1
|
Cui Y, Poudel S, Xu N, Zhou K, Cheng R, Liang W, Yuan T, Zhao L, Qin C, Stevens KG, Duerfeldt AS, Hu J, Xu Q, Ma JX. Sustained release of a novel non-fibrate PPARα agonist from microparticles for neuroprotection in murine models of age-related macular degeneration. J Control Release 2025; 380:910-926. [PMID: 39961437 DOI: 10.1016/j.jconrel.2025.02.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 01/28/2025] [Accepted: 02/14/2025] [Indexed: 02/23/2025]
Abstract
Prior research has demonstrated the therapeutic potential of peroxisome proliferator-activated receptor α (PPARα) agonist fenofibrate on diabetic retinopathy. In the present study, a novel non-fibrate PPARα agonist, A190, was designed with higher potency and selectivity than fenofibrate in PPARα agonism. A190 was encapsulated in biodegradable microparticles (A190-MP) to ensure sustained drug release, with detection in the retina up to 6 months following a single intravitreal injection. A190-MP alleviated retinal dysfunction as shown by electroretinography in Vldlr-/- (wet-AMD model) and Abca4-/-/Rdh8-/- (dry-AMD model) mice. A190-MP also attenuated the decreases in cone photoreceptor density and outer nuclear layer thickness as demonstrated by optical coherence tomography and histology. Moreover, A190-MP reduced vascular leakage and neovascularization in Vldlr-/- mice, suggesting an anti-inflammatory and anti-angiogenic effect. A190-MP upregulated expression of PPARα, PGC1α, and TOMM20 in the retina of Vldlr-/- and Abca4-/-/Rdh8-/- mice. A190-MP also improved retinal mitochondrial function as shown by Seahorse analysis using retinal biopsy. In vitro, A190 attenuated oxidative stress and preserved cell viability in a photoreceptor-derived cell line exposed to 4-HNE and improved mitochondrial function, via a PPARα-dependent mechanism. These findings revealed sustained therapeutic effects of A190-MP in wet and dry AMD models, through improving mitochondrial function by activating PPARα.
Collapse
Affiliation(s)
- Yi Cui
- Department of Ophthalmology, Fujian Medical University Union Hospital, Fuzhou 350001, China; Department of Biochemistry, Wake Forest University School of Medicine, Winston-Salem, NC 27101, United States of America
| | - Sagun Poudel
- Department of Pharmaceutics, Virginia Commonwealth University, Richmond, VA 23298, United States of America
| | - Nuo Xu
- Department of Biochemistry, Wake Forest University School of Medicine, Winston-Salem, NC 27101, United States of America; Department of Ophthalmology, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou University Affiliated Provincial Hospital, Fuzhou 350001, China
| | - Kelu Zhou
- Department of Biochemistry, Wake Forest University School of Medicine, Winston-Salem, NC 27101, United States of America
| | - Rui Cheng
- Department of Biochemistry, Wake Forest University School of Medicine, Winston-Salem, NC 27101, United States of America
| | - Wentao Liang
- Department of Biochemistry, Wake Forest University School of Medicine, Winston-Salem, NC 27101, United States of America
| | - Tian Yuan
- Department of Biochemistry, Wake Forest University School of Medicine, Winston-Salem, NC 27101, United States of America
| | - Long Zhao
- Department of Pharmaceutics, Virginia Commonwealth University, Richmond, VA 23298, United States of America
| | - Chaolong Qin
- Department of Pharmaceutics, Virginia Commonwealth University, Richmond, VA 23298, United States of America
| | - Katelyn G Stevens
- Department of Medicinal Chemistry, College of Pharmacy, University of Minnesota, Minneapolis, MN 55414, United States of America
| | - Adam S Duerfeldt
- Department of Medicinal Chemistry, College of Pharmacy, University of Minnesota, Minneapolis, MN 55414, United States of America
| | - Jianzhang Hu
- Department of Ophthalmology, Fujian Medical University Union Hospital, Fuzhou 350001, China.
| | - Qingguo Xu
- Department of Pharmaceutics, Virginia Commonwealth University, Richmond, VA 23298, United States of America; Department of Ophthalmology, Pediatrics, Biomedical Engineering, Center for Pharmaceutical Engineering, and Institute for Structural Biology, Drug Discovery & Development (ISB3D), Massey Cancer Center, Virginia Commonwealth University, Richmond, VA 23298, United States of America.
| | - Jian-Xing Ma
- Department of Biochemistry, Wake Forest University School of Medicine, Winston-Salem, NC 27101, United States of America.
| |
Collapse
|
2
|
Fu S, Wang Z, Huang P, Li G, Niu J, Li Z, Zu G, Zhou P, Wang L, Leong DT, Ding X. Programmable production of bioactive extracellular vesicles in vivo to treat myocardial infarction. Nat Commun 2025; 16:2924. [PMID: 40133312 PMCID: PMC11937507 DOI: 10.1038/s41467-025-58260-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 03/03/2025] [Indexed: 03/27/2025] Open
Abstract
Current myocardial infarction (MI) treatment strategies remain challenged in suboptimal pharmacokinetics and potential adverse effects. Here we present a bioelectronic interface capable of producing on-demand abundant bioactive extracellular vesicles (EVs) near the MI area for in-situ localized treatment. The technology, termed electroactive patch for wirelessly and controllable EV generation (ePOWER), leverages wireless bioelectronic patch to stimulate embedded electrosensitive macrophages, actively modulating the biosynthesis of EVs and enabling EV production with high programmability to be delivered directly to the MI area. ~2400% more bioactive EVs were produced per cell under our ePOWER system. When surgically implanted, we demonstrate the therapeutic potential of in-situ EV production system to alleviate MI symptoms and improve cardiac function. This programmable ePOWER technology enables in-situ production of therapeutically rich EVs, thus reducing the need for exogenous cell expansion platforms and dedicated delivery, holding promise as a therapeutic all-in-one platform to treat various diseases.
Collapse
Affiliation(s)
- Siyuan Fu
- State Key Laboratory of Flexible Electronics (LoFE) & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing, 210023, China
| | - Zhiyu Wang
- State Key Laboratory of Flexible Electronics (LoFE) & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing, 210023, China
| | - Peihong Huang
- State Key Laboratory of Flexible Electronics (LoFE) & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing, 210023, China
| | - Guanjun Li
- State Key Laboratory of Flexible Electronics (LoFE) & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing, 210023, China
| | - Jian Niu
- State Key Laboratory of Flexible Electronics (LoFE) & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing, 210023, China
| | - Zhiyang Li
- Department of Clinical Laboratory Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
| | - Guangyue Zu
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Pengcheng Zhou
- Department of General Surgery, Affiliated Hospital of Nantong University, Nantong, 226001, China
| | - Lianhui Wang
- State Key Laboratory of Flexible Electronics (LoFE) & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing, 210023, China
| | - David Tai Leong
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, 117585, Singapore.
| | - Xianguang Ding
- State Key Laboratory of Flexible Electronics (LoFE) & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing, 210023, China.
| |
Collapse
|
3
|
Enayati S, Chang K, Lennikov A, Yang M, Lee C, Ashok A, Elzaridi F, Yen C, Gunes K, Xie J, Cho KS, Utheim TP, Chen DF. Optimal transcorneal electrical stimulation parameters for preserving photoreceptors in a mouse model of retinitis pigmentosa. Neural Regen Res 2024; 19:2543-2552. [PMID: 38526290 PMCID: PMC11090438 DOI: 10.4103/1673-5374.392888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 11/21/2023] [Accepted: 12/29/2023] [Indexed: 03/26/2024] Open
Abstract
JOURNAL/nrgr/04.03/01300535-202419110-00034/figure1/v/2024-03-08T184507Z/r/image-tiff Retinitis pigmentosa is a hereditary retinal disease that affects rod and cone photoreceptors, leading to progressive photoreceptor loss. Previous research supports the beneficial effect of electrical stimulation on photoreceptor survival. This study aims to identify the most effective electrical stimulation parameters and functional advantages of transcorneal electrical stimulation (tcES) in mice affected by inherited retinal degeneration. Additionally, the study seeked to analyze the electric field that reaches the retina in both eyes in mice and post-mortem humans. In this study, we recorded waveforms and voltages directed to the retina during transcorneal electrical stimulation in C57BL/6J mice using an intraocular needle probe with rectangular, sine, and ramp waveforms. To investigate the functional effects of electrical stimulation on photoreceptors, we used human retinal explant cultures and rhodopsin knockout (Rho-/-) mice, demonstrating progressive photoreceptor degeneration with age. Human retinal explants isolated from the donors' eyes were then subjected to electrical stimulation and cultured for 48 hours to simulate the neurodegenerative environment in vitro. Photoreceptor density was evaluated by rhodopsin immunolabeling. In vivo Rho-/- mice were subjected to two 5-day series of daily transcorneal electrical stimulation using rectangular and ramp waveforms. Retinal function and visual perception of mice were evaluated by electroretinography and optomotor response (OMR), respectively. Immunolabeling was used to assess the morphological and biochemical changes of the photoreceptor and bipolar cells in mouse retinas. Oscilloscope recordings indicated effective delivery of rectangular, sine, and ramp waveforms to the retina by transcorneal electrical stimulation, of which the ramp waveform required the lowest voltage. Evaluation of the total conductive resistance of the post-mortem human compared to the mouse eyes indicated higher cornea-to-retina resistance in human eyes. The temperature recordings during and after electrical stimulation indicated no significant temperature change in vivo and only a subtle temperature increase in vitro (~0.5-1.5°C). Electrical stimulation increased photoreceptor survival in human retinal explant cultures, particularly at the ramp waveform. Transcorneal electrical stimulation (rectangular + ramp) waveforms significantly improved the survival and function of S and M-cones and enhanced visual acuity based on the optomotor response results. Histology and immunolabeling demonstrated increased photoreceptor survival, improved outer nuclear layer thickness, and increased bipolar cell sprouting in Rho-/- mice. These results indicate that transcorneal electrical stimulation effectively delivers the electrical field to the retina, improves photoreceptor survival in both human and mouse retinas, and increases visual function in Rho-/- mice. Combined rectangular and ramp waveform stimulation can promote photoreceptor survival in a minimally invasive fashion.
Collapse
Affiliation(s)
- Sam Enayati
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
- Institute of clinical medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Medical Biochemistry, Oslo University Hospital, University of Oslo, Oslo, Norway
- Department of Ophthalmology, Drammen Hospital, Vestre Viken Hospital Trust, Drammen, Norway
| | - Karen Chang
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
- Department of Medical Biochemistry, Oslo University Hospital, University of Oslo, Oslo, Norway
| | - Anton Lennikov
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
- Department of Medical Biochemistry, Oslo University Hospital, University of Oslo, Oslo, Norway
| | - Menglu Yang
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Cherin Lee
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Ajay Ashok
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
- Department of Medical Biochemistry, Oslo University Hospital, University of Oslo, Oslo, Norway
| | - Farris Elzaridi
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Christina Yen
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Kasim Gunes
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
- Department of Histology and Embryology, School of Medicine, Marmara University, Istanbul, Turkiye
| | - Jia Xie
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Kin-Sang Cho
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Tor Paaske Utheim
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
- Institute of clinical medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Medical Biochemistry, Oslo University Hospital, University of Oslo, Oslo, Norway
- Department of Ophthalmology, Drammen Hospital, Vestre Viken Hospital Trust, Drammen, Norway
| | - Dong Feng Chen
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
4
|
Her YF, Churchill RA. Case Report: Rescue of Relapsed Pain in a Patient with Complex Regional Pain Syndrome Type II by Adding Another Dorsal Root Ganglion Lead. Int Med Case Rep J 2024; 17:765-769. [PMID: 39220373 PMCID: PMC11363934 DOI: 10.2147/imcrj.s477303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024] Open
Abstract
We present on a patient with complex regional pain syndrome (CRPS) following ankle surgery. Pain was refractory to both conservative and surgical measures including neurotomies, ankle fusion, hardware removal, and spinal cord stimulation (SCS) trial. A dorsal root ganglion (DRG) stimulation trial with lead placements at L4, L5, and S1 provided significant pain and functional improvement. However, during the implantation, we were able to place only two DRG leads at L4 and L5 and not S1 due to difficulties with advancing the lead to the desired location. Nonetheless, the two DRG leads provided 90% pain relief and 75% functional improvement for 9 months. However, the patient experienced pain symptoms similar to that of pre-implant without a clear trigger after 9 months despite no DRG stimulator hardware malfunction or lead migration. A decision was made to re-try implanting the S1 DRG lead, which was successful and provided significant pain relief.
Collapse
Affiliation(s)
- Yeng F Her
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, USA
| | - Robert A Churchill
- Mayo Clinic Alix School of Medicine, Mayo Clinic Hospital, Rochester, MN, 55905, USA
| |
Collapse
|
5
|
Khalili MR, Shadmani A, Sanie-Jahromi F. Application of electrostimulation and magnetic stimulation in patients with optic neuropathy: A mechanistic review. Dev Neurobiol 2024; 84:236-248. [PMID: 38844425 DOI: 10.1002/dneu.22949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 03/20/2024] [Accepted: 05/20/2024] [Indexed: 07/17/2024]
Abstract
Visual impairment caused by optic neuropathies is irreversible because retinal ganglion cells (RGCs), the specialized neurons of the retina, do not have the capacity for self-renewal and self-repair. Blindness caused by optic nerve neuropathies causes extensive physical, financial, and social consequences in human societies. Recent studies on different animal models and humans have established effective strategies to prevent further RGC degeneration and replace the cells that have deteriorated. In this review, we discuss the application of electrical stimulation (ES) and magnetic field stimulation (MFS) in optic neuropathies, their mechanisms of action, their advantages, and limitations. ES and MFS can be applied effectively in the field of neuroregeneration. Although stem cells are becoming a promising approach for regenerating RGCs, the inhibitory environment of the CNS and the long visual pathway from the optic nerve to the superior colliculus are critical barriers to overcome. Scientific evidence has shown that adjuvant treatments, such as the application of ES and MFS help direct thetransplanted RGCs to extend their axons and form new synapses in the central nervous system (CNS). In addition, these techniques improve CNS neuroplasticity and decrease the inhibitory effects of the CNS. Possible mechanisms mediating the effects of electrical current on biological tissues include the release of anti-inflammatory cytokines, improvement of microcirculation, stimulation of cell metabolism, and modification of stem cell function. ES and MFS have the potential to promote angiogenesis, direct axon growth toward the intended target, and enhance appropriate synaptogenesis in optic nerve regeneration.
Collapse
Affiliation(s)
- Mohammad Reza Khalili
- Poostchi Ophthalmology Research Center, Department of Ophthalmology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Athar Shadmani
- Department of Ophthalmology, Stanford University School of Medicine, Stanford, California, USA
| | - Fatemeh Sanie-Jahromi
- Poostchi Ophthalmology Research Center, Department of Ophthalmology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
6
|
Kong K, Ding X, Wang Y, Xu S, Li G, Wang X, Zhang M, Ni Y, Xu G. Circular RNA expression profile and functional analysis of circUvrag in light-induced photoreceptor degeneration. Clin Exp Ophthalmol 2024; 52:558-575. [PMID: 38282307 DOI: 10.1111/ceo.14355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 11/18/2023] [Accepted: 12/29/2023] [Indexed: 01/30/2024]
Abstract
BACKGROUND Circular RNAs (circRNAs) are implicated in retinal pathophysiology; however, their expression profiles and functions in photoreceptor apoptosis are largely unknown. We explored circRNA-expression profiles and circUvrag (host gene: Uvrag, ultraviolet radiation resistance associated gene) function in light-induced photoreceptor apoptosis. METHODS Sprague-Dawley rats and 661 W photoreceptor cells were exposed to blue light to establish light-induced photoreceptor degeneration. Differentially expressed circRNAs were identified using microarrays. Potential functions of dysregulated circRNAs were analysed using Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses. CircUvrag expression and localization were evaluated using quantitative RT-PCR and fluorescence in situ hybridization, respectively. CircUvrag overexpression and knockdown were induced using a plasmid and a small interfering RNA, respectively, and retinal function and structure were assessed using scotopic electroretinography, haematoxylin-eosin staining, and TUNEL staining. Microglial migration was assessed using IBA1 immunostaining. The apoptosis ratio of photoreceptor cells in vitro was detected using flow cytometry. RESULTS We identified 764 differentially expressed circRNAs, which were potentially related with the development of retinal structures, including neurons, dendrites, and synapses, and might participate in nervous-system pathophysiology. Light exposure enriched circUvrag in the cytoplasm of photoreceptors in the outer nuclear layer (ONL). CircUvrag knockdown decreased photoreceptor apoptosis and microglial migration to the ONL after light exposure, preserving ONL thickness and a-wave amplitude. In vitro, circUvrag knockdown inhibited photoreceptor apoptosis, although circUvrag overexpression slightly promoted photoreceptor apoptosis. CONCLUSIONS CircUvrag knockdown attenuated light-induced photoreceptor apoptosis, and might be a potential target in retinal degeneration.
