánchez-Torres
- Unidad de Investigación Médica en Enfermedades Neurológicas, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Ciudad de México, México; Proyecto Camina, A.C., Ciudad de México, México; Universidad Autónoma Metropolitana Iztapalapa, Ciudad de México, México
| | - Laura Álvarez-Mejía
- Unidad de Investigación Médica en Enfermedades Neurológicas, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Ciudad de México, México; Proyecto Camina, A.C., Ciudad de México, México; Universidad Autónoma Metropolitana Iztapalapa, Ciudad de México, México
| | - Omar Fabela-Sánchez
- Proyecto Camina, A.C., Ciudad de México, México; Universidad Autónoma Metropolitana Iztapalapa, Ciudad de México, México
| | - Néstor I Martínez-Torres
- Centro de Investigación Biomédica de Occidente, Instituto Mexicano del Seguro Social, Guadalajara, Jal., México; Centro Universitario del Norte, Universidad de Guadalajara, Colotlán, Jalisco, México
| | - Myrna M González-Ramírez
- Centro de Investigación Biomédica de Occidente, Instituto Mexicano del Seguro Social, Guadalajara, Jal., México
| | - Nallely Vázquez-Hernández
- Centro de Investigación Biomédica de Occidente, Instituto Mexicano del Seguro Social, Guadalajara, Jal., México
| | - Ignacio González-Burgos
- Centro de Investigación Biomédica de Occidente, Instituto Mexicano del Seguro Social, Guadalajara, Jal., México.
| |
Collapse
|
27
|
Cao XC, Pappalardo LW, Waxman SG, Tan AM. Dendritic spine dysgenesis in superficial dorsal horn sensory neurons after spinal cord injury. Mol Pain 2017; 13:1744806916688016. [PMID: 28326929 PMCID: PMC5302173 DOI: 10.1177/1744806916688016] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Neuropathic pain is a major complication of spinal cord injury, and despite aggressive efforts, this type of pain is refractory to available clinical treatment. Our previous work has demonstrated a structure–function link between dendritic spine dysgenesis on nociceptive sensory neurons in the intermediate zone, laminae IV/V, and chronic pain in central nervous system and peripheral nervous system injury models of neuropathic pain. To extend these findings, we performed a follow-up structural analysis to assess whether dendritic spine remodeling occurs on superficial dorsal horn neurons located in lamina II after spinal cord injury. Lamina II neurons are responsible for relaying deep, delocalized, often thermally associated pain commonly experienced in spinal cord injury pathologies. We analyzed dendritic spine morphometry and localization in tissue obtained from adult rats exhibiting neuropathic pain one-month following spinal cord injury. Although the total density of dendritic spines on lamina II neurons did not change after spinal cord injury, we observed an inverse relationship between the densities of thin- and mushroom-shaped spines: thin-spine density decreased while mushroom-spine density increased. These structural changes were specifically noted along dendritic branches within 150 µm from the soma, suggesting a possible adverse contribution to nociceptive circuit function. Intrathecal treatment with NSC23766, a Rac1-GTPase inhibitor, significantly reduced spinal cord injury-induced changes in both thin- and mushroom-shaped dendritic spines. Overall, these observations demonstrate that dendritic spine remodeling occurs in lamina II, regulated in part by the Rac1-signaling pathway, and suggests that structural abnormalities in this spinal cord region may also contribute to abnormal nociception after spinal cord injury.
Collapse
Affiliation(s)
- Xiaoyu C Cao
- 1 Department of Neurology, Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, CT, USA.,2 Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, CT, USA
| | - Laura W Pappalardo
- 1 Department of Neurology, Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, CT, USA.,2 Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, CT, USA
| | - Stephen G Waxman
- 1 Department of Neurology, Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, CT, USA.,2 Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, CT, USA
| | - Andrew M Tan
- 1 Department of Neurology, Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, CT, USA.,2 Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, CT, USA
| |
Collapse
|
28
|
Abstract
Spinal cord injury (SCI) lesions present diverse challenges for repair strategies. Anatomically complete injuries require restoration of neural connectivity across lesions. Anatomically incomplete injuries may benefit from augmentation of spontaneous circuit reorganization. Here, we review SCI cell biology, which varies considerably across three different lesion-related tissue compartments: (a) non-neural lesion core, (b) astrocyte scar border, and (c) surrounding spared but reactive neural tissue. After SCI, axon growth and circuit reorganization are determined by neuron-cell-autonomous mechanisms and by interactions among neurons, glia, and immune and other cells. These interactions are shaped by both the presence and the absence of growth-modulating molecules, which vary markedly in different lesion compartments. The emerging understanding of how SCI cell biology differs across lesion compartments is fundamental to developing rationally targeted repair strategies.
Collapse
|
29
|
Haefeli J, Huie JR, Morioka K, Ferguson AR. Assessments of sensory plasticity after spinal cord injury across species. Neurosci Lett 2017; 652:74-81. [PMID: 28007646 PMCID: PMC5466896 DOI: 10.1016/j.neulet.2016.12.031] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 12/08/2016] [Accepted: 12/14/2016] [Indexed: 12/26/2022]
Abstract
Spinal cord injury (SCI) is a multifaceted phenomenon associated with alterations in both motor function and sensory function. A majority of patients with SCI report sensory disturbances, including not only loss of sensation, but in many cases enhanced abnormal sensation, dysesthesia and pain. Development of therapeutics to treat these abnormal sensory changes require common measurement tools that can enable cross-species translation from animal models to human patients. We review the current literature on translational nociception/pain measurement in SCI and discuss areas for further development. Although a number of tools exist for measuring both segmental and affective sensory changes, we conclude that there is a pressing need for better, integrative measurement of nociception/pain outcomes across species to enhance precise therapeutic innovation for sensory dysfunction in SCI.
Collapse
Affiliation(s)
- Jenny Haefeli
- Weill Institute for Neurosciences, Brain and Spinal Injury Center (BASIC), Department of Neurological Surgery, University of California, San Francisco, CA, USA.
| | - J Russell Huie
- Weill Institute for Neurosciences, Brain and Spinal Injury Center (BASIC), Department of Neurological Surgery, University of California, San Francisco, CA, USA.
| | - Kazuhito Morioka
- Weill Institute for Neurosciences, Brain and Spinal Injury Center (BASIC), Department of Neurological Surgery, University of California, San Francisco, CA, USA.
| | - Adam R Ferguson
- Weill Institute for Neurosciences, Brain and Spinal Injury Center (BASIC), Department of Neurological Surgery, University of California, San Francisco, CA, USA; San Francisco Veteran's Affairs Medical Center, San Francisco, CA, USA.
