1
|
Gu T, Zhou Y, Wang Q, Zhu X, Wu C, Dong Z. Downregulation of miR-410-3p via the METRNL-mediated AMPK/SIRT1/NF-κB signaling axis inhibits oxidative stress and inflammation in idiopathic pulmonary fibrosis. Cell Signal 2025; 130:111667. [PMID: 39971221 DOI: 10.1016/j.cellsig.2025.111667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 01/23/2025] [Accepted: 02/14/2025] [Indexed: 02/21/2025]
Abstract
Idiopathic pulmonary fibrosis (IPF), a fatal pulmonary condition, is marked by fibrosis and is devoid of efficacious treatments. The aim of our research was to explore the influence of miR-410-3p on the advancement of IPF. For creating a model of lung fibrosis, tracheal injections of 5 mg/kg bleomycin (BLM) were administered to mice, and added 10 ng/mL of TGF-β1 into MRC-5 cell medium. The evaluation of gene and protein expression was conducted using RT-qPCR and western blotting techniques. The assessment of fibrosis in MRC-5 cells and mouse pulmonary tissue involved the use of CCK-8, ELISA, flow cytometry, and HE staining methods. The results of our study revealed a rise in miR-410-3p levels in both TGF-β1-stimulated MRC-5 cells and BLM-exposed mouse pulmonary tissue. Inhibiting miR-410-3p decreased cell viability, lessened oxidative stress (MDA, ROS), decreased levels of inflammatory cytokines (TNF-α, IL-1β, IL-6), curtailed fibrosis-associated proteins (α-SMA, Collagen I, Collagen III, FN1), and amplified the expression of SOD and E-cadherin. The treatment effectively reduced cell fibrosis and improved lung tissue health, thus hindering the advancement of IPF. Mechanically, knocking down miR-410-3p activates AMPK/SIRT1 molecular axis to inhibit NF-κB signaling by up-regulating METRNL expression, thereby inhibiting oxidative stress and inflammation levels, and ultimately improving IPF. In summary, our research indicates that focusing on miR-410-3p might be an effective approach in IPF treatment.
Collapse
Affiliation(s)
- Tongjie Gu
- Department of Respiratory and Critical Care Medicine, Ningbo NO. 2 Hospital, Ningbo 315010, Zhejiang, China
| | - Ying Zhou
- Department of Respiratory and Critical Care Medicine, Ningbo NO. 2 Hospital, Ningbo 315010, Zhejiang, China
| | - Qiong Wang
- Department of Respiratory Infection, Zhenhai Hospital of Traditional Chinese Medicine, Ningbo 315200, Zhejiang, China
| | - Xiaoxiao Zhu
- Department of Respiratory and Critical Care Medicine, Ningbo NO. 2 Hospital, Ningbo 315010, Zhejiang, China
| | - Chunli Wu
- Department of Respiratory and Critical Care Medicine, Ningbo NO. 2 Hospital, Ningbo 315010, Zhejiang, China
| | - Zhaoxing Dong
- Department of Respiratory and Critical Care Medicine, Ningbo NO. 2 Hospital, Ningbo 315010, Zhejiang, China.
| |
Collapse
|
2
|
Xu TY, Zhao JX, Chen MY, Miao ZW, Li ZY, Chang YQ, Wang YS, Miao CY. Exploring METRNL as a novel biomarker in sepsis: diagnostic potential and secretion mechanism. J Intensive Care 2025; 13:19. [PMID: 40205457 PMCID: PMC11983927 DOI: 10.1186/s40560-025-00780-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 01/28/2025] [Indexed: 04/11/2025] Open
Abstract
BACKGROUND Sepsis is a life-threatening condition with a high mortality rate in intensive care unit (ICU). However, rapid and accurate diagnostic criteria are still lacking. This pilot study explored the role of METRNL as a novel biomarker for sepsis by focusing on its diagnostic potential and rapid secretion mechanism. METHODS METRNL levels were measured in cell and animal models of sepsis. Serum samples from 107 sepsis patients and 95 non-septic controls in ICU were collected. Diagnostic performance of METRNL, Procalcitonin (PCT) and C-reactive protein (CRP) were assessed using ROC analysis. Endothelial cell-specific Metrnl gene knockout mice (EC-Metrnl-/- mice) were used to identify the source of METRNL secretion. Chemical inhibitors and RNA interference were used to explore the secretion pathways. RESULTS In lipopolysaccharide (LPS)-induced cell and mouse models of sepsis, METRNL levels significantly increased in a dose- and time-dependent manner. Similarly, in the cecal ligation and puncture mouse models, serum METRNL levels were elevated over time and correlated with sepsis severity. In animals, serum METRNL increased within 1 h post-modeling, preceding PCT and CRP. Clinically, sepsis patients had significantly higher serum METRNL levels. ROC analysis showed area under the curves [95% confidence intervals] of 0.943 [0.91-0.975] for METRNL, 0.955 [0.929-0.981] for PCT and 0.873 [0.825-0.921] for CRP. At the optimal cutoff value, METRNL (91.6%) exhibited relatively greater diagnostic specificity than PCT (88.4%) and CRP (69.5%). EC-Metrnl-/- reduced majority of serum Metrnl levels in sepsis mouse models. Inhibition of the endoplasmic reticulum-Golgi (ER-Golgi) pathway through chemical inhibitors or RNA interference significantly reduced METRNL levels in the supernatant of sepsis cell models compared to control groups. Similar results were obtained with Toll-like receptor 4 (TLR4) and ERK inhibitors. CONCLUSIONS This pilot study demonstrates that METRNL is a novel potential biomarker for sepsis with diagnostic capability comparable to that of PCT. Serum METRNL rapidly increased during the early phase of sepsis. Mechanistically, it mainly originates from the endothelium during sepsis, and TLR4-ERK signaling mediates the rapid secretion of METRNL via the classical ER-Golgi pathway in response to LPS stimulation.
Collapse
Affiliation(s)
- Tian-Ying Xu
- Department of Pharmacology, Second Military Medical University/Naval Medical University, Shanghai, China.
- Department of Anesthetic Pharmacology, School of Anesthesiology, Second Military Medical University/Naval Medical University, Shanghai, China.
| | - Jing-Xin Zhao
- Department of Pharmacology, Second Military Medical University/Naval Medical University, Shanghai, China
- Faculty of Anesthesiology, Changhai Hospital, Second Military Medical University/Naval Medical University, Shanghai, China
| | - Ming-Yao Chen
- Department of Pharmacology, Second Military Medical University/Naval Medical University, Shanghai, China
- Department of Anesthetic Pharmacology, School of Anesthesiology, Second Military Medical University/Naval Medical University, Shanghai, China
| | - Zhu-Wei Miao
- Department of Pharmacology, Second Military Medical University/Naval Medical University, Shanghai, China
| | - Zhi-Yong Li
- Department of Pharmacology, Second Military Medical University/Naval Medical University, Shanghai, China
| | - Yong-Qing Chang
- Department of Critical Care Medicine, Changhai Hospital, Second Military Medical University/Naval Medical University, Shanghai, China
| | - Yu-Sheng Wang
- Department of Critical Care Medicine, Naval Medical Center of PLA, Shanghai, China
| | - Chao-Yu Miao
- Department of Pharmacology, Second Military Medical University/Naval Medical University, Shanghai, China.
| |
Collapse
|
3
|
Li ZY, Luo HY, Xu F, Xu Y, Ma CH, Zhang SL, Xu S, Ma YY, Li N, Miao CY. Metrnl protects intestinal barrier function by regulating tight junctions via the IKKβ/IκBα/NFκB/MLCK/MLC signaling pathway. Cell Death Discov 2025; 11:155. [PMID: 40199887 PMCID: PMC11979045 DOI: 10.1038/s41420-025-02457-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 03/12/2025] [Accepted: 03/27/2025] [Indexed: 04/10/2025] Open
Abstract
Meteorin-like (Metrnl), also known as Subfatin, IL-41, or Cometin, is a secreted protein predominantly expressed in the intestinal epithelium. The intestinal barrier, primarily consisting of epithelial cells connected by tight junctions, is essential for maintaining gut homeostasis by preventing harmful substances from entering the body. Despite Metrnl's high expression in the intestine, its role in barrier function remains unclear. In this study, we investigated Metrnl's role in intestinal barrier function using both loss-of-function (using global and intestinal epithelium-specific knockout mice) and gain-of-function (using intestinal epithelium-specific overexpression mice) approaches. Our findings showed that Metrnl deficiency disrupted tight junctions between enterocytes and exacerbated endotoxin-induced barrier dysfunction. Mechanistically, Metrnl deficiency triggered activation of the IKKβ/IκBα/NFκB signaling pathway, leading to increased MLCK expression and MLC phosphorylation. The NFκB inhibitor PDTC reversed this effect both in vivo and in vitro. Macrophages played an essential role in Metrnl's intestinal barrier protective effects during endotoxemia, but were not necessary in burn-induced barrier injury, suggesting potential differences in mechanism between these conditions. Notably, recombinant Metrnl protein administration protected against barrier dysfunction, and genetic overexpression of Metrnl in enterocytes preserved barrier function and alleviated DSS-induced colitis. These findings establish Metrnl as a key regulator of intestinal barrier integrity through the IKKβ/IκBα/NFκB/MLCK/MLC pathway, highlighting its potential therapeutic value in treating barrier dysfunction disorders. Intestinal barrier dysfunction triggers, such as endotoxin and severe burns, may induce the release of Metrnl from vascular endothelium. This leads to an increase in circulating Metrnl. Both circulating Metrnl and local Metrnl inhibit inflammation and the IKKβ/IκBα/NFκB/MLCK/MLC signaling pathway in enterocytes, thereby protecting tight junctions from disruption caused by endotoxin or burns.
Collapse
Affiliation(s)
- Zhi-Yong Li
- Department of Pharmacology, Second Military Medical University/Naval Medical University, Shanghai, 200433, China.
- Department of Pathology, Faculty of Medical Imaging, Second Military Medical University/Naval Medical University, Shanghai, 200433, China.
| | - Heng-Yu Luo
- Department of Pharmacology, Second Military Medical University/Naval Medical University, Shanghai, 200433, China
| | - Fei Xu
- Department of Pharmacology, Second Military Medical University/Naval Medical University, Shanghai, 200433, China
| | - Yao Xu
- Department of Pharmacology, Second Military Medical University/Naval Medical University, Shanghai, 200433, China
| | - Chun-Hui Ma
- Department of Pathology, Faculty of Medical Imaging, Second Military Medical University/Naval Medical University, Shanghai, 200433, China
| | - Sai-Long Zhang
- Department of Pharmacology, Second Military Medical University/Naval Medical University, Shanghai, 200433, China
| | - Sheng Xu
- Department of Immunology, Second Military Medical University/Naval Medical University, Shanghai, 200433, China
| | - Yuan-Yuan Ma
- Senior Department of Hematology, The Fifth Medical Center of People's Liberation Army(PLA), General Hospital, Beijing, 100010, China
| | - Nan Li
- Department of Immunology, Second Military Medical University/Naval Medical University, Shanghai, 200433, China
| | - Chao-Yu Miao
- Department of Pharmacology, Second Military Medical University/Naval Medical University, Shanghai, 200433, China.
| |
Collapse
|
4
|
Zhou Y, Li J, Yuan Y, Zhang H, Luo X, Wang F, Tao Y, Yue J, Huang L, Wu L, Cao Y, Yu Q, He Q. Metrnl/C-KIT Axis Attenuates Early Brain Injury Following Subarachnoid Hemorrhage by Inhibiting Neuronal Ferroptosis. CNS Neurosci Ther 2025; 31:e70286. [PMID: 39981761 PMCID: PMC11843251 DOI: 10.1111/cns.70286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 01/14/2025] [Accepted: 02/07/2025] [Indexed: 02/22/2025] Open
Abstract
BACKGROUND AND PURPOSE Ferroptosis is a distinct form of cell death characterized by iron-dependent lipid peroxidation and plays a crucial role in the early brain injury (EBI) following subarachnoid hemorrhage (SAH). As a newly discovered endogenous ligand for the C-KIT receptor tyrosine kinase, meteorin-like protein (Metrnl) exerts regulatory functions in oxidative stress and protects against various diseases. However, the specific role of the Metrnl/C-KIT axis in neuronal ferroptosis during EBI following SAH remains to be elucidated. METHODS Sprague Dawley rats were used to establish the SAH model through endovascular perforation. r-Metrnl was administered intranasally 1 h after SAH. Metrnl shRNA, C-KIT inhibitor ISCK03, AMPK inhibitor dorsomorphin, and Nrf2 inhibitor ML385 were administered intracerebroventricularly or intraperitoneally before r-Metrnl treatment to explore the underlying mechanisms. Neurobehavioral assessments, immunofluorescence, western blot, ELISA, Fluoro-Jade C staining, transmission electron microscopy, and Nissl staining were conducted to evaluate the effects. Additionally, primary neuron culture with hemoglobin (Hb) stimulation was used for in vitro studies. RESULTS Phosphorylated C-KIT and endogenous Metrnl levels were upregulated after SAH. Knockdown of Metrnl aggravated neurobehavioral deficits and neuronal ferroptosis, whereas r-Metrnl treatment showed a protective effect. Mechanistically, r-Metrnl significantly increased the protein levels of SLC7A11, GPX4, FTH, FSP1, and GSH, whereas it decreased the levels of ACSL4, 4HNE, and MDA in the ipsilateral hemisphere 24 h after SAH. Also, r-Metrnl reduced mitochondrial shrinkage, increased mitochondrial crista, and decreased membrane density. However, the beneficial effects of r-Metrnl were partially reversed by ISCK03, dorsomorphin, or ML385 treatment both in vivo and in vitro. CONCLUSIONS Our study demonstrated that r-Metrnl reduced neuronal ferroptosis and improved neurological outcomes after SAH by modulating the C-KIT/AMPK/Nrf2 signaling pathway.
Collapse
Affiliation(s)
- You Zhou
- Department of Critical Care Medicine, The Second Affiliated HospitalChongqing Medical UniversityChongqingChina
| | - Jiani Li
- Department of Neurology, The Second Affiliated HospitalChongqing Medical UniversityChongqingChina
| | - Ye Yuan
- Department of Neurosurgery, The Second Affiliated HospitalChongqing Medical UniversityChongqingChina
| | - Hao Zhang
- Department of Neurosurgery, The Second Affiliated HospitalChongqing Medical UniversityChongqingChina
| | - Xu Luo
- Department of Neurosurgery, The Second Affiliated HospitalChongqing Medical UniversityChongqingChina
| | - Feng Wang
- Department of Neurosurgery, The Second Affiliated HospitalChongqing Medical UniversityChongqingChina
| | - Yihao Tao
- Department of Neurosurgery, The Second Affiliated HospitalChongqing Medical UniversityChongqingChina
| | - Jianhe Yue
- Department of Neurosurgery, The Second Affiliated HospitalChongqing Medical UniversityChongqingChina
| | - Luyi Huang
- Key Laboratory of Molecular Biology for Diseases (Ministry of Education), Department of Infectious Diseases, Institute for Viral Hepatitis, The Second Affiliated HospitalChongqing Medical UniversityChongqingChina
| | - Lei Wu
- Department of NeurologyGuangdong Second Provincial General HospitalGuangzhouGuangdongChina
| | - Yunxing Cao
- Department of Critical Care Medicine, The Second Affiliated HospitalChongqing Medical UniversityChongqingChina
| | - Qian Yu
- Department of Neurosurgery, School of Medicine, The Second Affiliated HospitalZhejiang UniversityHangzhouZhejiangChina
| | - Qiuguang He
- Department of Neurosurgery, The Second Affiliated HospitalChongqing Medical UniversityChongqingChina
| |
Collapse
|
5
|
Xu M, Liu X, Lu L, Li Z. Metrnl and Cardiomyopathies: From Molecular Mechanisms to Therapeutic Insights. J Cell Mol Med 2025; 29:e70371. [PMID: 39853716 PMCID: PMC11756984 DOI: 10.1111/jcmm.70371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 01/01/2025] [Accepted: 01/07/2025] [Indexed: 01/26/2025] Open
Abstract
Cardiomyopathies, a diverse group of diseases affecting the heart muscle, continue to pose significant clinical challenges due to their complex aetiologies and limited treatment options targeting underlying genetic and molecular dysregulations. Emerging evidence indicates that Metrnl, a myokine, adipokine and cardiokine, plays a significant role in the pathogenesis of various cardiomyopathies. Therefore, the objective of this review is to examine the role and mechanism of Metrnl in various cardiomyopathies, with the expectation of providing new insights for the treatment of these diseases.
