1
|
Zhu Z, Xu H, Zhang T, Meng J, Tong Y, Wang K, Zhang B, Yang B. Probing ultraviolet-induced dissociation of hydrogen bond networks in tyrosine by terahertz spectroscopy. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 335:126004. [PMID: 40068319 DOI: 10.1016/j.saa.2025.126004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 02/09/2025] [Accepted: 03/04/2025] [Indexed: 03/24/2025]
Abstract
Tyrosine (Tyr) has gained significant attention as one of the most sensitive amino acids. Its oxidation is accompanied by changes in hydrogen bonds, so the oxidation process of Tyr is monitored and the dissociation sequence of different hydrogen bond network is elucidated based on the sensitivity of terahertz (THz) waves to intermolecular interactions. We find that the peak height of Tyr at 0.97 THz and 2.08 THz decreases with time, but the change behavior of the two is different. Combined with density functional theory (DFT), this phenomenon is attributed to the difference of factors that dominate THz vibration. The weakening of the peak height of Tyr at 0.97 THz is due to the ordered dissociation of hydrogen bonds with different intensities, while the peak at 2.08 THz mainly involves the lattice itself. This means that the peak at 0.97 THz is a more accurate parameter for characterizing the oxidation process. Our study reveals the hydrogen bond changes of Tyr when its structure is destroyed, and provides a spectral technique for monitoring and preventing harmful oxidation reactions using hydrogen bond network evolution.
Collapse
Affiliation(s)
- Zhenqi Zhu
- Huzhou Key Laboratory of Green Energy Materials and Battery Cascade Utilization, School of Intelligent Manufacturing, Huzhou College, Huzhou 313000, PR China.
| | - Hui Xu
- Huzhou Key Laboratory of Green Energy Materials and Battery Cascade Utilization, School of Intelligent Manufacturing, Huzhou College, Huzhou 313000, PR China
| | - Ting Zhang
- National Engineering Laboratory of Textile Fiber Materials and Processing Technology, College of Textile Science and Engineering (International Institute of Silk), Zhejiang Sci-Tech University, Hangzhou 310018, PR China
| | - Jiafeng Meng
- Huzhou Key Laboratory of Green Energy Materials and Battery Cascade Utilization, School of Intelligent Manufacturing, Huzhou College, Huzhou 313000, PR China
| | - Yanwei Tong
- Huzhou Key Laboratory of Green Energy Materials and Battery Cascade Utilization, School of Intelligent Manufacturing, Huzhou College, Huzhou 313000, PR China
| | - Kun Wang
- Huzhou Key Laboratory of Green Energy Materials and Battery Cascade Utilization, School of Intelligent Manufacturing, Huzhou College, Huzhou 313000, PR China
| | - Bing Zhang
- Huzhou Key Laboratory of Green Energy Materials and Battery Cascade Utilization, School of Intelligent Manufacturing, Huzhou College, Huzhou 313000, PR China
| | - Bin Yang
- National Engineering Laboratory of Textile Fiber Materials and Processing Technology, College of Textile Science and Engineering (International Institute of Silk), Zhejiang Sci-Tech University, Hangzhou 310018, PR China.
| |
Collapse
|
2
|
Peters SJ, Mitrovic SM, Rodgers KJ, Bishop DP. Bioaccumulation of β-methylamino-L-alanine (BMAA) by mussels exposed to the cyanobacteria Microcystis aeruginosa. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 363:125081. [PMID: 39374762 DOI: 10.1016/j.envpol.2024.125081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/06/2024] [Accepted: 10/04/2024] [Indexed: 10/09/2024]
Abstract
Cyanobacterial blooms are increasingly common in aquatic environments, raising concerns about the health impacts associated with the toxins they produce. One of these toxins is β-methylamino-L-alanine (BMAA), a neurotoxin linked to neurodegenerative diseases. Monitoring BMAA levels in the environment is challenging due to trace concentrations and complex matrices, and new approaches are needed for assessing exposure risk. In this laboratory study, Australian freshwater mussels, Velesunio ambiguus, were exposed to a BMAA-producing cyanobacterium, Microcystis aeruginosa, to assess its accumulation of the toxin over time. A sample preparation and analysis method was developed to allow accurate quantification of BMAA in the mussels at concentrations as low as 0.4 ng/g. Mussels exposed to M. aeruginosa accumulated BMAA, with concentrations increasing over the exposure period. Rapid depuration occurred after exposure to the cyanobacterium ended, with concentrations of BMAA quickly returning to pre-exposure levels. These results demonstrate the potential for mussels to be used as bioindicators in the field for monitoring BMAA levels over time, where rapid depuration is unlikely.
Collapse
Affiliation(s)
- Siobhan J Peters
- Hyphenated Mass Spectrometry Laboratory, Faculty of Science, The University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Simon M Mitrovic
- School of Life Sciences, Faculty of Science, The University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Kenneth J Rodgers
- School of Life Sciences, Faculty of Science, The University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - David P Bishop
- Hyphenated Mass Spectrometry Laboratory, Faculty of Science, The University of Technology Sydney, Ultimo, NSW, 2007, Australia.
| |
Collapse
|
3
|
Sternberg Z. Neurodegenerative Etiology of Aromatic L-Amino Acid Decarboxylase Deficiency: a Novel Concept for Expanding Treatment Strategies. Mol Neurobiol 2024; 61:2996-3018. [PMID: 37953352 DOI: 10.1007/s12035-023-03684-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 09/29/2023] [Indexed: 11/14/2023]
Abstract
Aromatic l-amino acid decarboxylase deficiency (AADC-DY) is caused by one or more mutations in the DDC gene, resulting in the deficit in catecholamines and serotonin neurotransmitters. The disease has limited therapeutic options with relatively poor clinical outcomes. Accumulated evidence suggests the involvement of neurodegenerative mechanisms in the etiology of AADC-DY. In the absence of neurotransmitters' neuroprotective effects, the accumulation and the chronic presence of several neurotoxic metabolites including 4-dihydroxy-L-phenylalanine, 3-methyldopa, and homocysteine, in the brain of subjects with AADC-DY, promote oxidative stress and reduce the cellular antioxidant and methylation capacities, leading to glial activation and mitochondrial dysfunction, culminating to neuronal injury and death. These pathophysiological processes have the potential to hinder the clinical efficacy of treatments aimed at increasing neurotransmitters' synthesis and or function. This review describes in detail the mechanisms involved in AADC-DY neurodegenerative etiology, highlighting the close similarities with those involved in other neurodegenerative diseases. We then offer novel strategies for the treatment of the disease with the objective to either reduce the level of the metabolites or counteract their prooxidant and neurotoxic effects. These treatment modalities used singly or in combination, early in the course of the disease, will minimize neuronal injury, preserving the functional integrity of neurons, hence improving the clinical outcomes of both conventional and unconventional interventions in AADC-DY. These modalities may not be limited to AADC-DY but also to other metabolic disorders where a specific mutation leads to the accumulation of prooxidant and neurotoxic metabolites.
Collapse
Affiliation(s)
- Zohi Sternberg
- Jacobs School of Medicine and Biomedical Sciences, Buffalo Medical Center, Buffalo, NY, 14203, USA.
| |
Collapse
|
4
|
Back HJ, Kim D, Kim D, Han J, Hossain MM, Jung OS, Lee YA. Formation Process of SiF 6@Cu 2L 4 Chiral Cage Pairs in a Glass Vessel: Catechol Oxidation Catalysis and Chiral Recognition. ACS OMEGA 2023; 8:39720-39729. [PMID: 37901500 PMCID: PMC10601440 DOI: 10.1021/acsomega.3c05659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 10/03/2023] [Indexed: 10/31/2023]
Abstract
Self-assembly of CuX2 (X- = BF4-, PF6-, and SbF6-) with a pair of chiral bidentate ligands, (1R,2S)-(+)- and (1S,2R)-(-)-1-(nicotinamido)-2,3-dihydro-1H-inden-2-yl-nicotinate (r,s-L or s,r-L), in a mixture solvent including ethanol in a glass vessel gives rise to SiF62--encapsulated Cu2L4 chiral cage products. The SiF62- anion from the reaction of X- with SiO2 of the glass-vessel surface acts as a cage template or cage bridge. One of the products, [SiF6@Cu2(SiF6)(s,r-L)4]·3CHCl3·4EtOH, is one of the most effective heterogeneous catalysts for the oxidation of 3,5-di-tert-butylcatechol. Furthermore, an l-DOPA/d-DOPA pair is recognizable by the cyclic voltammetry (CV) signals of its combination with chiral cages [SiF6@Cu2(BF4)2(s,r- or r,s-L)4]·4CHCl3·2EtOH pair and [SiF6@Cu2(SiF6)(s,r- or r,s-L)4]·3CHCl3·4EtOH pair.