| |
Collapse
|
30
|
Wu Z, Li L, Xie F, Du J, Zuo Y, Frost JA, Carlton SM, Walters ET, Yang Q. Activation of KCNQ Channels Suppresses Spontaneous Activity in Dorsal Root Ganglion Neurons and Reduces Chronic Pain after Spinal Cord Injury. J Neurotrauma 2017; 34:1260-1270. [PMID: 28073317 DOI: 10.1089/neu.2016.4789] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
A majority of people who have sustained spinal cord injury (SCI) experience chronic pain after injury, and this pain is highly resistant to available treatments. Contusive SCI in rats at T10 results in hyperexcitability of primary sensory neurons, which contributes to chronic pain. KCNQ channels are widely expressed in nociceptive dorsal root ganglion (DRG) neurons, are important for controlling their excitability, and their activation has proven effective in reducing pain in peripheral nerve injury and inflammation models. The possibility that activators of KCNQ channels could be useful for treating SCI-induced chronic pain is strongly supported by the following findings. First, SCI, unlike peripheral nerve injury, failed to decrease the functional or biochemical expression of KCNQ channels in DRG as revealed by electrophysiology, real-time quantitative polymerase chain reaction, and Western blot; therefore, these channels remain available for pharmacological targeting of SCI pain. Second, treatment with retigabine, a specific KCNQ channel opener, profoundly decreased spontaneous activity in primary sensory neurons of SCI animals both in vitro and in vivo without changing the peripheral mechanical threshold. Third, retigabine reversed SCI-induced reflex hypersensitivity, adding to our previous demonstration that retigabine supports the conditioning of place preference after SCI (an operant measure of spontaneous pain). In contrast to SCI animals, naïve animals showed no effects of retigabine on reflex sensitivity or conditioned place preference by pairing with retigabine, indicating that a dose that blocks chronic pain-related behavior has no effect on normal pain sensitivity or motivational state. These results encourage the further exploration of U.S. Food and Drug Administration-approved KCNQ activators for treating SCI pain, as well as efforts to develop a new generation of KCNQ activators that lack central side effects.
Collapse
Affiliation(s)
- Zizhen Wu
- 1 Department of Integrative Biology and Pharmacology, McGovern Medical School at UT Health , Houston, Texas
| | - Lin Li
- 1 Department of Integrative Biology and Pharmacology, McGovern Medical School at UT Health , Houston, Texas
| | - Fuhua Xie
- 1 Department of Integrative Biology and Pharmacology, McGovern Medical School at UT Health , Houston, Texas.,3 Department of Critical Medicine, the Second Affiliated Hospital of Guangzhou Medical University , Guangzhou, Guangdong, China
| | - Junhui Du
- 2 Department of Neuroscience and Cell Biology, University of Texas Medical Branch , Galveston, Texas
| | - Yan Zuo
- 1 Department of Integrative Biology and Pharmacology, McGovern Medical School at UT Health , Houston, Texas
| | - Jeffrey A Frost
- 1 Department of Integrative Biology and Pharmacology, McGovern Medical School at UT Health , Houston, Texas
| | - Susan M Carlton
- 2 Department of Neuroscience and Cell Biology, University of Texas Medical Branch , Galveston, Texas
| | - Edgar T Walters
- 1 Department of Integrative Biology and Pharmacology, McGovern Medical School at UT Health , Houston, Texas
| | - Qing Yang
- 1 Department of Integrative Biology and Pharmacology, McGovern Medical School at UT Health , Houston, Texas
| |
Collapse
|
31
|
Walters ET. How is chronic pain related to sympathetic dysfunction and autonomic dysreflexia following spinal cord injury? Auton Neurosci 2017; 209:79-89. [PMID: 28161248 DOI: 10.1016/j.autneu.2017.01.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 01/24/2017] [Accepted: 01/25/2017] [Indexed: 12/29/2022]
Abstract
Autonomic dysreflexia (AD) and neuropathic pain occur after severe injury to higher levels of the spinal cord. Mechanisms underlying these problems have rarely been integrated in proposed models of spinal cord injury (SCI). Several parallels suggest significant overlap of these mechanisms, although the relationships between sympathetic function (dysregulated in AD) and nociceptive function (dysregulated in neuropathic pain) are complex. One general mechanism likely to be shared is central sensitization - enhanced responsiveness and synaptic reorganization of spinal circuits that mediate sympathetic reflexes or that process and relay pain-related information to the brain. Another is enhanced sensory input to spinal circuits caused by extensive alterations in primary sensory neurons. Both AD and SCI-induced neuropathic pain are associated with spinal sprouting of peptidergic nociceptors that might increase synaptic input to the circuits involved in AD and SCI pain. In addition, numerous nociceptors become hyperexcitable, hypersensitive to chemicals associated with injury and inflammation, and spontaneously active, greatly amplifying sensory input to sensitized spinal circuits. As discussed with the aid of a preliminary functional model, these effects are likely to have mutually reinforcing relationships with each other, and with consequences of SCI-induced interruption of descending excitatory and inhibitory influences on spinal circuits, with SCI-induced inflammation in the spinal cord and in DRGs, and with activity in sympathetic fibers within DRGs that promotes local inflammation and spontaneous activity in sensory neurons. This model suggests that interventions selectively targeting hyperactivity in C-nociceptors might be useful for treating chronic pain and AD after high SCI.
Collapse
Affiliation(s)
- Edgar T Walters
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, 6431 Fannin Street, Houston, TX 77030, USA.
| |
Collapse
|
32
|
Huie JR, Morioka K, Haefeli J, Ferguson AR. What Is Being Trained? How Divergent Forms of Plasticity Compete To Shape Locomotor Recovery after Spinal Cord Injury. J Neurotrauma 2017; 34:1831-1840. [PMID: 27875927 DOI: 10.1089/neu.2016.4562] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Spinal cord injury (SCI) is a devastating syndrome that produces dysfunction in motor and sensory systems, manifesting as chronic paralysis, sensory changes, and pain disorders. The multi-faceted and heterogeneous nature of SCI has made effective rehabilitative strategies challenging. Work over the last 40 years has aimed to overcome these obstacles by harnessing the intrinsic plasticity of the spinal cord to improve functional locomotor recovery. Intensive training after SCI facilitates lower extremity function and has shown promise as a tool for retraining the spinal cord by engaging innate locomotor circuitry in the lumbar cord. As new training paradigms evolve, the importance of appropriate afferent input has emerged as a requirement for adaptive plasticity. The integration of kinematic, sensory, and loading force information must be closely monitored and carefully manipulated to optimize training outcomes. Inappropriate peripheral input may produce lasting maladaptive sensory and motor effects, such as central pain and spasticity. Thus, it is important to closely consider the type of afferent input the injured spinal cord receives. Here we review preclinical and clinical input parameters fostering adaptive plasticity, as well as those producing maladaptive plasticity that may undermine neurorehabilitative efforts. We differentiate between passive (hindlimb unloading [HU], limb immobilization) and active (peripheral nociception) forms of aberrant input. Furthermore, we discuss the timing of initiating exposure to afferent input after SCI for promoting functional locomotor recovery. We conclude by presenting a candidate rapid synaptic mechanism for maladaptive plasticity after SCI, offering a pharmacological target for restoring the capacity for adaptive spinal plasticity in real time.