Collapse
Affiliation(s)
- Miaomiao Xu
- School of Physical Education and HealthGuangzhou University of Chinese MedicineGuangzhouGuangdongChina
- South China Research Center for Acupuncture and Moxibustion, Medical College of Acu‐Moxi and RehabilitationGuangzhou University of Chinese MedicineGuangzhouGuangdongChina
| | - Xiaoguang Liu
- College of Sports and HealthGuangzhou Sport UniversityGuangzhouGuangdongChina
| | - Liming Lu
- South China Research Center for Acupuncture and Moxibustion, Medical College of Acu‐Moxi and RehabilitationGuangzhou University of Chinese MedicineGuangzhouGuangdongChina
| | - Zhaowei Li
- School of Physical Education and HealthGuangzhou University of Chinese MedicineGuangzhouGuangdongChina
| |
Collapse
|
6
|
Miao ZW, Chen J, Chen CX, Zheng SL, Zhao HY, Miao CY. Metrnl as a secreted protein: Discovery and cardiovascular research. Pharmacol Ther 2024; 263:108730. [PMID: 39401532 DOI: 10.1016/j.pharmthera.2024.108730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 08/05/2024] [Accepted: 10/08/2024] [Indexed: 10/25/2024]
Abstract
Secreted proteins have gained more and more attentions, since they can become therapeutic targets, drugs and biomarkers for prevention, diagnosis and treatment of disease and aging. In 2014, Metrnl (also named Meteorin-like, Cometin, Subfatin, Interleukin-39, Interleukin-41, Meteorin-β, and Metrn-β/Metrnβ), as a novel secreted protein released from a certain tissue, was reported by us and others. During the past decade, the number of articles on Metrnl has continued to increase. Different sources of Metrnl have been described with different functions, including Metrnl as an adipokine for insulin sensitization, a cardiokine against cardiac hypertrophy and dysfunction, an endothelium-derived factor against endothelial dysfunction and atherosclerosis, etc. Especially, we show that endothelial Metrnl is a major source for circulating Metrnl levels. Meanwhile, lots of clinical studies have investigated the relationship between blood Metrnl levels and metabolic, inflammatory and cardiovascular diseases. Metrnl appears a protective factor and a promising therapeutic target and/or drug against these diseases, given the relatively consistent conclusion from the preclinical studies. In addition to graphically demonstrating the role of Metrnl in various organs and diseases, this review will mainly describe the discovery of Metrnl, summarize the role of Metrnl in cardiovascular system that is a recently major progress in Metrnl research, and highlight several perspectives for future basic and translational research. Also, we suggest using one name Metrnl instead of other multiple names for the same protein.
Collapse
Affiliation(s)
- Zhu-Wei Miao
- Department of Pharmacology, Second Military Medical University / Naval Medical University, Shanghai, China
| | - Jin Chen
- Department of Pharmacology, Second Military Medical University / Naval Medical University, Shanghai, China; Department of Endocrinology and Metabolism, Changhai Hospital, Second Military Medical University / Naval Medical University, Shanghai, China
| | - Can-Xin Chen
- Department of Pharmacology, Second Military Medical University / Naval Medical University, Shanghai, China
| | - Si-Li Zheng
- Department of Pharmacology, Second Military Medical University / Naval Medical University, Shanghai, China
| | - Huan-Yu Zhao
- Department of Pharmacology, Second Military Medical University / Naval Medical University, Shanghai, China
| | - Chao-Yu Miao
- Department of Pharmacology, Second Military Medical University / Naval Medical University, Shanghai, China.
| |
Collapse
|
7
|
Zheng H, Gao Y, Zhu X, Zhang Y, Li Y, Sun W, Ji L, Liu X, Zhang J, Lu B, Li Y, Zhang S. Characterization of the Metabolic Proteome of Serum From Patients With Diabetic Distal Symmetric Polyneuropathy. Proteomics Clin Appl 2024; 18:e202300133. [PMID: 39313940 DOI: 10.1002/prca.202300133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 08/10/2024] [Accepted: 09/04/2024] [Indexed: 09/25/2024]
Abstract
AIMS The pathophysiological of diabetic distal symmetric polyneuropathy (DSPN) remains to be elucidated and there are no diagnostic or prognostic biomarkers for the condition. In this explorative proteomic study, metabolic proteome profiling of serum in patients with/without DSPN was analyzed. We aimed to discover proteins with different abundance ranges through proximity extension assay (PEA) technology. METHODS Temperature quantitative sensory testing (QST) and electromyography (EMG) were used to access the small- and large-fiber function of all participants, respectively. The metabolic proteome profile of serum was analyzed using PEA technology (Olink Target 96 METABOLISM panel). RESULTS We evaluated serum from patients without DSPN (n = 27), with small-fiber neuropathy (SFN, n = 25) and with mixed small- and large-fiber neuropathy (MSLFN, n = 24). Fifteen proteins, which were especially related to immune response, insulin resistance, and lipid metabolism, were significantly different between patients without DSPN and with MSLFN. Besides, seven proteins, especially related to extracellular structure organization, were significantly different between serum from patients with SFN and with MSLFN. What's more, serum from patients without DSPN showed that three proteins, related to immune response, altered significantly compared to serum from patients with SFN. CONCLUSIONS This was the first study that characterized the metabolic proteomic profile of serum in DSPN patients by analyzing a panel of 92 metabolic proteins using PEA technology.
Collapse
Affiliation(s)
- Hangping Zheng
- Department of Endocrinology and Metabolism, Huashan Hospital, Fudan University, Shanghai, China
| | - Yue Gao
- Department of Endocrinology and Metabolism, Huashan Hospital, Fudan University, Shanghai, China
| | - Xiaoming Zhu
- Department of Endocrinology and Metabolism, Huashan Hospital, Fudan University, Shanghai, China
| | - Yuanpin Zhang
- Department of Endocrinology and Metabolism, Huashan Hospital, Fudan University, Shanghai, China
| | - Yujia Li
- Department of Endocrinology and Metabolism, Huashan Hospital, Fudan University, Shanghai, China
| | - Wanwan Sun
- Department of Endocrinology and Metabolism, Huashan Hospital, Fudan University, Shanghai, China
| | - Lijin Ji
- Department of Endocrinology and Metabolism, Huashan Hospital, Fudan University, Shanghai, China
| | - Xiaoxia Liu
- Department of Endocrinology and Metabolism, Huashan Hospital, Fudan University, Shanghai, China
| | - Jie Zhang
- Department of Endocrinology and Metabolism, Ningbo Second Hospital (Ningbo Huamei Hospital, University of Chinese Academy of Sciences), Ningbo, China
| | - Bin Lu
- Department of Endocrinology and Metabolism, Huashan Hospital, Fudan University, Shanghai, China
| | - Yiming Li
- Department of Endocrinology and Metabolism, Huashan Hospital, Fudan University, Shanghai, China
| | - Shuo Zhang
- Department of Endocrinology and Metabolism, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
8
|
Dong WS, Hu C, Hu M, Gao YP, Hu YX, Li K, Ye YJ, Zhang X. Metrnl: a promising biomarker and therapeutic target for cardiovascular and metabolic diseases. Cell Commun Signal 2024; 22:389. [PMID: 39103830 PMCID: PMC11301845 DOI: 10.1186/s12964-024-01767-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Accepted: 07/27/2024] [Indexed: 08/07/2024] Open
Abstract
Modern human society is burdened with the pandemic of cardiovascular and metabolic diseases. Metrnl is a widely distributed secreted protein in the body, involved in regulating glucose and lipid metabolism and maintaining cardiovascular system homeostasis. In this review, we present the predictive and therapeutic roles of Metrnl in various cardiovascular and metabolic diseases, including atherosclerosis, ischemic heart disease, cardiac remodeling, heart failure, hypertension, chemotherapy-induced myocardial injury, diabetes mellitus, and obesity.
Collapse
Affiliation(s)
- Wen-Sheng Dong
- Department of Geriatrics, Hubei Key Laboratory of Metabolic and Chronic Diseases, Renmin Hospital of Wuhan University, Wuhan University at Jiefang Road 238, Wuhan, 430060, China
| | - Can Hu
- Department of Ultrasound, Union Hospital, Tongji Medical College, Clinical Research Center for Medical Imaging in Hubei Province, Hubei Province Key Laboratory of Molecular Imaging, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Min Hu
- Department of Cardiology, Hubei Key Laboratory of Metabolic and Chronic Diseases, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Yi-Peng Gao
- Department of Cardiology, Hubei Key Laboratory of Metabolic and Chronic Diseases, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Yu-Xin Hu
- Department of Geriatrics, Hubei Key Laboratory of Metabolic and Chronic Diseases, Renmin Hospital of Wuhan University, Wuhan University at Jiefang Road 238, Wuhan, 430060, China
| | - Kang Li
- Department of Geriatrics, Hubei Key Laboratory of Metabolic and Chronic Diseases, Renmin Hospital of Wuhan University, Wuhan University at Jiefang Road 238, Wuhan, 430060, China
| | - Yun-Jia Ye
- Department of Geriatrics, Hubei Key Laboratory of Metabolic and Chronic Diseases, Renmin Hospital of Wuhan University, Wuhan University at Jiefang Road 238, Wuhan, 430060, China
| | - Xin Zhang
- Department of Geriatrics, Hubei Key Laboratory of Metabolic and Chronic Diseases, Renmin Hospital of Wuhan University, Wuhan University at Jiefang Road 238, Wuhan, 430060, China.
| |
Collapse
|
9
|
Liu Q, Zhang HY, Zhang QY, Wang FS, Zhu Y, Feng SG, Jiang Q, Yan B. Olink Profiling of Aqueous Humor Identifies Novel Biomarkers for Wet Age-Related Macular Degeneration. J Proteome Res 2024; 23:2532-2541. [PMID: 38902972 DOI: 10.1021/acs.jproteome.4c00195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
Metabolic dysfunction is recognized as a contributing factor in the pathogenesis of wet age-related macular degeneration (wAMD). However, the specific metabolism-related proteins implicated in wAMD remain elusive. In this study, we assessed the expression profiles of 92 metabolism-related proteins in aqueous humor (AH) samples obtained from 44 wAMD patients and 44 cataract control patients. Our findings revealed significant alterations in the expression of 60 metabolism-related proteins between the two groups. Notably, ANGPTL7 and METRNL displayed promising diagnostic potential for wAMD, as evidenced by area under the curve values of 0.88 and 0.85, respectively. Subsequent validation studies confirmed the upregulation of ANGPTL7 and METRNL in the AH of wAMD patients and in choroidal neovascularization (CNV) models. Functional assays revealed that increased ANGPTL7 and METRNL played a pro-angiogenic role in endothelial biology by promoting endothelial cell proliferation, migration, tube formation, and spouting in vitro. Moreover, in vivo studies revealed the pro-angiogenic effects of ANGPTL7 and METRNL in CNV formation. In conclusion, our findings highlight the association between elevated ANGPTL7 and METRNL levels and wAMD, suggesting their potential as novel predictive and diagnostic biomarkers for this condition. These results underscore the significance of ANGPTL7 and METRNL in the context of wAMD pathogenesis and offer new avenues for future research and therapeutic interventions.
Collapse
Affiliation(s)
- Qing Liu
- The Affiliated Eye Hospital, Nanjing Medical University, Nanjing 210000, China
- The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing 210000, China
| | - Hui-Ying Zhang
- The Affiliated Eye Hospital, Nanjing Medical University, Nanjing 210000, China
- The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing 210000, China
| | - Qiu-Yang Zhang
- The Affiliated Eye Hospital, Nanjing Medical University, Nanjing 210000, China
- The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing 210000, China
| | - Feng-Sheng Wang
- The Affiliated Eye Hospital, Nanjing Medical University, Nanjing 210000, China
- The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing 210000, China
| | - Yue Zhu
- The Affiliated Eye Hospital, Nanjing Medical University, Nanjing 210000, China
- The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing 210000, China
| | - Si-Guo Feng
- The Affiliated Eye Hospital, Nanjing Medical University, Nanjing 210000, China
- The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing 210000, China
| | - Qin Jiang
- The Affiliated Eye Hospital, Nanjing Medical University, Nanjing 210000, China
- The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing 210000, China
| | - Biao Yan
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
- Eye Institute and Department of Ophthalmology, Eye and ENT Hospital, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai 200030, China
| |
Collapse
|
10
|
Yao C, Zhang H, Wang L, Li J. Correlation of serum Meteorin-like (Metrnl) level with type 2 diabetic peripheral neuropathy. BMC Endocr Disord 2024; 24:83. [PMID: 38849768 PMCID: PMC11162054 DOI: 10.1186/s12902-024-01616-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 05/29/2024] [Indexed: 06/09/2024] Open
Abstract
OBJECTIVE Meteorin-like (Metrnl), a secreted myokine, is a newly discovered neurotrophic factor. The aim of this study was to determine if there is a correlation between the Metrnl level and diabetic peripheral neuropathy (DPN). METHODS The investigation was conducted on a sample of 80 patients with type 2 diabetes mellitus (T2DM) and 60 healthy controls. The T2DM patients were categorized into two subgroups based on skin biopsy: the DPN subgroup (n = 20) and the diabetes without neuropathy subgroup (n = 60). RESULTS The T2DM groups had higher serum Metrnl concentrations compared with the controls. The serum Metrnl concentration was significantly lower in the DPN group than in T2DM patients without neuropathy. Logistic regression analysis demonstrated a notable correlation between serum Metrnl and DPN (OR: 0.997, 95% CI: 0.995-1.000, P < 0.05). Serum Metrnl level was negatively correlated with age and SBP after a simple logistic regression analysis. CONCLUSION Serum Metrnl concentration is independently correlated with DPN.