Collapse
Affiliation(s)
- Kangjie Kong
- Department of Ophthalmology, Eye and ENT Hospital of Fudan University, Shanghai, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Eye and ENT Hospital of Fudan University, Shanghai, China
| | - Xinyi Ding
- Department of Ophthalmology, Eye and ENT Hospital of Fudan University, Shanghai, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Eye and ENT Hospital of Fudan University, Shanghai, China
| | - Yingchao Wang
- Department of Ophthalmology, Eye and ENT Hospital of Fudan University, Shanghai, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Eye and ENT Hospital of Fudan University, Shanghai, China
| | - Sisi Xu
- Department of Ophthalmology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Gang Li
- Research Center, Eye and ENT Hospital of Fudan University, Shanghai, China
| | - Xin Wang
- Department of Ophthalmology, Eye and ENT Hospital of Fudan University, Shanghai, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Eye and ENT Hospital of Fudan University, Shanghai, China
| | - Meng Zhang
- Department of Ophthalmology, Eye and ENT Hospital of Fudan University, Shanghai, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Eye and ENT Hospital of Fudan University, Shanghai, China
| | - Yingqin Ni
- Department of Ophthalmology, Eye and ENT Hospital of Fudan University, Shanghai, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Eye and ENT Hospital of Fudan University, Shanghai, China
| | - Gezhi Xu
- Department of Ophthalmology, Eye and ENT Hospital of Fudan University, Shanghai, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Eye and ENT Hospital of Fudan University, Shanghai, China
| |
Collapse
|
7
|
Zhou W, Huang Z, Xu K, Li Y, Li X, Li J, Jin Y, Snellingen T, Liang L. Transpalpebral electrical stimulation for the treatment of retinitis pigmentosa: study protocol for a series of N-of-1 single-blind, randomized controlled trial. Trials 2024; 25:89. [PMID: 38279157 PMCID: PMC10821291 DOI: 10.1186/s13063-024-07933-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 01/16/2024] [Indexed: 01/28/2024] Open
Abstract
BACKGROUND Retinitis pigmentosa (RP) is an inherited disease characterized by a progressive loss of rod photoreceptors of the eye, leading to irreversible blindness. To date, to our knowledge, no clinical prospective studies have been undertaken that could document the effect of interventions that could reverse or reduce the progression of this disease. The application of microcurrent stimulation (ES) of the eye in the treatment of chronic eye diseases such as glaucoma and age-related macular degeneration has been used over several decades and has been reported to have beneficial effects to reduce the progression of these blinding diseases and has been supported by animal studies and smaller clinical studies, but to date, no large randomized clinical trials on the use of microcurrent therapy have been published. More recent clinical reports have also shown beneficial effects of ES on slowing the progression of RP but also lacks data from robust prospective clinical outcome studies. To our knowledge, this is the first prospective randomized study to evaluate the safety and clinical effectiveness of transpalpebral electrical stimulation (TpES) on the progression of RP. METHODS Randomized prospective study using N-of-1 trial 3 single-blind, crossover comparisons. The intervention period of each comparison is divided into treatment period and control period which are randomized arranged. Twelve participants will be strictly recruited in N-of-1 trial by the researcher in accordance with the inclusion and exclusion criteria. The main outcome of interest examined after each cycle of the 8-week intervention period is the assessment of the visual field (VF). Other variables of interest are best corrected visual acuity (BCVA), retinal function using electroretinogram (ERG), and visual function using NEI VFQ-25 questionnaire. Objective assessments of retinal changes will be undertaken using optical coherence tomography (OCT) and fundus autofluorescence (FAF). DISCUSSION The trial will evaluate the efficacy and safety of microcurrent stimulation on RP and provide high-quality evidence for clinical application through N-of-1 trial. TRIAL REGISTRATION Chinese Clinical Trial Registry; ChiCTR2300067357; https://www.chictr.org.cn/showproj.html?proj=174635 . Registered on 5 January 2023.
Collapse
Affiliation(s)
- Wei Zhou
- Department of Eye Function Laboratory, Eye Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ziyang Huang
- Department of Eye Function Laboratory, Eye Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Kai Xu
- Department of Eye Function Laboratory, Eye Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yamin Li
- Department of Eye Function Laboratory, Eye Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiaoyu Li
- Department of Eye Function Laboratory, Eye Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jiaxian Li
- Department of Eye Function Laboratory, Eye Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yu Jin
- Department of Eye Function Laboratory, Eye Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Torkel Snellingen
- Beijing Research Institute of Vision Science & Sekwa Eye Hospital, Beijing, China
| | - Lina Liang
- Department of Eye Function Laboratory, Eye Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| |
Collapse
|
8
|
Shinozaki Y, Namekata K, Guo X, Harada T. Glial cells as a promising therapeutic target of glaucoma: beyond the IOP. FRONTIERS IN OPHTHALMOLOGY 2024; 3:1310226. [PMID: 38983026 PMCID: PMC11182302 DOI: 10.3389/fopht.2023.1310226] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 12/18/2023] [Indexed: 07/11/2024]
Abstract
Glial cells, a type of non-neuronal cell found in the central nervous system (CNS), play a critical role in maintaining homeostasis and regulating CNS functions. Recent advancements in technology have paved the way for new therapeutic strategies in the fight against glaucoma. While intraocular pressure (IOP) is the most well-known modifiable risk factor, a significant number of glaucoma patients have normal IOP levels. Because glaucoma is a complex, multifactorial disease influenced by various factors that contribute to its onset and progression, it is imperative that we consider factors beyond IOP to effectively prevent or slow down the disease's advancement. In the realm of CNS neurodegenerative diseases, glial cells have emerged as key players due to their pivotal roles in initiating and hastening disease progression. The inhibition of dysregulated glial function holds the potential to protect neurons and restore brain function. Consequently, glial cells represent an enticing therapeutic candidate for glaucoma, even though the majority of glaucoma research has historically concentrated solely on retinal ganglion cells (RGCs). In addition to the neuroprotection of RGCs, the proper regulation of glial cell function can also facilitate structural and functional recovery in the retina. In this review, we offer an overview of recent advancements in understanding the non-cell-autonomous mechanisms underlying the pathogenesis of glaucoma. Furthermore, state-of-the-art technologies have opened up possibilities for regenerating the optic nerve, which was previously believed to be incapable of regeneration. We will also delve into the potential roles of glial cells in the regeneration of the optic nerve and the restoration of visual function.
Collapse
Affiliation(s)
- Youichi Shinozaki
- Visual Research Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Kazuhiko Namekata
- Visual Research Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Xiaoli Guo
- Visual Research Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Takayuki Harada
- Visual Research Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| |
Collapse
|
9
|
Miura G, Fujiwara T, Ozawa Y, Shiko Y, Kawasaki Y, Nizawa T, Tatsumi T, Kurimoto T, Mori S, Nakamura M, Hanaoka H, Baba T, Yamamoto S. Efficacy and safety of transdermal electrical stimulation in patients with nonarteritic anterior ischemic optic neuropathy. Bioelectron Med 2023; 9:22. [PMID: 37876021 PMCID: PMC10598888 DOI: 10.1186/s42234-023-00125-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 09/12/2023] [Indexed: 10/26/2023] Open
Abstract
BACKGROUND No effective treatment for NAION with strong evidence has been established till date. The aim of this investigator-led, prospective, non-randomized, open-label, uncontrolled multi-center exploratory clinical trial is to evaluate the efficacy and safety of transdermal electrical stimulation (TdES) using skin electrodes in patients with NAION. METHODS Five patients with monocular NAION underwent TdES (10-ms biphasic pulses, 1.0 mA, 20 Hz, 30 min) of the affected eye six times at 2-week intervals. The primary endpoint was the logarithm of the mini-mum angle of resolution (logMAR) visual acuity at 12 weeks compared with 0 weeks. The secondary endpoints were changes in the best-corrected logMAR visual acuity, Early Treatment of Diabetic Retinopathy Study (ETDRS) visual acuity, and mean deviation (MD) of the Humphrey field analyzer (HFA) 10-2 and HFA Esterman test scores. Additionally, the safety of TdES was evaluated. RESULTS LogMAR visual acuity improved by ≥ 0.1 in two eyes, and ETDRS visual acu-ity improved by ≥ 5 characters in one eye. The mean change in logMAR visual acuity from week 0 showed an increasing trend. The mean MD of HFA 10-2 showed no obvious change, while HFA Esterman score improved in four eyes. All patients completed the study according to the protocol, and no treatment-related adverse events were observed. CONCLUSIONS TdES treatment may have improved visual acuity and visual field in some patients. Further sham-controlled study in larger cohort is needed on its effectiveness. TRIAL REGISTRATION UMIN, UMIN000036220. Registered 15 March, 2019, https://center6.umin.ac.jp/cgi-open-bin/ctr/ctr_view.cgi?recptno=R000041261 .
Collapse
Affiliation(s)
- Gen Miura
- Department of Ophthalmology and Visual Science, Chiba University Graduate School of Medicine, Inohana 1-8-1, Chuo-Ku, Chiba, 260-8670, Japan.
| | - Tadami Fujiwara
- Clinical Research Centre, Chiba University Hospital, Chiba, Japan
| | - Yoshihito Ozawa
- Clinical Research Centre, Chiba University Hospital, Chiba, Japan
| | - Yuki Shiko
- Clinical Research Centre, Chiba University Hospital, Chiba, Japan
| | - Yohei Kawasaki
- Clinical Research Centre, Chiba University Hospital, Chiba, Japan
| | - Tomohiro Nizawa
- Department of Ophthalmology and Visual Science, Chiba University Graduate School of Medicine, Inohana 1-8-1, Chuo-Ku, Chiba, 260-8670, Japan
| | - Tomoaki Tatsumi
- Department of Ophthalmology and Visual Science, Chiba University Graduate School of Medicine, Inohana 1-8-1, Chuo-Ku, Chiba, 260-8670, Japan
| | - Takuji Kurimoto
- Department of Surgery, Division of Ophthalmology, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-Cho, Chuo-Ku, Kobe, 650-0017, Japan
| | - Sotaro Mori
- Department of Surgery, Division of Ophthalmology, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-Cho, Chuo-Ku, Kobe, 650-0017, Japan
| | - Makoto Nakamura
- Department of Surgery, Division of Ophthalmology, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-Cho, Chuo-Ku, Kobe, 650-0017, Japan
| | - Hideki Hanaoka
- Clinical Research Centre, Chiba University Hospital, Chiba, Japan
| | - Takayuki Baba
- Department of Ophthalmology and Visual Science, Chiba University Graduate School of Medicine, Inohana 1-8-1, Chuo-Ku, Chiba, 260-8670, Japan
| | - Shuichi Yamamoto
- Department of Ophthalmology and Visual Science, Chiba University Graduate School of Medicine, Inohana 1-8-1, Chuo-Ku, Chiba, 260-8670, Japan
| |
Collapse
|
10
|
Sharif NA. Electrical, Electromagnetic, Ultrasound Wave Therapies, and Electronic Implants for Neuronal Rejuvenation, Neuroprotection, Axonal Regeneration, and IOP Reduction. J Ocul Pharmacol Ther 2023; 39:477-498. [PMID: 36126293 DOI: 10.1089/jop.2022.0046] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The peripheral nervous system (PNS) of mammals and nervous systems of lower organisms possess significant regenerative potential. In contrast, although neural plasticity can provide some compensation, the central nervous system (CNS) neurons and nerves of adult mammals generally fail to regenerate after an injury or damage. However, use of diverse electrical, electromagnetic and sonographic energy waves are illuminating novel ways to stimulate neuronal differentiation, proliferation, neurite growth, and axonal elongation/regeneration leading to various levels of functional recovery in animals and humans afflicted with disorders of the CNS, PNS, retina, and optic nerve. Tools such as acupuncture, electroacupuncture, electroshock therapy, electrical stimulation, transcranial magnetic stimulation, red light therapy, and low-intensity pulsed ultrasound therapy are demonstrating efficacy in treating many different maladies. These include wound healing, partial recovery from motor dysfunctions, recovery from ischemic/reperfusion insults and CNS and ocular remyelination, retinal ganglion cell (RGC) rejuvenation, and RGC axonal regeneration. Neural rejuvenation and axonal growth/regeneration processes involve activation or intensifying of the intrinsic bioelectric waves (action potentials) that exist in every neuronal circuit of the body. In addition, reparative factors released at the nerve terminals and via neuronal dendrites (transmitter substances), extracellular vesicles containing microRNAs and neurotrophins, and intercellular communication occurring via nanotubes aid in reestablishing lost or damaged connections between the traumatized tissues and the PNS and CNS. Many other beneficial effects of the aforementioned treatment paradigms are mediated via gene expression alterations such as downregulation of inflammatory and death-signal genes and upregulation of neuroprotective and cytoprotective genes. These varied techniques and technologies will be described and discussed covering cell-based and animal model-based studies. Data from clinical applications and linkage to human ocular diseases will also be discussed where relevant translational research has been reported.
Collapse
Affiliation(s)
- Najam A Sharif
- Global Alliances and External Research, Ophthalmology Innovation Center, Santen Inc., Emeryville, California, USA
- Singapore Eye Research Institute (SERI), Singapore
- SingHealth Duke-NUS Ophthalmology and Visual Sciences Academic Clinical Programme, Duke-National University of Singapore Medical School, Singapore
- Department of Surgery and Cancer, Imperial College of Science and Technology, London, United Kingdom
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Texas Southern University, Houston, Texas, USA
- Department of Pharmacology and Neuroscience, University of North Texas Health Sciences Center, Fort Worth, Texas, USA
- Department of Pharmacy Sciences, Creighton University, Omaha, Nebraska, USA
- Insitute of Ophthalmology, University College London (UCL), London, United Kingdom
| |
Collapse
|
11
|
Bola S, Subramanian P, Calzia D, Dahl A, Panfoli I, Funk RHW, Roehlecke C. Analysis of Electric Field Stimulation in Blue Light Stressed 661W Cells. Int J Mol Sci 2023; 24:ijms24043433. [PMID: 36834840 PMCID: PMC9965974 DOI: 10.3390/ijms24043433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 01/25/2023] [Accepted: 01/29/2023] [Indexed: 02/11/2023] Open
Abstract
Though electrical stimulation is used as a therapeutic approach to treat retinal and spinal injuries, many protective mechanisms at cellular level have not been elucidated. We performed a detailed analysis of cellular events in blue light (Li) stressed 661W cells, which were subjected to direct current electric field (EF) stimulation. Our findings revealed that EF stimulation induced protective effects in 661W cells from Li-induced stress by multiple defense mechanisms, such as increase in mitochondrial activity, gain in mitochondrial potential, increase in superoxide levels, and the activation of unfolded protein response (UPR) pathways, all leading to an enhanced cell viability and decreased DNA damage. Here, our genetic screen results revealed the UPR pathway to be a promising target to ameliorate Li-induced stress by EF stimulation. Thus, our study is important for a knowledgeable transfer of EF stimulation into clinical application.
