1
|
Cellini BR, Edachola SV, Faw TD, Cigliola V. Blueprints for healing: central nervous system regeneration in zebrafish and neonatal mice. BMC Biol 2025; 23:115. [PMID: 40307837 PMCID: PMC12044871 DOI: 10.1186/s12915-025-02203-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 03/31/2025] [Indexed: 05/02/2025] Open
Abstract
In adult mammals, including humans, neurons, and axons in the brain and spinal cord are inherently incapable of regenerating after injury. Studies of animals with innate capacity for regeneration are providing valuable insights into the mechanisms driving tissue healing. The aim of this review is to summarize recent data on regeneration mechanisms in the brain and spinal cord of zebrafish and neonatal mice. We infer that elucidating these mechanisms and understanding how and why they are lost in adult mammals will contribute to the development of strategies to promote central nervous system regeneration.
Collapse
Affiliation(s)
- Brianna R Cellini
- Department of Psychology and Neuroscience, Duke University, Durham, NC, 27710, USA
| | | | - Timothy D Faw
- Department of Orthopaedic Surgery, Duke University, Durham, NC, 27710, USA
- Duke Institute for Brain Sciences, Duke University, Durham, NC, 27710, USA
| | - Valentina Cigliola
- Department of Pharmacology, Vanderbilt University, Nashville, TN, 37232, USA.
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, 37232, USA.
| |
Collapse
|
2
|
Lakshman N, Stojic F, Morshead CM. Microglia in the spinal cord stem cell niche regulate neural precursor cell proliferation via soluble CD40 in response to myelin basic protein. Stem Cells 2025; 43:sxae076. [PMID: 39549301 PMCID: PMC11878629 DOI: 10.1093/stmcls/sxae076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 11/04/2024] [Indexed: 11/18/2024]
Abstract
Neural stem cells (NSCs) are found along the neuraxis of the developing and mature central nervous system. They are found in defined niches that have been shown to regulate NSC behavior in a regionally distinct manner. Specifically, previous research has shown that myelin basic protein (MBP), when presented in the spinal cord niche, inhibits NSC proliferation and oligodendrogenesis. Herein, we investigate the cell-based mechanism(s) underlying this spinal-cord niche-derived MBP-mediated inhibition. We used reporter mice to sort for subpopulations of cells and found that spinal cord niche-derived microglia release a soluble factor in response to MBP that is responsible for NSC inhibition. Microglia, but not other niche cells, release soluble CD40/TNFRSF5 (sCD40) in the presence of MBP which may indirectly reduce activation of transmembrane CD40/TNFRSF5 receptor on both spinal cord and brain NSCs. This is consistent with sCD40 binding to CD40 ligand (CD40L) thereby preventing CD40 receptor binding on NSCs and inhibiting NSC proliferation. The identification of the cell-based mechanism that regulates NSC behavior in response to MBP, which is dysregulated in injury/disease, provides insight into a potential target for strategies to enhance neural repair through endogenous stem cell activation.