Collapse
Affiliation(s)
- Caixia Yao
- Department of Endocrinology and Metabolism, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Endocrinology and Metabolism, Gaochun Hospital Affiliated to Jiangsu University, Nanjing, Jiangsu, China
| | - Hongman Zhang
- Department of Endocrinology and Metabolism, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Endocrinology, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, Jiangsu, China
| | - Li Wang
- Department of Endocrinology and Metabolism, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jianbo Li
- Department of Endocrinology and Metabolism, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China.
| |
Collapse
|
11
|
Shankar SS, Banarjee R, Jathar SM, Rajesh S, Ramasamy S, Kulkarni MJ. De novo structure prediction of meteorin and meteorin-like protein for identification of domains, functional receptor binding regions, and their high-risk missense variants. J Biomol Struct Dyn 2024; 42:4522-4536. [PMID: 37288801 DOI: 10.1080/07391102.2023.2220804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 05/29/2023] [Indexed: 06/09/2023]
Abstract
Meteorin (Metrn) and Meteorin-like (Metrnl) are homologous secreted proteins involved in neural development and metabolic regulation. In this study, we have performed de novo structure prediction and analysis of both Metrn and Metrnl using Alphafold2 (AF2) and RoseTTAfold (RF). Based on the domain and structural homology analysis of the predicted structures, we have identified that these proteins are composed of two functional domains, a CUB domain and an NTR domain, connected by a hinge/loop region. We have identified the receptor binding regions of Metrn and Metrnl using the machine-learning tools ScanNet and Masif. These were further validated by docking Metrnl with its reported KIT receptor, thus establishing the role of each domain in the receptor interaction. Also, we have studied the effect of non-synonymous SNPs on the structure and function of these proteins using an array of bioinformatics tools and selected 16 missense variants in Metrn and 10 in Metrnl that can affect the protein stability. This is the first study to comprehensively characterize the functional domains of Metrn and Metrnl at their structural level and identify the functional domains, and protein binding regions. This study also highlights the interaction mechanism of the KIT receptor and Metrnl. The predicted deleterious SNPs will allow further understanding of the role of these variants in modulating the plasma levels of these proteins in disease conditions such as diabetes.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- S Shiva Shankar
- Proteomics Facility, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Pune, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Reema Banarjee
- Proteomics Facility, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Pune, India
| | - Swaraj M Jathar
- Proteomics Facility, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Pune, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - S Rajesh
- Proteomics Facility, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Pune, India
| | - Sureshkumar Ramasamy
- Proteomics Facility, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Pune, India
| | - Mahesh J Kulkarni
- Proteomics Facility, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Pune, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
12
|
Miao ZW, Wang N, Hu WJ, Zheng SL, Wang DS, Chang FQ, Wang Z, Tian JS, Dong XH, Wu T, Miao CY. Chronic vascular pathogenesis results in the reduced serum Metrnl levels in ischemic stroke patients. Acta Pharmacol Sin 2024; 45:914-925. [PMID: 38253637 PMCID: PMC11053017 DOI: 10.1038/s41401-023-01204-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Accepted: 11/19/2023] [Indexed: 01/24/2024]
Abstract
Metrnl is a secreted protein involved in neurite outgrowth, insulin sensitivity, immunoinflammatory responses, blood lipids and endothelial protection. In this study, we investigated the role of Metrnl in ischemic stroke. Fifty-eight ischemic stroke patients (28 inpatient patients within 2 weeks of onset and 30 emergency patients within 24 h of onset) and 20 healthy controls were enrolled. Serum Metrnl was measured by enzyme-linked immunosorbent assay. We showed that serum Metrnl levels were significantly reduced in both inpatient and emergency patient groups compared with the controls. Different pathological causes for ischemic stroke such as large artery atherosclerosis and small artery occlusion exhibited similar reduced serum Metrnl levels. Transient ischemic attack caused by large artery atherosclerosis without brain infarction also had lower serum Metrnl levels. Metrnl was correlated with some metabolic, inflammatory and clotting parameters. Reduced serum Metrnl was associated with the severity of intracranial arterial stenosis and the presence of ischemic stroke. In order to elucidate the mechanisms underlying the reduced serum Metrnl levels, we established animal models of ischemic stroke in normal mice, atherosclerotic apolipoprotein E-knockout mice and Metrnl-knockout mice by middle cerebral artery occlusion (MCAO) using intraluminal filament or electrocoagulation. We demonstrated that serum Metrnl levels were significantly lower in atherosclerosis mice than normal mice, whereas acute ischemic stroke injury in normal mice and atherosclerosis mice did not alter serum Metrnl levels. Metrnl knockout did not affect acute ischemic stroke injury and death. We conclude that reduced serum Metrnl levels are attributed to the chronic vascular pathogenesis before the onset of ischemic stroke. Metrnl is a potential target for prevention of ischemic stroke.
Collapse
Affiliation(s)
- Zhu-Wei Miao
- Department of Pharmacology, Second Military Medical University/Naval Medical University, Shanghai, 200433, China
| | - Nuo Wang
- Department of Neuroloy and Neurovascular Center, The First Affiliated Hospital (Changhai Hospital), Second Military Medical University/Naval Medical University, Shanghai, 200433, China
| | - Wen-Jun Hu
- Department of Pharmacology, Second Military Medical University/Naval Medical University, Shanghai, 200433, China
| | - Si-Li Zheng
- Department of Pharmacology, Second Military Medical University/Naval Medical University, Shanghai, 200433, China
| | - Dong-Sheng Wang
- Department of Pharmacology, Second Military Medical University/Naval Medical University, Shanghai, 200433, China
| | - Fu-Qiang Chang
- Department of Pharmacology, Second Military Medical University/Naval Medical University, Shanghai, 200433, China
| | - Zhi Wang
- Department of Pharmacology, Second Military Medical University/Naval Medical University, Shanghai, 200433, China
| | - Jia-Sheng Tian
- Department of Pharmacology, Second Military Medical University/Naval Medical University, Shanghai, 200433, China
| | - Xiao-Hui Dong
- Department of Pharmacy, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Tao Wu
- Department of Neuroloy and Neurovascular Center, The First Affiliated Hospital (Changhai Hospital), Second Military Medical University/Naval Medical University, Shanghai, 200433, China.
| | - Chao-Yu Miao
- Department of Pharmacology, Second Military Medical University/Naval Medical University, Shanghai, 200433, China.
| |
Collapse
|
13
|
Liu N, Dong J, Li L, Zhou D, Liu F. The Function and Mechanism of Anti-Inflammatory Factor Metrnl Prevents the Progression of Inflammatory-Mediated Pathological Bone Osteolytic Diseases. J Inflamm Res 2024; 17:1607-1619. [PMID: 38495340 PMCID: PMC10942011 DOI: 10.2147/jir.s455790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 03/07/2024] [Indexed: 03/19/2024] Open
Abstract
Metrnl, recently identified as an adipokine, is a secreted protein notably expressed in white adipose tissue, barrier tissues, and activated macrophages. This adipokine plays a pivotal role in counteracting obesity-induced insulin resistance. It enhances adipose tissue functionality by promoting adipocyte differentiation, activating metabolic pathways, and exerting anti-inflammatory effects. Extensive research has identified Metrnl as a key player in modulating inflammatory responses and as an integral regulator of muscle regeneration. These findings position Metrnl as a promising biomarker and potential therapeutic target in treating inflammation-associated pathologies. Despite this, the specific anti-inflammatory mechanisms of Metrnl in immune-mediated osteolysis and arthritis remain elusive, warranting further investigation. In this review, we will briefly elaborate on the role of Metrnl in anti-inflammation function in inflammation-related osteolysis, arthritis, and pathological bone resorption, which could facilitate Metrnl's clinical application as a novel therapeutic strategy to prevent bone loss. While the pathogenesis of elbow stiffness remains elusive, current literature suggests that Metrnl likely exerts a pivotal role in its development.
Collapse
Affiliation(s)
- Nan Liu
- Department of Orthopedics, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, People’s Republic of China
| | - Jinlei Dong
- Department of Orthopedics, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, People’s Republic of China
| | - Lianxin Li
- Department of Orthopedics, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, People’s Republic of China
| | - Dongsheng Zhou
- Department of Orthopedics, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, People’s Republic of China
| | - Fanxiao Liu
- Department of Orthopedics, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, People’s Republic of China
| |
Collapse
|
14
|
Xu TY, Qing SL, Zhao JX, Song J, Miao ZW, Li JX, Yang FY, Zhao HY, Zheng SL, Li ZY, Wang SN, Miao CY. Metrnl deficiency retards skin wound healing in mice by inhibiting AKT/eNOS signaling and angiogenesis. Acta Pharmacol Sin 2023; 44:1790-1800. [PMID: 37142683 PMCID: PMC10462726 DOI: 10.1038/s41401-023-01090-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 04/05/2023] [Indexed: 05/06/2023]
Abstract
Meteorin-like (Metrnl) is a novel secreted protein with various biological activities. In this study, we investigated whether and how Metrnl regulated skin wound healing in mice. Global Metrnl gene knockout mice (Metrnl-/-) and endothelial cell-specific Metrnl gene knockout mice (EC-Metrnl-/-) were generated. Eight-mm-diameter full-thickness excisional wound was made on the dorsum of each mouse. The skin wounds were photographed and analyzed. In C57BL/6 mice, we observed that Metrnl expression levels were markedly increased in skin wound tissues. We found that both global and endothelial cell-specific Metrnl gene knockout significantly retarded mouse skin wound healing, and endothelial Metrnl was the key factor affecting wound healing and angiogenesis. The proliferation, migration and tube formation ability of primary human umbilical vein endothelial cells (HUVECs) were inhibited by Metrnl knockdown, but significantly promoted by addition of recombinant Metrnl (10 ng/mL). Metrnl knockdown abolished the proliferation of endothelial cells stimulated by recombinant VEGFA (10 ng/mL) but not by recombinant bFGF (10 ng/mL). We further revealed that Metrnl deficiency impaired VEGFA downstream AKT/eNOS activation in vitro and in vivo. The damaged angiogenetic activity in Metrnl knockdown HUVECs was partly rescued by addition of AKT activator SC79 (10 μM). In conclusion, Metrnl deficiency retards skin wound healing in mice, which is related to impaired endothelial Metrnl-mediated angiogenesis. Metrnl deficiency impairs angiogenesis by inhibiting AKT/eNOS signaling pathway.
Collapse
Affiliation(s)
- Tian-Ying Xu
- Department of Pharmacology, Second Military Medical University/Naval Medical University, Shanghai, 200433, China.
- Department of Anesthetic Pharmacology, School of Anesthesiology, Second Military Medical University/Naval Medical University, Shanghai, 200433, China.
| | - Sheng-Li Qing
- Department of Pharmacology, Second Military Medical University/Naval Medical University, Shanghai, 200433, China
| | - Jing-Xin Zhao
- Department of Pharmacology, Second Military Medical University/Naval Medical University, Shanghai, 200433, China
| | - Jie Song
- Department of Pharmacology, Second Military Medical University/Naval Medical University, Shanghai, 200433, China
| | - Zhu-Wei Miao
- Department of Pharmacology, Second Military Medical University/Naval Medical University, Shanghai, 200433, China
| | - Jia-Xin Li
- Department of Pharmacology, Second Military Medical University/Naval Medical University, Shanghai, 200433, China
| | - Feng-Yan Yang
- Department of Anesthetic Pharmacology, School of Anesthesiology, Second Military Medical University/Naval Medical University, Shanghai, 200433, China
| | - Huan-Yu Zhao
- Department of Pharmacology, Second Military Medical University/Naval Medical University, Shanghai, 200433, China
| | - Si-Li Zheng
- Department of Pharmacology, Second Military Medical University/Naval Medical University, Shanghai, 200433, China
| | - Zhi-Yong Li
- Department of Pharmacology, Second Military Medical University/Naval Medical University, Shanghai, 200433, China
| | - Shu-Na Wang
- Department of Pharmacology, Second Military Medical University/Naval Medical University, Shanghai, 200433, China
| | - Chao-Yu Miao
- Department of Pharmacology, Second Military Medical University/Naval Medical University, Shanghai, 200433, China.
| |
Collapse
|
15
|
Schwieger J, Gao Z, Lenarz T, Munro G, Petersen KA, Scheper V. "Of mice and men": the relevance of Cometin and Erythropoietin origin for its effects on murine spiral ganglion neuron survival and neurite outgrowth in vitro. Front Neurosci 2023; 17:1224463. [PMID: 37638326 PMCID: PMC10450246 DOI: 10.3389/fnins.2023.1224463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 07/28/2023] [Indexed: 08/29/2023] Open
Abstract
Neurotrophic factors (NTF) play key roles in the survival of neurons, making them promising candidates for therapy of neurodegenerative diseases. In the case of the inner ear, sensorineural hearing loss (SNHL) is characterized over time by a degeneration of the primary auditory neurons, the spiral ganglion neurons (SGN). It is well known that selected NTF can protect SGN from degeneration, which positively influences the outcome of cochlear implants, the treatment of choice for patients with profound to severe SNHL. However, the outcome of studies investigating protective effects of NTF on auditory neurons are in some cases of high variability. We hypothesize that the factor origin may be one aspect that affects the neuroprotective potential. The aim of this study was to investigate the neuroprotective potential of human and mouse Erythropoietin (EPO) and Cometin on rat SGN. SGN were isolated from neonatal rats (P 2-5) and cultured in serum-free medium. EPO and Cometin of mouse and human origin were added in concentrations of 0.1, 1, and 10 ng/mL and 0.1, 1, and 10 μg/mL, respectively. The SGN survival rate and morphology, and the neurite outgrowth were determined and compared to negative (no additives) and positive (brain-derived neurotrophic factor, BDNF) controls. A neuroprotective effect of 10 μg/mL human Cometin comparable to that obtained with BDNF was observed in the SGN-culture. In contrast, mouse Cometin was ineffective. A similar influence of 10 μg/mL human and mouse and 1 μg/mL human Cometin on the length of regenerated neurites compared to BDNF was also detected. No other Cometin-conditions, and none of the EPO-conditions tested had neuroprotective or neuritogenic effects or influenced the neuronal morphology of the SGN. The neuroprotective effect of 10 μg/mL human Cometin on SGN indicates it is a potentially interesting protein for the supportive treatment of inner ear disorders. The finding that mouse Cometin had no effect on the SGN in the parallel-performed experiments underlines the importance of species origin of molecules being screened for therapeutic purpose.
Collapse
Affiliation(s)
- Jana Schwieger
- Department of Otorhinolaryngology, Hannover Medical School, Hannover, Germany
- Lower Saxony Center for Biomedical Engineering, Implant Research and Development (NIFE), Hannover, Germany
- Cluster of Excellence "Hearing4all" EXC 1077/2, Hannover, Germany
| | - Ziwen Gao
- Department of Otorhinolaryngology, Hannover Medical School, Hannover, Germany
- Ear Nose and Throat Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai, China
| | - Thomas Lenarz
- Department of Otorhinolaryngology, Hannover Medical School, Hannover, Germany
- Lower Saxony Center for Biomedical Engineering, Implant Research and Development (NIFE), Hannover, Germany
- Cluster of Excellence "Hearing4all" EXC 1077/2, Hannover, Germany
| | | | | | - Verena Scheper
- Department of Otorhinolaryngology, Hannover Medical School, Hannover, Germany
- Lower Saxony Center for Biomedical Engineering, Implant Research and Development (NIFE), Hannover, Germany
- Cluster of Excellence "Hearing4all" EXC 1077/2, Hannover, Germany
| |
Collapse
|
16
|
Cai X, Li K, Li M, Lu Y, Wu J, Qiu H, Li Y. Plasma interleukin-41 serves as a potential diagnostic biomarker for Kawasaki disease. Microvasc Res 2023; 147:104478. [PMID: 36682486 DOI: 10.1016/j.mvr.2023.104478] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 01/15/2023] [Accepted: 01/17/2023] [Indexed: 01/21/2023]
Abstract
INTRODUCTION Kawasaki disease (KD) is a systemic vasculitis that causes abnormalities in the coronary arteries. Interleukin (IL)-41 is a novel immunoregulatory cytokine involved in the pathogenesis of some inflammatory and immune-related diseases. However, the role of IL-41 in KD is unclear. The purpose of this study was to detect the expression of IL-41 in the plasma of children with KD and its relationship with the disease. METHODS A total of 44 children with KD and 37 healthy controls (HC) were recruited for this study. Plasma concentrations of IL-41 were determined by ELISA. Correlations between plasma IL-41 levels and KD-related clinical parameters were analyzed by Pearson correlation and multivariate linear regression analysis. Receiver operating characteristic curve analysis was used to assess the clinical value of IL-41 in the diagnosis of KD. RESULTS Our results showed that plasma IL-41 levels were significantly elevated in children with KD compared with HC. Correlation analysis demonstrated that IL-41 levels were positively correlated with D-dimer and N-terminal pro-B-type natriuretic peptide, and negatively correlated with IgM, mean corpuscular hemoglobin concentration, total protein, albumin and pre-albumin. Multivariable linear regression analysis revealed that IgM and mean corpuscular hemoglobin concentrations were associated with IL-41. Receiver operating characteristic curve analysis showed that the area under the curve of IL-41 was 0.7101, with IL-41 providing 88.64 % sensitivity and 54.05 % specificity. CONCLUSION Our study indicated that plasma IL-41 levels in children with KD were significantly higher than those in HC, and may provide a potential diagnostic biomarker for KD.