Collapse
Affiliation(s)
- J Russell Huie
- 1 Department of Neurological Surgery, Brain and Spinal Injury Center, University of California , San Francisco, California
| | - Kazuhito Morioka
- 1 Department of Neurological Surgery, Brain and Spinal Injury Center, University of California , San Francisco, California
| | - Jenny Haefeli
- 1 Department of Neurological Surgery, Brain and Spinal Injury Center, University of California , San Francisco, California
| | - Adam R Ferguson
- 1 Department of Neurological Surgery, Brain and Spinal Injury Center, University of California , San Francisco, California.,2 San Francisco Veterans Affairs Medical Center , San Francisco, California
| |
Collapse
|
33
|
Hansen CN, Faw TD, White S, Buford JA, Grau JW, Basso DM. Sparing of Descending Axons Rescues Interneuron Plasticity in the Lumbar Cord to Allow Adaptive Learning After Thoracic Spinal Cord Injury. Front Neural Circuits 2016; 10:11. [PMID: 26973469 PMCID: PMC4773638 DOI: 10.3389/fncir.2016.00011] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 02/17/2016] [Indexed: 11/13/2022] Open
Abstract
This study evaluated the role of spared axons on structural and behavioral neuroplasticity in the lumbar enlargement after a thoracic spinal cord injury (SCI). Previous work has demonstrated that recovery in the presence of spared axons after an incomplete lesion increases behavioral output after a subsequent complete spinal cord transection (TX). This suggests that spared axons direct adaptive changes in below-level neuronal networks of the lumbar cord. In response to spared fibers, we postulate that lumbar neuron networks support behavioral gains by preventing aberrant plasticity. As such, the present study measured histological and functional changes in the isolated lumbar cord after complete TX or incomplete contusion (SCI). To measure functional plasticity in the lumbar cord, we used an established instrumental learning paradigm (ILP). In this paradigm, neural circuits within isolated lumbar segments demonstrate learning by an increase in flexion duration that reduces exposure to a noxious leg shock. We employed this model using a proof-of-principle design to evaluate the role of sparing on lumbar learning and plasticity early (7 days) or late (42 days) after midthoracic SCI in a rodent model. Early after SCI or TX at 7 days, spinal learning was unattainable regardless of whether the animal recovered with or without axonal substrate. Failed learning occurred alongside measures of cell soma atrophy and aberrant dendritic spine expression within interneuron populations responsible for sensorimotor integration and learning. Alternatively, exposure of the lumbar cord to a small amount of spared axons for 6 weeks produced near-normal learning late after SCI. This coincided with greater cell soma volume and fewer aberrant dendritic spines on interneurons. Thus, an opportunity to influence activity-based learning in locomotor networks depends on spared axons limiting maladaptive plasticity. Together, this work identifies a time dependent interaction between spared axonal systems and adaptive plasticity in locomotor networks and highlights a critical window for activity-based rehabilitation.
Collapse
Affiliation(s)
- Christopher N. Hansen
- School of Health and Rehabilitation Sciences, The Ohio State UniversityColumbus, OH, USA
- Center for Brain and Spinal Cord Repair, The Ohio State UniversityColumbus, OH, USA
| | - Timothy D. Faw
- School of Health and Rehabilitation Sciences, The Ohio State UniversityColumbus, OH, USA
- Center for Brain and Spinal Cord Repair, The Ohio State UniversityColumbus, OH, USA
- Neuroscience Graduate Program, The Ohio State UniversityColumbus, OH, USA
| | - Susan White
- School of Health and Rehabilitation Sciences, The Ohio State UniversityColumbus, OH, USA
| | - John A. Buford
- School of Health and Rehabilitation Sciences, The Ohio State UniversityColumbus, OH, USA
- Center for Brain and Spinal Cord Repair, The Ohio State UniversityColumbus, OH, USA
| | - James W. Grau
- Department of Psychology, Texas A&M UniversityCollege Station, TX, USA
| | - D. Michele Basso
- School of Health and Rehabilitation Sciences, The Ohio State UniversityColumbus, OH, USA
- Center for Brain and Spinal Cord Repair, The Ohio State UniversityColumbus, OH, USA
| |
Collapse
|
34
|
Zhao P, Hill M, Liu S, Chen L, Bangalore L, Waxman SG, Tan AM. Dendritic spine remodeling following early and late Rac1 inhibition after spinal cord injury: evidence for a pain biomarker. J Neurophysiol 2016; 115:2893-910. [PMID: 26936986 DOI: 10.1152/jn.01057.2015] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 03/01/2016] [Indexed: 12/15/2022] Open
Abstract
Neuropathic pain is a significant complication following spinal cord injury (SCI) with few effective treatments. Drug development for neuropathic pain often fails because preclinical studies do not always translate well to clinical conditions. Identification of biological characteristics predictive of disease state or drug responsiveness could facilitate more effective clinical translation. Emerging evidence indicates a strong correlation between dendritic spine dysgenesis and neuropathic pain. Because dendritic spines are located on dorsal horn neurons within the spinal cord nociceptive system, dendritic spine remodeling provides a unique opportunity to understand sensory dysfunction after SCI. In this study, we provide support for the postulate that dendritic spine profiles can serve as biomarkers for neuropathic pain. We show that dendritic spine profiles after SCI change to a dysgenic state that is characteristic of neuropathic pain in a Rac1-dependent manner. Suppression of the dysgenic state through inhibition of Rac1 activity is accompanied by attenuation of neuropathic pain. Both dendritic spine dysgenesis and neuropathic pain return when inhibition of Rac1 activity is lifted. These findings suggest the utility of dendritic spines as structural biomarkers for neuropathic pain.
Collapse
Affiliation(s)
- Peng Zhao
- Department of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, Connecticut; and Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut
| | - Myriam Hill
- Department of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, Connecticut; and Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut
| | - Shujun Liu
- Department of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, Connecticut; and Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut
| | - Lubin Chen
- Department of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, Connecticut; and Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut
| | - Lakshmi Bangalore
- Department of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, Connecticut; and Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut
| | - Stephen G Waxman
- Department of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, Connecticut; and Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut
| | - Andrew M Tan
- Department of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, Connecticut; and Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut
| |
Collapse
|
35
|
Wang Y, Lu Y, Li C, Sun W, Li Z, Wang R, He T, Yang F, Yang Y, Wang X, Guan S, Chen J. Involvement of Rac1 signalling pathway in the development and maintenance of acute inflammatory pain induced by bee venom injection. Br J Pharmacol 2016; 173:937-950. [PMID: 26700000 PMCID: PMC4761090 DOI: 10.1111/bph.13413] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Revised: 12/10/2015] [Accepted: 12/12/2015] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND AND PURPOSE The Rho GTPase, Rac1, is involved in the pathogenesis of neuropathic pain induced by malformation of dendritic spines in the spinal dorsal horn (sDH) neurons. In the present study, the contribution of spinal Rac1 to peripheral inflammatory pain was studied. EXPERIMENTAL APPROACH Effects of s.c. bee venom (BV) injection on cellular localization of Rac1 in the rat sDH was determined with double labelling immunofluorescence. Activation of Rac1 and its downstream effector p21-activated kinase (PAK), ERKs and p38 MAPK in inflammatory pain states was evaluated with a pull-down assay and Western blotting. The preventive and therapeutic analgesic effects of intrathecal administration of NSC23766, a selective inhibitor of Rac1, on BV-induced spontaneous nociception and pain hypersensitivity were investigated. KEY RESULTS Rac1 labelling was mainly localized within neurons in both the superficial and deep layers of the sDH in rats of naïve, vehicle-treated and inflamed (BV injected) groups. GTP-Rac1-PAK and ERKs/p38 were activated following s.c. BV injection. Post-treatment with intrathecal NSC23766 significantly inhibited GTP-Rac1 activity and phosphorylation of Rac1-PAK, ERKs and p38 MAPK in the sDH. Both pre-treatment and post-treatment with intrathecal NSC23766 dose-dependently attenuated the paw flinches, primary thermal and mechanical hyperalgesia and the mirror-image thermal hyperalgesia induced by BV injection, but without affecting the baseline pain sensitivity and motor coordination. CONCLUSIONS AND IMPLICATIONS The spinal GTP-Rac1-PAK-ERK/p38MAPK signalling pathway is involved in both the development and maintenance of peripheral inflammatory pain and can be used as a potential molecular target for developing a novel therapeutic strategy for clinical pain.