Collapse
Affiliation(s)
- Nishanth Lakshman
- Department of Surgery, Division of Anatomy, University of Toronto, Toronto, ON M5S 1A8, Canada
- Institute of Medical Sciences, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Filip Stojic
- Institute of Medical Sciences, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Cindi M Morshead
- Department of Surgery, Division of Anatomy, University of Toronto, Toronto, ON M5S 1A8, Canada
- Institute of Medical Sciences, University of Toronto, Toronto, ON M5S 1A8, Canada
- Institute Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON M5S 3E1, Canada
| |
Collapse
|
3
|
Jader A, Buccilli B, Kumar D, Atallah O, Munir L, Almealawy YF, Ennabe M, Joshi N, Imdad U, Alan A, Weinand M. Building a Stronger Backbone: 3D Printing's Role in Treating Spinal Cord Conditions. Asian J Neurosurg 2024; 19:587-597. [PMID: 39606309 PMCID: PMC11588600 DOI: 10.1055/s-0044-1788916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2024] Open
Abstract
Spinal cord injuries (SCIs) pose significant challenges as complete nerve regeneration remains limited. The demand for improved technologies in SCI treatment is evident. One such emerging technology is three-dimensional printing (3DP), which, coupled with advancements in medical imaging and bioengineering, has significantly enhanced precision in surgical procedures. This systematic review aims to explore 3DP as a treatment option for SCIs, examining its cost, efficacy, safety, and the associated technological constraints. A systematic search of Medline was conducted through PubMed for literature published since 2019. The search results were exported to Rayyan for abstract and full-text screening following predefined criteria. The risk of bias in the selected studies was assessed using the RoB2 tool and the Newcastle-Ottawa Scale. From a total of 89 articles screened, 11 studies met the eligibility criteria, collectively assessing 237 individuals with various types of SCIs, including lumbar degeneration, en bloc resection of thoracolumbar metastasis, adult spinal deformity, and cervical degeneration. These studies examined the utilization of 3DP devices such as hand orthosis, interbody fusion cages, lamellar titanium cages, artificial vertebral bodies, and others. Most of the reviewed studies reported positive treatment outcomes, with the actual procedure costs varying from $65 to $5,000. Recent literature shows positive outcomes in the use of 3DP technologies for SCIs, highlighting its potential for enhancing both surgical and nonsurgical interventions. These advancements usher in a new era in SCI treatment, providing enhanced precision and a wider range of treatment options, ultimately leading to more comprehensive and effective patient care.
Collapse
Affiliation(s)
- Arwa Jader
- Global Neurosurgical Alliance, Phoenix, Arizona, United States
- Neurosurgery Department, Kufa University, Kufa, Iraq
| | - Barbara Buccilli
- Global Neurosurgical Alliance, Phoenix, Arizona, United States
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, New York, United States
| | - Danisha Kumar
- Global Neurosurgical Alliance, Phoenix, Arizona, United States
- Departemnt of Neurosurgery, Hannover Medical School, Hannover, Germany
| | - Oday Atallah
- Global Neurosurgical Alliance, Phoenix, Arizona, United States
- Hannover Medical School, Hannover, Germany
| | - Luqman Munir
- Global Neurosurgical Alliance, Phoenix, Arizona, United States
- King Edward Medical University, Lahore, Pakistan
| | - Yasser F. Almealawy
- Global Neurosurgical Alliance, Phoenix, Arizona, United States
- Faculty of Medicine, University of Kufa, Kufa, Iraq
| | - Michelle Ennabe
- Global Neurosurgical Alliance, Phoenix, Arizona, United States
- University of Arizona College of Medicine, Phoenix, Arizona, United States
| | - Neil Joshi
- Department of Neurosurgery, University of Arizona, Tucson, Arizona, United States
| | - Urooj Imdad
- National Hospital for Neurology and Neurosurgery, Queen Square, London
| | - Albert Alan
- Global Neurosurgical Alliance, Phoenix, Arizona, United States
- Department of Neurosurgery, University of Arizona, Tucson, Arizona, United States
| | - Martin Weinand
- Department of Neurosurgery, University of Arizona, Tucson, Arizona, United States
| |
Collapse
|
4
|
Zhao Q, Zhu Y, Ren Y, Zhao L, Zhao J, Yin S, Ni H, Zhu R, Cheng L, Xie N. Targeting resident astrocytes attenuates neuropathic pain after spinal cord injury. eLife 2024; 13:RP95672. [PMID: 39545839 PMCID: PMC11567666 DOI: 10.7554/elife.95672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2024] Open
Abstract
Astrocytes derive from different lineages and play a critical role in neuropathic pain after spinal cord injury (SCI). Whether selectively eliminating these main origins of astrocytes in lumbar enlargement could attenuate SCI-induced neuropathic pain remains unclear. Through transgenic mice injected with an adeno-associated virus vector and diphtheria toxin, astrocytes in lumbar enlargement were lineage traced, targeted, and selectively eliminated. Pain-related behaviors were measured with an electronic von Frey apparatus and a cold/hot plate after SCI. RNA sequencing, bioinformatics analysis, molecular experiment, and immunohistochemistry were used to explore the potential mechanisms after astrocyte elimination. Lineage tracing revealed that the resident astrocytes but not ependymal cells were the main origins of astrocytes-induced neuropathic pain. SCI-induced mice to obtain significant pain symptoms and astrocyte activation in lumbar enlargement. Selective resident astrocyte elimination in lumbar enlargement could attenuate neuropathic pain and activate microglia. Interestingly, the type I interferons (IFNs) signal was significantly activated after astrocytes elimination, and the most activated Gene Ontology terms and pathways were associated with the type I IFNs signal which was mainly activated in microglia and further verified in vitro and in vivo. Furthermore, different concentrations of interferon and Stimulator of interferon genes (STING) agonist could activate the type I IFNs signal in microglia. These results elucidate that selectively eliminating resident astrocytes attenuated neuropathic pain associated with type I IFNs signal activation in microglia. Targeting type I IFNs signals is proven to be an effective strategy for neuropathic pain treatment after SCI.