Collapse
Affiliation(s)
- Xiaohong Cai
- Department of Immunology, School of Medicine, Ningbo University, Ningbo 315211, China; Department of Pediatrics, Ningbo Women and Children's Hospital, Ningbo 315012, China
| | - Kan Li
- Department of Immunology, School of Medicine, Ningbo University, Ningbo 315211, China
| | - Mingcai Li
- Department of Immunology, School of Medicine, Ningbo University, Ningbo 315211, China
| | - Yanbo Lu
- Department of Immunology, School of Medicine, Ningbo University, Ningbo 315211, China; Department of Pediatrics, Ningbo Women and Children's Hospital, Ningbo 315012, China
| | - Junhua Wu
- Department of Immunology, School of Medicine, Ningbo University, Ningbo 315211, China; Department of Pediatrics, Ningbo Women and Children's Hospital, Ningbo 315012, China
| | - Haiyan Qiu
- Department of Immunology, School of Medicine, Ningbo University, Ningbo 315211, China; Department of Pediatrics, Ningbo Women and Children's Hospital, Ningbo 315012, China.
| | - Yan Li
- Department of Immunology, School of Medicine, Ningbo University, Ningbo 315211, China.
| |
Collapse
|
17
|
Sobieh BH, El-Mesallamy HO, Kassem DH. Beyond mechanical loading: The metabolic contribution of obesity in osteoarthritis unveils novel therapeutic targets. Heliyon 2023; 9:e15700. [PMID: 37180899 PMCID: PMC10172930 DOI: 10.1016/j.heliyon.2023.e15700] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 04/17/2023] [Accepted: 04/19/2023] [Indexed: 05/16/2023] Open
Abstract
Osteoarthritis (OA) is a prevalent progressive disease that frequently coexists with obesity. For several decades, OA was thought to be the result of ageing and mechanical stress on cartilage. Researchers' perspective has been greatly transformed when cumulative findings emphasized the role of adipose tissue in the diseases. Nowadays, the metabolic effect of obesity on cartilage tissue has become an integral part of obesity research; hoping to discover a disease-modifying drug for OA. Recently, several adipokines have been reported to be associated with OA. Particularly, metrnl (meteorin-like) and retinol-binding protein 4 (RBP4) have been recognized as emerging adipokines that can mediate OA pathogenesis. Accordingly, in this review, we will summarize the latest findings concerned with the metabolic contribution of obesity in OA pathogenesis, with particular emphasis on dyslipidemia, insulin resistance and adipokines. Additionally, we will discuss the most recent adipokines that have been reported to play a role in this context. Careful consideration of these molecular mechanisms interrelated with obesity and OA will undoubtedly unveil new avenues for OA treatment.
Collapse
Affiliation(s)
- Basma H. Sobieh
- Biochemistry Department, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Hala O. El-Mesallamy
- Biochemistry Department, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
- Faculty of Pharmacy, Sinai University, Sinai, Egypt
| | - Dina H. Kassem
- Biochemistry Department, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
- Corresponding author. Associate Professor of Biochemistry Department of Biochemistry, Faculty of Pharmacy, Ain Shams University, street of African Union Organization, 11566, Cairo, Egypt.
| |
Collapse
|
18
|
Reddy I, Yadav Y, Dey CS. Cellular and Molecular Regulation of Exercise-A Neuronal Perspective. Cell Mol Neurobiol 2023; 43:1551-1571. [PMID: 35986789 PMCID: PMC11412429 DOI: 10.1007/s10571-022-01272-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 08/10/2022] [Indexed: 11/29/2022]
Abstract
The beneficial effects of exercise on the proper functioning of the body have been firmly established. Multi-systemic metabolic regulation of exercise is the consequence of multitudinous changes that occur at the cellular level. The exercise responsome comprises all molecular entities including exerkines, miRNA species, growth factors, signaling proteins that are elevated and activated by physical exercise. Exerkines are secretory molecules released by organs such as skeletal muscle, adipose tissue, liver, and gut as a function of acute/chronic exercise. Exerkines such as FNDC5/irisin, Cathepsin B, Adiponectin, and IL-6 circulate through the bloodstream, cross the blood-brain barrier, and modulate the expression of important signaling molecules such as AMPK, SIRT1, PGC1α, BDNF, IGF-1, and VEGF which further contribute to improved energy metabolism, glucose homeostasis, insulin sensitivity, neurogenesis, synaptic plasticity, and overall well-being of the body and brain. These molecules are also responsible for neuroprotective adaptations that exercise confers on the brain and potentially ameliorate neurodegeneration. This review aims to detail important cellular and molecular species that directly or indirectly mediate exercise-induced benefits in the body, with an emphasis on the central nervous system.
Collapse
Affiliation(s)
- Ishitha Reddy
- Kusuma School of Biological Sciences, Indian Institute of Technology, Delhi, New Delhi, 110016, India
| | - Yamini Yadav
- Kusuma School of Biological Sciences, Indian Institute of Technology, Delhi, New Delhi, 110016, India
| | - Chinmoy Sankar Dey
- Kusuma School of Biological Sciences, Indian Institute of Technology, Delhi, New Delhi, 110016, India.
| |
Collapse
|
19
|
Jia Z, Feng J, Yuan G, Xiao H, Dang H, Zhang Y, Chen K, Zou J, Wang J. The Meteorin-like cytokine is upregulated in grass carp after infection with Aeromonas hydrophila. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 141:104632. [PMID: 36608897 DOI: 10.1016/j.dci.2023.104632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/01/2023] [Accepted: 01/02/2023] [Indexed: 06/17/2023]
Abstract
Meteorin-like (Metrnl) is a novel immune regulatory factor or adipokine which is mainly produced by activated macrophages. In teleost fish, two homologs are present. In this study, monoclonal antibodies were prepared against recombinant grass carp (Ctenopharyngodon idella, Ci) Metrnl-a in mice and characterized by Western blotting, flow cytometry and immunofluorescent microscopy. In grass carp infected with Aeromonus hydrophila (A. hydrophila), the cells expressing CiMetrnl-a markedly increased in the gills, head kidney and intestine. In the inflamed intestine caused by A. hydrophila infection, the CiMetrnl-a producing cells were detected mainly in the mucosal layer of anterior, middle and posterior segments. Consistently, qRT-PCR analysis showed that the mRNA expression of CiMetrnl-a was markedly induced. Our results suggest that CiMetrnl-a is involved in regulating intestine inflammation caused by bacterial infection.
Collapse
Affiliation(s)
- Zhao Jia
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Jianhua Feng
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Gaoliang Yuan
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Hehe Xiao
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Huifeng Dang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Yanwei Zhang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Kangyong Chen
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Jun Zou
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266200, China
| | - Junya Wang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China.
| |
Collapse
|
20
|
Serum interleukin-38 and -41 levels as candidate biomarkers in male infertility. Immunol Lett 2023; 255:47-53. [PMID: 36870420 DOI: 10.1016/j.imlet.2023.02.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 02/25/2023] [Accepted: 02/26/2023] [Indexed: 03/06/2023]
Abstract
BACKGROUND Interleukin (IL)-38 and IL-41 are novel cytokines, but their role in male infertility (MI) is unknown. The purpose of this study was to measure the levels of serum IL-38 and IL-41 in patients with MI and correlate these levels with semen indexes. METHODS Eighty-two patients with MI and 45 healthy controls (HC) were recruited for this study. Semen parameters were detected using computer-aided sperm analysis, Papanicolaou staining, ELISA, flow cytometry, peroxidase staining and enzyme methods. Serum IL-38 and IL-41 levels were determined by ELISA. RESULTS Serum IL-38 levels were decreased (P < 0.01) in patients with MI compared with HC. Serum IL-41 levels were significantly higher in patients with MI than in HC (P < 0.0001). In patients with MI, serum IL-38 levels were positively correlated with semen white blood cell counts (r = 0.29, P = 0.009), and there was a positive correlation between semen white blood cell counts and sperm concentration (r = 0.28, P = 0.0100) and seminal plasma elastase (r = 0.67, P < 0.0001). Receiver operating characteristic curve analysis showed that the area under the curve of IL-38 for diagnosing MI was 0.5637 (P > 0.05), and the area under the curve of IL-41 for diagnosing MI was 0.7646 (P < 0.0001). CONCLUSIONS Serum IL-38 levels were significantly lower, and serum IL-41 levels were higher in patients with MI. These results suggest that IL-38 and IL-41 may be novel biomarkers for the diagnosis of MI.
Collapse
|
21
|
Liu J, Jia S, Yang Y, Piao L, Wang Z, Jin Z, Bai L. Exercise induced meteorin-like protects chondrocytes against inflammation and pyroptosis in osteoarthritis by inhibiting PI3K/Akt/NF-κB and NLRP3/caspase-1/GSDMD signaling. Biomed Pharmacother 2023; 158:114118. [PMID: 36527845 DOI: 10.1016/j.biopha.2022.114118] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/29/2022] [Accepted: 12/09/2022] [Indexed: 12/23/2022] Open
Abstract
The production of metrnl, a novel adipomyokine, is induced upon exercise in adipose tissue and skeletal muscle. In this study, we investigated the anti-inflammatory and antipyroptotic effects of exercise-induced metrnl producted in rats in vitro and in vivo. Forty Sprague-Dawley rats were divided randomly into five groups: control (CG), osteoarthritis (OA) with sedentary lifestyle (OAG), OA with low intensity exercise (OAL), OA with moderate intensity exercise (OAM), and OA with high intensity exercise (OAH). The correlation between the level of metrnl and OA degree was detected using ELISA, X-ray imaging, histology, and immunohistochemistry in vivo. Primary chondrocytes were preincubated with recombinant metrnl before interleukin-1β administration to verify the anti-inflammatory and antipyroptotic effects of metrnl. Western blotting and quantitative reverse transcription (qRT)-PCR were used to evaluate the differences in protein and mRNA expression between groups, respectively. Reactive oxygen species (ROS) assay, immunofluorescence, transmission electron microscopy (TEM), and flow cytometry were used to evaluate morphological changes and pyroptosis in chondrocytes. In the moderate-intensity treadmill exercise group, the severity of OA showed maximum relief and the metrnl levels had the most significant increase. Metrnl exerted its anti-inflammatory effect through the suppression of the PI3K/Akt/NF-κB pathway in IL-1β-induced OA chondrocytes, which was accompanied with the recovery of collagen II expression and the attenuation of MMP13 and ADAMTS5. Moreover, metrnl ameliorated chondrocyte pyroptosis by inhibiting the activation of the nod-like receptor protein-3/caspase-1/gasdermin D cascade. In conclusion, moderate-intensity exercise improves inflammation and pyroptosis by increasing metrnl release, which inhibits the PI3K/Akt/NF-κB and further NLRP3/caspase-1/GSDMD signaling pathways.
Collapse
Affiliation(s)
- Jiabao Liu
- Department of Orthopedic Surgery, Shengjing Hospital of China Medical University, Shenyang 110000, China
| | - Shuangshuo Jia
- Department of Orthopedic Surgery, Shengjing Hospital of China Medical University, Shenyang 110000, China
| | - Yue Yang
- Department of Orthopedic Surgery, Shengjing Hospital of China Medical University, Shenyang 110000, China
| | - Longhuan Piao
- Department of Orthopedic Surgery, Shengjing Hospital of China Medical University, Shenyang 110000, China
| | - Ziyuan Wang
- Department of Orthopaedics Surgery, Central Hospital of Shenyang Medical College, Shenyang 110000, China
| | - Zhuangzhuang Jin
- Department of Orthopedic Surgery, Shengjing Hospital of China Medical University, Shenyang 110000, China
| | - Lunhao Bai
- Department of Orthopedic Surgery, Shengjing Hospital of China Medical University, Shenyang 110000, China.
| |
Collapse
|
22
|
Ellergezen PH, Kizmaz MA, Simsek A, Demir N, Cagan E, Bal SH, Akalin EH, Oral HB, Budak F. Investigation of IL-35 and IL-39, New Members of the IL-12 Family, in Different Clinical Presentations of Brucellosis. Immunol Invest 2023; 52:286-297. [PMID: 36645409 DOI: 10.1080/08820139.2023.2165941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Brucellosis is significantly influenced by the interactions between the causative Brucella bacteria and host immunity. Recently identified cytokines have been described for their immunomodulatory effects in numerous inflammatory, autoimmune and infectious diseases. Some of them are new members of cytokine superfamilies, including several members of the IL-12 superfamily (IL-35, IL-39). The major purpose of the present study was to investigate the role of these new immunomodulatory cytokines in Brucella infections. The levels of IL-35 and IL-39 in the serum of 40 acute and 40 chronic brucellosis patients and 40 healthy controls were measured by ELISA. The mRNA levels of IL-35 and IL-39 in PBMCs were detected by RT-qPCR. Both IL-35 and IL-39 serum concentrations were significantly higher in healthy control subjects than in brucellosis patients, and IL-35 and IL-39 serum levels of chronic brucellosis patients were higher than those of acute cases. It was also found that the expression of Ebi3/IL-12A (IL-35 genes) and Ebi3/IL-23A (IL-39 genes) was upregulated in chronic brucellosis patients compared to healthy controls. Moreover, the expression of the Ebi3/IL-12A and Ebi3/IL-23A genes was lower in patients with acute brucellosis than in patients with chronic brucellosis. Overall, this study showed that IL-35 and IL-39 are positively correlated in brucellosis and significantly decreased during the disease. Significantly lower levels of IL-35 and IL-39 in acute brucellosis than in chronic brucellosis and healthy controls suggest that these cytokines may play a key role in suppressing the immune response to brucellosis and its progression to chronicity.
Collapse
Affiliation(s)
- Pınar Hız Ellergezen
- Department of Immunology, Faculty of Medicine, Bursa Uludağ University, Bursa, Turkey.,Institute of Health Sciences, Department of Immunology, Bursa Uludag University, Bursa, Turkey
| | - Muhammed Ali Kizmaz
- Department of Immunology, Faculty of Medicine, Bursa Uludağ University, Bursa, Turkey.,Institute of Health Sciences, Department of Immunology, Bursa Uludag University, Bursa, Turkey
| | - Abdurrahman Simsek
- Department of Immunology, Faculty of Medicine, Bursa Uludağ University, Bursa, Turkey.,Institute of Health Sciences, Department of Immunology, Bursa Uludag University, Bursa, Turkey
| | - Nesrin Demir
- Department of Microbiology, Faculty of Dentistry, Antalya Bilim University, Antalya, Turkey
| | - Eren Cagan
- Department of Pediatric Infectious Diseases, University of Health Sciences, Bursa Yuksek Ihtisas Training and Research Hospital, Bursa, Turkey
| | - S Haldun Bal
- Department of Immunology, Faculty of Medicine, Bursa Uludağ University, Bursa, Turkey
| | - E Halis Akalin
- Department of Clinical Microbiology and Infectious Diseases, Faculty of Medicine, Bursa Uludağ University, Bursa, Turkey
| | - H Barbaros Oral
- Department of Immunology, Faculty of Medicine, Bursa Uludağ University, Bursa, Turkey
| | - Ferah Budak
- Department of Immunology, Faculty of Medicine, Bursa Uludağ University, Bursa, Turkey
| |
Collapse
|
23
|
Li Z, Gao Z, Sun T, Zhang S, Yang S, Zheng M, Shen H. Meteorin-like/Metrnl, a novel secreted protein implicated in inflammation, immunology, and metabolism: A comprehensive review of preclinical and clinical studies. Front Immunol 2023; 14:1098570. [PMID: 36911663 PMCID: PMC9998503 DOI: 10.3389/fimmu.2023.1098570] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 02/10/2023] [Indexed: 02/26/2023] Open
Abstract
Meteorin-like, also known as Metrnl, Meteorin-β, Subfatin, and Cometin, is a novel secreted protein exerting pleiotropic effects on inflammation, immunology, and metabolism. Earlier research on this hormone focused on regulating energy expenditure and glucose homeostasis. Consequently, several studies attempted to characterize the molecule mechanism of Metrnl in glucose metabolism and obesity-related disorders but reported contradictory clinical results. Recent studies gradually noticed its multiple protective functions in inflammatory immune regulations and cardiometabolic diseases, such as inducing macrophage activation, angiogenesis, tissue remodeling, bone formation, and preventing dyslipidemias. A comprehensive understanding of this novel protein is essential to identify its significance as a potential therapeutic drug or a biomarker of certain diseases. In this review, we present the current knowledge on the physiology of Metrnl and its roles in inflammation, immunology, and metabolism, including animal/cell interventional preclinical studies and human clinical studies. We also describe controversies regarding the data of circulation Metrnl in different disease states to determine its clinical application better.