Collapse
Affiliation(s)
- Hyo Jeong Back
- Department
of Chemistry, Pusan National University, Busan 46241, Republic of Korea
| | - Daeun Kim
- Department
of Chemistry, Pusan National University, Busan 46241, Republic of Korea
| | - Dongwon Kim
- Department
of Chemistry, Pusan National University, Busan 46241, Republic of Korea
| | - Jihun Han
- Department
of Chemistry, Pusan National University, Busan 46241, Republic of Korea
| | - Mohammad Mozammal Hossain
- Department
of Electrochemistry, Korea Institute of
Materials Science (KIMS), Changwon 51508, Republic of Korea
| | - Ok-Sang Jung
- Department
of Chemistry, Pusan National University, Busan 46241, Republic of Korea
| | - Young-A Lee
- Department
of Chemistry, Jeonbuk National University, Jeonju 54896, Republic of Korea
| |
Collapse
|
5
|
Zhou ZD, Yi LX, Wang DQ, Lim TM, Tan EK. Role of dopamine in the pathophysiology of Parkinson's disease. Transl Neurodegener 2023; 12:44. [PMID: 37718439 PMCID: PMC10506345 DOI: 10.1186/s40035-023-00378-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 09/08/2023] [Indexed: 09/19/2023] Open
Abstract
A pathological feature of Parkinson's disease (PD) is the progressive loss of dopaminergic neurons and decreased dopamine (DA) content in the substantia nigra pars compacta in PD brains. DA is the neurotransmitter of dopaminergic neurons. Accumulating evidence suggests that DA interacts with environmental and genetic factors to contribute to PD pathophysiology. Disturbances of DA synthesis, storage, transportation and metabolism have been shown to promote neurodegeneration of dopaminergic neurons in various PD models. DA is unstable and can undergo oxidation and metabolism to produce multiple reactive and toxic by-products, including reactive oxygen species, DA quinones, and 3,4-dihydroxyphenylacetaldehyde. Here we summarize and highlight recent discoveries on DA-linked pathophysiologic pathways, and discuss the potential protective and therapeutic strategies to mitigate the complications associated with DA.
Collapse
Affiliation(s)
- Zhi Dong Zhou
- National Neuroscience Institute of Singapore, 11 Jalan Tan Tock Seng, Singapore, 308433, Singapore.
- Signature Research Program in Neuroscience and Behavioral Disorders, Duke-NUS Graduate Medical School Singapore, 8 College Road, Singapore, 169857, Singapore.
| | - Ling Xiao Yi
- National Neuroscience Institute of Singapore, 11 Jalan Tan Tock Seng, Singapore, 308433, Singapore
| | - Dennis Qing Wang
- Department of Neurology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Tit Meng Lim
- Department of Biological Science, National University of Singapore, Singapore, 119077, Singapore
| | - Eng King Tan
- National Neuroscience Institute of Singapore, 11 Jalan Tan Tock Seng, Singapore, 308433, Singapore.
- Department of Neurology, Singapore General Hospital, Outram Road, Singapore, 169608, Singapore.
- Signature Research Program in Neuroscience and Behavioral Disorders, Duke-NUS Graduate Medical School Singapore, 8 College Road, Singapore, 169857, Singapore.
| |
Collapse
|
6
|
Peters SJ, Rodgers KJ, Mitrovic SM, Bishop DP. The Changes in Cyanobacterial Concentration of β-Methylamino-L-Alanine during a Bloom Event. Molecules 2022; 27:7382. [PMID: 36364208 PMCID: PMC9658504 DOI: 10.3390/molecules27217382] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 10/26/2022] [Accepted: 10/26/2022] [Indexed: 09/24/2024] Open
Abstract
β-N-methylamino L-alanine (BMAA) is a neurotoxin linked to high incidences of neurodegenerative disease. The toxin, along with two of its common isomers, 2,4-diaminobuytric acid (2,4-DAB) and N-(2-aminoethyl)glycine (AEG), is produced by multiple genera of cyanobacteria worldwide. Whilst there are many reports of locations and species of cyanobacteria associated with the production of BMAA during a bloom, there is a lack of information tracking changes in concentration across a single bloom event. This study aimed to measure the concentrations of BMAA and its isomers through the progression and end of a cyanobacteria bloom event using liquid chromatography-triple quadrupole-mass spectrometry. BMAA was detected in all samples analysed, with a decreasing trend observed as the bloom progressed. BMAA's isomers were also detected in all samples, however, they did not follow the same decreasing pattern. This study highlights the potential for current sampling protocols that measure a single time point as representative of a bloom's overall toxin content to underestimate BMAA concentration during a bloom event.
Collapse
Affiliation(s)
- Siobhan J. Peters
- Hyphenated Mass Spectrometry Laboratory (HyMaS), Faculty of Science, The University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Kenneth J. Rodgers
- School of Life Sciences, Faculty of Science, The University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Simon M. Mitrovic
- School of Life Sciences, Faculty of Science, The University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - David P. Bishop
- Hyphenated Mass Spectrometry Laboratory (HyMaS), Faculty of Science, The University of Technology Sydney, Ultimo, NSW 2007, Australia
| |
Collapse
|
7
|
Hörmann P, Delcambre S, Hanke J, Geffers R, Leist M, Hiller K. Impairment of neuronal mitochondrial function by L-DOPA in the absence of oxygen-dependent auto-oxidation and oxidative cell damage. Cell Death Discov 2021; 7:151. [PMID: 34226525 PMCID: PMC8257685 DOI: 10.1038/s41420-021-00547-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 05/06/2021] [Accepted: 06/03/2021] [Indexed: 02/06/2023] Open
Abstract
L-3,4-Dihydroxyphenylalanin (L-DOPA or levodopa) is currently the most used drug to treat symptoms of Parkinson's disease (PD). After crossing the blood-brain barrier, it is enzymatically converted to dopamine by neuronal cells and restores depleted endogenous neurotransmitter levels. L-DOPA is prone to auto-oxidation and reactive intermediates of its degradation including reactive oxygen species (ROS) have been implicated in cellular damage. In this study, we investigated how oxygen tension effects L-DOPA stability. We applied oxygen tensions comparable to those in the mammalian brain and demonstrated that 2% oxygen almost completely stopped its auto-oxidation. L-DOPA even exerted a ROS scavenging function. Further mechanistic analysis indicated that L-DOPA reprogrammed mitochondrial metabolism and reduced oxidative phosphorylation, depolarized the mitochondrial membrane, induced reductive glutamine metabolism, and depleted the NADH pool. These results shed new light on the cellular effects of L-DOPA and its neuro-toxicity under physiological oxygen levels that are very distinct to normoxic in vitro conditions.
Collapse
Affiliation(s)
- Philipp Hörmann
- Department of Bioinformatics and Biochemistry, Technische Universität Braunschweig, Braunschweig, Germany
| | - Sylvie Delcambre
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Jasmin Hanke
- Department of Bioinformatics and Biochemistry, Technische Universität Braunschweig, Braunschweig, Germany
| | - Robert Geffers
- Genome Analytics, Helmholtz-Center for Infection Research, Braunschweig, Germany
| | - Marcel Leist
- In Vitro Toxicology and Biomedicine, University of Konstanz, Konstanz, Germany
| | - Karsten Hiller
- Department of Bioinformatics and Biochemistry, Technische Universität Braunschweig, Braunschweig, Germany.
| |
Collapse
|
8
|
Steele JR, Strange N, Rodgers KJ, Padula MP. A Novel Method for Creating a Synthetic L-DOPA Proteome and In Vitro Evidence of Incorporation. Proteomes 2021; 9:24. [PMID: 34073856 PMCID: PMC8162537 DOI: 10.3390/proteomes9020024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 05/02/2021] [Accepted: 05/18/2021] [Indexed: 11/16/2022] Open
Abstract
Proteinopathies are protein misfolding diseases that have an underlying factor that affects the conformation of proteoforms. A factor hypothesised to play a role in these diseases is the incorporation of non-protein amino acids into proteins, with a key example being the therapeutic drug levodopa. The presence of levodopa as a protein constituent has been explored in several studies, but it has not been examined in a global proteomic manner. This paper provides a proof-of-concept method for enzymatically creating levodopa-containing proteins using the enzyme tyrosinase and provides spectral evidence of in vitro incorporation in addition to the induction of the unfolded protein response due to levodopa.
Collapse
Affiliation(s)
- Joel Ricky Steele
- Proteomics Core Facility and School of Life Sciences, The University of Technology Sydney, Ultimo, NSW 2007, Australia;
- Neurotoxin Research Group, School of Life Sciences, The University of Technology Sydney, Ultimo, NSW 2007, Australia;
| | - Natalie Strange
- School of Life Sciences, The University of Technology Sydney, Ultimo, NSW 2007, Australia;
| | - Kenneth J. Rodgers
- Neurotoxin Research Group, School of Life Sciences, The University of Technology Sydney, Ultimo, NSW 2007, Australia;
| | - Matthew P. Padula
- Proteomics Core Facility and School of Life Sciences, The University of Technology Sydney, Ultimo, NSW 2007, Australia;
| |
Collapse
|
9
|
Ra D, Sa B, Sl B, Js M, Sj M, DA D, Ew S, O K, Eb B, Ad C, Vx T, Gg G, Pa C, Dc M, Wg B. Is Exposure to BMAA a Risk Factor for Neurodegenerative Diseases? A Response to a Critical Review of the BMAA Hypothesis. Neurotox Res 2021; 39:81-106. [PMID: 33547590 PMCID: PMC7904546 DOI: 10.1007/s12640-020-00302-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 10/19/2020] [Accepted: 10/20/2020] [Indexed: 12/15/2022]
Abstract
In a literature survey, Chernoff et al. (2017) dismissed the hypothesis that chronic exposure to β-N-methylamino-L-alanine (BMAA) may be a risk factor for progressive neurodegenerative disease. They question the growing scientific literature that suggests the following: (1) BMAA exposure causes ALS/PDC among the indigenous Chamorro people of Guam; (2) Guamanian ALS/PDC shares clinical and neuropathological features with Alzheimer's disease, Parkinson's disease, and ALS; (3) one possible mechanism for protein misfolds is misincorporation of BMAA into proteins as a substitute for L-serine; and (4) chronic exposure to BMAA through diet or environmental exposures to cyanobacterial blooms can cause neurodegenerative disease. We here identify multiple errors in their critique including the following: (1) their review selectively cites the published literature; (2) the authors reported favorably on HILIC methods of BMAA detection while the literature shows significant matrix effects and peak coelution in HILIC that may prevent detection and quantification of BMAA in cyanobacteria; (3) the authors build alternative arguments to the BMAA hypothesis, rather than explain the published literature which, to date, has been unable to refute the BMAA hypothesis; and (4) the authors erroneously attribute methods to incorrect studies, indicative of a failure to carefully consider all relevant publications. The lack of attention to BMAA research begins with the review's title which incorrectly refers to BMAA as a "non-essential" amino acid. Research regarding chronic exposure to BMAA as a cause of human neurodegenerative diseases is emerging and requires additional resources, validation, and research. Here, we propose strategies for improvement in the execution and reporting of analytical methods and the need for additional and well-executed inter-lab comparisons for BMAA quantitation. We emphasize the need for optimization and validation of analytical methods to ensure that they are fit-for-purpose. Although there remain gaps in the literature, an increasingly large body of data from multiple independent labs using orthogonal methods provides increasing evidence that chronic exposure to BMAA may be a risk factor for neurological illness.