Collapse
Affiliation(s)
- Sharanya Bola
- Institute of Anatomy, TU Dresden, D-01304 Dresden, Germany
| | - Pallavi Subramanian
- Institute of Clinical Chemistry and Laboratory Medicine, TU Dresden, D-01069 Dresden, Germany
| | - Daniela Calzia
- Department of Pharmacy—DIFAR, Biochemistry and Physiology Lab., University of Genoa, 16126 Genova, Italy
| | - Andreas Dahl
- Deep Sequencing Group SFB 655, Biotechnology Center, TU Dresden, D-01069 Dresden, Germany
| | - Isabella Panfoli
- Department of Pharmacy—DIFAR, Biochemistry and Physiology Lab., University of Genoa, 16126 Genova, Italy
| | - Richard H. W. Funk
- Institute of Anatomy, TU Dresden, D-01304 Dresden, Germany
- Correspondence:
| | - Cora Roehlecke
- Institute of Anatomy, TU Dresden, D-01304 Dresden, Germany
| |
Collapse
|
12
|
Lennikov A, Yang M, Chang K, Pan L, Saddala MS, Lee C, Ashok A, Cho KS, Utheim TP, Chen DF. Direct modulation of microglial function by electrical field. Front Cell Dev Biol 2022; 10:980775. [PMID: 36158207 PMCID: PMC9493490 DOI: 10.3389/fcell.2022.980775] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 08/03/2022] [Indexed: 12/03/2022] Open
Abstract
Non-invasive electric stimulation (ES) employing a low-intensity electric current presents a potential therapeutic modality that can be applied for treating retinal and brain neurodegenerative disorders. As neurons are known to respond directly to ES, the effects of ES on glia cells are poorly studied. A key question is if ES directly mediates microglial function or modulates their activity merely via neuron-glial signaling. Here, we demonstrated the direct effects of ES on microglia in the BV-2 cells—an immortalized murine microglial cell line. The low current ES in a biphasic ramp waveform, but not that of rectangular or sine waveforms, significantly suppressed the motility and migration of BV-2 microglia in culture without causing cytotoxicity. This was associated with diminished cytoskeleton reorganization and microvilli formation in BV-2 cultures, as demonstrated by immunostaining of cytoskeletal proteins, F-actin and β-tubulin, and scanning electron microscopy. Moreover, ES of a ramp waveform reduced microglial phagocytosis of fluorescent zymosan particles and suppressed lipopolysaccharide (LPS)-induced pro-inflammatory cytokine expression in BV-2 cells as shown by Proteome Profiler Mouse Cytokine Array. The results of quantitative PCR and immunostaining for cyclooxygenase-2, Interleukin 6, and Tumor Necrosis Factor-α corroborated the direct suppression of LPS-induced microglial responses by a ramp ES. Transcriptome profiling further demonstrated that ramp ES effectively suppressed nearly half of the LPS-induced genes, primarily relating to cellular motility, energy metabolism, and calcium signaling. Our results reveal a direct modulatory effect of ES on previously thought electrically “non-responsive” microglia and suggest a new avenue of employing ES for anti-inflammatory therapy.
Collapse
Affiliation(s)
- Anton Lennikov
- Department of Ophthalmology, Harvard Medical School, Schepens Eye Research Institute of Massachusetts Eye and Ear, Boston, MA, United States
- Department of Medical Biochemistry, Oslo University Hospital, University of Oslo, Oslo, Norway
| | - Menglu Yang
- Department of Ophthalmology, Harvard Medical School, Schepens Eye Research Institute of Massachusetts Eye and Ear, Boston, MA, United States
| | - Karen Chang
- Department of Ophthalmology, Harvard Medical School, Schepens Eye Research Institute of Massachusetts Eye and Ear, Boston, MA, United States
- Department of Medical Biochemistry, Oslo University Hospital, University of Oslo, Oslo, Norway
| | - Li Pan
- Department of Ophthalmology, Harvard Medical School, Schepens Eye Research Institute of Massachusetts Eye and Ear, Boston, MA, United States
- School of Optometry, The Hong Kong Polytechnic University, Hong Kong, Hong Kong SAR, China
| | - Madhu Sudhana Saddala
- Wilmer Bioinformatics, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Cherin Lee
- Department of Ophthalmology, Harvard Medical School, Schepens Eye Research Institute of Massachusetts Eye and Ear, Boston, MA, United States
| | - Ajay Ashok
- Department of Ophthalmology, Harvard Medical School, Schepens Eye Research Institute of Massachusetts Eye and Ear, Boston, MA, United States
- Department of Medical Biochemistry, Oslo University Hospital, University of Oslo, Oslo, Norway
| | - Kin-Sang Cho
- Department of Ophthalmology, Harvard Medical School, Schepens Eye Research Institute of Massachusetts Eye and Ear, Boston, MA, United States
| | - Tor Paaske Utheim
- Department of Ophthalmology, Harvard Medical School, Schepens Eye Research Institute of Massachusetts Eye and Ear, Boston, MA, United States
- Department of Medical Biochemistry, Oslo University Hospital, University of Oslo, Oslo, Norway
- Department of Ophthalmology, Oslo University Hospital, University of Oslo, Oslo, Norway
| | - Dong Feng Chen
- Department of Ophthalmology, Harvard Medical School, Schepens Eye Research Institute of Massachusetts Eye and Ear, Boston, MA, United States
- *Correspondence: Dong Feng Chen,
| |
Collapse
|
13
|
Marenna S, Huang SC, Rossi E, Castoldi V, Comi G, Leocani L. Transcranial direct current stimulation as a preventive treatment in multiple sclerosis? Preclinical evidence. Exp Neurol 2022; 357:114201. [PMID: 35963325 DOI: 10.1016/j.expneurol.2022.114201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 07/28/2022] [Accepted: 08/08/2022] [Indexed: 11/26/2022]
Abstract
Multiple sclerosis (MS) is an inflammatory demyelinating disease of the central nervous system, presenting with optic neuritis in about 20-30% of cases. Optic nerve demyelination, associated with delay of visual evoked potentials (VEPs), is also observed prior to motor signs in the preclinical MS model Experimental Autoimmune Encephalomyelitis (EAE). Transcranial direct current stimulation (tDCS), inducing polarity-dependent changes in neuronal excitability, is widely used to promote neuroplasticity in several neurological disorders. However, its potential effects on inflammation and demyelination are largely unknown. We tested the effectiveness of a preventive, 5-day tDCS treatment started 3 days post-immunization, in reducing the severity of VEP delays observed in early EAE. In mice undergoing cathodal tDCS (n = 6/26 eyes) VEPs were significantly less delayed compared with eyes from EAE-Sham (n = 24/32 eyes) and EAE-Anodal (n = 22/32 eyes). Optic nerve immunohistochemistry revealed a significantly lower cell density of microglia/macrophages, and less axonal loss in EAE-Cathodal vs EAE-Sham and EAE-Anodal, while the percent demyelination with Luxol-fast blue staining was comparable among EAE groups. Considering the latter result, immunofluorescence paranodal staining was performed, revealing a significantly higher number of complete paranode domains in EAE-Cathodal, closer to healthy mice, compared with EAE-Sham and EAE-Anodal groups. These results were reflected by the negative correlation between the number of complete paranode domains and VEP latency increase with respect to pre-immunization. Finally, cathodal tDCS was associated with a lower number, closer to healthy, of single paranodes in contrast to EAE-Sham. The effects of cathodal stimulation in preventing VEPs delays and optic nerve myelin damage were already observed in the pre-motor onset EAE stage, and were associated with a lower density of inflammatory cells. These findings suggest that tDCS may exert an anti-inflammatory effect with potential therapeutic application to be further explored in autoimmune demyelinating diseases.
Collapse
Affiliation(s)
- Silvia Marenna
- Experimental Neurophysiology Unit, Institute of Experimental Neurology (INSPE) - IRCCS-San Raffaele Hospital, via Olgettina 60, 20132 Milan, Italy.
| | - Su-Chun Huang
- Experimental Neurophysiology Unit, Institute of Experimental Neurology (INSPE) - IRCCS-San Raffaele Hospital, via Olgettina 60, 20132 Milan, Italy.
| | - Elena Rossi
- Experimental Neurophysiology Unit, Institute of Experimental Neurology (INSPE) - IRCCS-San Raffaele Hospital, via Olgettina 60, 20132 Milan, Italy.
| | - Valerio Castoldi
- Experimental Neurophysiology Unit, Institute of Experimental Neurology (INSPE) - IRCCS-San Raffaele Hospital, via Olgettina 60, 20132 Milan, Italy.
| | - Giancarlo Comi
- Università Vita-Salute, San Raffaele Hospital, via Olgettina 60, 20132 Milan, Italy; Casa di Cura del Policlinico, Milan, Italy.
| | - Letizia Leocani
- Experimental Neurophysiology Unit, Institute of Experimental Neurology (INSPE) - IRCCS-San Raffaele Hospital, via Olgettina 60, 20132 Milan, Italy; Università Vita-Salute, San Raffaele Hospital, via Olgettina 60, 20132 Milan, Italy.
| |
Collapse
|
14
|
High-Contrast Stimulation Potentiates the Neurotrophic Properties of Müller Cells and Suppresses Their Pro-Inflammatory Phenotype. Int J Mol Sci 2022; 23:ijms23158615. [PMID: 35955747 PMCID: PMC9369166 DOI: 10.3390/ijms23158615] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/23/2022] [Accepted: 08/02/2022] [Indexed: 02/05/2023] Open
Abstract
High-contrast visual stimulation promotes retinal regeneration and visual function, but the underlying mechanism is not fully understood. Here, we hypothesized that Müller cells (MCs), which express neurotrophins such as brain-derived neurotrophic factor (BDNF), could be key players in this retinal plasticity process. This hypothesis was tested by conducting in vivo and in vitro high-contrast stimulation of adult mice and MCs. Following stimulation, we examined the expression of BDNF and its inducible factor, VGF, in the retina and MCs. We also investigated the alterations in the expression of VGF, nuclear factor kappa B (NF-κB) and pro-inflammatory mediators in MCs, as well as their capacity to proliferate and develop a neurogenic or reactive gliosis phenotype after high-contrast stimulation and treatment with BDNF. Our results showed that high-contrast stimulation upregulated BDNF levels in MCs in vivo and in vitro. The additional BDNF treatment significantly augmented VGF production in MCs and their neuroprotective features, as evidenced by increased MC proliferation, neurodifferentiation, and decreased expression of the pro-inflammatory factors and the reactive gliosis marker GFAP. These results demonstrate that high-contrast stimulation activates the neurotrophic and neuroprotective properties of MCs, suggesting their possible direct involvement in retinal neuronal survival and improved functional outcomes in response to visual stimulation.
Collapse
|
15
|
Francia S, Shmal D, Di Marco S, Chiaravalli G, Maya-Vetencourt JF, Mantero G, Michetti C, Cupini S, Manfredi G, DiFrancesco ML, Rocchi A, Perotto S, Attanasio M, Sacco R, Bisti S, Mete M, Pertile G, Lanzani G, Colombo E, Benfenati F. Light-induced charge generation in polymeric nanoparticles restores vision in advanced-stage retinitis pigmentosa rats. Nat Commun 2022; 13:3677. [PMID: 35760799 PMCID: PMC9237035 DOI: 10.1038/s41467-022-31368-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 06/14/2022] [Indexed: 12/16/2022] Open
Abstract
Retinal dystrophies such as Retinitis pigmentosa are among the most prevalent causes of inherited legal blindness, for which treatments are in demand. Retinal prostheses have been developed to stimulate the inner retinal network that, initially spared by degeneration, deteriorates in the late stages of the disease. We recently reported that conjugated polymer nanoparticles persistently rescue visual activities after a single subretinal injection in the Royal College of Surgeons rat model of Retinitis pigmentosa. Here we demonstrate that conjugated polymer nanoparticles can reinstate physiological signals at the cortical level and visually driven activities when microinjected in 10-months-old Royal College of Surgeons rats bearing fully light-insensitive retinas. The extent of visual restoration positively correlates with the nanoparticle density and hybrid contacts with second-order retinal neurons. The results establish the functional role of organic photovoltaic nanoparticles in restoring visual activities in fully degenerate retinas with intense inner retina rewiring, a stage of the disease in which patients are subjected to prosthetic interventions. Retinal dystrophies such as Retinitis pigmentosa are among the most prevalent causes of inherited incurable legal blindness. Here the authors demonstrate that conjugated polymer nanoparticles reinstate visual functions in aged rats with fully degenerated and rewired retinas.
Collapse
Affiliation(s)
- S Francia
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Genova, Italy.,IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - D Shmal
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Genova, Italy.,Department of Experimental Medicine, University of Genova, Genova, Italy
| | - S Di Marco
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Genova, Italy.,IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - G Chiaravalli
- Center for Nanoscience and Technology, Istituto Italiano di Tecnologia, Milano, Italy
| | - J F Maya-Vetencourt
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Genova, Italy.,Department of Biology, University of Pisa, Pisa, Italy
| | - G Mantero
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Genova, Italy.,Department of Experimental Medicine, University of Genova, Genova, Italy
| | - C Michetti
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Genova, Italy.,Department of Experimental Medicine, University of Genova, Genova, Italy
| | - S Cupini
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Genova, Italy.,Department of Experimental Medicine, University of Genova, Genova, Italy
| | - G Manfredi
- Center for Nanoscience and Technology, Istituto Italiano di Tecnologia, Milano, Italy.,Novavido s.r.l., Bologna, Italy
| | - M L DiFrancesco
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Genova, Italy.,IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - A Rocchi
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Genova, Italy
| | - S Perotto
- Center for Nanoscience and Technology, Istituto Italiano di Tecnologia, Milano, Italy
| | - M Attanasio
- Department of Ophthalmology, IRCCS Sacrocuore Don Calabria Hospital, Negrar, Verona, Italy
| | - R Sacco
- Department of Mathematics, Politecnico di Milano, Milano, Italy
| | - S Bisti
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Genova, Italy
| | - M Mete
- Department of Ophthalmology, IRCCS Sacrocuore Don Calabria Hospital, Negrar, Verona, Italy
| | - G Pertile
- Department of Ophthalmology, IRCCS Sacrocuore Don Calabria Hospital, Negrar, Verona, Italy
| | - G Lanzani
- Center for Nanoscience and Technology, Istituto Italiano di Tecnologia, Milano, Italy. .,Department of Physics, Politecnico di Milano, Milan, Italy.
| | - E Colombo
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Genova, Italy.,IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - F Benfenati
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Genova, Italy. .,IRCCS Ospedale Policlinico San Martino, Genova, Italy.
| |
Collapse
|
16
|
Yu WS, Tse ACK, Guan L, Chiu JLY, Tan SZK, Khairuddin S, Agadagba SK, Lo ACY, Fung ML, Chan YS, Chan LLH, Lim LW. Antidepressant-like effects of transcorneal electrical stimulation in rat models. Brain Stimul 2022; 15:843-856. [DOI: 10.1016/j.brs.2022.05.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 05/04/2022] [Accepted: 05/25/2022] [Indexed: 11/02/2022] Open
|
17
|
D'Souza RS, Kubrova E, Her YF, Barman RA, Smith BJ, Alvarez GM, West TE, Abd-Elsayed A. Dorsal Root Ganglion Stimulation for Lower Extremity Neuropathic Pain Syndromes: An Evidence-Based Literature Review. Adv Ther 2022; 39:4440-4473. [PMID: 35994195 PMCID: PMC9464732 DOI: 10.1007/s12325-022-02244-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 06/23/2022] [Indexed: 01/30/2023]
Abstract
Dorsal root ganglion stimulation (DRG-S) is a form of selective neuromodulation therapy that targets the dorsal root ganglion. DRG-S offers analgesia in a variety of chronic pain conditions and is approved for treatment of complex regional pain syndrome (CRPS) by the US Food and Drug Administration (FDA). There has been increasing utilization of DRG-S to treat various neuropathic pain syndromes of the lower extremity, although evidence remains limited to one randomized controlled trial and 39 observational studies. In this review, we appraised the current evidence for DRG-S in the treatment of lower extremity neuropathic pain using the Grading of Recommendations, Assessment, Development, and Evaluations (GRADE) criteria. The primary outcome was change in pain intensity after DRG-S compared to baseline. We stratified presentation of results based of type of neuropathy (CRPS, painful diabetic neuropathy, mononeuropathy, polyneuropathy) as well as location of neuropathy (hip, knee, foot). Future powered randomized controlled trials with homogeneous participants are warranted.