Collapse
Affiliation(s)
- Qing Zhao
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, School of Medicine, School of Life Sciences and Technology, Tongji UniversityShanghaiChina
- Division of Spine, Department of Orthopedics, Tongji Hospital, Tongji University School of Medicine, Tongji UniversityShanghaiChina
| | - Yanjing Zhu
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, School of Medicine, School of Life Sciences and Technology, Tongji UniversityShanghaiChina
| | - Yilong Ren
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, School of Medicine, School of Life Sciences and Technology, Tongji UniversityShanghaiChina
- Division of Spine, Department of Orthopedics, Tongji Hospital, Tongji University School of Medicine, Tongji UniversityShanghaiChina
| | - Lijuan Zhao
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, School of Medicine, School of Life Sciences and Technology, Tongji UniversityShanghaiChina
- Division of Spine, Department of Orthopedics, Tongji Hospital, Tongji University School of Medicine, Tongji UniversityShanghaiChina
| | - Jingwei Zhao
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, School of Medicine, School of Life Sciences and Technology, Tongji UniversityShanghaiChina
- Division of Spine, Department of Orthopedics, Tongji Hospital, Tongji University School of Medicine, Tongji UniversityShanghaiChina
| | - Shuai Yin
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, School of Medicine, School of Life Sciences and Technology, Tongji UniversityShanghaiChina
- Division of Spine, Department of Orthopedics, Tongji Hospital, Tongji University School of Medicine, Tongji UniversityShanghaiChina
| | - Haofei Ni
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, School of Medicine, School of Life Sciences and Technology, Tongji UniversityShanghaiChina
- Division of Spine, Department of Orthopedics, Tongji Hospital, Tongji University School of Medicine, Tongji UniversityShanghaiChina
| | - Rongrong Zhu
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, School of Medicine, School of Life Sciences and Technology, Tongji UniversityShanghaiChina
| | - Liming Cheng
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, School of Medicine, School of Life Sciences and Technology, Tongji UniversityShanghaiChina
- Division of Spine, Department of Orthopedics, Tongji Hospital, Tongji University School of Medicine, Tongji UniversityShanghaiChina
- Clinical Center for Brain and Spinal Cord Research, Tongji UniversityShanghaiChina
| | - Ning Xie
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, School of Medicine, School of Life Sciences and Technology, Tongji UniversityShanghaiChina
- Division of Spine, Department of Orthopedics, Tongji Hospital, Tongji University School of Medicine, Tongji UniversityShanghaiChina
| |
Collapse
|
5
|
Gao X, Su Y, Shan S, Qian W, Zhang Z. Identification of immune-related hub genes in spinal cord injury. Eur J Med Res 2024; 29:483. [PMID: 39367463 PMCID: PMC11451166 DOI: 10.1186/s40001-024-02075-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 09/23/2024] [Indexed: 10/06/2024] Open
Abstract
OBJECTIVES Immune regulation is a pivotal factor in the pathogenesis and repair of spinal cord injury (SCI). This study aims to explore potential immune center genes associated with spinal cord injury. METHODS The public data set GSE151371 was obtained from the GEO database. The R software package "limma" was used to identify differentially expressed genes (DEGs) in SCI. GO, KEGG and GSEA pathway analyses were performed using the DEGs. The key module genes related to spinal cord injury were selected through WGCNA analysis. Overlapping genes were extracted from WGCNA, DEGs, and immune-related genes. LASSO analysis was employed to identify central genes associated with SCI immunity. Pearson correlation analysis assessed the correlation between hub genes and immune cells in SCI. In addition, we further investigated the hub