Collapse
Affiliation(s)
- Dunlop Ra
- Brain Chemistry Labs, Institute for Ethnomedicine, Jackson, WY, USA.
| | - Banack Sa
- Brain Chemistry Labs, Institute for Ethnomedicine, Jackson, WY, USA
| | - Bishop Sl
- Lewis Research Group, Faculty of Science, University of Calgary, Alberta, Canada
| | - Metcalf Js
- Brain Chemistry Labs, Institute for Ethnomedicine, Jackson, WY, USA
| | - Murch Sj
- Department of Chemistry, University of British Columbia, Kelowna, BC, Canada
| | - Davis DA
- Department of Neurology, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Stommel Ew
- Department of Neurology, Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA
| | - Karlsson O
- Department of Environmental Science, Stockholm University, Stockholm, Sweden
| | - Brittebo Eb
- Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | | | - Tan Vx
- Department of Biological Sciences, Macquarie University Centre for Motor Neuron Disease Research, Macquarie University, Ryde, Australia
| | - Guillemin Gg
- Department of Biological Sciences, Macquarie University Centre for Motor Neuron Disease Research, Macquarie University, Ryde, Australia
| | - Cox Pa
- Brain Chemistry Labs, Institute for Ethnomedicine, Jackson, WY, USA
| | - Mash Dc
- Nova Southeastern University, Fort Lauderdale, FL, USA
| | - Bradley Wg
- Department of Neurology, Miller School of Medicine, University of Miami, Miami, FL, USA
| |
Collapse
|
10
|
Steele JR, Italiano CJ, Phillips CR, Violi JP, Pu L, Rodgers KJ, Padula MP. Misincorporation Proteomics Technologies: A Review. Proteomes 2021; 9:2. [PMID: 33494504 PMCID: PMC7924376 DOI: 10.3390/proteomes9010002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/11/2021] [Accepted: 01/18/2021] [Indexed: 12/15/2022] Open
Abstract
Proteinopathies are diseases caused by factors that affect proteoform conformation. As such, a prevalent hypothesis is that the misincorporation of noncanonical amino acids into a proteoform results in detrimental structures. However, this hypothesis is missing proteomic evidence, specifically the detection of a noncanonical amino acid in a peptide sequence. This review aims to outline the current state of technology that can be used to investigate mistranslations and misincorporations whilst framing the pursuit as Misincorporation Proteomics (MiP). The current availability of technologies explored herein is mass spectrometry, sample enrichment/preparation, data analysis techniques, and the hyphenation of approaches. While many of these technologies show potential, our review reveals a need for further development and refinement of approaches is still required.
Collapse
Affiliation(s)
- Joel R. Steele
- Proteomics Core Facility and School of Life Sciences, The University of Technology Sydney, Ultimo, NSW 2007, Australia; (J.R.S.); (J.P.V.)
- Neurotoxin Research Group, School of Life Sciences, The University of Technology Sydney, Ultimo, NSW 2007, Australia; (C.J.I.); (C.R.P.); (L.P.); (K.J.R.)
| | - Carly J. Italiano
- Neurotoxin Research Group, School of Life Sciences, The University of Technology Sydney, Ultimo, NSW 2007, Australia; (C.J.I.); (C.R.P.); (L.P.); (K.J.R.)
| | - Connor R. Phillips
- Neurotoxin Research Group, School of Life Sciences, The University of Technology Sydney, Ultimo, NSW 2007, Australia; (C.J.I.); (C.R.P.); (L.P.); (K.J.R.)
| | - Jake P. Violi
- Proteomics Core Facility and School of Life Sciences, The University of Technology Sydney, Ultimo, NSW 2007, Australia; (J.R.S.); (J.P.V.)
- Neurotoxin Research Group, School of Life Sciences, The University of Technology Sydney, Ultimo, NSW 2007, Australia; (C.J.I.); (C.R.P.); (L.P.); (K.J.R.)
| | - Lisa Pu
- Neurotoxin Research Group, School of Life Sciences, The University of Technology Sydney, Ultimo, NSW 2007, Australia; (C.J.I.); (C.R.P.); (L.P.); (K.J.R.)
| | - Kenneth J. Rodgers
- Neurotoxin Research Group, School of Life Sciences, The University of Technology Sydney, Ultimo, NSW 2007, Australia; (C.J.I.); (C.R.P.); (L.P.); (K.J.R.)
| | - Matthew P. Padula
- Proteomics Core Facility and School of Life Sciences, The University of Technology Sydney, Ultimo, NSW 2007, Australia; (J.R.S.); (J.P.V.)
| |
Collapse
|
11
|
Pasi F, Persico MG, Marenco M, Vigorito M, Facoetti A, Hodolic M, Nano R, Cavenaghi G, Lodola L, Aprile C. Effects of Photons Irradiation on 18F-FET and 18F-DOPA Uptake by T98G Glioblastoma Cells. Front Neurosci 2020; 14:589924. [PMID: 33281548 PMCID: PMC7691293 DOI: 10.3389/fnins.2020.589924] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 10/20/2020] [Indexed: 11/13/2022] Open
Abstract
The differential diagnosis between brain tumors recurrence and early neuroinflammation or late radionecrosis is still an unsolved problem. The new emerging magnetic resonance imaging, computed tomography, and positron emission tomography diagnostic modalities still lack sufficient accuracy. In the last years, a great effort has been made to develop radiotracers able to detect specific altered metabolic pathways or tumor receptor markers. Our research project aims to evaluate irradiation effects on radiopharmaceutical uptake and compare the kinetic of the fluorinate tracers. T98G glioblastoma cells were irradiated at doses of 2, 10, and 20 Gy with photons, and 18F-DOPA and 18F-FET tracer uptake was evaluated. Activity and cell viability at different incubation times were measured. 18F-FET and 18F-DOPA are accumulated via the LAT-1 transporter, but 18F-DOPA is further incorporated, whereas 18F-FET is not metabolized. Therefore, time-activity curves (TACs) tend to plateau with 18F-DOPA and to a rapid washout with 18F-FET. After irradiation, 18F-DOPA TAC resembles the 18F-FET pattern. 18F-DOPA activity peak we observed at 20 min might be fictitious, because earlier time points have not been evaluated, and a higher activity peak before 20 min cannot be excluded. In addition, the activity retained in the irradiated cells remains higher in comparison to the sham ones at all time points investigated. This aspect is similar in the 18F-FET TAC but less evident. Therefore, we can hypothesize the presence of a second intracellular compartment in addition to the amino acidic pool one governed by LAT-1, which could explain the progressive accumulation of 18F-DOPA in unirradiated cells.
Collapse
Affiliation(s)
- Francesca Pasi
- Oncology Unit, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy.,Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Pavia, Italy
| | - Marco G Persico
- University School for Advanced Studies IUSS Pavia, Pavia, Italy
| | - Manuela Marenco
- Nuclear Medicine Unit, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Martina Vigorito
- Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Pavia, Italy
| | | | - Marina Hodolic
- Nuclear Medicine Research Department, IASON, Graz, Austria.,Nuclear Medicine Department, Faculty of Medicine and Dentistry, Palackı University Olomouc, Olomouc, Czechia
| | - Rosanna Nano
- Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Pavia, Italy
| | - Giorgio Cavenaghi
- Nuclear Medicine Unit, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Lorenzo Lodola
- Nuclear Medicine Unit, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Carlo Aprile
- CNAO National Centre for Oncological Hadrontherapy, Pavia, Italy
| |
Collapse
|
12
|
Violi JP, Bishop DP, Padula MP, Steele JR, Rodgers KJ. Considerations for amino acid analysis by liquid chromatography-tandem mass spectrometry: A tutorial review. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2020.116018] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
13
|
Ding YY, Wang FF, Jiang YG, Sheng YJ, Jiang MQ, Zhu X, Shi YH, Le GW. Dityrosine suppresses the cytoprotective action of thyroid hormone T3 via inhibiting thyroid hormone receptor-mediated transcriptional activation. RSC Adv 2020; 10:21057-21070. [PMID: 35518765 PMCID: PMC9054395 DOI: 10.1039/d0ra00276c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 05/18/2020] [Indexed: 12/25/2022] Open
Abstract
Dityrosine (Dityr) is the most common oxidized form of tyrosine. In the previous studies of mice treated with dityrosine, cell death in the pancreas, kidneys, and liver was detected in the presence of enhanced plasma triiodothyronine (T3) content. Due to its structural similarity with the thyroid hormone T3, we hypothesized that dityrosine might disrupt T3-dependent endocrine signaling. The cytotoxic effect of dityrosine was studied in C57BL/6 mice by gavage with a dityrosine dose of 320 μg per kg per day for 10 weeks. Cell death in the liver was detected in the presence of enhanced plasma thyroid hormone content in mice treated with dityrosine. The antagonistic effect of dityrosine on T3 biofunction was studied using HepG2 cells. Dityrosine incubation reduced T3 transport ability and attenuated the T3-mediated cell survival via regulation of the PI3k/Akt/MAPK pathway. Furthermore, dityrosine inhibited T3 binding to thyroid hormone receptors (TRs) and suppressed the TR-mediated transcription. Dityrosine also downregulated the expressions of T3 action-related factors. Taken together, this study demonstrates that dityrosine inhibits T3-dependent cytoprotection by competitive inhibition, resulting in downstream gene suppression. Our findings offer insights into how dityrosine acts as an antagonist of T3. These findings shed new light on cellular processes underlying the energy metabolism disorder caused by dietary oxidized protein, thus contributing to a better understanding of the diet-health axis at a cellular level.