Collapse
Affiliation(s)
- Ryan S D'Souza
- Division of Pain Medicine, Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, USA
| | - Eva Kubrova
- Department of Physical Medicine and Rehabilitation, Mayo Clinic, Rochester, MN, USA
| | - Yeng F Her
- Division of Pain Medicine, Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, USA
| | - Ross A Barman
- Division of Pain Medicine, Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, USA
| | - Brandon J Smith
- Department of Physical Medicine and Rehabilitation, Mayo Clinic, Rochester, MN, USA
| | - Gabriel M Alvarez
- Department of Physical Medicine and Rehabilitation, Mayo Clinic, Rochester, MN, USA
| | - Tyler E West
- Division of Pain Medicine, Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, USA
| | - Alaa Abd-Elsayed
- Department of Anesthesiology, University of Wisconsin, Madison, WI, USA.
| |
Collapse
|
18
|
Hlavac N, Bousalis D, Ahmad RN, Pallack E, Vela A, Li Y, Mobini S, Patrick E, Schmidt CE. Effects of Varied Stimulation Parameters on Adipose-Derived Stem Cell Response to Low-Level Electrical Fields. Ann Biomed Eng 2021; 49:3401-3411. [PMID: 34704163 PMCID: PMC10947800 DOI: 10.1007/s10439-021-02875-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Accepted: 10/04/2021] [Indexed: 11/24/2022]
Abstract
Exogenous electrical fields have been explored in regenerative medicine to increase cellular expression of pro-regenerative growth factors. Adipose-derived stem cells (ASCs) are attractive for regenerative applications, specifically for neural repair. Little is known about the relationship between low-level electrical stimulation (ES) and ASC regenerative potentiation. In this work, patterns of ASC expression and secretion of growth factors (i.e., secretome) were explored across a range of ES parameters. ASCs were stimulated with low-level stimulation (20 mV/mm) at varied pulse frequencies, durations, and with alternating versus direct current. Frequency and duration had the most significant effects on growth factor expression. While a range of stimulation frequencies (1, 20, 1000 Hz) applied intermittently (1 h × 3 days) induced upregulation of general wound healing factors, neural-specific factors were only increased at 1 Hz. Moreover, the most optimal expression of neural growth factors was achieved when ASCs were exposed to 1 Hz pulses continuously for 24 h. In evaluation of secretome, apparent inconsistencies were observed across biological replications. Nonetheless, ASC secretome (from 1 Hz, 24 h ES) caused significant increase in neurite extension compared to non-stimulated control. Overall, ASCs are sensitive to ES parameters at low field strengths, notably pulse frequency and stimulation duration.
Collapse
Affiliation(s)
- Nora Hlavac
- J. Crayton Pruitt Department of Biomedical Engineering, University of Florida, 1275 Center Drive, Gainesville, FL, 32611, USA
| | - Deanna Bousalis
- J. Crayton Pruitt Department of Biomedical Engineering, University of Florida, 1275 Center Drive, Gainesville, FL, 32611, USA
| | - Raffae N Ahmad
- J. Crayton Pruitt Department of Biomedical Engineering, University of Florida, 1275 Center Drive, Gainesville, FL, 32611, USA
| | - Emily Pallack
- J. Crayton Pruitt Department of Biomedical Engineering, University of Florida, 1275 Center Drive, Gainesville, FL, 32611, USA
| | - Angelique Vela
- Department of Electrical and Computer Engineering, University of Florida, Gainesville, USA
| | - Yuan Li
- J. Crayton Pruitt Department of Biomedical Engineering, University of Florida, 1275 Center Drive, Gainesville, FL, 32611, USA
| | - Sahba Mobini
- J. Crayton Pruitt Department of Biomedical Engineering, University of Florida, 1275 Center Drive, Gainesville, FL, 32611, USA
- Instituto de Micro y Nanotecnología, IMN- CNM, CSIC (CEI UAM+CSIC), Tres Cantos, Madrid, Spain
| | - Erin Patrick
- Department of Electrical and Computer Engineering, University of Florida, Gainesville, USA
| | - Christine E Schmidt
- J. Crayton Pruitt Department of Biomedical Engineering, University of Florida, 1275 Center Drive, Gainesville, FL, 32611, USA.
| |
Collapse
|
19
|
Zhao Y, Wang P, Chen Z, Li M, Zhang D, Yang L, Li H. Research Progress of Electrical Stimulation in Ischemic Heart Disease. Front Cardiovasc Med 2021; 8:761877. [PMID: 34805318 PMCID: PMC8595213 DOI: 10.3389/fcvm.2021.761877] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 10/08/2021] [Indexed: 11/13/2022] Open
Abstract
Ischemic heart disease (IHD) is a considerable health burden worldwide with high mortality and morbidity. Treatments for IHD are mainly focused on decreasing oxygen demand or increasing myocardial oxygen supply, including pharmacological, interventional, and surgical treatment, but there are also some limitations. Therefore, it is important to find a simple, effective, and economical treatment. As non-invasive and safe physiotherapy, electrical stimulation (ES) has a promising application in the treatment of IHD. Current studies suggest that ES can affect the occurrence and development of IHD by promoting angiogenesis, regulating autophagy and apoptosis, inhibiting the inflammatory response and oxidative stress. In this review, we focus predominantly on the mechanism of ES and the current progress of ES therapy in IHD, furthermore, give a brief introduction to the forms of ES in clinical application.
Collapse
Affiliation(s)
- Ying Zhao
- Department of Pathophysiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Pengyu Wang
- Department of Pathophysiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Zhe Chen
- Department of Infectious Diseases, Beidahuang Group General Hospital, Harbin, China
| | - Manman Li
- Department of Pathophysiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Dengfeng Zhang
- Department of Pathophysiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Liming Yang
- Department of Pathophysiology, Harbin Medical University-Daqing, Daqing, China
| | - Hong Li
- Department of Pathophysiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, China
| |
Collapse
|
20
|
Sanie-Jahromi F, Azizi A, Shariat S, Johari M. Effect of Electrical Stimulation on Ocular Cells: A Means for Improving Ocular Tissue Engineering and Treatments of Eye Diseases. BIOMED RESEARCH INTERNATIONAL 2021; 2021:6548554. [PMID: 34840978 PMCID: PMC8612806 DOI: 10.1155/2021/6548554] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 09/25/2021] [Accepted: 11/08/2021] [Indexed: 01/09/2023]
Abstract
Tissue engineering is biomedical engineering that uses suitable biochemical and physicochemical factors to assemble functional constructs that restore or improve damaged tissues. Recently, cell therapies as a subset of tissue engineering have been very promising in the treatment of ocular diseases. One of the most important biophysical factors to make this happen is noninvasive electrical stimulation (ES) to target ocular cells that may preserve vision in multiple retinal and optic nerve diseases. The science of cellular and biophysical interactions is very exciting in regenerative medicine now. Although the exact effect of ES on cells is unknown, multiple mechanisms are considered to underlie the effects of ES, including increased production of neurotrophic agents, improved cell migration, and inhibition of proinflammatory cytokines and cellular apoptosis. In this review, we highlighted the effects of ES on ocular cells, especially on the corneal, retinal, and optic nerve cells. Initially, we summarized the current literature on the in vitro and in vivo effects of ES on ocular cells and then we provided the clinical studies describing the effect of ES on ocular complications. For each area, we used some of the most impactful articles to show the important concepts and results that advanced the state of these interactions. We conclude with reflections on emerging new areas and perspectives for future development in this field.
Collapse
Affiliation(s)
- Fatemeh Sanie-Jahromi
- Poostchi Ophthalmology Research Center, Department of Ophthalmology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ali Azizi
- Poostchi Ophthalmology Research Center, Department of Ophthalmology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sahar Shariat
- Poostchi Ophthalmology Research Center, Department of Ophthalmology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammadkarim Johari
- Poostchi Ophthalmology Research Center, Department of Ophthalmology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
21
|
Yu WS, Kwon SH, Agadagba SK, Chan LLH, Wong KH, Lim LW. Neuroprotective Effects and Therapeutic Potential of Transcorneal Electrical Stimulation for Depression. Cells 2021; 10:cells10092492. [PMID: 34572141 PMCID: PMC8466154 DOI: 10.3390/cells10092492] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/29/2021] [Accepted: 09/17/2021] [Indexed: 12/22/2022] Open
Abstract
Transcorneal electrical stimulation (TES) has emerged as a non-invasive neuromodulation approach that exerts neuroprotection via diverse mechanisms, including neurotrophic, neuroplastic, anti-inflammatory, anti-apoptotic, anti-glutamatergic, and vasodilation mechanisms. Although current studies of TES have mainly focused on its applications in ophthalmology, several lines of evidence point towards its putative use in treating depression. Apart from stimulating visual-related structures and promoting visual restoration, TES has also been shown to activate brain regions that are involved in mood alterations and can induce antidepressant-like behaviour in animals. The beneficial effects of TES in depression were further supported by its shared mechanisms with FDA-approved antidepressant treatments, including its neuroprotective properties against apoptosis and inflammation, and its ability to enhance the neurotrophic expression. This article critically reviews the current findings on the neuroprotective effects of TES and provides evidence to support our hypothesis that TES possesses antidepressant effects.
Collapse
Affiliation(s)
- Wing-Shan Yu
- Neuromodulation Laboratory, School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China; (W.-S.Y.); (S.-H.K.); (K.-H.W.)
| | - So-Hyun Kwon
- Neuromodulation Laboratory, School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China; (W.-S.Y.); (S.-H.K.); (K.-H.W.)
| | - Stephen Kugbere Agadagba
- Department of Electrical Engineering, City University of Hong Kong, Hong Kong, China; (S.K.A.); (L.-L.-H.C.)
| | - Leanne-Lai-Hang Chan
- Department of Electrical Engineering, City University of Hong Kong, Hong Kong, China; (S.K.A.); (L.-L.-H.C.)
| | - Kah-Hui Wong
- Neuromodulation Laboratory, School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China; (W.-S.Y.); (S.-H.K.); (K.-H.W.)
- Department of Anatomy, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Lee-Wei Lim
- Neuromodulation Laboratory, School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China; (W.-S.Y.); (S.-H.K.); (K.-H.W.)
- Correspondence:
| |
Collapse
|
22
|
Crawford L, Wyatt M, Bryers J, Ratner B. Biocompatibility Evolves: Phenomenology to Toxicology to Regeneration. Adv Healthc Mater 2021; 10:e2002153. [PMID: 33829678 PMCID: PMC8221530 DOI: 10.1002/adhm.202002153] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 02/26/2021] [Indexed: 12/20/2022]
Abstract
The word "biocompatibility," is inconsistent with the observations of healing for so-called biocompatible biomaterials. The vast majority of the millions of medical implants in humans today, presumably "biocompatible," are walled off by a dense, avascular, crosslinked collagen capsule, hardly suggestive of life or compatibility. In contrast, one is now seeing examples of implant biomaterials that lead to a vascularized reconstruction of localized tissue, a biological reaction different from traditional biocompatible materials that generate a foreign body capsule. Both the encapsulated biomaterials and the reconstructive biomaterials qualify as "biocompatible" by present day measurements of biocompatibility. Yet, this new generation of materials would seem to heal "compatibly" with the living organism, where older biomaterials are isolated from the living organism by the dense capsule. This review/perspective article will explore this biocompatibility etymological conundrum by reviewing the history of the concepts around biocompatibility, today's standard methods for assessing biocompatibility, a contemporary view of the foreign body reaction and finally, a compendium of new biomaterials that heal without the foreign body capsule. A new definition of biocompatibility is offered here to address advances in biomaterials design leading to biomaterials that heal into the body in a facile manner.
Collapse
Affiliation(s)
- Lars Crawford
- Department of Bioengineering, University of Washington, Seattle, WA, 98195, USA
| | - Meghan Wyatt
- Department of Bioengineering, University of Washington, Seattle, WA, 98195, USA
| | - James Bryers
- Department of Bioengineering, University of Washington, Seattle, WA, 98195, USA
| | - Buddy Ratner
- Department of Bioengineering, University of Washington, Seattle, WA, 98195, USA
| |
Collapse
|
23
|
Colombo L, Caretti A, Dei Cas M, Luciano F, Romano D, Paroni R, Patelli F, Ghidoni R, Rossetti L. Vitreous composition modification after transpalpebral electrical stimulation of the eye: Biochemical analysis. Exp Eye Res 2021; 207:108601. [PMID: 33910035 DOI: 10.1016/j.exer.2021.108601] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 03/26/2021] [Accepted: 04/21/2021] [Indexed: 02/06/2023]
Abstract
Electrical stimulation (ES) of the eye represents a therapeutic approach in various clinical applications ranging from retinal dystrophies, age-related macular degeneration, retinal artery occlusion and nonarteritic ischemic optic neuropathy. In clinical practice, ES of the eye is mainly performed with a transcorneal or transpalpebral approach. These procedures are non-invasive and well-tolerated by the patients, reporting only minimal and transient adverse events, while serious adverse effects were not observed. Despite the growing literature on animal models, only clinical parameters have been investigated in humans and few data are available about biochemical changes induced by ES of the eye. The purpose of this study is to investigate the possible mechanism that regulates the beneficial effects of ES on retinal cells function and survival in humans. 28 patients undergoing pars plana vitrectomy (PPV) for idiopathic epiretinal membrane (iERM) were randomly divided in two groups: 13 patients were treated with transpalpebral ES before surgery and 15 underwent surgery with no prior treatment. Vitreous samples were collected for biochemical analysis during PPV. ES treatment leads to a reduction in the vitreous expression of both proinflammatory cytokines, namely IL-6 and IL-8, and proinflammatory lipid mediators, such as lysophosphatidylcholine. Indeed, we observed a 70% decrease of lysophosphatidylcholine 18:0, which has been proven to exert the greatest proinflammatory activities among the lysophosphatidylcholine class. The content of triglycerides is also affected and significantly decreased following ES application. The vitreous composition of patients undergoing PPV for iERM displays significant changes following ES treatment. Proinflammatory cytokines and bioactive lipid mediators expression decreases, suggesting an overall anti-inflammatory potential of ES. The investigation of the mechanism by which this treatment alters the retinal neurons leading to good outcomes is essential for supporting ES therapeutic application in various types of retinal diseases.
Collapse
Affiliation(s)
- Leonardo Colombo
- Eye Clinic, ASST Santi Paolo e Carlo Hospital, Università degli Studi di Milano, Milan, Italy
| | - Anna Caretti
- Biochemistry and Molecular Biology Laboratory, Department of Health Sciences, Università degli Studi di Milano, Milan, Italy
| | - Michele Dei Cas
- Clinical Biochemistry and Mass Spectrometry Laboratory, Department of Health Sciences, Università degli Studi di Milano, Milan, Italy.
| | - Francesco Luciano
- Biochemistry and Molecular Biology Laboratory, Department of Health Sciences, Università degli Studi di Milano, Milan, Italy
| | - Dario Romano
- Eye Clinic, ASST Santi Paolo e Carlo Hospital, Università degli Studi di Milano, Milan, Italy
| | - Rita Paroni
- Clinical Biochemistry and Mass Spectrometry Laboratory, Department of Health Sciences, Università degli Studi di Milano, Milan, Italy
| | - Fabio Patelli
- Eye Clinic, ASST Santi Paolo e Carlo Hospital, Università degli Studi di Milano, Milan, Italy
| | - Riccardo Ghidoni
- Biochemistry and Molecular Biology Laboratory, Department of Health Sciences, Università degli Studi di Milano, Milan, Italy
| | - Luca Rossetti
- Eye Clinic, ASST Santi Paolo e Carlo Hospital, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
24
|
Yu H, Enayati S, Chang K, Cho K, Lee SW, Talib M, Zihlavnikova K, Xie J, Achour H, Fried SI, Utheim TP, Chen DF. Noninvasive Electrical Stimulation Improves Photoreceptor Survival and Retinal Function in Mice with Inherited Photoreceptor Degeneration. Invest Ophthalmol Vis Sci 2020; 61:5. [PMID: 32271885 PMCID: PMC7401948 DOI: 10.1167/iovs.61.4.5] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Purpose Neurons carry electrical signals and communicate via electrical activities. The therapeutic potential of electrical stimulation (ES) for the nervous system, including the retina, through improvement of cell survival and function has been noted. Here we investigated the neuroprotective and regenerative potential of ES in a mouse model of inherited retinal degeneration. Methods Rhodopsin-deficient (Rho−/−) mice received one or two sessions of transpalpebral ES or sham treatments for 7 consecutive days. Intraperitoneal injection of 5-ethynyl-2′-deoxyuridine was used to label proliferating cells. Weekly electroretinograms were performed to monitor retinal function. Retinal morphology, photoreceptor survival, and regeneration were evaluated in vivo using immunohistochemistry and genetic fate-mapping techniques. Müller cell (MC) cultures were employed to further define the optimal conditions of ES application. Results Noninvasive transpalpebral ES in Rho−/− mice improved photoreceptor survival and electroretinography function in vivo. ES also triggered residential retinal progenitor-like cells such as MCs to reenter the cell cycle, possibly producing new photoreceptors, as shown by immunohistochemistry and genetic fate-mapping techniques. ES directly stimulated cell proliferation and the expression of progenitor cell markers in MC cultures, at least partially through bFGF signaling. Conclusions Our study showed that transpalpebral ES improved photoreceptor survival and retinal function and induced the proliferation, probably photoreceptor regeneration, of MCs; this occurs via stimulation of the bFGF pathways. These results suggest the exciting possibility of applying noninvasive ES as a versatile tool for preventing photoreceptor loss and mobilizing endogenous progenitors for reversing vision loss in patients with photoreceptor degeneration.