genes' expression, diagnostic potential, function, and targeted drugs. RESULTS We have identified three immunity-related hub genes (ABHD5, EDNRB, EDN3). Immune infiltration analysis showed that the hub gene was significantly associated with resting NK cells, M2 macrophages, and monocytes in the immune microenvironment of SCI. ROC analysis demonstrated that these hub genes have favorable diagnostic performance for SCI. Functional analysis revealed that ABHD5 is primarily associated with lipid metabolism pathways, while EDN3 and EDNRB are mainly involved in endothelin, downstream GPCR signaling, and ERK signaling transduction. In addition, we identified six potential targeted drugs based on our findings. CONCLUSIONS ABHD5, EDNRB, and EDN3 are involved in processes such as SCI progression or repair through immunomodulation and deserve further study.
Collapse
Affiliation(s)
- Xiaofeng Gao
- Medicine Research Institute/Hubei Key Laboratory of Diabetes and Angiopathy, Xianning Medical College, Hubei University of Science and Technology, Xianning, 437100, Hubei, People's Republic of China
- School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Hubei University of Science and Technology, Xianning, 437100, Hubei, People's Republic of China
| | - Yanting Su
- School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Hubei University of Science and Technology, Xianning, 437100, Hubei, People's Republic of China
| | - ShiGang Shan
- School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Hubei University of Science and Technology, Xianning, 437100, Hubei, People's Republic of China
| | - Wenbin Qian
- Medicine Research Institute/Hubei Key Laboratory of Diabetes and Angiopathy, Xianning Medical College, Hubei University of Science and Technology, Xianning, 437100, Hubei, People's Republic of China
| | - Zhenwang Zhang
- Medicine Research Institute/Hubei Key Laboratory of Diabetes and Angiopathy, Xianning Medical College, Hubei University of Science and Technology, Xianning, 437100, Hubei, People's Republic of China.
- School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Hubei University of Science and Technology, Xianning, 437100, Hubei, People's Republic of China.
| |
Collapse
|
6
|
Li C, Luo Y, Li S. The roles of neural stem cells in myelin regeneration and repair therapy after spinal cord injury. Stem Cell Res Ther 2024; 15:204. [PMID: 38978125 PMCID: PMC11232222 DOI: 10.1186/s13287-024-03825-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 07/02/2024] [Indexed: 07/10/2024] Open
Abstract
Spinal cord injury (SCI) is a complex tissue injury that results in a wide range of physical deficits, including permanent or progressive disabilities of sensory, motor and autonomic functions. To date, limitations in current clinical treatment options can leave SCI patients with lifelong disabilities. There is an urgent need to develop new therapies for reconstructing the damaged spinal cord neuron-glia network and restoring connectivity with the supraspinal pathways. Neural stem cells (NSCs) possess the ability to self-renew and differentiate into neurons and neuroglia, including oligodendrocytes, which are cells responsible for the formation and maintenance of the myelin sheath and the regeneration of demyelinated axons. For these properties, NSCs are considered to be a promising cell source for rebuilding damaged neural circuits and promoting myelin regeneration. Over the past decade, transplantation of NSCs has been extensively tested in a variety of preclinical models of SCI. This review aims to highlight the pathophysiology of SCI and promote the understanding of the role of NSCs in SCI repair therapy and the current advances in pathological mechanism, pre-clinical studies, as well as clinical trials of SCI via NSC transplantation therapeutic strategy. Understanding and mastering these frontier updates will pave the way for establishing novel therapeutic strategies to improve the quality of recovery from SCI.