Collapse
Affiliation(s)
- Zhuoqi Li
- Department of Rheumatology and Immunology, The First Hospital of China Medical University, China Medical University, Shen Yang, China
| | - Ziyu Gao
- Department of Thyroid Surgery, The First Hospital of China Medical University, China Medical University, Shen Yang, China
| | - Tao Sun
- Department of Rheumatology and Immunology, The First Hospital of China Medical University, China Medical University, Shen Yang, China
| | - Shipeng Zhang
- Department of Rheumatology and Immunology, The First Hospital of China Medical University, China Medical University, Shen Yang, China
| | - Shengnan Yang
- Department of Rheumatology and Immunology, The First Hospital of China Medical University, China Medical University, Shen Yang, China
| | - Meilin Zheng
- Department of Rheumatology and Immunology, The First Hospital of China Medical University, China Medical University, Shen Yang, China
| | - Hui Shen
- Department of Rheumatology and Immunology, The First Hospital of China Medical University, China Medical University, Shen Yang, China
| |
Collapse
|
24
|
Endothelial METRNL determines circulating METRNL level and maintains endothelial function against atherosclerosis. Acta Pharm Sin B 2022; 13:1568-1587. [PMID: 37139425 PMCID: PMC10149902 DOI: 10.1016/j.apsb.2022.12.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 11/11/2022] [Accepted: 11/18/2022] [Indexed: 12/15/2022] Open
Abstract
METRNL is a recently identified secreted protein with emerging functions. This study is to find major cellular source of circulating METRNL and to determine METRNL novel function. Here, we show METRNL is abundant in human and mouse vascular endothelium and released by endothelial cells using endoplasmic reticulum-Golgi apparatus pathway. By creating endothelial cell-specific Metrnl knockout mice, combined with bone marrow transplantation to produce bone marrow-specific deletion of Metrnl, we demonstrate that most of circulating METRNL (approximately 75%) originates from the endothelial cells. Both endothelial and circulating METRNL decrease in atherosclerosis mice and patients. By generating endothelial cell-specific Metrnl knockout in apolipoprotein E-deficient mice, combined with bone marrow-specific deletion of Metrnl in apolipoprotein E-deficient mice, we further demonstrate that endothelial METRNL deficiency accelerates atherosclerosis. Mechanically, endothelial METRNL deficiency causes vascular endothelial dysfunction including vasodilation impairment via reducing eNOS phosphorylation at Ser1177 and inflammation activation via enhancing NFκB pathway, which promotes the susceptibility of atherosclerosis. Exogenous METRNL rescues METRNL deficiency induced endothelial dysfunction. These findings reveal that METRNL is a new endothelial substance not only determining the circulating METRNL level but also regulating endothelial function for vascular health and disease. METRNL is a therapeutic target against endothelial dysfunction and atherosclerosis.
Collapse
|
25
|
Ahsan M, Garneau L, Aguer C. The bidirectional relationship between AMPK pathway activation and myokine secretion in skeletal muscle: How it affects energy metabolism. Front Physiol 2022; 13:1040809. [PMID: 36479347 PMCID: PMC9721351 DOI: 10.3389/fphys.2022.1040809] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 11/04/2022] [Indexed: 11/12/2023] Open
Abstract
Myokines are peptides and proteins secreted by skeletal muscle cells, into the interstitium, or in the blood. Their regulation may be dependent or independent of muscle contraction to induce a variety of metabolic effects. Numerous myokines have been implicated in influencing energy metabolism via AMP-activated protein kinase (AMPK) signalling. As AMPK is centrally involved in glucose and lipid metabolism, it is important to understand how myokines influence its signalling, and vice versa. Such insight will better elucidate the mechanism of metabolic regulation during exercise and at rest. This review encompasses the latest research conducted on the relationship between AMPK signalling and myokines within skeletal muscles via autocrine or paracrine signalling.
Collapse
Affiliation(s)
- Mahdi Ahsan
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
| | - Léa Garneau
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
- Institut du Savoir Montfort –Recherche, Ottawa, ON, Canada
| | - Céline Aguer
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
- Institut du Savoir Montfort –Recherche, Ottawa, ON, Canada
- Department of Physiology, Faculty of Medicine and Health Sciences, McGill University—Campus Outaouais, Gatineau, QC, Canada
- School of Human Kinetics, Faculty of Health Sciences, University of Ottawa, Ottawa, ON, Canada
- Interdisciplinary School of Health Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
26
|
Martínez-Gayo A, Félix-Soriano E, Sáinz N, González-Muniesa P, Moreno-Aliaga MJ. Changes Induced by Aging and Long-Term Exercise and/or DHA Supplementation in Muscle of Obese Female Mice. Nutrients 2022; 14:nu14204240. [PMID: 36296923 PMCID: PMC9610919 DOI: 10.3390/nu14204240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 10/07/2022] [Accepted: 10/08/2022] [Indexed: 11/16/2022] Open
Abstract
Obesity and aging promote chronic low-grade systemic inflammation. The aim of the study was to analyze the effects of long-term physical exercise and/or omega-3 fatty acid Docosahexaenoic acid (DHA) supplementation on genes or proteins related to muscle metabolism, inflammation, muscle damage/regeneration and myokine expression in aged and obese mice. Two-month-old C57BL/6J female mice received a control or a high-fat diet for 4 months. Then, the diet-induced obese (DIO) mice were distributed into four groups: DIO, DIO + DHA, DIO + EX (treadmill training) and DIO + DHA + EX up to 18 months. Mice fed a control diet were sacrificed at 2, 6 and 18 months. Aging increased the mRNA expression of Tnf-α and decreased the expression of genes related to glucose uptake (Glut1, Glut4), muscle atrophy (Murf1, Atrogin-1, Cas-9) and myokines (Metrnl, Il-6). In aged DIO mice, exercise restored several of these changes. It increased the expression of genes related to glucose uptake (Glut1, Glut4), fatty acid oxidation (Cpt1b, Acox), myokine expression (Fndc5, Il-6) and protein turnover, decreased Tnf-α expression and increased p-AKT/AKT ratio. No additional effects were observed when combining exercise and DHA. These data suggest the effectiveness of long-term training to prevent the deleterious effects of aging and obesity on muscle dysfunction.
Collapse
Affiliation(s)
- Alejandro Martínez-Gayo
- Department of Nutrition, Food Science and Physiology, Faculty of Pharmacy and Nutrition, University of Navarra, 31008 Pamplona, Spain
- Center for Nutrition Research, University of Navarra, 31008 Pamplona, Spain
| | - Elisa Félix-Soriano
- Department of Nutrition, Food Science and Physiology, Faculty of Pharmacy and Nutrition, University of Navarra, 31008 Pamplona, Spain
- Center for Nutrition Research, University of Navarra, 31008 Pamplona, Spain
| | - Neira Sáinz
- Department of Nutrition, Food Science and Physiology, Faculty of Pharmacy and Nutrition, University of Navarra, 31008 Pamplona, Spain
- Center for Nutrition Research, University of Navarra, 31008 Pamplona, Spain
| | - Pedro González-Muniesa
- Department of Nutrition, Food Science and Physiology, Faculty of Pharmacy and Nutrition, University of Navarra, 31008 Pamplona, Spain
- Center for Nutrition Research, University of Navarra, 31008 Pamplona, Spain
- CIBER Physiopathology of Obesity and Nutrition (CIBERobn), Carlos III Health Institute (ISCIII), 28029 Madrid, Spain
- IdISNA–Navarra Institute for Health Research, 31008 Pamplona, Spain
- Correspondence: (P.G.-M.); (M.J.M.-A.)
| | - María J. Moreno-Aliaga
- Department of Nutrition, Food Science and Physiology, Faculty of Pharmacy and Nutrition, University of Navarra, 31008 Pamplona, Spain
- Center for Nutrition Research, University of Navarra, 31008 Pamplona, Spain
- CIBER Physiopathology of Obesity and Nutrition (CIBERobn), Carlos III Health Institute (ISCIII), 28029 Madrid, Spain
- IdISNA–Navarra Institute for Health Research, 31008 Pamplona, Spain
- Correspondence: (P.G.-M.); (M.J.M.-A.)
| |
Collapse
|
27
|
Jamal MH, AlOtaibi F, Dsouza C, Al-Sabah S, Al-Khaledi G, Al-Ali W, Ali H, Cherian P, Al-Khairi I, Devarajan S, Abu-Farha M, Al-Mulla F, Abubaker J. Changes in the expression of meteorin-like (METRNL), irisin (FNDC5), and uncoupling proteins (UCPs) after bariatric surgery. Obesity (Silver Spring) 2022; 30:1629-1638. [PMID: 35844163 DOI: 10.1002/oby.23473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 04/15/2022] [Accepted: 04/19/2022] [Indexed: 11/11/2022]
Abstract
OBJECTIVE Bariatric surgery is currently the most effective treatment for severe obesity. This study aims to investigate the changes in expression levels of meteorin-like protein (METRNL), irisin (FNDC5), and uncoupling proteins (UCP) 1/2/3 following bariatric surgery to understand their involvement in enhancing metabolism after surgery. METHOD A total of 40 participants were enrolled in this interventional study, 20 with obesity BMI ≥ 35 kg/m2 and 20 with BMI ≤ 25 kg/m2 . Bariatric surgery (laparoscopic sleeve gastrectomy and Roux-en-Y gastric bypass) was performed. The levels of various molecules of interest were analyzed before and after surgery. RESULTS Gene expression analysis revealed significantly higher levels of METRNL, UCP1, and UCP3 in individuals with obesity when compared with healthy individuals before surgery (p < 0.05). Gene expression levels of METRNL and UCP2 showed a significant increase after bariatric surgery (p < 0.05). METRNL plasma level was significantly higher in individuals with obesity before surgery (mean [SEM], 55,222.6 [1,421.1] pg/mL, p = 0.0319), as well as at 6 and 12 months (57,537.3 [1,303.9] pg/mL, p = 0.0005; 59,334.9 [1,214.3] pg/mL, p < 0.0001) after surgery. CONCLUSION The changes in the levels of various molecules of interest support their possible involvement in the inflammatory and thermogenic responses following bariatric surgery.
Collapse
Affiliation(s)
- Mohammad H Jamal
- Department of Surgery, Faculty of Medicine, Health Sciences Centre, Kuwait University, Kuwait City, Kuwait
- Department of Organ Transplant, Faculty of Medicine, Health Sciences Centre, Kuwait University, Kuwait City, Kuwait
- Department of Surgery, Jaber Al-Ahmed Hospital, Kuwait City, Kuwait
| | - Fatemah AlOtaibi
- Department of Surgery, Faculty of Medicine, Health Sciences Centre, Kuwait University, Kuwait City, Kuwait
| | - Carol Dsouza
- Department of Surgery, Faculty of Medicine, Health Sciences Centre, Kuwait University, Kuwait City, Kuwait
| | - Suleiman Al-Sabah
- Department of Pharmacology and Toxicology, Faculty of Medicine, Health Sciences Centre, Kuwait University, Kuwait City, Kuwait
| | - Ghanim Al-Khaledi
- Department of Pharmacology and Toxicology, Faculty of Medicine, Health Sciences Centre, Kuwait University, Kuwait City, Kuwait
| | - Waleed Al-Ali
- Department of Pathology, Faculty of Medicine, Health Sciences Centre, Kuwait University, Kuwait City, Kuwait
| | - Hamad Ali
- Department of Medical Laboratory Sciences, Faculty of Allied Health Sciences, Health Sciences Centre, Kuwait University, Kuwait City, Kuwait
- Department of Genetics and Bioinformatics, Dasman Diabetes Institute, Kuwait City, Kuwait
| | - Preethi Cherian
- Department of Biochemistry and Molecular Biology, Dasman Diabetes Institute, Kuwait City, Kuwait
| | - Irina Al-Khairi
- Department of Biochemistry and Molecular Biology, Dasman Diabetes Institute, Kuwait City, Kuwait
| | - Sriraman Devarajan
- Special Service Facility, Dasman Diabetes Institute, Kuwait City, Kuwait
| | - Mohamed Abu-Farha
- Department of Biochemistry and Molecular Biology, Dasman Diabetes Institute, Kuwait City, Kuwait
| | - Fahd Al-Mulla
- Department of Genetics and Bioinformatics, Dasman Diabetes Institute, Kuwait City, Kuwait
| | - Jehad Abubaker
- Department of Biochemistry and Molecular Biology, Dasman Diabetes Institute, Kuwait City, Kuwait
| |
Collapse
|
28
|
Chen P, Jia R, Liu Y, Cao M, Zhou L, Zhao Z. Progress of Adipokines in the Female Reproductive System: A Focus on Polycystic Ovary Syndrome. Front Endocrinol (Lausanne) 2022; 13:881684. [PMID: 35692386 PMCID: PMC9178087 DOI: 10.3389/fendo.2022.881684] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 04/19/2022] [Indexed: 12/16/2022] Open
Abstract
Adipose tissue, one type of loose connective tissue in the human body, maintains the primary task of energy storage. Adipose tissue is not only an energy reservoir but also plays a vital role as the largest endocrine organ of the whole body via releasing a variety of adipokines, which participate in many pathophysiological processes, such as energy metabolism regulation, glucose and lipid metabolism, and inflammation. Polycystic ovary syndrome (PCOS) is a disorder that mainly involves the female reproductive system, affecting women of childbearing age particularly. Insulin resistance (IR) and hyperandrogenemia (HA) have been implicated as a critical link involving the etiology and outcome of PCOS. A great deal of studies has bridged the gap between adipokines (such as Adiponectin, Chemerin, Metrnl, Apelin, Resistin, Visfatin, Leptin, Vaspin, Lipocalin 2, and Omentin) and reproductive fitness. In this review, we will focus on the adipokines' functions on PCOS and come up with some points of view on the basis of current research.