Collapse
Affiliation(s)
- Yan Wang
- Institute for Biomedical Sciences of Pain, Tangdu HospitalThe Fourth Military Medical UniversityXi'an710038China
- Institute for Functional Brain Disorders, Tangdu HospitalThe Fourth Military Medical UniversityXi'an710038China
- Key Laboratory of Brain Stress and Behavior, PLAXi'an710038China
| | - Yun‐Fei Lu
- Institute for Biomedical Sciences of Pain, Tangdu HospitalThe Fourth Military Medical UniversityXi'an710038China
- Institute for Functional Brain Disorders, Tangdu HospitalThe Fourth Military Medical UniversityXi'an710038China
- Key Laboratory of Brain Stress and Behavior, PLAXi'an710038China
| | - Chun‐Li Li
- Institute for Biomedical Sciences of Pain, Tangdu HospitalThe Fourth Military Medical UniversityXi'an710038China
- Institute for Functional Brain Disorders, Tangdu HospitalThe Fourth Military Medical UniversityXi'an710038China
- Key Laboratory of Brain Stress and Behavior, PLAXi'an710038China
| | - Wei Sun
- Institute for Biomedical Sciences of Pain, Tangdu HospitalThe Fourth Military Medical UniversityXi'an710038China
- Institute for Functional Brain Disorders, Tangdu HospitalThe Fourth Military Medical UniversityXi'an710038China
- Key Laboratory of Brain Stress and Behavior, PLAXi'an710038China
| | - Zhen Li
- Institute for Biomedical Sciences of Pain, Tangdu HospitalThe Fourth Military Medical UniversityXi'an710038China
- Institute for Functional Brain Disorders, Tangdu HospitalThe Fourth Military Medical UniversityXi'an710038China
- Key Laboratory of Brain Stress and Behavior, PLAXi'an710038China
| | - Rui‐Rui Wang
- Institute for Biomedical Sciences of Pain, Tangdu HospitalThe Fourth Military Medical UniversityXi'an710038China
- Institute for Functional Brain Disorders, Tangdu HospitalThe Fourth Military Medical UniversityXi'an710038China
- Key Laboratory of Brain Stress and Behavior, PLAXi'an710038China
| | - Ting He
- Institute for Biomedical Sciences of Pain, Tangdu HospitalThe Fourth Military Medical UniversityXi'an710038China
- Institute for Functional Brain Disorders, Tangdu HospitalThe Fourth Military Medical UniversityXi'an710038China
- Key Laboratory of Brain Stress and Behavior, PLAXi'an710038China
| | - Fan Yang
- Institute for Biomedical Sciences of Pain, Tangdu HospitalThe Fourth Military Medical UniversityXi'an710038China
- Institute for Functional Brain Disorders, Tangdu HospitalThe Fourth Military Medical UniversityXi'an710038China
- Key Laboratory of Brain Stress and Behavior, PLAXi'an710038China
| | - Yan Yang
- Institute for Biomedical Sciences of Pain, Tangdu HospitalThe Fourth Military Medical UniversityXi'an710038China
- Institute for Functional Brain Disorders, Tangdu HospitalThe Fourth Military Medical UniversityXi'an710038China
- Key Laboratory of Brain Stress and Behavior, PLAXi'an710038China
| | - Xiao‐Liang Wang
- Institute for Biomedical Sciences of Pain, Tangdu HospitalThe Fourth Military Medical UniversityXi'an710038China
- Institute for Functional Brain Disorders, Tangdu HospitalThe Fourth Military Medical UniversityXi'an710038China
- Key Laboratory of Brain Stress and Behavior, PLAXi'an710038China
| | - Su‐Min Guan
- School of StomatologyThe Fourth Military Medical UniversityXi'an710032China
| | - Jun Chen
- Institute for Biomedical Sciences of Pain, Tangdu HospitalThe Fourth Military Medical UniversityXi'an710038China
- Institute for Functional Brain Disorders, Tangdu HospitalThe Fourth Military Medical UniversityXi'an710038China
- Key Laboratory of Brain Stress and Behavior, PLAXi'an710038China
- Beijing Institute for Brain DisordersBeijing100069China
| |
Collapse
|
36
|
Emerging Roles of Filopodia and Dendritic Spines in Motoneuron Plasticity during Development and Disease. Neural Plast 2015; 2016:3423267. [PMID: 26843990 PMCID: PMC4710938 DOI: 10.1155/2016/3423267] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Revised: 09/10/2015] [Accepted: 09/21/2015] [Indexed: 01/16/2023] Open
Abstract
Motoneurons develop extensive dendritic trees for receiving excitatory and inhibitory synaptic inputs to perform a variety of complex motor tasks. At birth, the somatodendritic domains of mouse hypoglossal and lumbar motoneurons have dense filopodia and spines. Consistent with Vaughn's synaptotropic hypothesis, we propose a developmental unified-hybrid model implicating filopodia in motoneuron spinogenesis/synaptogenesis and dendritic growth and branching critical for circuit formation and synaptic plasticity at embryonic/prenatal/neonatal period. Filopodia density decreases and spine density initially increases until postnatal day 15 (P15) and then decreases by P30. Spine distribution shifts towards the distal dendrites, and spines become shorter (stubby), coinciding with decreases in frequency and increases in amplitude of excitatory postsynaptic currents with maturation. In transgenic mice, either overexpressing the mutated human Cu/Zn-superoxide dismutase (hSOD1G93A) gene or deficient in GABAergic/glycinergic synaptic transmission (gephyrin, GAD-67, or VGAT gene knockout), hypoglossal motoneurons develop excitatory glutamatergic synaptic hyperactivity. Functional synaptic hyperactivity is associated with increased dendritic growth, branching, and increased spine and filopodia density, involving actin-based cytoskeletal and structural remodelling. Energy-dependent ionic pumps that maintain intracellular sodium/calcium homeostasis are chronically challenged by activity and selectively overwhelmed by hyperactivity which eventually causes sustained membrane depolarization leading to excitotoxicity, activating microglia to phagocytose degenerating neurons under neuropathological conditions.