Collapse
Affiliation(s)
- Yin-Yi Ding
- Collage of Food Science and Biotechnology, Zhejiang Gongshang University No.18, Xuezheng Street Hangzhou 310018 China +86 571-28877777 +86 571-28877777
- Food Nutrition Science Centre, Zhejiang Gongshang University Hangzhou 310018 China
| | - Fang-Fang Wang
- School of Life Science, Linyi University Linyi 276000 China
| | - Yu-Ge Jiang
- The State Key Laboratory of Food Science and Technology, Jiangnan University Wuxi 214122 China
- Center of Food Nutrition and Functional Food Engineering, School of Food Science and Technology, Jiangnan University Wuxi 214122 China
| | - Yi-Jing Sheng
- Collage of Food Science and Biotechnology, Zhejiang Gongshang University No.18, Xuezheng Street Hangzhou 310018 China +86 571-28877777 +86 571-28877777
| | - Meng-Qi Jiang
- Collage of Food Science and Biotechnology, Zhejiang Gongshang University No.18, Xuezheng Street Hangzhou 310018 China +86 571-28877777 +86 571-28877777
| | - Xuan Zhu
- Collage of Food Science and Biotechnology, Zhejiang Gongshang University No.18, Xuezheng Street Hangzhou 310018 China +86 571-28877777 +86 571-28877777
| | - Yong-Hui Shi
- The State Key Laboratory of Food Science and Technology, Jiangnan University Wuxi 214122 China
- Center of Food Nutrition and Functional Food Engineering, School of Food Science and Technology, Jiangnan University Wuxi 214122 China
| | - Guo-Wei Le
- The State Key Laboratory of Food Science and Technology, Jiangnan University Wuxi 214122 China
- Center of Food Nutrition and Functional Food Engineering, School of Food Science and Technology, Jiangnan University Wuxi 214122 China
| |
Collapse
|
14
|
Wang Z, Matthews H. Translational incorporation of modified phenylalanines and tyrosines during cell-free protein synthesis. RSC Adv 2020; 10:11013-11023. [PMID: 35495348 PMCID: PMC9050441 DOI: 10.1039/d0ra00655f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 03/09/2020] [Indexed: 01/22/2023] Open
Abstract
Inherent promiscuity of bacterial translation is demonstrated by mass spectrometric quantification of the translational incorporation of ring-substituted phenylalanines and tyrosines bearing fluoro-, hydroxyl-, methyl-, chloro- and nitro-groups in an E. coli-derived cell-free system. Competitive studies using the cell-free system show that the aminoacyl-tRNA synthetases (aaRS) have at least two orders of magnitude higher specificity for the native substrate over these structural analogues, which correlates with studies on the purified synthetase. E. coli wild-type translational machinery utilizes a range of nonproteinogenic amino acids for protein synthesis with incorporation levels greater than 95%.![]()
Collapse
Affiliation(s)
- Zhongqiang Wang
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province
- Generic Drug Research Center of Guizhou Province
- School of Pharmacy
- Zunyi Medical University
- Zunyi
| | | |
Collapse
|
15
|
Giannopoulos S, Samardzic K, Raymond BBA, Djordjevic SP, Rodgers KJ. L-DOPA causes mitochondrial dysfunction in vitro: A novel mechanism of L-DOPA toxicity uncovered. Int J Biochem Cell Biol 2019; 117:105624. [PMID: 31654750 DOI: 10.1016/j.biocel.2019.105624] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 09/26/2019] [Accepted: 09/30/2019] [Indexed: 01/31/2023]
Abstract
In Parkinson's disease (PD), as in many other neurodegenerative disorders, mitochondrial dysfunction, protein misfolding, and proteotoxic stress underly the disease process. For decades, the primary symptomatic treatment for PD has been the dopamine precursor L-DOPA (Levodopa). L-DOPA however can initiate protein misfolding through its ability to mimic the protein amino acid L-tyrosine, resulting in random errors in aminoacylation and L-DOPA becoming mistakenly inserted into the polypeptide chain of proteins in place of L-tyrosine. In the present study we examined the impact that the generation of DOPA-containing proteins had on human neuroblastoma cell (SH-SY5Y) function in vitro. We showed that even in the presence of antioxidants there was a significant accumulation of cytosolic ubiquitin in DOPA-treated cells, an upregulation in the endosomal-lysosomal degradation system, deleterious changes to mitochondrial morphology and a marked decline in mitochondrial function.The effects of L-DOPA on mitochondrial function were not observed with D-DOPA, the stereoisomer of L-DOPA that cannot be inserted into proteins so did not result from oxidative stress. We could fully protect against these effects by co-treatment with L-tyrosine, supporting the view that misincorporation of L-DOPA into proteins contributed to these cytotoxic effects, leading us to suggest that co-treatment with L-tyrosine could be beneficial therapeutically.
Collapse
Affiliation(s)
- Steven Giannopoulos
- Neurotoxin Research Group, School of Life Sciences, Faculty of Science, University of Technology Sydney, Australia
| | - Kate Samardzic
- Neurotoxin Research Group, School of Life Sciences, Faculty of Science, University of Technology Sydney, Australia
| | - Benjamin B A Raymond
- I3 institute, School of Life Sciences, Faculty of Science, University of Technology Sydney, Australia
| | - Steven P Djordjevic
- I3 institute, School of Life Sciences, Faculty of Science, University of Technology Sydney, Australia
| | - Kenneth J Rodgers
- Neurotoxin Research Group, School of Life Sciences, Faculty of Science, University of Technology Sydney, Australia.
| |
Collapse
|
16
|
Estévez M, Xiong Y. Intake of Oxidized Proteins and Amino Acids and Causative Oxidative Stress and Disease: Recent Scientific Evidences and Hypotheses. J Food Sci 2019; 84:387-396. [PMID: 30714623 DOI: 10.1111/1750-3841.14460] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 12/26/2018] [Accepted: 01/13/2019] [Indexed: 12/24/2022]
Affiliation(s)
- Mario Estévez
- Meat and Meat Products Research Institute, TECAL Research Group; Univ. of Extremadura; Avda. Universidad s/n 10003 Cáceres Spain
| | - Youling Xiong
- Depart. of Animal and Food Sciences; Univ. of Kentucky; Lexington KY 40546-0215 U.S.A
| |
Collapse
|
17
|
Samardzic K, Rodgers KJ. Cytotoxicity and mitochondrial dysfunction caused by the dietary supplement l-norvaline. Toxicol In Vitro 2019; 56:163-171. [PMID: 30703532 DOI: 10.1016/j.tiv.2019.01.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 01/14/2019] [Accepted: 01/26/2019] [Indexed: 02/07/2023]
Abstract
In addition to the 20 protein amino acids that are encoded for protein synthesis, hundreds of other naturally occurring amino acids, known as non-proteinogenic amino acids (NPAAs) exist. It is well known that some NPAAs are toxic through their ability to mimic protein amino acids, either in protein synthesis or in other metabolic pathways, and this property is utilised by some plants to inhibit the growth of other plants or kill herbivores. L-norvaline is an NPAA readily available for purchase as a dietary supplement. In light of previous evidence of l-norvaline's antifungal, antimicrobial and herbicidal activity, we examined the toxicity of l-norvaline to mammalian cells in vitro and showed that l-norvaline decreased cell viability at concentrations as low as 125 μM, caused necrotic cell death and significant changes to mitochondrial morphology and function. Furthermore, toxicity was reduced in the presence of structurally similar 'protein' amino acids, suggesting l-norvaline's cytotoxicity could be attributed to protein amino acid mimicry.