Collapse
Affiliation(s)
| | | | | | | | | | - Zhiming Zhao
- Department of Reproductive Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
29
|
Wang J, Jia Z, Dang H, Zou J. Meteorin-like/Meteorin-β upregulates proinflammatory cytokines via NF-κB pathway in grass carp Ctenopharyngodon idella. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2022; 127:104289. [PMID: 34624357 DOI: 10.1016/j.dci.2021.104289] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 10/04/2021] [Accepted: 10/04/2021] [Indexed: 06/13/2023]
Abstract
Meteorin-like (Metrnl) is a newly discovered cytokine but whether it exists in fish is unclear. In this study, we identified two Meteorin-like (Metrnl) homologues in grass carp Ctenopharyngodon idella (termed CiMetrnl-a and CiMetrnl-b) which share high sequence homology and conserved genomic organization of 4 exons and 3 introns with known Metrnl molecules. Also, gene synteny of Metrnl genes is well conserved in vertebrates. Expression analyses showed that the CiMetrnl-a gene was constitutively expressed in tissues of healthy fish whilst the levels of CiMetrnl-b transcripts were too low to be detected. The CiMetrnl-a gene was inducible by Flavobacterium columnare, grass carp reovirus and PAMPs. Recombinant CiMetrnl-a produced in the CHO-S cells was active in up-regulating the expression of cytokines involved in promoting inflammation (IL-1β, IL-6, IL-8, IL-17A and TNF-α), type 1 immune response (IFN-γ and IL-2) and NF-κB signaling pathway (NF-κBp65 and NF-κBp52) in the primary head kidney leukocytes. Furthermore, luciferase reporter assay showed that CiMetrnl-a was able to activate the NF-κB promoter in the EPC cells, suggesting that CiMetrnl-a may upregulate pro-inflammatory cytokines via NF-κB dependent pathway.
Collapse
Affiliation(s)
- Junya Wang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; Guangdong South China Sea Key Laboratory of Aquaculture for Aquatic Economic Animals, Guangdong Ocean University, China; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Zhao Jia
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Huifeng Dang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Jun Zou
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.
| |
Collapse
|
30
|
Amyloid-Beta Peptides and Activated Astroglia Impairs Proliferation of Nerve Growth Factor Releasing Cells In Vitro: Implication for Encapsulated Cell Biodelivery-Mediated AD Therapy. Cells 2021; 10:cells10112834. [PMID: 34831056 PMCID: PMC8616486 DOI: 10.3390/cells10112834] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/29/2021] [Accepted: 10/14/2021] [Indexed: 01/13/2023] Open
Abstract
Alzheimer’s disease (AD) treatment is constrained due to the inability of peripherally administered therapeutic molecules to cross the blood–brain barrier. Encapsulated cell biodelivery (ECB) devices, a tissue-targeted approach for local drug release, was previously optimized for human mature nerve growth factor (hmNGF) delivery in AD patients but was found to have reduced hmNGF release over time. To understand the reason behind reduced ECB efficacy, we exposed hmNGF-releasing cells (NGC0211) in vitro to human cerebrospinal fluid (CSF) obtained from Subjective Cognitive Impairment (SCI), Lewy Body Dementia (LBD), and AD patients. Subsequently, we exposed NGC0211 cells directly to AD-related factors like amyloid-β peptides (Aβ40/42) or activated astrocyte-conditioned medium (Aβ40/42/IL-1β/TNFα-treated) and evaluated biochemical stress markers, cell death indicators, cell proliferation marker (Ki67), and hmNGF release. We found that all patients’ CSF significantly reduced hmNGF release from NGC0211 cells in vitro. Aβ40/42, inflammatory molecules, and activated astrocytes significantly affected NGC0211 cell proliferation without altering hmNGF release or other parameters important for essential functions of the NGC0211 cells. Long-term constant cell proliferation within the ECB device is critically important to maintain a steady cell population needed for stable mNGF release. These data show hampered proliferation of NGC0211 cells, which may lead to a decline of the NGC0211 cell population in ECBs, thereby reducing hmNGF release. Our study highlights the need for future studies to strengthen ECB-mediated long-term drug delivery approaches.
Collapse
|
31
|
Huang S, Cao L, Cheng H, Li D, Li Y, Wu Z. The blooming intersection of subfatin and metabolic syndrome. Rev Cardiovasc Med 2021; 22:799-805. [PMID: 34565078 DOI: 10.31083/j.rcm2203086] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/23/2021] [Accepted: 08/13/2021] [Indexed: 02/05/2023] Open
Abstract
Metabolic Syndrome (MS) remains the leading cause of mortality and morbidity globally. Adipose tissue releases adipokines that play key roles in metabolic and cardio-cerebro-vascular homeostasis. Subfatin, induced after exercise or upon cold exposure in adipose tissue, is a novel secreted protein homologous to Metrn, a neutrophic factor with angiogenic properties. The protein was proved to be of great significance in the browning of white adipose tissue (BWT) and insulin resistance (IR). It affected insulin sensitivity at least via its local autocrine/paracrine action through AMP-activated protein kinase (AMPK) or peroxisome proliferator-activated receptor δ (PPAR-δ) dependent signaling. Subfatin blocked the release of inflammatory mediators, improved intracellular insulin signal transduction and reversed IR. It also improved glucose tolerance and played a key role in metabolism and cardiovascular and cerebrovascular homeostasis. It was reported that the level of serum subfatin was significantly correlated with the occurrence and severity of coronary heart disease, which might be a new target for the treatment of coronary heart disease. In addition, exercise increased the level of subfatin in circulation and adipose tissue, promoted energy consumption, improved glucose and lipid metabolism, increased the heat production of brown fat, and strengthened the anti-inflammatory mechanism. Given its role in metabolic disorders, subfatin is considered as a candidate biomarker of MS. However, the clinical significance of subfatin remains largely unclear. The purpose of this article is to review the research on the effect of subfatin on MS in recent years.
Collapse
Affiliation(s)
- Shenglei Huang
- Department of Hepatobiliary Disease, Fuzhou General Hospital (Dongfang Hospital), Xiamen University, 350025 Fuzhou, Fujian, China
- Department of Hepatobiliary Disease, The 900th Hospital of Joint Logistics Support Force, 350025 Fuzhou, Fujian, China
| | - Lei Cao
- Department of Pathology, Quanzhou Women's and Children's Hospital, 362000 Quanzhou, Fujian, China
| | - Hongwei Cheng
- School of Public Health, Xiamen University, 361002 Xiamen, Fujian, China
| | - Dongliang Li
- Department of Hepatobiliary Disease, Fuzhou General Hospital (Dongfang Hospital), Xiamen University, 350025 Fuzhou, Fujian, China
- Department of Hepatobiliary Disease, The 900th Hospital of Joint Logistics Support Force, 350025 Fuzhou, Fujian, China
| | - Yi Li
- Department of Oncology, 920th Hospital of Joint Logistics Support Force, 650032 Kunming, Yunnan, China
| | - Zhixian Wu
- Department of Hepatobiliary Disease, Fuzhou General Hospital (Dongfang Hospital), Xiamen University, 350025 Fuzhou, Fujian, China
- Department of Hepatobiliary Disease, The 900th Hospital of Joint Logistics Support Force, 350025 Fuzhou, Fujian, China
| |
Collapse
|
32
|
Meteorin-Like Protein (Metrnl) in Obesity, during Weight Loss and in Adipocyte Differentiation. J Clin Med 2021; 10:jcm10194338. [PMID: 34640356 PMCID: PMC8509786 DOI: 10.3390/jcm10194338] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/08/2021] [Accepted: 09/13/2021] [Indexed: 12/05/2022] Open
Abstract
Meteorin-like protein (Metrnl) is an adipo-myokine with pleiotropic effects in adipose tissue (AT). Its systemic regulation in obesity and under weight loss is unclear. Circulating Metrnl concentrations were analyzed by ELISA in severely obese patients undergoing bariatric surgery (BS) or low calorie diet (LCD). Metrnl mRNA expression was analyzed in human and murine tissues and cell lines by quantitative real-time PCR. About 312 morbidly obese individuals underwent BS (n = 181; BMI 53.4 + 6.8 kg/m2) or LCD (n = 131; BMI 43.5 + 6.7 kg/m2). Serum samples were obtained at baseline and 3, 6, and 12 months after intervention. AT specimen from subcutaneous and visceral adipose tissue were resected during BS. Serum Metrnl levels were lower in type 2 diabetic patients and negatively correlated with HbA1c. In BS and LCD patients, Metrnl concentrations significantly increased after 3 months and returned to baseline levels after 12 months. There was no gender-specific effect. Metrnl mRNA expression did not differ between visceral and subcutaneous AT in n = 130 patients. In contrast, Metrnl gene expression in mice was highest in intra-abdominal AT followed by subcutaneous, peri-renal, and brown AT. In the murine 3T3-L1 cell line, Metrnl expression was high in pre-adipocytes and mature adipocytes with a transient downregulation during adipocyte differentiation. Metrnl expression remained unaffected upon treatment with glucose, insulin, fatty acids, bile acids, and incretins. Polyunsaturated omega-3 and omega-6 fatty acids downregulated Metrnl expression. Systemic Metrnl is transiently upregulated during massive weight loss and gene expression in adipocytes is differentially regulated.
Collapse
|
33
|
Piacentino ML, Hutchins EJ, Bronner ME. Essential function and targets of BMP signaling during midbrain neural crest delamination. Dev Biol 2021; 477:251-261. [PMID: 34102166 PMCID: PMC8277753 DOI: 10.1016/j.ydbio.2021.06.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/27/2021] [Accepted: 06/01/2021] [Indexed: 12/30/2022]
Abstract
BMP signaling plays iterative roles during vertebrate neural crest development from induction through craniofacial morphogenesis. However, far less is known about the role of BMP activity in cranial neural crest epithelial-to-mesenchymal transition and delamination. By measuring canonical BMP signaling activity as a function of time from specification through early migration of avian midbrain neural crest cells, we found elevated BMP signaling during delamination stages. Moreover, inhibition of canonical BMP activity via a dominant negative mutant Type I BMP receptor showed that BMP signaling is required for neural crest migration from the midbrain, independent from an effect on EMT and delamination. Transcriptome profiling on control compared to BMP-inhibited cranial neural crest cells identified novel BMP targets during neural crest delamination and early migration including targets of the Notch pathway that are upregulated following BMP inhibition. These results suggest potential crosstalk between the BMP and Notch pathways in early migrating cranial neural crest and provide novel insight into mechanisms regulated by BMP signaling during early craniofacial development.
Collapse
Affiliation(s)
- Michael L Piacentino
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Erica J Hutchins
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Marianne E Bronner
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA.
| |
Collapse
|
34
|
Rupérez C, Ferrer-Curriu G, Cervera-Barea A, Florit L, Guitart-Mampel M, Garrabou G, Zamora M, Crispi F, Fernandez-Solà J, Lupón J, Bayes-Genis A, Villarroya F, Planavila A. Meteorin-like/Meteorin-β protects heart against cardiac dysfunction. J Exp Med 2021; 218:e20201206. [PMID: 33635944 PMCID: PMC7923691 DOI: 10.1084/jem.20201206] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 11/10/2020] [Accepted: 01/28/2021] [Indexed: 12/22/2022] Open
Abstract
Meteorin-like/Meteorin-β (Metrnl/Metrnβ) is a secreted protein produced by skeletal muscle and adipose tissue that exerts metabolic actions that improve glucose metabolism. The role of Metrnβ in cardiac disease is completely unknown. Here, we show that Metrnβ-null mice exhibit asymmetrical cardiac hypertrophy, fibrosis, and enhanced signs of cardiac dysfunction in response to isoproterenol-induced cardiac hypertrophy and aging. Conversely, adeno-associated virus-mediated specific overexpression of Metrnβ in the heart prevents the development of cardiac remodeling. Furthermore, Metrnβ inhibits cardiac hypertrophy development in cardiomyocytes in vitro, indicating a direct effect on cardiac cells. Antibody-mediated blockage of Metrnβ in cardiomyocyte cell cultures indicated an autocrine action of Metrnβ on the heart, in addition to an endocrine action. Moreover, Metrnβ is highly produced in the heart, and analysis of circulating Metrnβ concentrations in a large cohort of patients reveals that it is a new biomarker of heart failure with an independent prognostic value.
Collapse
Affiliation(s)
- Celia Rupérez
- Departament de Bioquímica i Biologia Molecular, Institut de Biomedicina, Universitat de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición, Barcelona, Spain
| | - Gemma Ferrer-Curriu
- Departament de Bioquímica i Biologia Molecular, Institut de Biomedicina, Universitat de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición, Barcelona, Spain
| | - Aina Cervera-Barea
- Departament de Bioquímica i Biologia Molecular, Institut de Biomedicina, Universitat de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición, Barcelona, Spain
| | - Laura Florit
- Departament de Bioquímica i Biologia Molecular, Institut de Biomedicina, Universitat de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición, Barcelona, Spain
| | - Mariona Guitart-Mampel
- Muscle Research and Mitochondrial Function Laboratory, Cellex – August Pi i Sunyer Biomedical Research Institute, Faculty of Medicine and Health Science, University of Barcelona, Internal Medicine Service, Hospital Clínic of Barcelona, Barcelona, Spain
- Center for Biomedical Research Network on Rare Diseases, Barcelona, Spain
| | - Gloria Garrabou
- Muscle Research and Mitochondrial Function Laboratory, Cellex – August Pi i Sunyer Biomedical Research Institute, Faculty of Medicine and Health Science, University of Barcelona, Internal Medicine Service, Hospital Clínic of Barcelona, Barcelona, Spain
- Center for Biomedical Research Network on Rare Diseases, Barcelona, Spain
| | - Mònica Zamora
- Fetal I+D Fetal Medicine Research Center, BCNatal - Barcelona Center for Maternal-Fetal and Neonatal Medicine (Hospital Clinic and Hospital San Juan de Deu), Institut Clinic de Ginecologia, Obstetricia i Neonatalogia, August Pi i Sunyer Biomedical Research Institute, University of Barcelona, Barcelona, Spain
| | - Fàtima Crispi
- Fetal I+D Fetal Medicine Research Center, BCNatal - Barcelona Center for Maternal-Fetal and Neonatal Medicine (Hospital Clinic and Hospital San Juan de Deu), Institut Clinic de Ginecologia, Obstetricia i Neonatalogia, August Pi i Sunyer Biomedical Research Institute, University of Barcelona, Barcelona, Spain
| | | | - Josep Lupón
- Heart Institute, Germans Trias i Pujol University Hospital, Center for Biomedical Research Network on Cardiovascular Diseases, Badalona, Spain
| | - Antoni Bayes-Genis
- Heart Institute, Germans Trias i Pujol University Hospital, Center for Biomedical Research Network on Cardiovascular Diseases, Badalona, Spain
| | - Francesc Villarroya
- Departament de Bioquímica i Biologia Molecular, Institut de Biomedicina, Universitat de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición, Barcelona, Spain
| | - Anna Planavila
- Departament de Bioquímica i Biologia Molecular, Institut de Biomedicina, Universitat de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición, Barcelona, Spain
| |
Collapse
|
35
|
Atakan MM, Koşar ŞN, Güzel Y, Tin HT, Yan X. The Role of Exercise, Diet, and Cytokines in Preventing Obesity and Improving Adipose Tissue. Nutrients 2021; 13:nu13051459. [PMID: 33922998 PMCID: PMC8145589 DOI: 10.3390/nu13051459] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/20/2021] [Accepted: 04/22/2021] [Indexed: 12/17/2022] Open
Abstract
The prevalence of obesity continues to rise worldwide despite evidence-based public health recommendations. The promise to adopt a healthy lifestyle is increasingly important for tackling this global epidemic. Calorie restriction or regular exercise or a combination of the two is accepted as an effective strategy in preventing or treating obesity. Furthermore, the benefits conferred by regular exercise to overcome obesity are attributed not only to reduced adiposity or reduced levels of circulating lipids but also to the proteins, peptides, enzymes, and metabolites that are released from contracting skeletal muscle or other organs. The secretion of these molecules called cytokines in response to exercise induces browning of white adipose tissue by increasing the expression of brown adipocyte-specific genes within the white adipose tissue, suggesting that exercise-induced cytokines may play a significant role in preventing obesity. In this review, we present research-based evidence supporting the effects of exercise and various diet interventions on preventing obesity and adipose tissue health. We also discuss the interplay between adipose tissue and the cytokines secreted from skeletal muscle and other organs that are known to affect adipose tissue and metabolism.