Collapse
|
37
|
Deng L, Ruan Y, Chen C, Frye CC, Xiong W, Jin X, Jones K, Sengelaub D, Xu XM. Characterization of dendritic morphology and neurotransmitter phenotype of thoracic descending propriospinal neurons after complete spinal cord transection and GDNF treatment. Exp Neurol 2015; 277:103-114. [PMID: 26730519 DOI: 10.1016/j.expneurol.2015.12.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 11/11/2015] [Accepted: 12/22/2015] [Indexed: 01/20/2023]
Abstract
After spinal cord injury (SCI), poor regeneration of damaged axons of the central nervous system (CNS) causes limited functional recovery. This limited spontaneous functional recovery has been attributed, to a large extent, to the plasticity of propriospinal neurons, especially the descending propriospinal neurons (dPSNs). Compared with the supraspinal counterparts, dPSNs have displayed significantly greater regenerative capacity, which can be further enhanced by glial cell line-derived neurotrophic factor (GDNF). In the present study, we applied a G-mutated rabies virus (G-Rabies) co-expressing green fluorescence protein (GFP) to reveal Golgi-like dendritic morphology of dPSNs. We also investigated the neurotransmitters expressed by dPSNs after labeling with a retrograde tracer Fluoro-Gold (FG). dPSNs were examined in animals with sham injuries or complete spinal transections with or without GDNF treatment. Bilateral injections of G-Rabies and FG were made into the 2nd lumbar (L2) spinal cord at 3 days prior to a spinal cord transection performed at the 11th thoracic level (T11). The lesion gap was filled with Gelfoam containing either saline or GDNF in the injury groups. Four days post-injury, the rats were sacrificed for analysis. For those animals receiving G-rabies injection, the GFP signal in the T7-9 spinal cord was visualized via 2-photon microscopy. Dendritic morphology from stack images was traced and analyzed using a Neurolucida software. We found that dPSNs in sham injured animals had a predominantly dorsal-ventral distribution of dendrites. Transection injury resulted in alterations in the dendritic distribution with dorsal-ventral retraction and lateral-medial extension. Treatment with GDNF significantly increased the terminal dendritic length of dPSNs. The density of spine-like structures was increased after injury, and treatment with GDNF enhanced this effect. For the group receiving FG injections, immunohistochemistry for glutamate, choline acetyltransferase (ChAT), glycine, and GABA was performed in the T7-9 spinal cord. We show that the majority of FG retrogradely-labeled dPSNs were located in the Rexed Lamina VII. Over 90% of FG-labeled neurons were glutamatergic, with the other three neurotransmitters contributing less than 10% of the total. To our knowledge this is the first report describing the morphologic characteristics of dPSNs and their neurotransmitter expressions, as well as the dendritic response of dPSNs after transection injury and GDNF treatment.
Collapse
Affiliation(s)
- Lingxiao Deng
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN 46202; Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Department of Neurological Surgery, Goodman and Campbell Brain and Spine, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Yiwen Ruan
- Guangdong-Hong Kong-Macau Institute for CNS Regeneration (GHMICR), Jinan University, Guangzhou,China, 510632
| | - Chen Chen
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Department of Neurological Surgery, Goodman and Campbell Brain and Spine, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Christian Corbin Frye
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Department of Neurological Surgery, Goodman and Campbell Brain and Spine, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Wenhui Xiong
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN 46202; Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Department of Neurological Surgery, Goodman and Campbell Brain and Spine, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Xiaoming Jin
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN 46202; Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Department of Neurological Surgery, Goodman and Campbell Brain and Spine, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Kathryn Jones
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN 46202; Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Department of Neurological Surgery, Goodman and Campbell Brain and Spine, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Dale Sengelaub
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN 47405
| | - Xiao-Ming Xu
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN 46202; Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Department of Neurological Surgery, Goodman and Campbell Brain and Spine, Indiana University School of Medicine, Indianapolis, Indiana 46202.
| |
Collapse
|
38
|
Zhang K, Zhang J, Zhou Y, Chen C, Li W, Ma L, Zhang L, Zhao J, Gan W, Zhang L, Tang P. Remodeling the Dendritic Spines in the Hindlimb Representation of the Sensory Cortex after Spinal Cord Hemisection in Mice. PLoS One 2015; 10:e0132077. [PMID: 26132157 PMCID: PMC4489092 DOI: 10.1371/journal.pone.0132077] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2015] [Accepted: 06/09/2015] [Indexed: 01/01/2023] Open
Abstract
Spinal cord injury (SCI) can induce remodeling of multiple levels of the cerebral cortex system especially in the sensory cortex. The aim of this study was to assess, in vivo and bilaterally, the remodeling of dendritic spines in the hindlimb representation of the sensory cortex after spinal cord hemisection. Thy1-YFP transgenic mice were randomly divided into the control group and the SCI group, and the spinal vertebral plates (T11–T12) of all mice were excised. Next, the left hemisphere of the spinal cord (T12) was hemisected in the SCI group. The hindlimb representations of the sensory cortex in both groups were imaged bilaterally on the day before (0d), and three days (3d), two weeks (2w), and one month (1m) after the SCI. The rates of stable, newly formed, and eliminated spines were calculated by comparing images of individual dendritic spine in the same areas at different time points. In comparison to the control group, the rate of newly formed spines in the contralateral sensory cortex of the SCI group increased at three days and two weeks after injury. The rates of eliminated spines in the bilateral sensory cortices increased and the rate of stable spines in the bilateral cortices declined at two weeks and one month. From three days to two weeks, the stable rates of bilaterally stable spines in the SCI group decreased. In comparison to the control group and contralateral cortex in the SCI group, the re-emerging rate of eliminated spines in ipsilateral cortex of the SCI group decreased significantly. The stable rates of newly formed spines in bilateral cortices of the SCI group decreased from two weeks to one month. We found that the remodeling in the hindlimb representation of the sensory cortex after spinal cord hemisection occurred bilaterally. This remodeling included eliminating spines and forming new spines, as well as changing the reorganized regions of the brain cortex after the SCI over time. Soon after the SCI, the cortex was remodeled by increasing spine formation in the contralateral cortex. Then it was remodeled prominently by eliminating spines of bilateral cortices. Spinal cord hemisection also caused traditional stable spines to become unstable and led the eliminated spines even more hard to recur especially in the ipsilateral cortex of the SCI group. In addition, it also made the new formed spines unstable.