Collapse
Affiliation(s)
- Kate Samardzic
- School of Life Sciences, University of Technology Sydney, Harris Street, Sydney, NSW 2007, Australia
| | - Kenneth J Rodgers
- School of Life Sciences, University of Technology Sydney, Harris Street, Sydney, NSW 2007, Australia.
| |
Collapse
|
18
|
Omar SH, Scott CJ, Hamlin AS, Obied HK. Olive Biophenols Reduces Alzheimer's Pathology in SH-SY5Y Cells and APPswe Mice. Int J Mol Sci 2018; 20:ijms20010125. [PMID: 30598025 PMCID: PMC6337485 DOI: 10.3390/ijms20010125] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 12/20/2018] [Accepted: 12/25/2018] [Indexed: 11/16/2022] Open
Abstract
Alzheimer's disease (AD) is a major neurodegenerative disease, associated with the hallmark proteinacious constituent called amyloid beta (Aβ) of senile plaques. Moreover, it is already established that metals (particularly copper, zinc and iron) have a key role in the pathogenesis of AD. In order to reduce the Aβ plaque burden and overcome the side effects from the synthetic inhibitors, the current study was designed to focus on direct inhibition of with or without metal-induced Aβ fibril formation and aggregation by using olive biophenols. Exposure of neuroblastoma (SH-SY5Y) cells with Aβ42 resulted in decrease of cell viability and morphological changes might be due to severe increase in the reactive oxygen species (ROS). The pre-treated SH-SY5Y cells with olive biophenols were able to attenuate cell death caused by Aβ42, copper- Aβ42, and [laevodihydroxyphenylalanine (l-DOPA)] l-DOPA-Aβ42-induced toxicity after 24 h of treatment. Oleuropein, verbascoside and rutin were the major anti-amyloidogenic compounds. Transgenic mice (APPswe/PS1dE9) received 50 mg/kg of oleuropein containing olive leaf extracts (OLE) or control diet from 7 to 23 weeks of age. Treatment mice (OLE) were showed significantly reduced amyloid plaque deposition (p < 0.001) in cortex and hippocampus as compared to control mice. Our findings provide a basis for considering natural and low cost biophenols from olive as a promising candidate drug against AD. Further studies warrant to validate and determine the anti-amyloid mechanism, bioavailability as well as permeability of olive biophenols against blood brain barrier in AD.
Collapse
Affiliation(s)
- Syed Haris Omar
- School of Biomedical Sciences, Faculty of Sciences and Graham Centre for Agricultural Innovation, Charles Sturt University, Wagga Wagga, NSW 2678, Australia.
| | - Christopher J Scott
- School of Biomedical Sciences, Faculty of Sciences and Graham Centre for Agricultural Innovation, Charles Sturt University, Wagga Wagga, NSW 2678, Australia.
| | - Adam S Hamlin
- School of Science & Technology, University of New England, Armidale, NSW 2351, Australia.
| | - Hassan K Obied
- School of Biomedical Sciences, Faculty of Sciences and Graham Centre for Agricultural Innovation, Charles Sturt University, Wagga Wagga, NSW 2678, Australia.
| |
Collapse
|
19
|
Abstract
Monoamine oxidases A and B (MAO A and B) are mammalian flavoenzymes bound to the outer mitochondrial membrane. They were discovered almost a century ago and they have been the subject of many biochemical, structural and pharmacological investigations due to their central role in neurotransmitter metabolism. Currently, the treatment of Parkinson's disease involves the use of selective MAO B inhibitors such as rasagiline and safinamide. MAO inhibition was shown to exert a general neuroprotective effect as a result of the reduction of oxidative stress produced by these enzymes, which seems to be relevant also in non-neuronal contexts. MAOs were successfully expressed as recombinant proteins in Pichia pastoris, which allowed a thorough biochemical and structural characterization. These enzymes are characterized by a globular water-soluble main body that is anchored to the mitochondrial membrane through a C-terminal α-helix, similar to other bitopic membrane proteins. In both MAO A and MAO B the enzyme active site consists of a hydrophobic cavity lined by residues that are conserved in the two isozymes, except for few details that determine substrate and inhibitor specificity. In particular, human MAO B features a dual-cavity active site whose conformation depends on the size of the bound ligand. This article provides a comprehensive and historical review of MAOs and the state-of-the-art of these enzymes as membrane drug targets.
Collapse
Affiliation(s)
| | - Claudia Binda
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy.
| |
Collapse
|
20
|
Omar SH, Scott CJ, Hamlin AS, Obied HK. Biophenols: Enzymes (β-secretase, Cholinesterases, histone deacetylase and tyrosinase) inhibitors from olive (Olea europaea L.). Fitoterapia 2018; 128:118-129. [PMID: 29772299 DOI: 10.1016/j.fitote.2018.05.011] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Revised: 05/07/2018] [Accepted: 05/13/2018] [Indexed: 12/17/2022]
Abstract
The focus of this study was on inhibition of enzymes involved in the pathogenesis Alzheimer's disease (AD) including prime amyloid beta (Aβ) producing enzyme (β-secretase: BACE-1) and disease progression enzymes including acetylcholinesterase (AChE), butyrylcholinesterase (BChE), histone deacetylase (HDAC), and tyrosinase along with the catecholamine L-DOPA, by using olive biophenols. Here we report the strongest inhibition of BACE-1 from rutin (IC50: 3.8 nM) followed by verbascoside (IC50: 6.3 nM) and olive fruit extract (IC50: 18 ng), respectively. Olive biophenol, quercetin exhibited strongest enzyme inhibitory activity against tyrosinase (IC50: 10.73 μM), BChE (IC50: 19.08 μM), AChE (IC50: 55.44 μM), and HDAC (IC50: 105.1 μM) enzymes. Furthermore, olive biophenol verbascoside (IC50: 188.6 μM), and hydroxytyrosol extreme extract (IC50: 66.22 μg) were showed the highest levels of inhibition against the HDAC enzyme. Neuroprotective capacity against levodopa-induced toxicity in neuroblastoma (SH-SY5Y) cells of olive biophenols were assessed, where rutin indicated the highest neuroprotection (74%), followed by caffeic acid (73%), and extract hydroxytyrosol extreme (97%), respectively. To the best of our knowledge, this is the first in vitro report on the enzymes inhibitory activity of olive biophenols. Taken together, our in vitro results data suggest that olive biophenols could be a promising natural inhibitor, which may reduce the enzyme-induced toxicity associated with the oxidative stress involved in the progression of AD. CHEMICAL COMPOUNDS USED IN THE STUDY Acetylthiocholine iodide (PubChem CID: 74629); S-Butyrylthiocholine chloride (PubChem CID: 3015121); Caffeic acid (PubChem CID: 689043); Dimethyl sulfoxide (DMSO) (PubChem: 679); L-3,4-Dihydroxyphenylalanine (L-DOPA) (PubChem CID: 6047); 5,5'-Dithiobis (2-nitrobenzoic acid) (DTNB) (PubChem CID: 6254); Epigallocatechin gallate (EGCG) (PubChem CID: 65064); Ethylenediamine tetraacetic acid (EDTA) (PubChem CID: 6049); Galantamine hydrobromide (PubChem CID: 121587); l-Glutamine (PubChem CID: 5961); Hydroxytyrosol (PubChem CID: 82755); Kojic acid (PubChem CID: 3840); Luteolin (PubChem CID: 5280445); Oleuropein (PubChem CID: 5281544); Penicillin-streptomycin (PubChem CID: 131715954); Quercetin (PubChem CID: 5280343); Rutin (PubChem CID: 5280805); Tris-HCl buffer (PubChem: 93573); Trypan blue (PubChem: 9562061).
Collapse
Affiliation(s)
- Syed Haris Omar
- School of Biomedical Sciences, Faculty of Sciences, Charles Sturt University, Wagga Wagga, NSW 2678, Australia; Graham Centre for Agricultural Innovation, Charles Sturt University, Wagga Wagga, NSW 2678, Australia.
| | - Christopher J Scott
- School of Biomedical Sciences, Faculty of Sciences, Charles Sturt University, Wagga Wagga, NSW 2678, Australia; Graham Centre for Agricultural Innovation, Charles Sturt University, Wagga Wagga, NSW 2678, Australia
| | - Adam S Hamlin
- School of Science & Technology, University of New England, Armidale, NSW 2351, Australia
| | - Hassan K Obied
- School of Biomedical Sciences, Faculty of Sciences, Charles Sturt University, Wagga Wagga, NSW 2678, Australia; Graham Centre for Agricultural Innovation, Charles Sturt University, Wagga Wagga, NSW 2678, Australia
| |
Collapse
|
21
|
Mitochondrial Respiration in Intact Peripheral Blood Mononuclear Cells and Sirtuin 3 Activity in Patients with Movement Disorders. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:9703574. [PMID: 29081897 PMCID: PMC5610844 DOI: 10.1155/2017/9703574] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 08/01/2017] [Indexed: 12/22/2022]
Abstract
OBJECTIVE Mitochondrial dysfunction is considered a unifying pathophysiological explanation for movement disorders. Sirtuin 3 (SIRT3) exhibits deacetylase activity and antioxidant properties. The aim of the study was to analyze the mitochondrial respiration in peripheral blood mononuclear cells (PBMCs) and the SIRT3 activity in patients with movement disorders. METHODS Mitochondrial respiration was analyzed in intact PBMCs using the ROUTINE, LEAK, electron transfer system (ETS), and residual oxygen consumption (ROX) protocol by means of high-resolution respirometry. The SIRT3 expression and PBMC activity were measured using fluorometry. Ultrasound measurements of the echogenicity of the substantia nigra and the diameter of the 3rd ventricle were also performed. RESULTS Patients with movement disorders exhibited a lower ROUTINE respiration than controls (P = 0.0237). Reduced oxygen fluxes in the LEAK (P = 0.033) and ROX (P = 0.0486) states were observed in patients with movement disorders compared with controls. Decreased ROUTINE respiration (P = 0.007) and oxygen flux in the LEAK state (P = 0.0203) were observed in patients with PD with substantia nigra hyperechogenicity compared with controls. Decreased SIRT 3 deacetylase activity was found in patients with movement disorders. CONCLUSION Impaired mitochondrial respiration in intact PBMCs was associated with inhibited SIRT3 activity and neurodegeneration measures evaluated using ultrasound in patients with PD.