Collapse
Affiliation(s)
- Muhammed Mustafa Atakan
- Division of Exercise Nutrition and Metabolism, Faculty of Sport Sciences, Hacettepe University, 06800 Ankara, Turkey; (M.M.A.); (Ş.N.K.); (Y.G.)
| | - Şükran Nazan Koşar
- Division of Exercise Nutrition and Metabolism, Faculty of Sport Sciences, Hacettepe University, 06800 Ankara, Turkey; (M.M.A.); (Ş.N.K.); (Y.G.)
| | - Yasemin Güzel
- Division of Exercise Nutrition and Metabolism, Faculty of Sport Sciences, Hacettepe University, 06800 Ankara, Turkey; (M.M.A.); (Ş.N.K.); (Y.G.)
| | - Hiu Tung Tin
- Institute for Health and Sport (iHeS), Victoria University, P.O. Box 14428, Melbourne 8001, Australia;
| | - Xu Yan
- Institute for Health and Sport (iHeS), Victoria University, P.O. Box 14428, Melbourne 8001, Australia;
- Sarcopenia Research Program, Australia Institute for Musculoskeletal Sciences (AIMSS), Melbourne 3021, Australia
- Correspondence: ; Tel.: +61-3-9919-4024; Fax: +61-3-9919-5615
| |
Collapse
|
36
|
Abstract
Meterorin-like hormone (Metrnl), as a novel secreted factor, has been shown to be involved in physiological and pathophysiological processes. The behaviour of Metrnl in metabolic conditions like type 2 diabetes is conflicting. Metrnl-mediated (treatment with Metrnl) auto/paracrine actions in skeletal muscle are glucose uptake, fat oxidation and muscle regeneration. Exercise-induced Metrnl actions are increased fat oxidation in both skeletal muscle and adipose tissue, the control of inflammation in adipose tissue (metainflammation), and the regulation of muscle regeneration. Based on the current knowledge, Metrnl as a myokine can establish the muscle-fat crosstalk; however, the ability of Metrnl as a myokine to create other crosstalks remains unclear yet. Additionally, given the considerable anti-inflammatory roles of Metrnl in muscle regeneration, it could be a potential therapeutic candidate for muscle-related inflammatory diseases and ageing skeletal muscle which need to be addressed in the future studies.
Collapse
Affiliation(s)
- Hamid Alizadeh
- Department of Exercise Physiology, University of Mazandaran, Babolsar, Mazandaran, Iran
| |
Collapse
|
37
|
Involvement of the secreted protein Metrnl in human diseases. Acta Pharmacol Sin 2020; 41:1525-1530. [PMID: 32999412 DOI: 10.1038/s41401-020-00529-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 09/05/2020] [Indexed: 12/13/2022]
Abstract
Metrnl, a secreted protein expressed in white adipose tissue, has been identified as a novel adipokine. It is also highly expressed in barrier tissues, including the skin, intestinal and respiratory tract epithelium in both mice and humans. Research shows that its expression is upregulated by inflammation, chronic high-fat diets, exercise, cold exposure, etc., and it plays important roles in promoting neurite extension, enhancing white fat browning, improving insulin sensitivity, modulating lipid metabolism and regulating inflammatory response, the latter implying Metrnl is a new cytokine. These studies suggest that Metrnl could be a promising biomarker and a potential therapeutic target for the related diseases. For proving this, clinical studies need to be performed to bridge the gap between bench and bedside. In this paper, we summarize the progress in recent clinical research on Metrnl. Most of these clinical studies are designed to confirm the relationship between circulating Metrnl and metabolic or cardiovascular disease (type 2 diabetes and coronary heart disease), or immune inflammation-related diseases, such as colitis, psoriasis and arthritis. Although blood Metrnl seems to fluctuate and are affected by many factors, such as drugs, physical exercise, and cold exposure, these clinical studies provide reliable clues that Metrnl is associated with coronary heart disease, inflammation-related diseases, etc. Nevertheless, the roles of Metrnl in some diseases such as nervous system diseases remain unclear, and its putative involvement should be further clarified. These studies could promote the application of Metrnl in clinic as a new therapeutic target.
Collapse
|
38
|
Metrnl deficiency decreases blood HDL cholesterol and increases blood triglyceride. Acta Pharmacol Sin 2020; 41:1568-1575. [PMID: 32265491 DOI: 10.1038/s41401-020-0368-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Revised: 01/14/2020] [Accepted: 01/16/2020] [Indexed: 12/12/2022]
Abstract
Dyslipidemia is a risk factor for cardiovascular diseases and type 2 diabetes. Several adipokines play important roles in modulation of blood lipids. Metrnl is a recently identified adipokine, and adipose Metrnl participates in regulation of blood triglyceride (TG). In this study, we generated Metrnl global, intestine-specific and liver-specific knockout mice, and explored the effects of Metrnl on serum lipid parameters. Global knockout of Metrnl had no effects on serum lipid parameters under normal chow diet, but increased blood TG by 14%, and decreased total cholesterol (TC) by 16% and high density lipoprotein cholesterol (HDL-C) by 24% under high fat diet. Nevertheless, intestine-specific knockout of Metrnl did not alter the serum lipids parameters under normal chow diet or high fat diet. Notably, liver-specific knockout of Metrnl decreased HDL-C by 24%, TC by 20% and low density lipoprotein cholesterol (LDL-C) by 16% without alterations of blood TG and nonesterified fatty acids (NEFA) under high fat diet. But deficiency of Metrnl in liver did not change VLDL secretion and expression of lipid synthetic and metabolic genes. We conclude that tissue-specific Metrnl controls different components of blood lipids. In addition to modulation of blood TG by adipose Metrnl, blood HDL-C is regulated by liver Metrnl.
Collapse
|
39
|
Interleukin 39: a new member of interleukin 12 family. Cent Eur J Immunol 2020; 45:214-217. [PMID: 33456334 PMCID: PMC7792434 DOI: 10.5114/ceji.2020.97911] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 12/07/2017] [Indexed: 12/13/2022] Open
Abstract
Interleukin (IL)-12 family member is a heterodimer glycoprotein, composed of two covalently linked subunits, α and β chains. The α subunit consists of IL-23p19, IL-27p28, and IL-12p35, and the β subunit includes IL-12p40 and Epstein-Barr virus-induced gene (Ebi3). IL-39 is a new heterodimeric IL-12 family member composed of IL-23p19 and Ebi3 subunits. IL-39 is secreted by lipopolysaccharide-stimulated B cells. Other immune cells, such as dendritic cells and macrophages, express IL-39 mRNA. In lupus-like mice, GL7+B cells and CD138+plasma cells are highly activated and widely expressed, promoting high expression of IL-39. IL-39 mediates inflammatory responses through binding to a heterodimer of IL-23R/gp130 receptor and activation of signal transducer and activator of transcription (STAT)1/STAT3 signal molecules. The serum levels of IL-39 were significantly increased in patients with acute coronary syndrome compared with patients with normal coronary arteries. This review discusses the biological characteristics, receptor, and signal pathway as well as biological activity of IL-39 and its potential role in inflammation and other diseases.
Collapse
|
40
|
Zhang SL, Li ZY, Wang DS, Xu TY, Fan MB, Cheng MH, Miao CY. Aggravated ulcerative colitis caused by intestinal Metrnl deficiency is associated with reduced autophagy in epithelial cells. Acta Pharmacol Sin 2020; 41:763-770. [PMID: 31949292 PMCID: PMC7471395 DOI: 10.1038/s41401-019-0343-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 12/02/2019] [Indexed: 01/26/2023]
Abstract
Metrnl is a newly identified secreted protein highly expressed in the intestinal epithelium. This study aimed to explore the role and mechanism of intestinal epithelial Metrnl in ulcerative colitis. Metrnl-/- (intestinal epithelial cell-specific Metrnl knockout) mice did not display any phenotypes of colitis under basal conditions. However, under administration of 3% dextran sodium sulfate (DSS) drinking water, colitis was more severe in Metrnl-/- mice than in WT mice, as indicated by comparisons of body weight loss, the presence of occult or gross blood per rectum, stool consistency, shrinkage in the colon, intestinal damage, and serum levels of inflammatory factors. DSS-induced colitis activated autophagy in the colon. This activation was partially inhibited by intestinal epithelial Metrnl deficiency, as indicated by a decrease in Beclin-1 and LC3-II/I and an increase in p62 in DSS-treated Metrnl-/- mice compared with WT mice. These phenomena were further confirmed by observation of autophagosomes and immunofluorescence staining for LC3 in epithelial cells. The autophagy-related AMPK-mTOR-p70S6K pathway was also activated in DSS-induced colitis, and this pathway was partially blocked by intestinal epithelial Metrnl deficiency, as indicated by a decrease in AMPK phosphorylation and an increase in mTOR and p70S6K phosphorylation in DSS-treated Metrnl-/- mice compared with WT mice. Therefore, Metrnl deficiency deteriorated ulcerative colitis at least partially through inhibition of autophagy via the AMPK-mTOR-p70S6K pathway, suggesting that Metrnl is a therapeutic target for ulcerative colitis.
Collapse
|
41
|
Abstract
Careful attention to study design, bioactive material, and drug exposure was used in replication of a single study supporting efficacy of Meteorin in experimental neuropathic pain. Data from preclinical research have been suggested to suffer from a lack of inherent reproducibility across laboratories. The goal of our study was to replicate findings from a previous report that demonstrated positive effects of Meteorin, a novel neurotrophic factor, in a rat model of neuropathic pain induced by chronic constriction injury (CCI). Notably, 5 to 6 intermittent subcutaneous (s.c.) injections of Meteorin had been reported to produce reversal of mechanical allodynia/thermal hyperalgesia after injury, wherein maximum efficacy of Meteorin was reached slowly and outlasted the elimination of the compound from the blood by several weeks. Here, we evaluated the efficacy of Meteorin in reversing hindpaw mechanical hyperalgesia and cold allodynia in male, Sprague-Dawley rats with CCI. Nociceptive behavior was monitored before and after CCI, and after drug treatment until day 42 after injury. Systemic administration of recombinant mouse Meteorin (0.5 and 1.8 mg/kg, s.c.) at days 10, 12, 14, 17, and 19 after CCI produced a prolonged reversal of neuropathic hypersensitivity with efficacy comparable with that obtained with gabapentin (100 mg/kg, orally). Despite some protocol deviations (eg, nociceptive endpoint, animal vendor, testing laboratory, investigator, etc.) being incurred, these did not affect study outcome. By paying careful attention to key facets of study design, using bioactive material, and confirming drug exposure, the current data have replicated the salient findings of the previous study, promoting confidence in further advancement of this novel molecule as a potential therapy for neuropathic pain.
Collapse
|
42
|
Yavuzkir S, Ugur K, Deniz R, Ustebay DU, Mirzaoglu M, Yardim M, Sahin İ, Baykus Y, Karagoz ZK, Aydin S. Maternal and umbilical cord blood subfatin and spexin levels in patients with gestational diabetes mellitus. Peptides 2020; 126:170277. [PMID: 32068104 DOI: 10.1016/j.peptides.2020.170277] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 02/06/2020] [Accepted: 02/14/2020] [Indexed: 01/02/2023]
Abstract
Subfatin and spexin are two novel adipokines implicated in glucose homeostasis. This study was designed to investigate changes in blood subfatin and spexin levels during gestational diabetes mellitus (GDM) and childbirth, and define the mechanisms of these hormones in the physiopathology of GDM. A total of 60 pregnant women, comprising 30 diagnosed with GDM and 30 with normal gestation, were included in the study. The diagnosis of GDM was made through a 75-g oral glucose tolerance test (OGTT) administered between 24 and 28 weeks of pregnancy. The amounts of subfatin, spexin, and insulin were measured in blood samples by enzyme-linked immunosorbent assays; lipid profiles, glucose, and other biochemical parameters were measured by using an autoanalyzer. Levels of subfatin and spexin were significantly higher in blood samples drawn at baseline (before OGTT) in mothers with GDM compared to those with normal gestation. Similar observations were made in maternal and cord blood sampled at the end of pregnancy. However, at delivery, the increase in subfatin and spexin concentrations observed at baseline was abrogated in both groups of pregnant women, although levels in mothers with GDM were comparatively higher. These results show that levels of subfatin and spexin increased because of GDM and suggest that these hormones could be potential biomarkers for the diagnosis and management of GDM.
Collapse
Affiliation(s)
- Seyda Yavuzkir
- Department of Obstetrics and Gynecology, School of Medicine, Firat University, 23119 Elazig, Turkey
| | - Kader Ugur
- Department of Internal Medicine (Endocrinology and Metabolism Diseases), School of Medicine, Firat University, 23119 Elazig, Turkey
| | - Rulin Deniz
- Department of Obstetrics, Gynecology & Reproductive Sciences, Kafkas University, 36000 Kars, Turkey
| | - Dondu Ulker Ustebay
- Department of Pediatrics, School of Medicine, Kafkas University, 36000 Kars, Turkey
| | - Miyase Mirzaoglu
- Department of Obstetrics and Gynecology, School of Medicine, Firat University, 23119 Elazig, Turkey
| | - Meltem Yardim
- Department of Biochemistry, Yerköy State Hospital, 66900 Yozgat, Turkey
| | - İbrahim Sahin
- Department of Medical Biochemistry and Clinical Biochemistry, (Firat Hormones Research Group), School of Medicine, Firat University, 23119 Elazig, Turkey; Department of Medical Biology, School of Medicine, Erzincan Binali Yildirim University, 24100 Erzincan, Turkey
| | - Yakup Baykus
- Department of Obstetrics, Gynecology & Reproductive Sciences, Kafkas University, 36000 Kars, Turkey
| | - Zuhal Karaca Karagoz
- Fethi Sekin City Hospital, Department of Internal Medicine (Endocrinology and Metabolism Diseases), 23119 Elazig, Turkey
| | - Suleyman Aydin
- Department of Medical Biochemistry and Clinical Biochemistry, (Firat Hormones Research Group), School of Medicine, Firat University, 23119 Elazig, Turkey.
| |
Collapse
|
43
|
Lappas M. Maternal obesity and gestational diabetes decrease Metrnl concentrations in cord plasma. J Matern Fetal Neonatal Med 2019; 34:2991-2995. [PMID: 31608723 DOI: 10.1080/14767058.2019.1676713] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
OBJECTIVE To determine the effect of preexisting maternal obesity and gestational diabetes mellitus (GDM) on the circulating levels of Metrnl in cord and maternal plasma. DESIGN Metrnl levels were measured on maternal and cord plasma from women with normal glucose tolerance (NGT) (19 non-obese and 20 obese), GDM controlled by diet (18 non-obese and 17 obese) and GDM controlled by insulin (19 non-obese and 18 obese) at the time of term elective cesarean section. Metrnl concentrations were determined by enzyme-linked immunoassay. Correlations of Metrnl levels with anthropometric parameters and laboratory measurements were also assessed. RESULTS There was no effect of maternal obesity or GDM on maternal plasma Metrnl concentrations. In cord plasma, Metrnl concentrations were significantly lower in NGT obese compared to NGT non-obese women and in non-obese GDM women compared to non-obese NGT women. Significant positive correlations were observed between maternal plasma Metrnl and cord plasma Metrnl. In cord plasma, significant positive correlations were observed between Metrnl levels and GWG and maternal and cord plasma glucose levels at delivery. CONCLUSIONS At the time of term cesarean section, preexisting maternal obesity and GDM are associated with lower Metrnl levels in cord plasma. Alterations in cord plasma Metrnl levels may lead to alterations in fetal growth trajectory and be a determinant for metabolic disorders later in life.