Collapse
Affiliation(s)
- Kexue Zhang
- Department of Orthopaedics, General Hospital of Chinese PLA, Beijing, 100853, People's Republic of China
| | - Jinhui Zhang
- Department of Orthopaedics, General Hospital of Chinese PLA, Beijing, 100853, People's Republic of China
| | - Yanmei Zhou
- Drug Discovery Center, Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, 518055, People's Republic of China
| | - Chao Chen
- Department of Orthopaedics, General Hospital of Chinese PLA, Beijing, 100853, People's Republic of China
| | - Wei Li
- Drug Discovery Center, Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, 518055, People's Republic of China
| | - Lei Ma
- Drug Discovery Center, Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, 518055, People's Republic of China
| | - Licheng Zhang
- Department of Orthopaedics, General Hospital of Chinese PLA, Beijing, 100853, People's Republic of China
| | - Jingxin Zhao
- Department of Orthopaedics, General Hospital of Chinese PLA, Beijing, 100853, People's Republic of China
| | - Wenbiao Gan
- Department of Physiology and Neuroscience, New York University School of Medicine, New York, New York, 10016, United States of America
| | - Lihai Zhang
- Department of Orthopaedics, General Hospital of Chinese PLA, Beijing, 100853, People's Republic of China
| | - Peifu Tang
- Department of Orthopaedics, General Hospital of Chinese PLA, Beijing, 100853, People's Republic of China
| |
Collapse
|
39
|
Henrich F, Magerl W, Klein T, Greffrath W, Treede RD. Capsaicin-sensitive C- and A-fibre nociceptors control long-term potentiation-like pain amplification in humans. Brain 2015; 138:2505-20. [DOI: 10.1093/brain/awv108] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Accepted: 02/24/2015] [Indexed: 01/08/2023] Open
|
40
|
|
41
|
Tan AM. Dendritic spine dysgenesis in neuropathic pain. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2015; 131:385-408. [PMID: 25744680 DOI: 10.1016/bs.pmbts.2014.12.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The failure of neuropathic pain to abate even years after trauma suggests that adverse changes to synaptic function must exist in a chronic pathological state in nociceptive pathways. The chronicity of neuropathic pain therefore underscores the importance of understanding the contribution of dendritic spines--micron-sized postsynaptic structures that represent modifiable sites of synaptic contact. Historically, dendritic spines have been of great interest to the learning and memory field. More recent evidence points to the exciting implication that abnormal dendritic spine structure following disease or injury may represent a "molecular memory" for maintaining chronic pain. Dendritic spine dysgenesis in dorsal horn neurons contributes to nociceptive hyperexcitability associated with neuropathic pain, as demonstrated in multiple pain models, i.e., spinal cord injury, peripheral nerve injury, diabetic neuropathy, and thermal burn injury. Because of the relationship between dendritic spine structure and neuronal function, a thorough investigation of dendritic spine behavior in the spinal cord is a unique opportunity to better understand the mechanisms of sensory dysfunction after injury or disease. At a conceptual level, a spinal memory mechanism that engages dendritic spine remodeling would also contribute to a broad range of intractable neurological conditions. Molecules involved in regulating dendritic spine plasticity may offer novel targets for the development of effective and durable therapies for neurological disease.
Collapse
Affiliation(s)
- Andrew Michael Tan
- Department of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, Connecticut, USA; Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut, USA; Hopkins School, New Haven, Connecticut, USA.
| |
Collapse
|
42
|
Bandaru SP, Liu S, Waxman SG, Tan AM. Dendritic spine dysgenesis contributes to hyperreflexia after spinal cord injury. J Neurophysiol 2014; 113:1598-615. [PMID: 25505110 DOI: 10.1152/jn.00566.2014] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Hyperreflexia and spasticity are chronic complications in spinal cord injury (SCI), with limited options for safe and effective treatment. A central mechanism in spasticity is hyperexcitability of the spinal stretch reflex, which presents symptomatically as a velocity-dependent increase in tonic stretch reflexes and exaggerated tendon jerks. In this study we tested the hypothesis that dendritic spine remodeling within motor reflex pathways in the spinal cord contributes to H-reflex dysfunction indicative of spasticity after contusion SCI. Six weeks after SCI in adult Sprague-Dawley rats, we observed changes in dendritic spine morphology on α-motor neurons below the level of injury, including increased density, altered spine shape, and redistribution along dendritic branches. These abnormal spine morphologies accompanied the loss of H-reflex rate-dependent depression (RDD) and increased ratio of H-reflex to M-wave responses (H/M ratio). Above the level of injury, spine density decreased compared with below-injury spine profiles and spine distributions were similar to those for uninjured controls. As expected, there was no H-reflex hyperexcitability above the level of injury in forelimb H-reflex testing. Treatment with NSC23766, a Rac1-specific inhibitor, decreased the presence of abnormal dendritic spine profiles below the level of injury, restored RDD of the H-reflex, and decreased H/M ratios in SCI animals. These findings provide evidence for a novel mechanistic relationship between abnormal dendritic spine remodeling in the spinal cord motor system and reflex dysfunction in SCI.
Collapse
Affiliation(s)
- Samira P Bandaru
- Department of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, Connecticut; and Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut
| | - Shujun Liu
- Department of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, Connecticut; and Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut
| | - Stephen G Waxman
- Department of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, Connecticut; and Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut
| | - Andrew M Tan
- Department of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, Connecticut; and Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut
| |
Collapse
|
43
|
Tan AM, Waxman SG. Dendritic spine dysgenesis in neuropathic pain. Neurosci Lett 2014; 601:54-60. [PMID: 25445354 DOI: 10.1016/j.neulet.2014.11.024] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Revised: 11/12/2014] [Accepted: 11/15/2014] [Indexed: 12/20/2022]
Abstract
Neuropathic pain is a significant unmet medical need in patients with variety of injury or disease insults to the nervous system. Neuropathic pain often presents as a painful sensation described as electrical, burning, or tingling. Currently available treatments have limited effectiveness and narrow therapeutic windows for safety. More powerful analgesics, e.g., opioids, carry a high risk for chemical dependence. Thus, a major challenge for pain research is the elucidation of the mechanisms that underlie neuropathic pain and developing targeted strategies to alleviate pathological pain. The mechanistic link between dendritic spine structure and circuit function could explain why neuropathic pain is difficult to treat, since nociceptive processing pathways are adversely "hard-wired" through the reorganization of dendritic spines. Several studies in animal models of neuropathic pain have begun to reveal the functional contribution of dendritic spine dysgenesis in neuropathic pain. Previous reports have demonstrated three primary changes in dendritic spine structure on nociceptive dorsal horn neurons following injury or disease, which accompany chronic intractable pain: (I) increased density of dendritic spines, particularly mature mushroom-spine spines, (II) redistribution of spines toward dendritic branch locations close to the cell body, and (III) enlargement of the spine head diameter, which generally presents as a mushroom-shaped spine. Given the important functional implications of spine distribution, density, and shape for synaptic and neuronal function, the study of dendritic spine abnormality may provide a new perspective for investigating pain, and the identification of specific molecular players that regulate spine morphology may guide the development of more effective and long-lasting therapies.