Collapse
|
22
|
Dityrosine administration induces dysfunction of insulin secretion accompanied by diminished thyroid hormones T3 function in pancreas of mice. Amino Acids 2017. [DOI: 10.1007/s00726-017-2442-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
23
|
Estévez M, Luna C. Dietary protein oxidation: A silent threat to human health? Crit Rev Food Sci Nutr 2017; 57:3781-3793. [DOI: 10.1080/10408398.2016.1165182] [Citation(s) in RCA: 137] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- M. Estévez
- IPROCAR Research Institute, University of Extremadura, Caceres, Spain
| | - C. Luna
- Medical Hospital, SES, Gobierno de Extremadura, Badajoz, Spain
| |
Collapse
|
24
|
Florczak-Wyspianska J, Rozycka A, Wolny L, Lianeri M, Kozubski W, Dorszewska J. Polymorphisms of COMT (c.649G>A), MAO-A (c.1460C>T), NET (c.1287G>A) Genes and the Level of Catecholamines, Serotonin in Patients with Parkinson's Disease. DNA Cell Biol 2017; 36:501-512. [PMID: 28418735 DOI: 10.1089/dna.2016.3569] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The purpose of this study was to determine the concentration of plasma norepinephrine (NE), epinephrine (E), and serotonin (5-HT) in two collections, after a 30-min supine (I) and 5-min upright position (II), and polymorphisms of genes, COMT (c.649G>A), MAO-A (c.1460C>T), and NET (c.1287G>A), in patients with Parkinson's disease (PD) and other degenerative parkinsonism and controls. The study was performed in 49 PD patients, 19 parkinsonism patients, and 48 controls. The level of NE, E, and 5-HT was determined by HPLC/EC. PCR-RFLP was conducted to analyze the COMT, MAO-A, and NET polymorphisms. Genotypes of COMT, MAO-A, and NET genes occurred with different frequencies in patients with movement disorders and controls. NET AA occurred 4.8 times more frequently in patients with parkinsonism than in PD (p < 0.05). COMT AA genotype was associated with increased E levels [E (I) p < 0.01, E (II) p < 0.05] in PD compared to controls. Patients with parkinsonism with MAO-A TT genotype have a significantly higher level of 5-HT [5-HT (II), p < 0.05] compared to controls. Moreover, PD patients with NET GA genotype have the lowest level of NE (p < 0.05) compared to controls. It appears that COMT, MAO-A, and NET polymorphisms and levels of NE, E, and 5-HT are involved in pathogenesis of PD.
Collapse
Affiliation(s)
| | - Agata Rozycka
- 2 Laboratory of Molecular Biology, Division of Perinatology and Women's Diseases, Poznan University of Medical Sciences , Poznan, Poland .,3 Department of Biochemistry and Molecular Biology, Poznan University of Medical Sciences , Poznan, Poland
| | - Lukasz Wolny
- 4 Laboratory of Neurobiology, Department of Neurology, Poznan University of Medical Sciences , Poznan, Poland
| | - Margarita Lianeri
- 4 Laboratory of Neurobiology, Department of Neurology, Poznan University of Medical Sciences , Poznan, Poland
| | - Wojciech Kozubski
- 1 Chair and Department of Neurology, Poznan University of Medical Sciences , Poznan, Poland
| | - Jolanta Dorszewska
- 4 Laboratory of Neurobiology, Department of Neurology, Poznan University of Medical Sciences , Poznan, Poland
| |
Collapse
|
25
|
Ding YY, Tang X, Cheng XR, Wang FF, Li ZQ, Wu SJ, Kou XR, Shi Y, Le G. Effects of dietary oxidized tyrosine products on insulin secretion via the thyroid hormone T3-regulated TRβ1–Akt–mTOR pathway in the pancreas. RSC Adv 2017. [DOI: 10.1039/c7ra10435a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Oxidized tyrosine products (OTPs) have been detected in commercial foods with high protein content.
Collapse
Affiliation(s)
- Yin-Yi Ding
- The State Key Laboratory of Food Science and Technology
- School of Food Science and Technology
- Jiangnan University
- Wuxi
- China
| | - Xue Tang
- The State Key Laboratory of Food Science and Technology
- School of Food Science and Technology
- Jiangnan University
- Wuxi
- China
| | - Xiang-Rong Cheng
- The State Key Laboratory of Food Science and Technology
- School of Food Science and Technology
- Jiangnan University
- Wuxi
- China
| | - Fang-Fang Wang
- The State Key Laboratory of Food Science and Technology
- School of Food Science and Technology
- Jiangnan University
- Wuxi
- China
| | - Zhu-Qing Li
- The State Key Laboratory of Food Science and Technology
- School of Food Science and Technology
- Jiangnan University
- Wuxi
- China
| | - Sha-Ji Wu
- The State Key Laboratory of Food Science and Technology
- School of Food Science and Technology
- Jiangnan University
- Wuxi
- China
| | - Xing-Ran Kou
- The State Key Laboratory of Food Science and Technology
- School of Food Science and Technology
- Jiangnan University
- Wuxi
- China
| | - Yonghui Shi
- The State Key Laboratory of Food Science and Technology
- School of Food Science and Technology
- Jiangnan University
- Wuxi
- China
| | - Guowei Le
- The State Key Laboratory of Food Science and Technology
- School of Food Science and Technology
- Jiangnan University
- Wuxi
- China
| |
Collapse
|
26
|
Kathiravan P, Balakrishnan T, Venkatesan P, Ramamurthi K, Percino MJ, Thamotharan S. Crystal structure and Hirshfeld surface analysis of 1-carb-oxy-2-(3,4-di-hydroxy-phen-yl)ethan-1-aminium bromide 2-ammonio-3-(3,4-di-hydroxy-phen-yl)propano-ate. Acta Crystallogr E Crystallogr Commun 2016; 72:1544-1548. [PMID: 27840704 PMCID: PMC5095829 DOI: 10.1107/s2056989016015425] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Accepted: 10/02/2016] [Indexed: 12/02/2022]
Abstract
In the title mol-ecular salt, C9H12NO4+·Br-·C9H11NO4, one of the dopa mol-ecules is in the cationic form in which the α-amino group is protonated and the α-carb-oxy-lic acid group is uncharged, while the second dopa mol-ecule is in the zwitterion form. The Br- anion occupies a special position and is located on a twofold rotation axis. The two dopa mol-ecules are inter-connected by short O-H⋯O hydrogen bonds. In the crystal, the various units are linked by O-H⋯O, N-H⋯Br and N-H⋯O hydrogen bonds, forming a three-dimensional framework. The title compound was refined as an inversion twin with an absolute structure parameter of 0.023 (8).
Collapse
Affiliation(s)
- Perumal Kathiravan
- Crystal Growth Laboratory, PG and Research Department of Physics, Periyar EVR Government College (Autonomous), Tiruchirappalli 620 023, India
| | - Thangavelu Balakrishnan
- Crystal Growth Laboratory, PG and Research Department of Physics, Periyar EVR Government College (Autonomous), Tiruchirappalli 620 023, India
| | - Perumal Venkatesan
- Laboratorio de Polímeros, Centro de Química Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla (BUAP), Complejo de Ciencias, ICUAP, Edif. 103H, 22 Sur y San Claudio, C.P. 72570 Puebla, Puebla, Mexico
| | - Kandasamy Ramamurthi
- Crystal Growth and Thin Film Laboratory, Department of Physics and Nanotechnology, SRM University, Kattankulathur 603 203, India
| | - María Judith Percino
- Laboratorio de Polímeros, Centro de Química Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla (BUAP), Complejo de Ciencias, ICUAP, Edif. 103H, 22 Sur y San Claudio, C.P. 72570 Puebla, Puebla, Mexico
| | - Subbiah Thamotharan
- Biomolecular Crystallography Laboratory, Department of Bioinformatics, School of Chemical and Biotechnology, SASTRA University, Thanjavur 613 401, India
| |
Collapse
|
27
|
Kathiravan P, Balakrishnan T, Venkatesan P, Ramamurthi K, Percino MJ, Thamotharan S. Crystal structure and Hirshfeld surface analysis of 1-carb-oxy-2-(3,4-di-hydroxy-phen-yl)ethan-1-aminium chloride 2-ammonio-3-(3,4-di-hydroxy-phen-yl)propano-ate: a new polymorph of l-dopa HCl and isotypic with its bromide counterpart. Acta Crystallogr E Crystallogr Commun 2016; 72:1628-1632. [PMID: 27840723 PMCID: PMC5095848 DOI: 10.1107/s2056989016016789] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 10/19/2016] [Indexed: 11/10/2022]
Abstract
The title mol-ecular salt, C9H12NO4+·Cl-·C9H11NO4, is isotypic with that of the bromide counterpart [Kathiravan et al. (2016 ▸). Acta Cryst. E72, 1544-1548]. The title salt is a second monoclinic polymorph of the l-dopa HCl structure reported earlier in the monoclinic space group P21 [Jandacek & Earle (1971 ▸). Acta Cryst. B27, 841-845; Mostad & Rømming (1974 ▸). Acta Chemica Scand. B28, 1161-1168]. In the title compound, monoclinic space group I2, one of the dopa mol-ecules has a positive charge with a protonated α-amino group and the α-carb-oxy-lic acid group uncharged, while the second dopa mol-ecule has a neutral charge, the α-amino group is protonated and the α-carb-oxy-lic acid is deprotonated. In the previously reported form, a single dopa mol-ecule is observed in which the α-amino group is protonated and the α-carb-oxy-lic acid group is uncharged. The invariant and variations of various types of inter-molecular inter-actions present in these two forms of dopa HCl structures are discussed with the aid of two-dimensional fingerprint plots.