Collapse
Affiliation(s)
- Martha Lappas
- Department of Obstetrics and Gynaecology, Obstetrics, Nutrition and Endocrinology Group, Mercy Perinatal Research Centre, Mercy Hospital for Women, University of Melbourne, Heidelberg, Victoria, Australia
| |
Collapse
|
44
|
Liu ZX, Ji HH, Yao MP, Wang L, Wang Y, Zhou P, Liu Y, Zheng XF, He HW, Wang LS, Gao W, Lu X. Serum Metrnl is associated with the presence and severity of coronary artery disease. J Cell Mol Med 2018; 23:271-280. [PMID: 30394666 PMCID: PMC6307872 DOI: 10.1111/jcmm.13915] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 08/20/2018] [Indexed: 01/14/2023] Open
Abstract
Meteorin‐like (Metrnl) is a novel adipokine that is highly expressed in white adipose tissue. Metrnl stimulates energy expenditure and improves glucose tolerance in rodents. However, whether Metrnl plays a role in coronary artery disease (CAD) remains to be elucidated. The present study aimed to investigate the association of serum Metrnl with CAD in Chinese patients. A total of 193 patients with CAD and 156 control subjects were enrolled in this study. Serum Metrnl concentration was measured by enzyme‐linked immunosorbent assay. Anthropometric phenotypes, fasting glucose, serum lipids, and inflammatory cytokines were measured. Serum Metrnl was lower in CAD patients when compared to those controls (132.41 vs 173.17 pg/mL, P < 0.001). Serum Metrnl was negatively correlated with metabolic parameters, including body mass index, total cholesterol, and low‐density lipoprotein cholesterol as well as inflammatory markers including high‐sensitivity C‐reactive protein, IL‐1β, and IL‐11 even after adjustment for potential confounding variables (P < 0.05). In multivariable logistic regression analyses, compared to those in the highest tertile of serum Metrnl levels, subjects in the lowest tertile had the highest risks for CAD (adjusted OR = 2.63, 95% CI = 1.46‐4.27, P = 0.001). After adjustment for potential confounding variables, serum Metrnl was also decreased as the number of stenosed vessels increased (P < 0.001). Furthermore, decreased Metrnl level was negatively correlated with the severity of CAD quantified by the Gensini score. This first case‐control study shows significant associations of serum Metrnl with the presence and severity of CAD, suggesting Metrnl might be a new promising therapeutic target for CAD.
Collapse
Affiliation(s)
- Zheng-Xia Liu
- Department of Geriatrics, The Affiliated Sir Run Run Hospital of Nanjing Medical University, Nanjing, China.,Key Laboratory for Aging & Disease, Nanjing Medical University, Nanjing, China.,Laboratory of Geriatrics, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Hui-Hong Ji
- Department of Internal Medicine, The Hospital of HoHai University, Nanjing, China.,Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Min-Peng Yao
- Department of Geriatrics, The Affiliated Sir Run Run Hospital of Nanjing Medical University, Nanjing, China.,Key Laboratory for Aging & Disease, Nanjing Medical University, Nanjing, China
| | - Li Wang
- Department of Geriatrics, The Affiliated Sir Run Run Hospital of Nanjing Medical University, Nanjing, China.,Key Laboratory for Aging & Disease, Nanjing Medical University, Nanjing, China
| | - Yue Wang
- Department of Geriatrics, The Affiliated Sir Run Run Hospital of Nanjing Medical University, Nanjing, China.,Key Laboratory for Aging & Disease, Nanjing Medical University, Nanjing, China
| | - Ping Zhou
- Key Laboratory for Aging & Disease, Nanjing Medical University, Nanjing, China.,Laboratory of Geriatrics, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Ying Liu
- Key Laboratory for Aging & Disease, Nanjing Medical University, Nanjing, China.,Laboratory of Geriatrics, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xi-Feng Zheng
- Department of Geriatrics, The Affiliated Sir Run Run Hospital of Nanjing Medical University, Nanjing, China.,Key Laboratory for Aging & Disease, Nanjing Medical University, Nanjing, China
| | - Hui-Wei He
- Department of Geriatrics, The Affiliated Sir Run Run Hospital of Nanjing Medical University, Nanjing, China.,Key Laboratory for Aging & Disease, Nanjing Medical University, Nanjing, China
| | - Lian-Sheng Wang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Wei Gao
- Department of Geriatrics, The Affiliated Sir Run Run Hospital of Nanjing Medical University, Nanjing, China.,Key Laboratory for Aging & Disease, Nanjing Medical University, Nanjing, China
| | - Xiang Lu
- Department of Geriatrics, The Affiliated Sir Run Run Hospital of Nanjing Medical University, Nanjing, China.,Key Laboratory for Aging & Disease, Nanjing Medical University, Nanjing, China
| |
Collapse
|
45
|
Dadmanesh M, Aghajani H, Fadaei R, Ghorban K. Lower serum levels of Meteorin-like/Subfatin in patients with coronary artery disease and type 2 diabetes mellitus are negatively associated with insulin resistance and inflammatory cytokines. PLoS One 2018; 13:e0204180. [PMID: 30212581 PMCID: PMC6136801 DOI: 10.1371/journal.pone.0204180] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 09/03/2018] [Indexed: 01/16/2023] Open
Abstract
Meteorin-like (Metrnl) is a newly discovered adipokine with favorable effect on insulin sensitivity. Previous studies have reported lower levels of Metrnl in obese patients. However, there is conflicting data regarding its circulating levels in type 2 diabetes mellitus (T2DM) and there is no data in patients with coronary artery disease (CAD). The aim of the present study was to evaluate the Metrnl serum level in patients with T2DM and CAD, and also to evaluate the serum levels of Metrnl with serum levels of adiponectin, IL-6 and TNF-α in patients. This study was conducted on 66 patients with CAD, 63 T2DM patients and 41 controls. The serum levels of Metrnl, adiponectin, IL-6 and TNF-α were measured using ELISA techniques. The serum levels of Metrnl were found to be lower in CAD (75.18 ± 28.48 pg/mL) and T2DM patients (73.89 ± 33.60 pg/mL) compared to the control group (95.33 ± 32.56 pg/mL) (p < 0.005 and p<0.003, respectively). Additionally, adiponectin decreased in CAD and T2DM patients as compared to the control group, while IL-6 and TNF-α were higher in CAD and T2DM patients. Metrnl showed independent association with the risk of CAD and T2DM presence. Furthermore, Metrnl illustrated a negative correlation with IL-6 and TNF-α in both CAD patients and also with BMI, insulin resistance, IL-6 and TNF-α in T2DM patients. Metrnl showed an association with CAD and T2DM presence and with components of their pathogenesis such as inflammation and insulin resistance. These results suggested a possible interaction between Metrnl and the pathogenesis of CAD and T2DM, however more studies are needed to prove this concept.
Collapse
Affiliation(s)
- Maryam Dadmanesh
- Department of Infectious Diseases, School of Medicine, Aja University of Medical Sciences, Tehran, IR, Iran
| | - Hassan Aghajani
- Interventional Cardiology Department, Tehran Heart Center, Tehran University of Medical Sciences, Tehran, IR, Iran
| | - Reza Fadaei
- Department of Biochemistry, School of Medicine, Aja University of Medical Sciences, Tehran, IR, Iran
- * E-mail: (RF); (KG)
| | - Khodayar Ghorban
- Department of Immunology, School of Medicine, Aja University of Medical Sciences, Tehran, IR, Iran
- * E-mail: (RF); (KG)
| |
Collapse
|
46
|
Zhang SL, Wang SN, Miao CY. Influence of Microbiota on Intestinal Immune System in Ulcerative Colitis and Its Intervention. Front Immunol 2017; 8:1674. [PMID: 29234327 PMCID: PMC5712343 DOI: 10.3389/fimmu.2017.01674] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2017] [Accepted: 11/14/2017] [Indexed: 01/07/2023] Open
Abstract
Ulcerative colitis (UC) is an inflammatory bowel disease (IBD) with chronic and recurrent characteristics caused by multiple reasons. Although the pathogenic factors have not been clarified yet, recent studies have demonstrated that intestinal microbiota plays a major role in UC, especially in the immune system. This review focuses on the description of several major microbiota communities that affect UC and their interactions with the host. In this review, eight kinds of microbiota that are highly related to IBD, including Faecalibacterium prausnitzii, Clostridium clusters IV and XIVa, Bacteroides, Roseburia species, Eubacterium rectale, Escherichia coli, Fusobacterium, and Candida albicans are demonstrated on the changes in amount and roles in the onset and progression of IBD. In addition, potential therapeutic targets for UC involved in the regulation of microbiota, including NLRPs, vitamin D receptor as well as secreted proteins, are discussed in this review.
Collapse
Affiliation(s)
- Sai-Long Zhang
- Department of Pharmacology, Second Military Medical University, Shanghai, China
| | - Shu-Na Wang
- Department of Pharmacology, Second Military Medical University, Shanghai, China
| | - Chao-Yu Miao
- Department of Pharmacology, Second Military Medical University, Shanghai, China
| |
Collapse
|
47
|
Turning Death to Growth: Hematopoietic Growth Factors Promote Neurite Outgrowth through MEK/ERK/p53 Pathway. Mol Neurobiol 2017; 55:5913-5925. [PMID: 29119536 DOI: 10.1007/s12035-017-0814-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 10/27/2017] [Indexed: 12/23/2022]
Abstract
Stem cell factor (SCF) and granulocyte colony-stimulating factor (G-CSF) are the essential hematopoietic growth factors to control hematopoiesis. However, the role of SCF and G-CSF in the central nervous system remains poorly understood. Here, we have demonstrated the involvement of MEK/ERK/p53 signaling in SCF + G-CSF-enhanced neurite extension. Cortical neurons dissected from embryonic rat brains were seeded onto the membranes of transwell inserts, and neurite outgrowth was determined by using both the neurite outgrowth quantification assay kit and immunostaining of β III tubulin. Quantitative RT-PCR and western blotting were used for determining gene and protein expression of ERK and p53, respectively. p53 small interfering RNA (siRNAs) were introduced into neurons for examining the involvement of p53 in SCF + G-CSF-mediated neurite outgrowth. We observed that both SCF and G-CSF alone increased activation of MEK/ERK and gene expression of p53, while SCF + G-CSF synergistically activated the MEK/ERK signaling and upregulated p53 expression. MEK specific inhibitors (PD98059 and U0126) blocked the SCF + G-CSF-increased ERK phosphorylation and p53 gene and protein expression, and the MEK specific inhibitors also eliminated the SCF + G-CSF-promoted neurite outgrowth. p53 siRNAs knocked down the SCF + G-CSF-elevated p53 protein and prevented the SCF + G-CSF-enhanced neurite outgrowth. These findings suggest that activation of MEK/ERK/p53 signaling is required for SCF + G-CSF-promoted neurite outgrowth. Through the pro-apoptotic pathway of the MEK/ERK/p53, SCF + G-CSF turns neuronal fate from apoptotic commitment toward neural network generation. This observation provides novel insights into the putative role of SCF + G-CSF in supporting generation of neural connectivity during CNS development and in brain repair under pathological or neurodegenerative conditions.
Collapse
|
48
|
Wen D, Xiao Y, Vecchi MM, Gong BJ, Dolnikova J, Pepinsky RB. Determination of the Disulfide Structure of Murine Meteorin, a Neurotrophic Factor, by LC–MS and Electron Transfer Dissociation-High-Energy Collisional Dissociation Analysis of Proteolytic Fragments. Anal Chem 2017; 89:4021-4030. [DOI: 10.1021/acs.analchem.6b04600] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Dingyi Wen
- Department of Protein Drug
Discovery, Biogen Inc., 225 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Yongsheng Xiao
- Department of Protein Drug
Discovery, Biogen Inc., 225 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Malgorzata M. Vecchi
- Department of Protein Drug
Discovery, Biogen Inc., 225 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Bang Jian Gong
- Department of Protein Drug
Discovery, Biogen Inc., 225 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Jana Dolnikova
- Department of Protein Drug
Discovery, Biogen Inc., 225 Binney Street, Cambridge, Massachusetts 02142, United States
| | - R. Blake Pepinsky
- Department of Protein Drug
Discovery, Biogen Inc., 225 Binney Street, Cambridge, Massachusetts 02142, United States
| |
Collapse
|
49
|
Intestinal Metrnl released into the gut lumen acts as a local regulator for gut antimicrobial peptides. Acta Pharmacol Sin 2016; 37:1458-1466. [PMID: 27546006 DOI: 10.1038/aps.2016.70] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 06/12/2016] [Indexed: 12/20/2022]
Abstract
AIM Metrnl is a novel secreted protein, but its physiological roles remain elusive. In this study, we investigated the tissue expression pattern of Metrnl in humans and explored its possible physiological role in the tissues with most highly expressed levels. METHODS A human tissue microarray containing 19 types of tissues from 69 donors was used to examine the tissue expression pattern of Metrnl, and the expression pattern was further verified in fresh human and mouse tissues. Intestinal epithelial cell-specific Metrnl knockout mice were generated, which were used to analyze the physiological roles of Metrnl. RESULTS Metrnl was the most highly expressed in the human gastrointestinal tract, and was specifically expressed in the intestinal epithelium. Consistent with this, Metrnl mRNA was also most highly expressed in the mouse gastrointestinal tract among the 14 types of tissues tested. In the intestinal epithelial cell-specific Metrnl knockout mice, the Metrnl levels in the gut fluid were significantly reduced, whereas the Metrnl serum levels showed a trend towards a reduction, but this change was not statistically significant. This cell-specific deletion of Metrnl did not affect body weight, food intake, blood glucose, colon length and histology, intestinal permeability, mucus content or mucin 2 expression under physiological conditions, but statistically decreased the expression of antimicrobial peptides, such as regenerating islet-derived 3 gamma (Reg3g) and lactotransferrin. CONCLUSION Metrnl is highly expressed in the intestinal epithelial cells of humans and mice, which mainly contributes to the local gut Metrnl levels and affects the serum Metrnl level to a lesser extent. Metrnl plays a role in maintaining gut antimicrobial peptides.
Collapse
|
50
|
Zheng SL, Li ZY, Song J, Liu JM, Miao CY. Metrnl: a secreted protein with new emerging functions. Acta Pharmacol Sin 2016; 37:571-9. [PMID: 27063217 PMCID: PMC4857552 DOI: 10.1038/aps.2016.9] [Citation(s) in RCA: 119] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 01/24/2016] [Indexed: 12/15/2022]
Abstract
Secreted proteins play critical roles in physiological and pathological processes and can be used as biomarkers and therapies for aging and disease. Metrnl is a novel secreted protein homologous to the neurotrophin Metrn. But this protein, unlike Metrn that is mainly expressed in the brain, shows a relatively wider distribution in the body with high levels of expression in white adipose tissue and barrier tissues. This protein plays important roles in neural development, white adipose browning and insulin sensitization. Based on its expression and distinct functions, this protein is also called Cometin, Subfatin and Interleukin 39, which refer to its neurotrophic effect, adipokine function and the possible action as a cytokine, respectively. The spectrum of Metrnl functions remains to be determined, and the mechanisms of Metrnl action need to be elucidated. In this review, we focus on the discovery, structural characteristics, expression pattern and physiological functions of Metrnl, which will assist in developing this protein as a new therapeutic target or agent.
Collapse
Affiliation(s)
- Si-li Zheng
- Department of Pharmacology, Second Military Medical University, Shanghai 200433, China
| | - Zhi-yong Li
- Department of Pharmacology, Second Military Medical University, Shanghai 200433, China
| | - Jie Song
- Department of Pharmacology, Second Military Medical University, Shanghai 200433, China
| | - Jian-min Liu
- Stroke Center & Department of Neurosurgery, Changhai Hospital, Second Military Medical University, Shanghai 200433, China
| | - Chao-yu Miao
- Department of Pharmacology, Second Military Medical University, Shanghai 200433, China
- Center of Stroke, Beijing Institute for Brain Disorders, Beijing 100069, China
- E-mail
| |
Collapse
|