Collapse
Affiliation(s)
- Andrew M Tan
- Department of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, CT 06510, USA; Department of Neurology and Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, CT 06516, USA.
| | - Stephen G Waxman
- Department of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, CT 06510, USA; Department of Neurology and Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, CT 06516, USA
| |
Collapse
|
44
|
Walters ET. Neuroinflammatory contributions to pain after SCI: roles for central glial mechanisms and nociceptor-mediated host defense. Exp Neurol 2014; 258:48-61. [PMID: 25017887 DOI: 10.1016/j.expneurol.2014.02.001] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Revised: 01/23/2014] [Accepted: 02/02/2014] [Indexed: 12/30/2022]
Abstract
Neuropathic pain after spinal cord injury (SCI) is common, often intractable, and can be severely debilitating. A number of mechanisms have been proposed for this pain, which are discussed briefly, along with methods for revealing SCI pain in animal models, such as the recently applied conditioned place preference test. During the last decade, studies of animal models have shown that both central neuroinflammation and behavioral hypersensitivity (indirect reflex measures of pain) persist chronically after SCI. Interventions that reduce neuroinflammation have been found to ameliorate pain-related behavior, such as treatment with agents that inhibit the activation states of microglia and/or astroglia (including IL-10, minocycline, etanercept, propentofylline, ibudilast, licofelone, SP600125, carbenoxolone). Reversal of pain-related behavior has also been shown with disruption by an inhibitor (CR8) and/or genetic deletion of cell cycle-related proteins, deletion of a truncated receptor (trkB.T1) for brain-derived neurotrophic factor (BDNF), or reduction by antisense knockdown or an inhibitor (AMG9810) of the activity of channels (TRPV1 or Nav1.8) important for electrical activity in primary nociceptors. Nociceptor activity is known to drive central neuroinflammation in peripheral injury models, and nociceptors appear to be an integral component of host defense. Thus, emerging results suggest that spinal and systemic effects of SCI can activate nociceptor-mediated host defense responses that interact via neuroinflammatory signaling with complex central consequences of SCI to drive chronic pain. This broader view of SCI-induced neuroinflammation suggests new targets, and additional complications, for efforts to develop effective treatments for neuropathic SCI pain.
Collapse
Affiliation(s)
- Edgar T Walters
- Department of Integrative Biology and Pharmacology, University of Texas Medical School at Houston, TX, USA.
| |
Collapse
|
45
|
Lin CL, Heron P, Hamann SR, Smith GM. Functional distinction between NGF-mediated plasticity and regeneration of nociceptive axons within the spinal cord. Neuroscience 2014; 272:76-87. [PMID: 24797326 PMCID: PMC4103020 DOI: 10.1016/j.neuroscience.2014.04.053] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 04/22/2014] [Accepted: 04/23/2014] [Indexed: 10/25/2022]
Abstract
Successful regeneration after injury requires either the direct reformation of the circuit or the formation of a bridge circuit to provide partial functional return through a more indirect route. Presently, little is known about the specificity of how regenerating axons reconnect or reconstruct functional circuits. We have established an in vivo Dorsal root entry zone (DREZ) model, which in the presence of Nerve Growth Factor (NGF), shows very robust regeneration of peptidergic nociceptive axons, but not other sensory axons. Expression of NGF in normal, non-injured animals leads to robust sprouting of only the peptidergic nociceptive axons. Interestingly, NGF-induced sprouting of these axons leads to severe chronic pain, whereas, regeneration leads to protective-like pain without chronic pain. Using this model we set out to compare differences in behavioral outcomes and circuit features between these two groups. In this study, we examined pre-synaptic and post-synaptic markers to evaluate the relationship between synaptic connections and behavioral responses. NGF-induced sprouting of calcitonin gene-related peptide (CGRP) axons resulted in a significant redistribution of synapses and cFos expression into the deeper dorsal horn. Regeneration of only the CGRP axons showed a general reduction in synapses and cFos expression within laminae I and II; however, inflammation of the hindpaw induced peripheral sensitization. These data show that although NGF-induced sprouting of peptidergic axons induces robust chronic pain and cFos expression throughout the entire dorsal horn, regeneration of the same axons resulted in normal protective pain with a synaptic and cFos distribution similar, albeit significantly less than that shown by the sprouting of CGRP axons.
Collapse
Affiliation(s)
- C-L Lin
- Department of Neurosurgery, Chang Gung Memorial Hospital, Tao-Yuan, Taiwan; Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan; Department of Physiology, Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY 40536, United States
| | - P Heron
- Department of Physiology, Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY 40536, United States
| | - S R Hamann
- Department of Anesthesiology, University of Kentucky, Lexington, KY 40536, United States
| | - G M Smith
- Department of Physiology, Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY 40536, United States; Shriners Hospitals for Pediatric Research Center, Department of Neuroscience, Temple University, Philadelphia, PA 19140, United States.
| |
Collapse
|
46
|
Schafer DP, Lehrman EK, Heller CT, Stevens B. An engulfment assay: a protocol to assess interactions between CNS phagocytes and neurons. J Vis Exp 2014. [PMID: 24962472 DOI: 10.3791/51482] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Phagocytosis is a process in which a cell engulfs material (entire cell, parts of a cell, debris, etc.) in its surrounding extracellular environment and subsequently digests this material, commonly through lysosomal degradation. Microglia are the resident immune cells of the central nervous system (CNS) whose phagocytic function has been described in a broad range of conditions from neurodegenerative disease (e.g., beta-amyloid clearance in Alzheimer's disease) to development of the healthy brain (e.g., synaptic pruning)(1-6). The following protocol is an engulfment assay developed to visualize and quantify microglia-mediated engulfment of presynaptic inputs in the developing mouse retinogeniculate system(7). While this assay was used to assess microglia function in this particular context, a similar approach may be used to assess other phagocytes throughout the brain (e.g., astrocytes) and the rest of the body (e.g., peripheral macrophages) as well as other contexts in which synaptic remodeling occurs (e.g. ,brain injury/disease).
Collapse
Affiliation(s)
- Dorothy P Schafer
- Department of Neurology, F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School;
| | - Emily K Lehrman
- Department of Neurology, F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School
| | - Christopher T Heller
- Department of Neurology, F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School
| | - Beth Stevens
- Department of Neurology, F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School
| |
Collapse
|
47
|
PAR2-mediated upregulation of BDNF contributes to central sensitization in bone cancer pain. Mol Pain 2014; 10:28. [PMID: 24886294 PMCID: PMC4027994 DOI: 10.1186/1744-8069-10-28] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Accepted: 04/28/2014] [Indexed: 12/01/2022] Open
Abstract
Background Bone cancer pain is currently a major clinical challenge for the management of cancer patients, and the cellular and molecular mechanisms underlying the spinal sensitization remain unclear. While several studies demonstrated the critical role of proteinase-activated receptor (PAR2) in the pathogenesis of several types of inflammatory or neuropathic pain, the involvement of spinal PAR2 and the pertinent signaling in the central sensitization is not determined yet in the rodent model of bone cancer pain. Findings Implantation of tumor cells into the tibias induced significant thermal hyperalgesia and mechanical allodynia, and enhanced glutamatergic strength in the ipsilateral dorsal horn. Significantly increased brain-derived neurotrophic factor (BDNF) expression was detected in the dorsal horn, and blockade of spinal BDNF signaling attenuated the enhancement of glutamatergic strength, thermal hyperalgesia and mechanical allodynia in the rats with bone cancer pain. Significantly increased spinal PAR2 expression was also observed, and inhibition of PAR2 signaling ameliorated BDNF upsurge, enhanced glutamatergic strength, and thermal hyperalgesia and mechanical allodynia. Inhibition of NF-κB pathway, the downstream of PAR2 signaling, also significantly decreased the spinal BDNF expression, glutamatergic strength of dorsal horn neurons, and thermal hyperalgesia and mechanical allodynia. Conclusion The present study demonstrated that activation of PAR2 triggered NF-κB signaling and significantly upregulated the BDNF function, which critically contributed to the enhancement of glutamatergic transmission in spinal dorsal horn and thermal and mechanical hypersensitivity in the rats with bone cancer. This indicated that PAR2 - NF-κB signaling might become a novel target for the treatment of pain in patients with bone cancer.