Collapse
|
25
|
Limoli PG, Limoli CSS, Morales MU, Vingolo EM. Mesenchymal stem cell surgery, rescue and regeneration in retinitis pigmentosa: clinical and rehabilitative prognostic aspects. Restor Neurol Neurosci 2020; 38:223-237. [PMID: 32310198 PMCID: PMC7504992 DOI: 10.3233/rnn-190970] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Purpose: To assess whether treatment with the Limoli Retinal Restoration Technique (LRRT) can be performed in patients with retinitis pigmentosa (RP), grafting the autologous cells in a deep scleral pocket above the choroid of each eye to exert their beneficial effect on the residual retinal cells. Methods: The patients were subjected to a complete ophthalmological examination, including best corrected visual acuity (BCVA), close-up visus measurements, spectral domain-optical coherence tomography (SD-OCT), microperimetry (MY), and electroretinography (ERG). Furthermore, the complete ophthalmological examination was carried out at baseline (T0) and at 6 months (T180) after surgery. The Shapiro–Wilk test was used to assess the normality of distribution of the investigated parameters. A mixed linear regression model was used to analyse the difference in all the studied parameters at T0 and T180, and to compare the mean change between the two groups. All statistical analyses were performed with STATA 14.0 (Collage Station, Texas, USA). Results: LRRT treatment was performed in 34 eyes of 25 RP patients recruited for the study. The eyes were classified in two groups on the basis of foveal thickness (FT) assessed by SD-OCT: 14 eyes in Group A (FT≤190μm) and the remaining 20 ones in Group B (FT > 190μm). Although it had not reached the statistical significance, Group B showed a better improvement in BCVA, residual close-up visus and sensitivity than Group A. Conclusions: Previous studies have described the role of LRRT in slowing down retinal degenerative diseases. Consequently, this surgical procedure could improve the clinical and rehabilitative prognostic parameters in RP patients. On the other hand, further clinical research and studies with longer follow-up will be needed to evaluate its efficacy.
Collapse
Affiliation(s)
| | | | - Marco Ulises Morales
- Division of Clinical Neurosciences, University of Nottingham, Queen's Medical Centre, Nottingham, United Kingdom
| | - Enzo Maria Vingolo
- Department of Sense Organs, Faculty of Medicine and Odontology, Sapienza University of Rome, p.le A. Moro, Rome, Italy
| |
Collapse
|
26
|
Maya-Vetencourt JF, Manfredi G, Mete M, Colombo E, Bramini M, Di Marco S, Shmal D, Mantero G, Dipalo M, Rocchi A, DiFrancesco ML, Papaleo ED, Russo A, Barsotti J, Eleftheriou C, Di Maria F, Cossu V, Piazza F, Emionite L, Ticconi F, Marini C, Sambuceti G, Pertile G, Lanzani G, Benfenati F. Subretinally injected semiconducting polymer nanoparticles rescue vision in a rat model of retinal dystrophy. NATURE NANOTECHNOLOGY 2020; 15:698-708. [PMID: 32601447 DOI: 10.1038/s41565-020-0696-3] [Citation(s) in RCA: 111] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 04/20/2020] [Indexed: 05/21/2023]
Abstract
Inherited retinal dystrophies and late-stage age-related macular degeneration, for which treatments remain limited, are among the most prevalent causes of legal blindness. Retinal prostheses have been developed to stimulate the inner retinal network; however, lack of sensitivity and resolution, and the need for wiring or external cameras, have limited their application. Here we show that conjugated polymer nanoparticles (P3HT NPs) mediate light-evoked stimulation of retinal neurons and persistently rescue visual functions when subretinally injected in a rat model of retinitis pigmentosa. P3HT NPs spread out over the entire subretinal space and promote light-dependent activation of spared inner retinal neurons, recovering subcortical, cortical and behavioural visual responses in the absence of trophic effects or retinal inflammation. By conferring sustained light sensitivity to degenerate retinas after a single injection, and with the potential for high spatial resolution, P3HT NPs provide a new avenue in retinal prosthetics with potential applications not only in retinitis pigmentosa, but also in age-related macular degeneration.
Collapse
Affiliation(s)
- José Fernando Maya-Vetencourt
- Centre for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
- Department of Biology, University of Pisa, Pisa, Italy
| | - Giovanni Manfredi
- Centre for Nano Science and Technology, Istituto Italiano di Tecnologia, Milan, Italy
| | - Maurizio Mete
- Ophthalmology Department, IRCCS Ospedale Sacro Cuore Don Calabria, Negrar, Italy
| | - Elisabetta Colombo
- Centre for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Mattia Bramini
- Centre for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Genoa, Italy
- Department of Applied Physics, University of Granada, Granada, Spain
| | - Stefano Di Marco
- Centre for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Dmytro Shmal
- Centre for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Genoa, Italy
| | - Giulia Mantero
- Centre for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Genoa, Italy
| | - Michele Dipalo
- Plasmon Nanotechnologies, Istituto Italiano di Tecnologia, Genoa, Italy
| | - Anna Rocchi
- Centre for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Mattia L DiFrancesco
- Centre for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Genoa, Italy
| | - Ermanno D Papaleo
- Centre for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Genoa, Italy
| | - Angela Russo
- Ophthalmology Department, IRCCS Ospedale Sacro Cuore Don Calabria, Negrar, Italy
| | - Jonathan Barsotti
- Centre for Nano Science and Technology, Istituto Italiano di Tecnologia, Milan, Italy
| | - Cyril Eleftheriou
- Centre for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Genoa, Italy
- Departments of Ophthalmology and Neurology, Weil Medical College of Cornell University, White Plains, NY, USA
| | - Francesca Di Maria
- CNR Institute of Organic Synthesis and Photoreactivity (ISOF), Bologna, Italy
| | - Vanessa Cossu
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
- Department of Health Science, Nuclear Medicine, University of Genoa, Genoa, Italy
| | | | | | - Flavia Ticconi
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
- Department of Health Science, Nuclear Medicine, University of Genoa, Genoa, Italy
- Department of Oncohematology, Nuclear Medicine Unit, Faenza Hospital, Faenza, Italy
| | - Cecilia Marini
- CNR Institute of Bioimages and Molecular Physiology, Milan (Genoa Section), Genoa, Italy
| | - Gianmario Sambuceti
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
- Department of Health Science, Nuclear Medicine, University of Genoa, Genoa, Italy
| | - Grazia Pertile
- Ophthalmology Department, IRCCS Ospedale Sacro Cuore Don Calabria, Negrar, Italy
| | - Guglielmo Lanzani
- Centre for Nano Science and Technology, Istituto Italiano di Tecnologia, Milan, Italy.
- Department of Physics, Politecnico di Milano, Milan, Italy.
| | - Fabio Benfenati
- Centre for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Genoa, Italy.
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy.
| |
Collapse
|
27
|
Sinim Kahraman N, Oner A. Effect of Transcorneal Electrical Stimulation on Patients with Retinitis Pigmentosa. J Ocul Pharmacol Ther 2020; 36:609-617. [PMID: 32429728 DOI: 10.1089/jop.2020.0017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Purpose: In this study, the aim was to evaluate the safety of transcorneal electrical stimulation (TES) treatment in retinitis pigmentosa (RP) patients and to investigate the effect of TES to the visual acuity (VA), visual field (VF), and multifocal electroretinogram (mfERG) findings. Methods: Two hundred two eyes of 101 RP patients with different stages were studied. TES was applied for 30 min once a week for 8 consecutive weeks. Two hundred eyes of 100 RP patients were enrolled as control. After the 2-month TES therapy sessions, patients were followed for 4 months without treatment. Examinations were done at the baseline before TES treatment and 1 and 6 months after the treatment. Best-corrected VA (BCVA), color fundus photography, VF test, optical coherence tomography, and mfERG tests were done at each visit. Results: The mean BCVA and VF tests improved 1 month after the beginning of TES treatment and the improvements were statistically significant (P < 0.05). There was an improvement in p1 wave amplitude in rings 1, 2, and 3 at the first month. The latency of the p1 wave showed a statistically significant shortening in rings 1 and 2. These improvements partially disappeared at 6-month follow-up. There were no serious ocular side effects related to the therapy. Mild dry eye symptoms were observed, which were revealed by artificial tears. Conclusions: TES is a safe therapy without any serious advers effects. Although it can improve VA and VF of RP patients, the beneficial effects could be transient and repeated sessions can be necessary for maintaining the efficiency.
Collapse
Affiliation(s)
| | - Ayse Oner
- Department of Ophthalmology, Acıbadem Kayseri Hospital, Kayseri, Turkey
| |
Collapse
|
28
|
Sabel BA, Thut G, Haueisen J, Henrich-Noack P, Herrmann CS, Hunold A, Kammer T, Matteo B, Sergeeva EG, Waleszczyk W, Antal A. Vision modulation, plasticity and restoration using non-invasive brain stimulation – An IFCN-sponsored review. Clin Neurophysiol 2020; 131:887-911. [DOI: 10.1016/j.clinph.2020.01.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 12/18/2019] [Accepted: 01/02/2020] [Indexed: 12/11/2022]
|
29
|
Enayati S, Chang K, Achour H, Cho KS, Xu F, Guo S, Z. Enayati K, Xie J, Zhao E, Turunen T, Sehic A, Lu L, Utheim TP, Chen DF. Electrical Stimulation Induces Retinal Müller Cell Proliferation and Their Progenitor Cell Potential. Cells 2020; 9:E781. [PMID: 32210151 PMCID: PMC7140850 DOI: 10.3390/cells9030781] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 03/12/2020] [Accepted: 03/17/2020] [Indexed: 12/18/2022] Open
Abstract
Non-invasive electrical stimulation (ES) is increasingly applied to improve vision in untreatable eye conditions, such as retinitis pigmentosa and age-related macular degeneration. Our previous study suggested that ES promoted retinal function and the proliferation of progenitor-like glial cells in mice with inherited photoreceptor degeneration; however, the underlying mechanism remains obscure. Müller cells (MCs) are thought to be dormant residential progenitor cells that possess a high potential for retinal neuron repair and functional plasticity. Here, we showed that ES with a ramp waveform of 20 Hz and 300 µA of current was effective at inducing mouse MC proliferation and enhancing their expression of progenitor cell markers, such as Crx (cone-rod homeobox) and Wnt7, as well as their production of trophic factors, including ciliary neurotrophic factor. RNA sequencing revealed that calcium signaling pathway activation was a key event, with a false discovery rate of 5.33 × 10-8 (p = 1.78 × 10-10) in ES-mediated gene profiling changes. Moreover, the calcium channel blocker, nifedipine, abolished the observed effects of ES on MC proliferation and progenitor cell gene induction, supporting a central role of ES-induced Ca2+ signaling in the MC changes. Our results suggest that low-current ES may present a convenient tool for manipulating MC behavior toward neuroregeneration and repair.
Collapse
Affiliation(s)
- Sam Enayati
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA; (S.E.); (K.C.); (H.A.); (K.-S.C.); (S.G.); (K.Z.E.); (J.X.); (E.Z.); (T.T.); (T.P.U.)
- Department of Medical Biochemistry, Oslo University Hospital, 0372 Oslo, Norway
- Department of Ophthalmology, Drammen Hospital, Vestre Viken Hospital Trust, 3004 Drammen, Norway
- Institute of clinical medicine, University of Oslo, 0318 Oslo, Norway
| | - Karen Chang
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA; (S.E.); (K.C.); (H.A.); (K.-S.C.); (S.G.); (K.Z.E.); (J.X.); (E.Z.); (T.T.); (T.P.U.)
| | - Hamida Achour
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA; (S.E.); (K.C.); (H.A.); (K.-S.C.); (S.G.); (K.Z.E.); (J.X.); (E.Z.); (T.T.); (T.P.U.)
- Institute of clinical medicine, University of Oslo, 0318 Oslo, Norway
| | - Kin-Sang Cho
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA; (S.E.); (K.C.); (H.A.); (K.-S.C.); (S.G.); (K.Z.E.); (J.X.); (E.Z.); (T.T.); (T.P.U.)
| | - Fuyi Xu
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN 38163, USA; (F.X.); (L.L.)
| | - Shuai Guo
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA; (S.E.); (K.C.); (H.A.); (K.-S.C.); (S.G.); (K.Z.E.); (J.X.); (E.Z.); (T.T.); (T.P.U.)
| | - Katarina Z. Enayati
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA; (S.E.); (K.C.); (H.A.); (K.-S.C.); (S.G.); (K.Z.E.); (J.X.); (E.Z.); (T.T.); (T.P.U.)
| | - Jia Xie
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA; (S.E.); (K.C.); (H.A.); (K.-S.C.); (S.G.); (K.Z.E.); (J.X.); (E.Z.); (T.T.); (T.P.U.)
| | - Eric Zhao
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA; (S.E.); (K.C.); (H.A.); (K.-S.C.); (S.G.); (K.Z.E.); (J.X.); (E.Z.); (T.T.); (T.P.U.)
| | - Tytteli Turunen
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA; (S.E.); (K.C.); (H.A.); (K.-S.C.); (S.G.); (K.Z.E.); (J.X.); (E.Z.); (T.T.); (T.P.U.)
| | - Amer Sehic
- Department of Oral Biology; Faculty of Dentistry, University of Oslo, 0372 Oslo, Norway;
| | - Lu Lu
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN 38163, USA; (F.X.); (L.L.)
| | - Tor Paaske Utheim
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA; (S.E.); (K.C.); (H.A.); (K.-S.C.); (S.G.); (K.Z.E.); (J.X.); (E.Z.); (T.T.); (T.P.U.)
- Department of Medical Biochemistry, Oslo University Hospital, 0372 Oslo, Norway
- Department of Ophthalmology, Drammen Hospital, Vestre Viken Hospital Trust, 3004 Drammen, Norway
- Department of Oral Biology; Faculty of Dentistry, University of Oslo, 0372 Oslo, Norway;
- Department of Plastic and Reconstructive Surgery, Oslo University Hospital, 0027 Oslo, Norway
| | - Dong Feng Chen
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA; (S.E.); (K.C.); (H.A.); (K.-S.C.); (S.G.); (K.Z.E.); (J.X.); (E.Z.); (T.T.); (T.P.U.)
| |
Collapse
|
30
|
Santiago AR, Madeira MH, Boia R, Aires ID, Rodrigues-Neves AC, Santos PF, Ambrósio AF. Keep an eye on adenosine: Its role in retinal inflammation. Pharmacol Ther 2020; 210:107513. [PMID: 32109489 DOI: 10.1016/j.pharmthera.2020.107513] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Adenosine is an endogenous purine nucleoside ubiquitously distributed throughout the body that interacts with G protein-coupled receptors, classified in four subtypes: A1R, A2AR, A2BR and A3R. Among the plethora of functions of adenosine, it has been increasingly recognized as a key mediator of the immune response. Neuroinflammation is a feature of chronic neurodegenerative diseases and contributes to the pathophysiology of several retinal degenerative diseases. Animal models of retinal diseases are helping to elucidate the regulatory roles of adenosine receptors in the development and progression of those diseases. Mounting evidence demonstrates that the adenosinergic system is altered in the retina during pathological conditions, compromising retinal physiology. This review focuses on the roles played by adenosine and the elements of the adenosinergic system (receptors, enzymes, transporters) in the neuroinflammatory processes occurring in the retina. An improved understanding of the molecular and cellular mechanisms of the signalling pathways mediated by adenosine underlying the onset and progression of retinal diseases will pave the way towards the identification of new therapeutic approaches.