Collapse
Affiliation(s)
- Perumal Kathiravan
- Crystal Growth Laboratory, PG and Research Department of Physics, Periyar EVR Government College (Autonomous), Tiruchirappalli 620 023, India
| | - Thangavelu Balakrishnan
- Crystal Growth Laboratory, PG and Research Department of Physics, Periyar EVR Government College (Autonomous), Tiruchirappalli 620 023, India
| | - Perumal Venkatesan
- Laboratorio de Polímeros, Centro de Química Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla (BUAP), Complejo de Ciencias, ICUAP, Edif. 103H, 22 Sur y San Claudio, CP 72570 Puebla, Puebla, Mexico
| | - Kandasamy Ramamurthi
- Crystal Growth and Thin Film Laboratory, Department of Physics and Nanotechnology, SRM University, Kattankulathur 603 203, India
| | - María Judith Percino
- Laboratorio de Polímeros, Centro de Química Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla (BUAP), Complejo de Ciencias, ICUAP, Edif. 103H, 22 Sur y San Claudio, CP 72570 Puebla, Puebla, Mexico
| | - Subbiah Thamotharan
- Biomolecular Crystallography Laboratory, Department of Bioinformatics, School of Chemical and Biotechnology, SASTRA University, Thanjavur 613 401, India
| |
Collapse
|
28
|
Li ZL, Shi Y, Ding Y, Ran Y, Le G. Dietary oxidized tyrosine (O-Tyr) stimulates TGF-β1-induced extracellular matrix production via the JNK/p38 signaling pathway in rat kidneys. Amino Acids 2016; 49:241-260. [DOI: 10.1007/s00726-016-2353-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 10/13/2016] [Indexed: 11/24/2022]
|
29
|
De Deurwaerdère P, Di Giovanni G, Millan MJ. Expanding the repertoire of L-DOPA's actions: A comprehensive review of its functional neurochemistry. Prog Neurobiol 2016; 151:57-100. [PMID: 27389773 DOI: 10.1016/j.pneurobio.2016.07.002] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 06/18/2016] [Accepted: 07/03/2016] [Indexed: 01/11/2023]
Abstract
Though a multi-facetted disorder, Parkinson's disease is prototypically characterized by neurodegeneration of nigrostriatal dopaminergic neurons of the substantia nigra pars compacta, leading to a severe disruption of motor function. Accordingly, L-DOPA, the metabolic precursor of dopamine (DA), is well-established as a treatment for the motor deficits of Parkinson's disease despite long-term complications such as dyskinesia and psychiatric side-effects. Paradoxically, however, despite the traditional assumption that L-DOPA is transformed in residual striatal dopaminergic neurons into DA, the mechanism of action of L-DOPA is neither simple nor entirely clear. Herein, focussing on its influence upon extracellular DA and other neuromodulators in intact animals and experimental models of Parkinson's disease, we highlight effects other than striatal generation of DA in the functional profile of L-DOPA. While not excluding a minor role for glial cells, L-DOPA is principally transformed into DA in neurons yet, interestingly, with a more important role for serotonergic than dopaminergic projections. Moreover, in addition to the striatum, L-DOPA evokes marked increases in extracellular DA in frontal cortex, nucleus accumbens, the subthalamic nucleus and additional extra-striatal regions. In considering its functional profile, it is also important to bear in mind the marked (probably indirect) influence of L-DOPA upon cholinergic, GABAergic and glutamatergic neurons in the basal ganglia and/or cortex, while anomalous serotonergic transmission is incriminated in the emergence of L-DOPA elicited dyskinesia and psychosis. Finally, L-DOPA may exert intrinsic receptor-mediated actions independently of DA neurotransmission and can be processed into bioactive metabolites. In conclusion, L-DOPA exerts a surprisingly complex pattern of neurochemical effects of much greater scope that mere striatal transformation into DA in spared dopaminergic neurons. Their further experimental and clinical clarification should help improve both L-DOPA-based and novel strategies for controlling the motor and other symptoms of Parkinson's disease.
Collapse
Affiliation(s)
- Philippe De Deurwaerdère
- CNRS (Centre National de la Recherche Scientifique), Institut des Maladies Neurodégénératives, UMR CNRS 5293, F-33000 Bordeaux, France.
| | - Giuseppe Di Giovanni
- Neuroscience Division, School of Biosciences, Cardiff University, Cardiff, UK; Department of Physiology & Biochemistry, Faculty of Medicine and Surgery, University of Malta, Malta
| | - Mark J Millan
- Institut de Recherche Servier, Pole for Therapeutic Innovation in Neuropsychiatry, 78290 Croissy/Seine,Paris, France
| |
Collapse
|
30
|
Differences in vulnerability of neurons and astrocytes to heme oxygenase-1 modulation: Implications for mitochondrial ferritin. Sci Rep 2016; 6:24200. [PMID: 27097841 PMCID: PMC4838889 DOI: 10.1038/srep24200] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 03/22/2016] [Indexed: 11/08/2022] Open
Abstract
Induction of the antioxidant enzyme heme oxygenase-1 (HO-1) was observed in both astrocytes and neurons in the substantia nigra of patients with Parkinson's disease (PD). In the current study, we investigated whether HO-1 behaves differently between neurons and astrocytes under the condition of neurotoxicity related to PD. The results showed a time-dependent HO-1 upregulation in primary cultured ventral mesencephalon neurons and astrocytes treated with the mitochondria complex I inhibitor 1-methyl-4-phenylpyridinium (MPP(+)) or recombinant α-synuclein. However, HO-1 upregulation appeared much later in neurons than in astrocytes. The HO-1 inhibitor zinc protoporphyrin (ZnPP) aggravated MPP(+)- or α-synuclein-induced oxidative damage in both astrocytes and neurons, indicating that this HO-1 response was cytoprotective. For neurons, the HO-1 activator cobalt protoporphyrin IX (CoPPIX) exerted protective effects against MPP(+) or α-synuclein during moderate HO-1 upregulation, but it aggravated damage at the peak of the HO-1 response. For astrocytes, CoPPIXalways showed protective effects. Higher basal and CoPPIX-induced mitochondrial ferritin (MtFt) levels were detected in astrocytes. Lentivirus-mediated MtFt overexpression rescued the neuronal damage induced by CoPPIX, indicating that large MtFt buffering capacity contributes to pronounced HO-1 tolerance in astrocytes. Such findings suggest that astrocyte-targeted HO-1 interventions and MtFt modulations have potential as novel pharmacological strategies in PD.
Collapse
|
31
|
Intracellular fibril formation, calcification, and enrichment of chaperones, cytoskeletal, and intermediate filament proteins in the adult hippocampus CA1 following neonatal exposure to the nonprotein amino acid BMAA. Arch Toxicol 2014; 89:423-36. [PMID: 24798087 PMCID: PMC4335130 DOI: 10.1007/s00204-014-1262-2] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Accepted: 04/15/2014] [Indexed: 12/31/2022]
Abstract
The environmental neurotoxin β-N-methylamino-l-alanine (BMAA) has been implicated in the etiology of neurodegenerative disease, and recent studies indicate that BMAA can be misincorporated into proteins. BMAA is a developmental neurotoxicant that can induce long-term learning and memory deficits, as well as regionally restricted neuronal degeneration and mineralization in the hippocampal CA1. The aim of the study was to characterize long-term changes (2 weeks to 6 months) further in the brain of adult rats treated neonatally (postnatal days 9–10) with BMAA (460 mg/kg) using immunohistochemistry (IHC), transmission electron microscopy, and laser capture microdissection followed by LC-MS/MS for proteomic analysis. The histological examination demonstrated progressive neurodegenerative changes, astrogliosis, microglial activation, and calcification in the hippocampal CA1 3–6 months after exposure. The IHC showed an increased staining for α-synuclein and ubiquitin in the area. The ultrastructural examination revealed intracellular deposition of abundant bundles of closely packed parallel fibrils in neurons, axons, and astrocytes of the CA1. Proteomic analysis of the affected site demonstrated an enrichment of chaperones (e.g., clusterin, GRP-78), cytoskeletal and intermediate filament proteins, and proteins involved in the antioxidant defense system. Several of the most enriched proteins (plectin, glial fibrillar acidic protein, vimentin, Hsp 27, and ubiquitin) are known to form complex astrocytic inclusions, so-called Rosenthal fibers, in the neurodegenerative disorder Alexander disease. In addition, TDP-43 and the negative regulator of autophagy, GLIPR-2, were exclusively detected. The present study demonstrates that neonatal exposure to BMAA may offer a novel model for the study of hippocampal fibril formation in vivo.
Collapse
|
32
|
Juntas-Morales R, Pageot N, Corcia P, Camu W. [Environmental factors in ALS]. Presse Med 2014; 43:549-54. [PMID: 24703731 DOI: 10.1016/j.lpm.2014.02.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Revised: 02/12/2014] [Accepted: 02/24/2014] [Indexed: 10/25/2022] Open
Abstract
ALS is likely to be a disorder of multifactorial origin. Among all the factors that may increase the risk of ALS, environmental ones are being studied for many years, but in the recent years, several advances have pointed to a new interest in their potential involvement in the disease process, especially for the cyanotoxin BMAA. Food containing BMAA has been found on Guam, a well-known focus of ALS/parkinsonism/dementia and high levels of BMAA have been identified into the brain of these patients. The BMAA cyanotoxin is potentially ubiquitous and have also been found into the food of patients who died from ALS both in Europe and USA. BMAA can be wrongly integrated into the protein structure during mRNA traduction, competing with serine. This may induce abnormal protein folding and a subsequent cell death. Heavy metals, such as lead or mercury may be directly toxic for neuronal cells. Several works have suggested an increased risk of ALS in individuals chronically exposed to these metals. Exposure to pesticides has been suggested to be linked to an increased risk of developing ALS. The mechanism of their toxicity is likely to be mediated by paraoxonases. These proteins are in charge of detoxifying the organism from toxins, and particularly organophosphates. To date, there are insufficient scientific data to suggest that exposure to electromagnetic fields may increase the risk of having ALS. We are particularly missing longitudinal cohorts to demonstrate that risk.