Collapse
|
48
|
Shin HY, Kim H, Kwon MJ, Hwang DH, Lee K, Kim BG. Molecular and cellular changes in the lumbar spinal cord following thoracic injury: regulation by treadmill locomotor training. PLoS One 2014; 9:e88215. [PMID: 24520355 PMCID: PMC3919755 DOI: 10.1371/journal.pone.0088215] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Accepted: 01/03/2014] [Indexed: 11/18/2022] Open
Abstract
Traumatic spinal cord injury (SCI) often leads to debilitating loss of locomotor function. Neuroplasticity of spinal circuitry underlies some functional recovery and therefore represents a therapeutic target to improve locomotor function following SCI. However, the cellular and molecular mechanisms mediating neuroplasticity below the lesion level are not fully understood. The present study performed a gene expression profiling in the rat lumbar spinal cord at 1 and 3 weeks after contusive SCI at T9. Another group of rats received treadmill locomotor training (TMT) until 3 weeks, and gene expression profiles were compared between animals with and without TMT. Microarray analysis showed that many inflammation-related genes were robustly upregulated in the lumbar spinal cord at both 1 and 3 weeks after thoracic injury. Notably, several components involved in an early complement activation pathway were concurrently upregulated. In line with the microarray finding, the number of microglia substantially increased not only in the white matter but also in the gray matter. C3 and complement receptor 3 were intensely expressed in the ventral horn after injury. Furthermore, synaptic puncta near ventral motor neurons were frequently colocalized with microglia after injury, implicating complement activation and microglial cells in synaptic remodeling in the lumbar locomotor circuitry after SCI. Interestingly, TMT did not influence the injury-induced upregulation of inflammation-related genes. Instead, TMT restored pre-injury expression patterns of several genes that were downregulated by injury. Notably, TMT increased the expression of genes involved in neuroplasticity (Arc, Nrcam) and angiogenesis (Adam8, Tie1), suggesting that TMT may improve locomotor function in part by promoting neurovascular remodeling in the lumbar motor circuitry.
Collapse
Affiliation(s)
- Hae Young Shin
- Department of Brain Science, Ajou University School of Medicine, Suwon, Republic of Korea
- Neuroscience Graduate Program, Department of Biomedical Sciences, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Hyosil Kim
- Neuroscience Graduate Program, Department of Biomedical Sciences, Ajou University School of Medicine, Suwon, Republic of Korea
- Department of Biomedical Informatics, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Min Jung Kwon
- Department of Brain Science, Ajou University School of Medicine, Suwon, Republic of Korea
- Neuroscience Graduate Program, Department of Biomedical Sciences, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Dong Hoon Hwang
- Department of Brain Science, Ajou University School of Medicine, Suwon, Republic of Korea
- Neuroscience Graduate Program, Department of Biomedical Sciences, Ajou University School of Medicine, Suwon, Republic of Korea
| | - KiYoung Lee
- Neuroscience Graduate Program, Department of Biomedical Sciences, Ajou University School of Medicine, Suwon, Republic of Korea
- Department of Biomedical Informatics, Ajou University School of Medicine, Suwon, Republic of Korea
- * E-mail: (KYL); (BGK)
| | - Byung Gon Kim
- Department of Brain Science, Ajou University School of Medicine, Suwon, Republic of Korea
- Neuroscience Graduate Program, Department of Biomedical Sciences, Ajou University School of Medicine, Suwon, Republic of Korea
- Department of Neurology, Ajou University School of Medicine, Suwon, Republic of Korea
- * E-mail: (KYL); (BGK)
| |
Collapse
|
49
|
Beneficial effects of melatonin combined with exercise on endogenous neural stem/progenitor cells proliferation after spinal cord injury. Int J Mol Sci 2014; 15:2207-22. [PMID: 24487506 PMCID: PMC3958846 DOI: 10.3390/ijms15022207] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Revised: 01/16/2014] [Accepted: 01/24/2014] [Indexed: 01/27/2023] Open
Abstract
Endogenous neural stem/progenitor cells (eNSPCs) proliferate and differentiate into neurons and glial cells after spinal cord injury (SCI). We have previously shown that melatonin (MT) plus exercise (Ex) had a synergistic effect on functional recovery after SCI. Thus, we hypothesized that combined therapy including melatonin and exercise might exert a beneficial effect on eNSPCs after SCI. Melatonin was administered twice a day and exercise was performed on a treadmill for 15 min, six days per week for 3 weeks after SCI. Immunohistochemistry and RT-PCR analysis were used to determine cell population for late response, in conjunction with histological examination and motor function test. There was marked improvement in hindlimb function in SCI+MT+Ex group at day 14 and 21 after injury, as documented by the reduced size of the spinal lesion and a higher density of dendritic spines and axons; such functional improvements were associated with increased numbers of BrdU-positive cells. Furthermore, MAP2 was increased in the injured thoracic segment, while GFAP was increased in the cervical segment, along with elevated numbers of BrdU-positive nestin-expressing eNSPCs in the SCI+MT+Ex group. The dendritic spine density was augmented markedly in SCI+MT and SCI+MT+Ex groups. These results suggest a synergistic effect of SCI+MT+Ex might create a microenvironment to facilitate proliferation of eNSPCs to effectively replace injured cells and to improve regeneration in SCI.
Collapse
|
50
|
Functional regeneration of intraspinal connections in a new in vitro model. Neuroscience 2014; 262:40-52. [PMID: 24394955 DOI: 10.1016/j.neuroscience.2013.12.051] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Revised: 11/29/2013] [Accepted: 12/23/2013] [Indexed: 11/21/2022]
Abstract
Regeneration in the adult mammalian spinal cord is limited due to intrinsic properties of mature neurons and a hostile environment, mainly provided by central nervous system myelin and reactive astrocytes. Recent results indicate that propriospinal connections are a promising target for intervention to improve functional recovery. To study this functional regeneration in vitro we developed a model consisting of two organotypic spinal cord slices placed adjacently on multi-electrode arrays. The electrodes allow us to record the spontaneously occurring neuronal activity, which is often organized in network bursts. Within a few days in vitro (DIV), these bursts become synchronized between the two slices due to the formation of axonal connections. We cut them with a scalpel at different time points in vitro and record the neuronal activity 3 weeks later. The functional recovery ability was assessed by calculating the percentage of synchronized bursts between the two slices. We found that cultures lesioned at a young age (7-9 DIV) retained the high regeneration ability of embryonic tissue. However, cultures lesioned at older ages (>19 DIV) displayed a distinct reduction of synchronized activity. This reduction was not accompanied by an inability for axons to cross the lesion site. We show that functional regeneration in these old cultures can be improved by increasing the intracellular cAMP level with Rolipram or by placing a young slice next to an old one directly after the lesion. We conclude that co-cultures of two spinal cord slices are an appropriate model to study functional regeneration of intraspinal connections.
Collapse
|