Collapse
Affiliation(s)
- Ana Raquel Santiago
- Faculty of Medicine, Coimbra Institute for Clinical and Biomedical Research (iCBR), University of Coimbra, 3000-548 Coimbra, Portugal; Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal; Association for Innovation and Biomedical Research on Light and Image (AIBILI), Coimbra, 3000-548 Coimbra, Portugal.
| | - Maria H Madeira
- Faculty of Medicine, Coimbra Institute for Clinical and Biomedical Research (iCBR), University of Coimbra, 3000-548 Coimbra, Portugal; Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal; Association for Innovation and Biomedical Research on Light and Image (AIBILI), Coimbra, 3000-548 Coimbra, Portugal
| | - Raquel Boia
- Faculty of Medicine, Coimbra Institute for Clinical and Biomedical Research (iCBR), University of Coimbra, 3000-548 Coimbra, Portugal; Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal
| | - Inês Dinis Aires
- Faculty of Medicine, Coimbra Institute for Clinical and Biomedical Research (iCBR), University of Coimbra, 3000-548 Coimbra, Portugal; Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal
| | - Ana Catarina Rodrigues-Neves
- Faculty of Medicine, Coimbra Institute for Clinical and Biomedical Research (iCBR), University of Coimbra, 3000-548 Coimbra, Portugal; Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal
| | - Paulo Fernando Santos
- Faculty of Medicine, Coimbra Institute for Clinical and Biomedical Research (iCBR), University of Coimbra, 3000-548 Coimbra, Portugal; Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal; Department of Life Sciences, University of Coimbra, 3000-456 Coimbra, Portugal
| | - António Francisco Ambrósio
- Faculty of Medicine, Coimbra Institute for Clinical and Biomedical Research (iCBR), University of Coimbra, 3000-548 Coimbra, Portugal; Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal; Association for Innovation and Biomedical Research on Light and Image (AIBILI), Coimbra, 3000-548 Coimbra, Portugal.
| |
Collapse
|
31
|
Claes M, De Groef L, Moons L. Target-Derived Neurotrophic Factor Deprivation Puts Retinal Ganglion Cells on Death Row: Cold Hard Evidence and Caveats. Int J Mol Sci 2019; 20:E4314. [PMID: 31484425 PMCID: PMC6747494 DOI: 10.3390/ijms20174314] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 08/28/2019] [Accepted: 08/30/2019] [Indexed: 12/14/2022] Open
Abstract
Glaucoma and other optic neuropathies are characterized by axonal transport deficits. Axonal cargo travels back and forth between the soma and the axon terminus, a mechanism ensuring homeostasis and the viability of a neuron. An example of vital molecules in the axonal cargo are neurotrophic factors (NTFs). Hindered retrograde transport can cause a scarcity of those factors in the retina, which in turn can tilt the fate of retinal ganglion cells (RGCs) towards apoptosis. This postulation is one of the most widely recognized theories to explain RGC death in the disease progression of glaucoma and is known as the NTF deprivation theory. For several decades, research has been focused on the use of NTFs as a novel neuroprotective glaucoma treatment. Until now, results in animal models have been promising, but translation to the clinic has been highly disappointing. Are we lacking important knowledge to lever NTF therapies towards the therapeutic armamentarium? Or did we get the wrong end of the stick regarding the NTF deprivation theory? In this review, we will tackle the existing evidence and caveats advocating for and against the target-derived NTF deprivation theory in glaucoma, whilst digging into associated therapy efforts.
Collapse
Affiliation(s)
- Marie Claes
- Laboratory of Neural Circuit Development and Regeneration, Department of Biology, KU Leuven, 3000 Leuven, Belgium
| | - Lies De Groef
- Laboratory of Neural Circuit Development and Regeneration, Department of Biology, KU Leuven, 3000 Leuven, Belgium
| | - Lieve Moons
- Laboratory of Neural Circuit Development and Regeneration, Department of Biology, KU Leuven, 3000 Leuven, Belgium.
| |
Collapse
|
32
|
Bertucci C, Koppes R, Dumont C, Koppes A. Neural responses to electrical stimulation in 2D and 3D in vitro environments. Brain Res Bull 2019; 152:265-284. [PMID: 31323281 DOI: 10.1016/j.brainresbull.2019.07.016] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 06/29/2019] [Accepted: 07/12/2019] [Indexed: 12/17/2022]
Abstract
Electrical stimulation (ES) to manipulate the central (CNS) and peripheral nervous system (PNS) has been explored for decades, recently gaining momentum as bioelectronic medicine advances. The application of ES in vitro to modulate a variety of cellular functions, including regenerative potential, migration, and stem cell fate, are being explored to aid neural degeneration, dysfunction, and injury. This review describes the materials and approaches for the application of ES to the PNS and CNS microenvironments, towards an improved understanding of how ES can be harnessed for beneficial clinical applications. Emphasized are some recent advances in ES, including conductive polymers, methods of charge transfer, impact on neural cells, and a brief overview of alternative methodologies for cellular targeting including magneto, ultrasonic, and optogenetic stimulation. This review will examine how heterogenous cell populations, including neurons, glia, and neural stem cells respond to a wide range of conductive 2D and 3D substrates, stimulation regimes, known mechanisms of response, and how cellular sources impact the response to ES.
Collapse
Affiliation(s)
- Christopher Bertucci
- Northeastern University, Department of Chemical Engineering, Boston, MA, 02115, United States.
| | - Ryan Koppes
- Northeastern University, Department of Chemical Engineering, Boston, MA, 02115, United States.
| | - Courtney Dumont
- Department of Biomedical Engineering, University of Miami, Coral Gables, FL, 33146, United States.
| | - Abigail Koppes
- Northeastern University, Department of Chemical Engineering, Boston, MA, 02115, United States; Department of Biology, Boston, 02115, MA, United States.
| |
Collapse
|
33
|
Sabel BA, Flammer J, Merabet LB. Residual vision activation and the brain-eye-vascular triad: Dysregulation, plasticity and restoration in low vision and blindness - a review. Restor Neurol Neurosci 2019; 36:767-791. [PMID: 30412515 PMCID: PMC6294586 DOI: 10.3233/rnn-180880] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Vision loss due to ocular diseases such as glaucoma, optic neuropathy, macular degeneration, or diabetic retinopathy, are generally considered an exclusive affair of the retina and/or optic nerve. However, the brain, through multiple indirect influences, has also a major impact on functional visual impairment. Such indirect influences include intracerebral pressure, eye movements, top-down modulation (attention, cognition), and emotionally triggered stress hormone release affecting blood vessel dysregulation. Therefore, vision loss should be viewed as the result of multiple interactions within a “brain-eye-vascular triad”, and several eye diseases may also be considered as brain diseases in disguise. While the brain is part of the problem, it can also be part of the solution. Neuronal networks of the brain can “amplify” residual vision through neuroplasticity changes of local and global functional connectivity by activating, modulating and strengthening residual visual signals. The activation of residual vision can be achieved by different means such as vision restoration training, non-invasive brain stimulation, or blood flow enhancing medications. Modulating brain functional networks and improving vascular regulation may offer new opportunities to recover or restore low vision by increasing visual field size, visual acuity and overall functional vision. Hence, neuroscience offers new insights to better understand vision loss, and modulating brain and vascular function is a promising source for new opportunities to activate residual vision to achieve restoration and recovery to improve quality of live in patients suffering from low vision.
Collapse
Affiliation(s)
- Bernhard A Sabel
- Institute of Medical Psychology, Medical Faculty, Otto-von-Guericke University of Magdeburg, Magdeburg, Germany
| | - Josef Flammer
- Department of Ophthalmology, University of Basel, Basel, Switzerland
| | - Lotfi B Merabet
- Department of Ophthalmology, The Laboratory for Visual Neuroplasticity, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, USA
| |
Collapse
|
34
|
Song H, Bush RA, Zeng Y, Qian H, Wu Z, Sieving PA. Trans-ocular Electric Current In Vivo Enhances AAV-Mediated Retinal Gene Transduction after Intravitreal Vector Administration. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2018; 13:77-85. [PMID: 30719486 PMCID: PMC6350231 DOI: 10.1016/j.omtm.2018.12.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 12/14/2018] [Indexed: 01/31/2023]
Abstract
Adeno-associated virus (AAV) vector-mediated gene delivery is a promising approach for therapy, but implementation in the eye currently is hampered by the need for delivering the vector underneath the retina, using surgical application into the subretinal space. This limits the extent of the retina that is treated and may cause surgical injury. Vector delivery into the vitreous cavity would be preferable because it is surgically less invasive and would reach more of the retina. Unfortunately, most conventional, non-modified AAV vector serotypes penetrate the retina poorly from the vitreous; this limits efficient transduction and expression by target cells (retinal pigment epithelium and photoreceptors). We developed a method of applying a small and safe electric current across the intact eye in vivo for a brief period following intravitreal vector administration. This significantly improved AAV-mediated transduction of retinal cells in wild-type mice following intravitreal delivery, with gene expression in retinal pigment epithelium and photoreceptor cells. The low-level current had no adverse effects on retinal structure and function. This method should be generally applicable for other AAV serotypes and may have broad application in both basic research and clinical studies.
Collapse
Affiliation(s)
- Hongman Song
- Section for Translational Research on Retinal and Macular Degeneration, National Institute on Deafness and Other Communication Disorders, Bethesda, MD 20892, USA
| | - Ronald A Bush
- Section for Translational Research on Retinal and Macular Degeneration, National Institute on Deafness and Other Communication Disorders, Bethesda, MD 20892, USA
| | - Yong Zeng
- Section for Translational Research on Retinal and Macular Degeneration, National Institute on Deafness and Other Communication Disorders, Bethesda, MD 20892, USA
| | - Haohua Qian
- National Eye Institute, NIH, Bethesda, MD 20892, USA
| | - Zhijian Wu
- National Eye Institute, NIH, Bethesda, MD 20892, USA
| | - Paul A Sieving
- Section for Translational Research on Retinal and Macular Degeneration, National Institute on Deafness and Other Communication Disorders, Bethesda, MD 20892, USA.,National Eye Institute, NIH, Bethesda, MD 20892, USA
| |
Collapse
|
35
|
Guha D, Shamji MF. The Dorsal Root Ganglion in the Pathogenesis of Chronic Neuropathic Pain. Neurosurgery 2018; 63 Suppl 1:118-126. [PMID: 27399376 DOI: 10.1227/neu.0000000000001255] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Affiliation(s)
| | - Mohammed F Shamji
- Department of Surgery and.,Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada.,Division of Neurosurgery, Toronto Western Hospital, Toronto, Ontario, Canada
| |
Collapse
|
36
|
Chakravarthy KV, Xing F, Bruno K, Kent AR, Raza A, Hurlemann R, Kinfe TM. A Review of Spinal and Peripheral Neuromodulation and Neuroinflammation: Lessons Learned Thus Far and Future Prospects of Biotype Development. Neuromodulation 2018; 22:235-243. [DOI: 10.1111/ner.12859] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2018] [Revised: 07/18/2018] [Accepted: 08/15/2018] [Indexed: 12/21/2022]
Affiliation(s)
- Krishnan V. Chakravarthy
- Department of Anesthesiology and Pain MedicineUniversity of California San Diego Health Sciences San Diego CA USA
- VA San Diego Healthcare System San Diego CA USA
| | - Fang Xing
- Department of Anesthesiology and Pain MedicineBrigham and Women's Hospital Boston MA USA
| | - Kelly Bruno
- Department of Anesthesiology and Pain MedicineUniversity of California San Diego Health Sciences San Diego CA USA
- VA San Diego Healthcare System San Diego CA USA
| | | | - Adil Raza
- Neuromodulation Division, Abbott Plano TX USA
| | - Rene Hurlemann
- Department of Psychiatry, Division of Medical Psychology (NEMO Neuromodulation of Emotions)Rheinische Friedrich Wilhelms‐University Hospital Bonn Germany
| | - Thomas M. Kinfe
- Department of Psychiatry, Division of Medical Psychology (NEMO Neuromodulation of Emotions)Rheinische Friedrich Wilhelms‐University Hospital Bonn Germany
| |
Collapse
|
37
|
Pardue MT, Allen RS. Neuroprotective strategies for retinal disease. Prog Retin Eye Res 2018; 65:50-76. [PMID: 29481975 PMCID: PMC6081194 DOI: 10.1016/j.preteyeres.2018.02.002] [Citation(s) in RCA: 158] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 02/14/2018] [Accepted: 02/20/2018] [Indexed: 12/20/2022]
Abstract
Diseases that affect the eye, including photoreceptor degeneration, diabetic retinopathy, and glaucoma, affect 11.8 million people in the US, resulting in vision loss and blindness. Loss of sight affects patient quality of life and puts an economic burden both on individuals and the greater healthcare system. Despite the urgent need for treatments, few effective options currently exist in the clinic. Here, we review research on promising neuroprotective strategies that promote neuronal survival with the potential to protect against vision loss and retinal cell death. Due to the large number of neuroprotective strategies, we restricted our review to approaches that we had direct experience with in the laboratory. We focus on drugs that target survival pathways, including bile acids like UDCA and TUDCA, steroid hormones like progesterone, therapies that target retinal dopamine, and neurotrophic factors. In addition, we review rehabilitative methods that increase endogenous repair mechanisms, including exercise and electrical stimulation therapies. For each approach, we provide background on the neuroprotective strategy, including history of use in other diseases; describe potential mechanisms of action; review the body of research performed in the retina thus far, both in animals and in humans; and discuss considerations when translating each treatment to the clinic and to the retina, including which therapies show the most promise for each retinal disease. Despite the high incidence of retinal diseases and the complexity of mechanisms involved, several promising neuroprotective treatments provide hope to prevent blindness. We discuss attractive candidates here with the goal of furthering retinal research in critical areas to rapidly translate neuroprotective strategies into the clinic.
Collapse
Affiliation(s)
- Machelle T Pardue
- Center for Visual and Neurocognitive Rehabilitation, Atlanta VA Medical Center, 1670 Clairmont Road, Decatur, GA, 30033, USA; Department of Biomedical Engineering, Georgia Institute of Technology, 313 Ferst Drive, Atlanta, GA, 30332, USA.
| | - Rachael S Allen
- Center for Visual and Neurocognitive Rehabilitation, Atlanta VA Medical Center, 1670 Clairmont Road, Decatur, GA, 30033, USA
| |
Collapse
|
38
|
Zhang TZ, Hua T, Han LK, Zhang Y, Li GY, Zhang QL, Su GF. Antiapoptotic role of the cellular repressor of E1A-stimulated genes (CREG) in retinal photoreceptor cells in a rat model of light-induced retinal injury. Biomed Pharmacother 2018; 103:1355-1361. [PMID: 29864918 DOI: 10.1016/j.biopha.2018.04.081] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 04/10/2018] [Accepted: 04/10/2018] [Indexed: 10/17/2022] Open
Abstract
OBJECTIVE Light injury-induced apoptosis of retinal photoreceptor cells can lead to vision loss. The mechanism underlying such injury remains unclear, and there are no effective therapies at present. The aim of this study was to examine the potential antiapoptotic role of the cellular repressor of E1A-stimulated genes (CREG) in retinal cells in a rat model of light-induced retinal damage. METHODS CREG proteins were injected into the vitreous space of rats in which light retinal injury was induced. An equal volume of PBS was injected into the vitreous space of a control group. Retinas were collected for H&E staining and Western blotting analysis 1, 3, and 7 days later. Inhibitors or agonist for P38, JNK, and AKT were injected into the vitreous space to verify CREG function. RESULTS In rats with light-induced retinal injury, the CREG treatment inhibited the expression of apoptosis-related proteins caspase-3, caspase-8, and caspase-9 and signaling proteins phosphorylated ERK (P-ERK), phosphorylated JNK (P-JNK), phosphorylated P38 (P-P38), and phosphorylated AKT (P-AKT). An inhibitor of PI3K-AKT and an agonists of P38 and JNK abrogated the inhibitory effect of CREG on caspase-3 expression. CONCLUSION CREG protected retinal cells against apoptosis by inhibiting P38/MAPK and JNK/MAPK signaling pathways and activating the PI3K-AKT signaling pathway.