Collapse
Affiliation(s)
- Raul Juntas-Morales
- Hôpital Gui-de-Chauliac, service de neurologie, clinique du motoneurone, Inserm 1051, 34925 Montpellier cedex 5, France
| | - Nicolas Pageot
- Hôpital Gui-de-Chauliac, service de neurologie, clinique du motoneurone, Inserm 1051, 34925 Montpellier cedex 5, France
| | - Philippe Corcia
- CHRU de Tours, centre SLA, service de neurologie et neurophysiologie clinique, UMR Inserm U930, 37000 Tours, France
| | - William Camu
- Hôpital Gui-de-Chauliac, service de neurologie, clinique du motoneurone, Inserm 1051, 34925 Montpellier cedex 5, France.
| |
Collapse
|
33
|
Karlsson O, Jiang L, Andersson M, Ilag LL, Brittebo EB. Protein association of the neurotoxin and non-protein amino acid BMAA (β-N-methylamino-L-alanine) in the liver and brain following neonatal administration in rats. Toxicol Lett 2014; 226:1-5. [PMID: 24472610 DOI: 10.1016/j.toxlet.2014.01.027] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Revised: 01/16/2014] [Accepted: 01/17/2014] [Indexed: 10/25/2022]
Abstract
The environmental neurotoxin β-N-methylamino-L-alanine (BMAA) is not an amino acid that is normally found in proteins. Our previous autoradiographic study of (3)H-labeled BMAA in adult mice unexpectedly revealed a tissue distribution similar to that of protein amino acids. The aim of this study was to characterize the distribution of free and protein-bound BMAA in neonatal rat tissues following a short exposure using autoradiographic imaging and ultra-high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS). The autoradiographic imaging of (14)C-L-BMAA demonstrated a distinct uptake of radioactivity that was retained following acid extraction in tissues with a high rate of cell turnover and/or protein synthesis. The UHPLC-MS/MS analysis conclusively demonstrated a dose-dependent increase of protein-associated BMAA in neonatal rat tissues. The level of protein-associated BMAA in the liver was more than 10 times higher than that in brain regions not fully protected by the blood-brain barrier which may be due to the higher rate of protein synthesis in the liver. In conclusion, this study demonstrated that BMAA was associated with rat proteins suggesting that BMAA may be misincorporated into proteins. However, protein-associated BMAA seemed to be cleared over time, as none of the samples from adult rats had any detectable free or protein-associated BMAA.
Collapse
Affiliation(s)
- Oskar Karlsson
- Department of Pharmaceutical Biosciences, Uppsala University, SE-751 24 Uppsala, Sweden; Department of Environmental Toxicology, Uppsala University, SE-752 36 Uppsala, Sweden.
| | - Liying Jiang
- Department of Analytical Chemistry, Stockholm University, SE-10691 Stockholm, Sweden
| | - Marie Andersson
- Department of Environmental Toxicology, Uppsala University, SE-752 36 Uppsala, Sweden
| | - Leopold L Ilag
- Department of Analytical Chemistry, Stockholm University, SE-10691 Stockholm, Sweden
| | - Eva B Brittebo
- Department of Pharmaceutical Biosciences, Uppsala University, SE-751 24 Uppsala, Sweden
| |
Collapse
|
34
|
Non-protein amino acids and neurodegeneration: the enemy within. Exp Neurol 2013; 253:192-6. [PMID: 24374297 DOI: 10.1016/j.expneurol.2013.12.010] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Revised: 12/09/2013] [Accepted: 12/17/2013] [Indexed: 12/13/2022]
Abstract
Animals, in common with plants and microorganisms, synthesise proteins from a pool of 20 protein amino acids (plus selenocysteine and pyrolysine) (Hendrickson et al., 2004). This represents a small proportion (~2%) of the total number of amino acids known to exist in nature (Bell, 2003). Many 'non-protein' amino acids are synthesised by plants, and in some cases constitute part of their chemical armoury against pathogens, predators or other species competing for the same resources (Fowden et al., 1967). Microorganisms can also use selectively toxic amino acids to gain advantage over competing organisms (Nunn et al., 2010). Since non-protein amino acids (and imino acids) are present in legumes, fruits, seeds and nuts, they are ubiquitous in the diets of human populations around the world. Toxicity to humans is unlikely to have been the selective force for their evolution, but they have the clear potential to adversely affect human health. In this review we explore the links between exposure to non-protein amino acids and neurodegenerative disorders in humans. Environmental factors play a major role in these complex disorders which are predominantly sporadic (Coppede et al., 2006). The discovery of new genes associated with neurodegenerative diseases, many of which code for aggregation-prone proteins, continues at a spectacular pace but little progress is being made in identifying the environmental factors that impact on these disorders. We make the case that insidious entry of non-protein amino acids into the human food chain and their incorporation into protein might be contributing significantly to neurodegenerative damage.
Collapse
|
35
|
Dunlop RA, Cox PA, Banack SA, Rodgers KJ. The non-protein amino acid BMAA is misincorporated into human proteins in place of L-serine causing protein misfolding and aggregation. PLoS One 2013; 8:e75376. [PMID: 24086518 PMCID: PMC3783393 DOI: 10.1371/journal.pone.0075376] [Citation(s) in RCA: 217] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Accepted: 07/17/2013] [Indexed: 12/25/2022] Open
Abstract
Mechanisms of protein misfolding are of increasing interest in the aetiology of neurodegenerative diseases characterized by protein aggregation and tangles including Amyotrophic Lateral Sclerosis (ALS), Alzheimer’s disease (AD), Parkinson’s disease (PD), Lewy Body Dementia (LBD), and Progressive Supranuclear Palsy (PSP). Some forms of neurodegenerative illness are associated with mutations in genes which control assembly of disease related proteins. For example, the mouse sticky mutation sti, which results in undetected mischarging of tRNAAla with serine resulting in the substitution of serine for alanine in proteins causes cerebellar Purkinje cell loss and ataxia in laboratory animals. Replacement of serine 422 with glutamic acid in tau increases the propensity of tau aggregation associated with neurodegeneration. However, the possibility that environmental factors can trigger abnormal folding in proteins remains relatively unexplored. We here report that a non-protein amino acid, β-N-methylamino-L-alanine (BMAA), can be misincorporated in place of l-serine into human proteins. We also report that this misincorporation can be inhibited by l-serine. Misincorporation of BMAA into human neuroproteins may shed light on putative associations between human exposure to BMAA produced by cyanobacteria and an increased incidence of ALS.
Collapse
Affiliation(s)
- Rachael Anne Dunlop
- Cell Biology Group, School of Medical and Molecular Biosciences, University of Technology Sydney, Ultimo, New South Wales, Australia
| | - Paul Alan Cox
- Institute for Ethnomedicine, Jackson Hole, Wyoming, United States of America
| | - Sandra Anne Banack
- Institute for Ethnomedicine, Jackson Hole, Wyoming, United States of America
| | - Kenneth John Rodgers
- Cell Biology Group, School of Medical and Molecular Biosciences, University of Technology Sydney, Ultimo, New South Wales, Australia
- * E-mail:
| |
Collapse
|
36
|
Chakraborty S, Aschner M. Altered manganese homeostasis: implications for BLI-3-dependent dopaminergic neurodegeneration and SKN-1 protection in C. elegans. J Trace Elem Med Biol 2012; 26:183-7. [PMID: 22591558 DOI: 10.1016/j.jtemb.2012.03.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Accepted: 03/24/2012] [Indexed: 10/28/2022]
Abstract
The role of environmental factors in the etiology of neurodegenerative disorders, such as in Parkinson's disease (PD), has become increasingly imperative for examination, as genetics can only partially account for most cases. The heavy metal manganese (Mn) falls into this category of environmental contributors, as it is both essential but also neurotoxic upon overexposure and produces Parkinsonian symptomatology. In order to understand its toxicity, this review focuses on the various aspects of improper Mn homeostasis and its consequences using the genetically amenable Caenorhabditis elegans model. Namely, the roles of Mn transporter homologs for the divalent metal transporter 1 (DMT1) will be discussed, as Mn homeostasis is initially governed by proper cellular transport. Mn dyshomeostasis can result in enhanced oxidative stress through synergistic actions of dopamine oxidation that is dependent on the C. elegans dual oxidase BLI-3. Finally, neuroprotection conferred by the antioxidant transcription factor Nrf2 (C. elegans SKN-1) may signify a potential therapeutic approach against Mn toxicity.
Collapse
Affiliation(s)
- Sudipta Chakraborty
- Neuroscience Graduate Program, Vanderbilt University Medical Center, Nashville, TN 37232, USA.
| | | |
Collapse
|
37
|
Holtcamp W. The emerging science of BMAA: do cyanobacteria contribute to neurodegenerative disease? ENVIRONMENTAL HEALTH PERSPECTIVES 2012; 120:A110-6. [PMID: 22382274 PMCID: PMC3295368 DOI: 10.1289/ehp.120-a110] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
|