Collapse
Affiliation(s)
- Tian-Zi Zhang
- Affiliated Hospital of Inner Mongolia University for the Nationalities, Inner Mongolia, China
| | - Ting Hua
- Affiliated Hospital of Inner Mongolia University for the Nationalities, Inner Mongolia, China
| | - Li-Kun Han
- Affiliated Hospital of Inner Mongolia University for the Nationalities, Inner Mongolia, China
| | - Yan Zhang
- Department of Ophthalmology, Second Hospital of JiLin University, ChangChun, China
| | - Guang-Yu Li
- Department of Ophthalmology, Second Hospital of JiLin University, ChangChun, China
| | - Qiu-Li Zhang
- Affiliated Hospital of Inner Mongolia University for the Nationalities, Inner Mongolia, China.
| | - Guan-Fang Su
- Department of Ophthalmology, Second Hospital of JiLin University, ChangChun, China.
| |
Collapse
|
39
|
Fu L, Fung FK, Lo ACY, Chan YK, So KF, Wong IYH, Shih KC, Lai JSM. Transcorneal Electrical Stimulation Inhibits Retinal Microglial Activation and Enhances Retinal Ganglion Cell Survival After Acute Ocular Hypertensive Injury. Transl Vis Sci Technol 2018; 7:7. [PMID: 29862139 PMCID: PMC5976234 DOI: 10.1167/tvst.7.3.7] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 04/08/2018] [Indexed: 12/27/2022] Open
Abstract
PURPOSE To investigate the effect of transcorneal electrical stimulation (TcES) on retinal ganglion cell (RGC) function and survival after acute ocular hypertension-related retinal injury in gerbil eyes. METHODS Gerbil eyes were subjected to acute ocular hypertensive injury (80 mm Hg for 60 minutes). In the treatment group, TcES was applied to the surgical eye immediately and then twice weekly for a total of 1 month. In the control group, sham TcES was given to the surgical eye at the same time points. Retinal function was assessed and compared between groups using flash electroretinography. For histological analysis, the number of RGC and microglial cells were counted by immunofluorescence staining after the gerbils were sacrificed on day 7 and day 28. Real-time polymerase chain reaction and western blot analysis were conducted to compare expression of interleukin (IL)-10, IL-6, COX-2, tumor necrosis factor (TNF)-α, and NF-κB phosphorylation among groups. RESULTS TcES-treated eyes had significantly higher RGC survival at 1 month compared to controls. This was associated with RGC function. Furthermore, TcES-treated eyes were shown to have increased IL-10 expression, with a corresponding reduction in IL-6 and COX-2 expression as well as reduction in NF-κB phosphorylation. This was associated with a suppression in microglial cell activation in TcES-treated eyes. CONCLUSIONS Early treatment with TcES in gerbils protected the RGC from secondary damage and preserved retinal function in acute ocular hypertensive injury through modulation of the microglial-cell activated local inflammatory response. TRANSLATIONAL RELEVANCE Our study strengthens the argument for translating TcES as a viable treatment in acute glaucoma.
Collapse
Affiliation(s)
- Lin Fu
- Affiliated Eye Hospital, School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, Zhejiang Province, People's Republic of China
- Department of Ophthalmology, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong SAR
| | - Frederic K. Fung
- Department of Ophthalmology, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong SAR
| | - Amy Cheuk-Yin Lo
- Department of Ophthalmology, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong SAR
| | - Yau-Kei Chan
- Department of Mechanical Engineering, Faculty of Engineering, University of Hong Kong, Hong Kong SAR
| | - Kwok-Fai So
- Department of Ophthalmology, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong SAR
| | - Ian Yat-Hin Wong
- Department of Ophthalmology, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong SAR
| | - Kendrick Co Shih
- Department of Ophthalmology, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong SAR
| | - Jimmy Shiu-Ming Lai
- Department of Ophthalmology, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong SAR
| |
Collapse
|
40
|
Bittner AK, Seger K, Salveson R, Kayser S, Morrison N, Vargas P, Mendelsohn D, Han J, Bi H, Dagnelie G, Benavente A, Ramella-Roman J. Randomized controlled trial of electro-stimulation therapies to modulate retinal blood flow and visual function in retinitis pigmentosa. Acta Ophthalmol 2018; 96:e366-e376. [PMID: 29130647 DOI: 10.1111/aos.13581] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 08/05/2017] [Indexed: 11/28/2022]
Abstract
PURPOSE We examined changes in visual function and ocular and retinal blood flow (RBF) among retinitis pigmentosa (RP) participants in a randomized controlled trial of electro-stimulation therapies. METHODS Twenty-one RP participants were randomized (1:1:1) to transcorneal electrical stimulation (TES) at 6 weekly half-hour sessions, electro-acupuncture or inactive laser acupuncture (sham control) at 10 half-hour sessions over 2 weeks. Early Treatment of Diabetic Retinopathy Study (ETDRS) visual acuity (VA), quick contrast sensitivity function, Goldmann visual fields, AdaptDx scotopic sensitivity, spectral flow and colour Doppler imaging of the central retinal artery (CRA), and RBF in macular capillaries were measured twice pre-treatment, after 2 TES sessions, within a week and a month after intervention completion. RESULTS We measured a significant improvement in retrobulbar CRA mean flow velocity for both the TES (p = 0.038) and electro-acupuncture groups (p = 0.001) on average after 2 weeks of treatment when compared to sham controls. Transcorneal electrical simulation (TES) and electro-acupuncture subjects had significant 55% and 34% greater increases, respectively, in RBF in the macular vessels when compared to sham controls (p < 0.001; p = 0.008) within a week of completing six TES sessions or a month after electro-acupuncture. There was a significant difference in the proportion of eyes that had improved visual function when comparing the three intervention groups (p = 0.038): four of seven TES subjects (57%), two of seven electro-acupuncture subjects (29%) and none of the seven control subjects (0%) had a significant visual improvement outside of typical test-retest variability at two consecutive post-treatment visits. CONCLUSION Increased blood flow following electro-stimulation therapies is an objective, physiological change that occurred in addition to visual function improvements in some RP patients.
Collapse
Affiliation(s)
- Ava K. Bittner
- College of Optometry; Nova Southeastern University; Fort Lauderdale FL USA
| | - Kenneth Seger
- College of Optometry; Nova Southeastern University; Fort Lauderdale FL USA
| | - Rachel Salveson
- College of Osteopathic Medicine; Nova Southeastern University; Fort Lauderdale FL USA
| | - Samantha Kayser
- College of Optometry; Nova Southeastern University; Fort Lauderdale FL USA
| | - Natalia Morrison
- Healing Blossom - Acupuncture and Holistic Medicine; Miami FL USA
| | - Patricia Vargas
- Medical Sonography Program; College of Health Care Sciences; Nova Southeastern University; Fort Lauderdale FL USA
| | - Deborah Mendelsohn
- Medical Sonography Program; College of Health Care Sciences; Nova Southeastern University; Fort Lauderdale FL USA
| | - Jorge Han
- Medical Sonography Program; College of Health Care Sciences; Nova Southeastern University; Fort Lauderdale FL USA
| | - Hua Bi
- College of Optometry; Nova Southeastern University; Fort Lauderdale FL USA
| | | | | | - Jessica Ramella-Roman
- Department of Biomedical Engineering; Florida International University; Miami FL USA
- Department of Cellular Biology and Pharmacology and Ophthalmology; Herbert Wertheim College of Medicine; Miami FL USA
| |
Collapse
|
41
|
Morgalla MH, Bolat A, Fortunato M, Lepski G, Chander BS. Dorsal Root Ganglion Stimulation Used for the Treatment of Chronic Neuropathic Pain in the Groin: A Single-Center Study With Long-Term Prospective Results in 34 Cases. Neuromodulation 2017; 20:753-760. [DOI: 10.1111/ner.12713] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2017] [Revised: 08/15/2017] [Accepted: 09/11/2017] [Indexed: 11/28/2022]
Affiliation(s)
| | - Anil Bolat
- Department of Neurosurgery; University of Tuebingen; Tuebingen Germany
| | - Marcos Fortunato
- Department of Neurosurgery; University of Tuebingen; Tuebingen Germany
| | - Guilherme Lepski
- Department of Neurosurgery; University of Tuebingen; Tuebingen Germany
| | | |
Collapse
|
42
|
Electrical Stimulation as a Means for Improving Vision. THE AMERICAN JOURNAL OF PATHOLOGY 2017; 186:2783-2797. [PMID: 27643530 DOI: 10.1016/j.ajpath.2016.07.017] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Revised: 07/12/2016] [Accepted: 07/14/2016] [Indexed: 12/31/2022]
Abstract
Evolving research has provided evidence that noninvasive electrical stimulation (ES) of the eye may be a promising therapy for either preserving or restoring vision in several retinal and optic nerve diseases. In this review, we focus on minimally invasive strategies for the delivery of ES and accordingly summarize the current literature on transcorneal, transorbital, and transpalpebral ES in both animal experiments and clinical studies. Various mechanisms are believed to underlie the effects of ES, including increased production of neurotrophic agents, improved chorioretinal blood circulation, and inhibition of proinflammatory cytokines. Different animal models have demonstrated favorable effects of ES on both the retina and the optic nerve. Promising effects of ES have also been demonstrated in clinical studies; however, all current studies have a lack of randomization and/or a control group (sham). There is thus a pressing need for a deeper understanding of the underlying mechanisms that govern clinical success and optimization of stimulation parameters in animal studies. In addition, such research should be followed by large, prospective, clinical studies to explore the full potential of ES. Through this review, we aim to provide insight to guide future research on ES as a potential therapy for improving vision.
Collapse
|
43
|
Maya-Vetencourt JF, Ghezzi D, Antognazza MR, Colombo E, Mete M, Feyen P, Desii A, Buschiazzo A, Di Paolo M, Di Marco S, Ticconi F, Emionite L, Shmal D, Marini C, Donelli I, Freddi G, Maccarone R, Bisti S, Sambuceti G, Pertile G, Lanzani G, Benfenati F. A fully organic retinal prosthesis restores vision in a rat model of degenerative blindness. NATURE MATERIALS 2017; 16:681-689. [PMID: 28250420 PMCID: PMC5446789 DOI: 10.1038/nmat4874] [Citation(s) in RCA: 165] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 01/31/2017] [Indexed: 05/17/2023]
Abstract
The degeneration of photoreceptors in the retina is one of the major causes of adult blindness in humans. Unfortunately, no effective clinical treatments exist for the majority of retinal degenerative disorders. Here we report on the fabrication and functional validation of a fully organic prosthesis for long-term in vivo subretinal implantation in the eye of Royal College of Surgeons rats, a widely recognized model of retinitis pigmentosa. Electrophysiological and behavioural analyses reveal a prosthesis-dependent recovery of light sensitivity and visual acuity that persists up to 6-10 months after surgery. The rescue of the visual function is accompanied by an increase in the basal metabolic activity of the primary visual cortex, as demonstrated by positron emission tomography imaging. Our results highlight the possibility of developing a new generation of fully organic, highly biocompatible and functionally autonomous photovoltaic prostheses for subretinal implants to treat degenerative blindness.
Collapse
Affiliation(s)
| | - Diego Ghezzi
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Genoa, Italy
| | - Maria Rosa Antognazza
- Center for Nano Science and Technology, Istituto Italiano di Tecnologia, Milan, Italy
| | - Elisabetta Colombo
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Genoa, Italy
| | - Maurizio Mete
- Ophthalmology Department, Sacro Cuore Hospital - Don Calabria, Negrar, Italy
| | - Paul Feyen
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Genoa, Italy
| | - Andrea Desii
- Center for Nano Science and Technology, Istituto Italiano di Tecnologia, Milan, Italy
| | - Ambra Buschiazzo
- Department of Health Science, Nuclear Medicine, University of Genoa, Genoa, Italy
| | - Mattia Di Paolo
- Department of Biotechnology and Applied Clinical Science, University of L’Aquila, Italy
| | - Stefano Di Marco
- Department of Biotechnology and Applied Clinical Science, University of L’Aquila, Italy
| | - Flavia Ticconi
- Department of Health Science, Nuclear Medicine, University of Genoa, Genoa, Italy
| | - Laura Emionite
- Animal Facility, National Institute Cancer Research, IRCCS AOU San Martino-IST, Genoa, Italy
| | - Dmytro Shmal
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Genoa, Italy
| | - Cecilia Marini
- Institute of Molecular Bio-imaging and Physiology (IBFM), CNR, Milan (GE section), Italy
| | | | | | - Rita Maccarone
- Department of Biotechnology and Applied Clinical Science, University of L’Aquila, Italy
| | - Silvia Bisti
- Department of Biotechnology and Applied Clinical Science, University of L’Aquila, Italy
| | - Gianmario Sambuceti
- Department of Health Science, Nuclear Medicine, University of Genoa, Genoa, Italy
| | - Grazia Pertile
- Ophthalmology Department, Sacro Cuore Hospital - Don Calabria, Negrar, Italy
| | - Guglielmo Lanzani
- Center for Nano Science and Technology, Istituto Italiano di Tecnologia, Milan, Italy
| | - Fabio Benfenati
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Genoa, Italy
- Department of Experimental Medicine, University of Genoa, Genoa, Italy
| |
Collapse
|
44
|
Fractalkine-CX3CR1 signaling is critical for progesterone-mediated neuroprotection in the retina. Sci Rep 2017; 7:43067. [PMID: 28216676 PMCID: PMC5316933 DOI: 10.1038/srep43067] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 01/18/2017] [Indexed: 12/16/2022] Open
Abstract
Retinitis pigmentosa (RP) encompasses a group of retinal diseases resulting in photoreceptor loss and blindness. We have previously shown in the rd10 mouse model of RP, that rd10 microglia drive degeneration of viable neurons. Norgestrel, a progesterone analogue, primes viable neurons against potential microglial damage. In the current study we wished to investigate this neuroprotective effect further. We were particularly interested in the role of fractalkine-CX3CR1 signaling, previously shown to mediate photoreceptor-microglia crosstalk and promote survival in the rd10 retina. Norgestrel upregulates fractalkine-CX3CR1 signaling in the rd10 retina, coinciding with photoreceptor survival. We show that Norgestrel-treated photoreceptor-like cells, 661Ws, and C57 explants modulate rd10 microglial activity in co-culture, resulting in increased photoreceptor survival. Assessment of Norgestrel's neuroprotective effects when fractalkine was knocked-down in 661 W cells and release of fractalkine was reduced in rd10 explants confirms a crucial role for fractalkine-CX3CR1 signaling in Norgestrel-mediated neuroprotection. To further understand the role of fractalkine in neuroprotection, we assessed the release of 40 cytokines in fractalkine-treated rd10 microglia and explants. In both cases, treatment with fractalkine reduced a variety of pro-inflammatory cytokines. These findings further our understanding of Norgestrel's neuroprotective properties, capable of modulating harmful microglial activity indirectly through photoreceptors, leading to increased neuroprotection.
Collapse
|
45
|
Manthey AL, Liu W, Jiang ZX, Lee MHK, Ji J, So KF, Lai JSM, Lee VWH, Chiu K. Using Electrical Stimulation to Enhance the Efficacy of Cell Transplantation Therapies for Neurodegenerative Retinal Diseases: Concepts, Challenges, and Future Perspectives. Cell Transplant 2017; 26:949-965. [PMID: 28155808 DOI: 10.3727/096368917x694877] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Disease or trauma-induced loss or dysfunction of neurons in any central nervous system (CNS) tissue will have a significant impact on the health of the affected patient. The retina is a multilayered tissue that originates from the neuroectoderm, much like the brain and spinal cord. While sight is not required for life, neurodegeneration-related loss of vision not only affects the quality of life for the patient but also has societal implications in terms of health care expenditure. Thus, it is essential to develop effective strategies to repair the retina and prevent disease symptoms. To address this need, multiple techniques have been investigated for their efficacy in treating retinal degeneration. Recent advances in cell transplantation (CT) techniques in preclinical, animal, and in vitro culture studies, including further evaluation of endogenous retinal stem cells and the differentiation of exogenous adult stem cells into various retinal cell types, suggest that this may be the most appropriate option to replace lost retinal neurons. Unfortunately, the various limitations of CT, such as immune rejection or aberrant cell behavior, have largely prevented this technique from becoming a widely used clinical treatment option. In parallel with the advances in CT methodology, the use of electrical stimulation (ES) to treat retinal degeneration has also been recently evaluated with promising results. In this review, we propose that ES could be used to enhance CT therapy, whereby electrical impulses can be applied to the retina to control both native and transplanted stem cell behavior/survival in order to circumvent the limitations associated with retinal CT. To highlight the benefits of this dual treatment, we have briefly outlined the recent developments and limitations of CT with regard to its use in the ocular environment, followed by a brief description of retinal ES, as well as described their combined use in other CNS tissues.
Collapse
|
46
|
Yin H, Yin H, Zhang W, Miao Q, Qin Z, Guo S, Fu Q, Ma J, Wu F, Yin J, Yang Y, Fang X. Transcorneal electrical stimulation promotes survival of retinal ganglion cells after optic nerve transection in rats accompanied by reduced microglial activation and TNF-α expression. Brain Res 2016; 1650:10-20. [PMID: 27569587 DOI: 10.1016/j.brainres.2016.08.034] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2016] [Revised: 08/20/2016] [Accepted: 08/24/2016] [Indexed: 11/26/2022]
Abstract
Microglial activation plays a crucial role in the pathological processes of various retinal and optic nerve diseases. TNF-α is a pro-inflammatory cytokine that is rapidly upregulated and promotes retinal ganglion cells (RGCs) death after optic nerve injury. However, the cellular source of TNF-α after optic nerve injury remains unclear. Thus, we aimed to determine the changes of retinal microglial activation in a rat model of optic nerve transection (ONT) after transcorneal electrical stimulation (TES). Furthermore, we assessed TNF-α expression after ONT and evaluated the effects of TES on TNF-α production. Rats were divided into 2 control groups receiving a sham surgery procedure, 2 ONT+Sham TES groups, and 2 ONT+TES groups. The rats were sacrificed on day 7 or 14 after ONT. RGCs were retrogradely labelled by Fluorogold (FG) 7 days before ONT, one TES group and corresponding controls were stimulated on day 0, 4, and the second were stimulated on day 0, 4, 7, 10. Whole-mount immunohistofluorescence, quantification of RGCs and microglia, and western blot analysis were performed on day 7 and 14 after ONT. TES significantly increased RGCs survival on day 7 and 14 after ONT, which was accompanied by reduced microglia on day 7, but not 14. TNF-α was co-localized with ameboid microglia and significantly increased on day 7 and 14 after ONT. TES significantly reduced TNF-α production on day 7 and 14 after ONT. Our study demonstrated that TES promotes RGCs survival after ONT accompanied by reduced microglial activation and microglia-derived TNF-α production.
Collapse
Affiliation(s)
- Houmin Yin
- Department of Neurology, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Houfa Yin
- Eye Center, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China; Zhejiang Provincial Key Laboratory of Ophthalmology, Hangzhou, Zhejiang Province, China
| | - Wei Zhang
- Department of Orthopedics, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Qi Miao
- Eye Center, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China; Zhejiang Provincial Key Laboratory of Ophthalmology, Hangzhou, Zhejiang Province, China
| | - Zhenwei Qin
- Eye Center, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China; Zhejiang Provincial Key Laboratory of Ophthalmology, Hangzhou, Zhejiang Province, China
| | - Shenchao Guo
- Eye Center, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China; Zhejiang Provincial Key Laboratory of Ophthalmology, Hangzhou, Zhejiang Province, China
| | - Qiuli Fu
- Eye Center, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China; Zhejiang Provincial Key Laboratory of Ophthalmology, Hangzhou, Zhejiang Province, China
| | - Jian Ma
- Eye Center, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China; Zhejiang Provincial Key Laboratory of Ophthalmology, Hangzhou, Zhejiang Province, China
| | - Fang Wu
- Eye Center, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China; Zhejiang Provincial Key Laboratory of Ophthalmology, Hangzhou, Zhejiang Province, China
| | - Jinfu Yin
- Eye Center, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China; Zhejiang Provincial Key Laboratory of Ophthalmology, Hangzhou, Zhejiang Province, China
| | - Yabo Yang
- Eye Center, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China; Zhejiang Provincial Key Laboratory of Ophthalmology, Hangzhou, Zhejiang Province, China
| | - Xiaoyun Fang
- Eye Center, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China; Zhejiang Provincial Key Laboratory of Ophthalmology, Hangzhou, Zhejiang Province, China.
| |
Collapse
|
47
|
Gong H, Liu L, Ni CX, Zhang Y, Su WJ, Lian YJ, Peng W, Zhang JP, Jiang CL. Dexamethasone rapidly inhibits glucose uptake via non-genomic mechanisms in contracting myotubes. Arch Biochem Biophys 2016; 603:102-109. [PMID: 27246478 DOI: 10.1016/j.abb.2016.05.020] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Revised: 05/25/2016] [Accepted: 05/26/2016] [Indexed: 12/31/2022]
Abstract
Glucocorticoids (GCs) are a class of steroid hormones that regulate multiple aspects of glucose homeostasis. In skeletal muscle, it is well established that prolonged GC excess inhibits glucose uptake and utilization through glucocorticoid receptor (GR)-mediated transcriptional changes. However, it remains obscure that whether the rapid non-genomic effects of GC on glucose uptake are involved in acute exercise stress. Therefore, we used electric pulse stimulation (EPS)-evoked contracting myotubes to determine whether the non-genomic actions of GC were involved and its underlying mechanism(s). Pretreatment with dexamethasone (Dex, 10 μM) significantly prevented contraction-stimulated glucose uptake and glucose transporter 4 (Glut4) translocation within 20 min in C2C12 myotubes. Neither GC nuclear receptor antagonist (RU486) nor protein synthesis inhibitor (cycloheximide, Chx) affected the rapid inhibition effects of Dex. AMPK and CaMKII-dependent signaling pathways were associated with the non-genomic effects of Dex. These results provide evidence that GC rapidly suppresses glucose uptake in contracting myotubes via GR-independent non-genomic mechanisms. AMPK and CaMKII-mediated Glut4 translocation may play a critical role in GC-induced rapid inhibition of glucose uptake.
Collapse
Affiliation(s)
- Hong Gong
- Laboratory of Stress Medicine, Faculty of Psychology and Mental Health, Second Military Medical University, Shanghai 200433, People's Republic of China
| | - Lei Liu
- Laboratory of Stress Medicine, Faculty of Psychology and Mental Health, Second Military Medical University, Shanghai 200433, People's Republic of China
| | - Chen-Xu Ni
- Department of Pharmacy, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, People's Republics of China
| | - Yi Zhang
- Laboratory of Stress Medicine, Faculty of Psychology and Mental Health, Second Military Medical University, Shanghai 200433, People's Republic of China
| | - Wen-Jun Su
- Laboratory of Stress Medicine, Faculty of Psychology and Mental Health, Second Military Medical University, Shanghai 200433, People's Republic of China
| | - Yong-Jie Lian
- Laboratory of Stress Medicine, Faculty of Psychology and Mental Health, Second Military Medical University, Shanghai 200433, People's Republic of China
| | - Wei Peng
- Laboratory of Stress Medicine, Faculty of Psychology and Mental Health, Second Military Medical University, Shanghai 200433, People's Republic of China
| | - Jun-Ping Zhang
- Department of Pharmacy, Second Military Medical University, Shanghai 200433, People's Republic of China
| | - Chun-Lei Jiang
- Laboratory of Stress Medicine, Faculty of Psychology and Mental Health, Second Military Medical University, Shanghai 200433, People's Republic of China.
| |
Collapse
|
48
|
Hanif AM, Kim MK, Thomas JG, Ciavatta VT, Chrenek M, Hetling JR, Pardue MT. Whole-eye electrical stimulation therapy preserves visual function and structure in P23H-1 rats. Exp Eye Res 2016; 149:75-83. [PMID: 27327393 DOI: 10.1016/j.exer.2016.06.010] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 06/14/2016] [Accepted: 06/16/2016] [Indexed: 11/28/2022]
Abstract
Low-level electrical stimulation to the eye has been shown to be neuroprotective against retinal degeneration in both human and animal subjects, using approaches such as subretinal implants and transcorneal electrical stimulation. In this study, we investigated the benefits of whole-eye electrical stimulation (WES) in a rodent model of retinitis pigmentosa. Transgenic rats with a P23H-1 rhodopsin mutation were treated with 30 min of low-level electrical stimulation (4 μA at 5 Hz; n = 10) or sham stimulation (Sham group; n = 15), twice per week, from 4 to 24 weeks of age. Retinal and visual functions were assessed every 4 weeks using electroretinography and optokinetic tracking, respectively. At the final time point, eyes were enucleated and processed for histology. Separate cohorts were stimulated once for 30 min, and retinal tissue harvested at 1 h and 24 h post-stimulation for real-time PCR detection of growth factors and inflammatory and apoptotic markers. At all time-points after treatment, WES-treated rat eyes exhibited significantly higher spatial frequency thresholds than untreated eyes. Inner retinal function, as measured by ERG oscillatory potentials (OPs), showed significantly improved OP amplitudes at 8 and 12 weeks post-WES compared to Sham eyes. Additionally, while photoreceptor segment and nuclei thicknesses in P23H-1 rats did not change between treatment groups, WES-treated eyes had significantly greater numbers of retinal ganglion cell nuclei than Sham eyes at 20 weeks post-WES. Gene expression levels of brain-derived neurotrophic factor (BDNF), caspase 3, fibroblast growth factor 2 (FGF2), and glutamine synthetase (GS) were significantly higher at 1 h, but not 24 h after WES treatment. Our findings suggest that WES has a beneficial effect on visual function in a rat model of retinal degeneration and that post-receptoral neurons may be particularly responsive to electrical stimulation therapy.
Collapse
Affiliation(s)
- Adam M Hanif
- Department of Ophthalmology, Emory University School of Medicine, Atlanta, GA, USA; Center for Visual and Neurocognitive Rehabilitation, Atlanta VA Medical Center, Decatur, GA, USA
| | - Moon K Kim
- Department of Ophthalmology, Emory University School of Medicine, Atlanta, GA, USA; Center for Visual and Neurocognitive Rehabilitation, Atlanta VA Medical Center, Decatur, GA, USA
| | - Joel G Thomas
- Bioengineering, University of Illinois at Chicago, Chicago, IL, USA
| | - Vincent T Ciavatta
- Center for Visual and Neurocognitive Rehabilitation, Atlanta VA Medical Center, Decatur, GA, USA
| | - Micah Chrenek
- Department of Ophthalmology, Emory University School of Medicine, Atlanta, GA, USA
| | - John R Hetling
- Bioengineering, University of Illinois at Chicago, Chicago, IL, USA
| | - Machelle T Pardue
- Department of Ophthalmology, Emory University School of Medicine, Atlanta, GA, USA; Center for Visual and Neurocognitive Rehabilitation, Atlanta VA Medical Center, Decatur, GA, USA; Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA.
| |
Collapse
|
49
|
Tao Y, Chen T, Liu B, Wang LQ, Peng GH, Qin LM, Yan ZJ, Huang YF. The transcorneal electrical stimulation as a novel therapeutic strategy against retinal and optic neuropathy: a review of experimental and clinical trials. Int J Ophthalmol 2016; 9:914-9. [PMID: 27366697 DOI: 10.18240/ijo.2016.06.21] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 02/25/2016] [Indexed: 01/29/2023] Open
Abstract
Transcorneal electrical stimulation (TES) is a novel therapeutic approach to activate the retina and related downstream structures. TES has multiple advantages over traditional treatments, such as being minimally invasive and readily applicable in a routine manner. Series of animal experiments have shown that TES protects the retinal neuron from traumatic or genetic induced degeneration. These laboratory evidences support its utilization in ophthalmological therapies against various retinal and optical diseases including retinitis pigmentosa (RP), traumatic optic neuropathy, anterior ischemic optic neuropathy (AION), and retinal artery occlusions (RAOs). Several pioneering explorations sought to clarify the functional mechanism underlying the neuroprotective effects of TES. It seems that the neuroprotective effects should not be attributed to a solitary pathway, on the contrary, multiple mechanisms might contribute collectively to maintain cellular homeostasis and promote cell survival in the retina. More precise evaluations via functional and morphological techniques would determine the exact mechanism underlying the remarkable neuroprotective effect of TES. Further studies to determine the optimal parameters and the long-term stability of TES are crucial to justify the clinical significance and to establish TES as a popularized therapeutic modality against retinal and optic neuropathy.
Collapse
Affiliation(s)
- Ye Tao
- Department of Ophthalmology, Ophthalmology & Visual Science Key Lab of PLA, General Hospital of Chinese PLA, Beijing 100853, China
| | - Tao Chen
- Department of Clinical Aerospace Medicine, the Fourth Military Medical University, Xi'an 710032, Shaanxi Province, China
| | - Bei Liu
- Department of Neurosurgery and Institute for Functional Brain Disorders, Tangdu Hospital, the Fourth Military Medical University, Xi'an 710038, Shaanxi Province, China
| | - Li-Qiang Wang
- Department of Ophthalmology, Ophthalmology & Visual Science Key Lab of PLA, General Hospital of Chinese PLA, Beijing 100853, China
| | - Guang-Hua Peng
- Department of Ophthalmology, Ophthalmology & Visual Science Key Lab of PLA, General Hospital of Chinese PLA, Beijing 100853, China
| | - Li-Min Qin
- Department of Ophthalmology, Ophthalmology & Visual Science Key Lab of PLA, General Hospital of Chinese PLA, Beijing 100853, China
| | - Zhong-Jun Yan
- Department of Neurosurgery and Institute for Functional Brain Disorders, Tangdu Hospital, the Fourth Military Medical University, Xi'an 710038, Shaanxi Province, China
| | - Yi-Fei Huang
- Department of Ophthalmology, Ophthalmology & Visual Science Key Lab of PLA, General Hospital of Chinese PLA, Beijing 100853, China
| |
Collapse
|
50
|
Friend or Foe? Resident Microglia vs Bone Marrow-Derived Microglia and Their Roles in the Retinal Degeneration. Mol Neurobiol 2016; 54:4094-4112. [PMID: 27318678 DOI: 10.1007/s12035-016-9960-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 06/06/2016] [Indexed: 01/10/2023]
Abstract
Microglia are immune cells in the central nervous system (CNS) that originate from the yolk sac in an embryo. The renewal of the microglia pool in the adult eye consists of two components. In addition to the self-proliferation of resident cells, microglia in the CNS also derive from the bone marrow (BM). BM-derived cells pass through the blood-brain barrier (BBB) or blood-retina barrier (BRB) and differentiate into microglia under specific conditions which involves a complex mechanism. Recent studies have widely investigated the role of resident microglia and BM-derived microglia in the retinal degenerative disease. Both two cell types play dual roles and share many similar functions. However, resident microglia tend to polarize to the M1 phenotype which is pro-inflammatory and neurotoxic, whereas BM-derived microglia mainly polarize to the neuroprotective M2 phenotype in retinal degeneration. The molecular mechanism that underlines the invasion of peripheral cells has led to extensive discussions. In addition to the BBB and BRB disruption, many signaling pathways are involved in this process. Based on these studies, we discuss the roles of these two types of microglia in retinal degeneration disease and the potential clinical application of BM-derived microglia, which may benefit future therapies.
Collapse
|