Collapse
Affiliation(s)
- Chun Li
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Department of Neurology, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China
- Tongji University Cancer Center, Shanghai Tenth People's Hospital of Tongji University, Tongji University School of Medicine, Shanghai, 200092, China
| | - Yuping Luo
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Department of Neurology, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China
- Stem Cell Translational Research Center, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China
| | - Siguang Li
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Department of Neurology, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China.
- Stem Cell Translational Research Center, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China.
| |
Collapse
|
7
|
Chen Y, Liu P, Zhang Z, Ye Y, Yi S, Fan C, Zhao W, Liu J. Genetic overlap and causality between COVID-19 and multi-site chronic pain: the importance of immunity. Front Immunol 2024; 15:1277720. [PMID: 38633255 PMCID: PMC11022998 DOI: 10.3389/fimmu.2024.1277720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 02/13/2024] [Indexed: 04/19/2024] Open
Abstract
Background The existence of chronic pain increases susceptibility to virus and is now widely acknowledged as a prominent feature recognized as a major manifestation of long-term coronavirus disease 2019 (COVID-19) infection. Given the ongoing COVID-19 pandemic, it is imperative to explore the genetic associations between chronic pain and predisposition to COVID-19. Methods We conducted genetic analysis at the single nucleotide polymorphism (SNP), gene, and molecular levels using summary statistics of genome-wide association study (GWAS) and analyzed the drug targets by summary data-based Mendelian randomization analysis (SMR) to alleviate the multi-site chronic pain in COVID-19. Additionally, we performed a latent causal variable (LCV) method to investigate the causal relationship between chronic pain and susceptibility to COVID-19. Results The cross-trait meta-analysis identified 19 significant SNPs shared between COVID-19 and chronic pain. Coloc analysis indicated that the posterior probability of association (PPH4) for three loci was above 70% in both critical COVID-19 and COVID-19, with the corresponding top three SNPs being rs13135092, rs7588831, and rs13135092. A total of 482 significant overlapped genes were detected from MAGMA and CPASSOC results. Additionally, the gene ANAPC4 was identified as a potential drug target for treating chronic pain (P=7.66E-05) in COVID-19 (P=8.23E-03). Tissue enrichment analysis highlighted that the amygdala (P=7.81E-04) and prefrontal cortex (P=8.19E-05) as pivotal in regulating chronic pain of critical COVID-19. KEGG pathway enrichment further revealed the enrichment of pleiotropic genes in both COVID-19 (P=3.20E-03,Padjust=4.77E-02,hsa05171) and neurotrophic pathways (P=9.03E-04,Padjust =2.55E-02,hsa04621). Finally, the latent causal variable (LCV) model was applied to find the genetic component of critical COVID-19 was causal for multi-site chronic pain (P=0.015), with a genetic causality proportion (GCP) of was 0.60. Conclusions In this study, we identified several functional genes and underscored the pivotal role of the inflammatory system in the correlation between the paired traits. Notably, heat shock proteins emerged as potential objective biomarkers for chronic pain symptoms in individuals with COVID-19. Additionally, the ubiquitin system might play a role in mediating the impact of COVID-19 on chronic pain. These findings contribute to a more comprehensive understanding of the pleiotropy between COVID-19 and chronic pain, offering insights for therapeutic trials.
Collapse
Affiliation(s)
- Yanjing Chen
- Department of Radiology, Second Xiangya Hospital, Central South University, Changsha, China
| | - Ping Liu
- Department of Radiology, Second Xiangya Hospital, Central South University, Changsha, China
| | - Zhiyi Zhang
- Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Yingling Ye
- Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Sijie Yi
- Department of Radiology, Second Xiangya Hospital, Central South University, Changsha, China
| | - Chunhua Fan
- Department of Radiology, Second Xiangya Hospital, Central South University, Changsha, China
| | - Wei Zhao
- Clinical Research Center for Medical Imaging in Hunan Province, Changsha, Hunan, China
| | - Jun Liu
- Clinical Research Center for Medical Imaging in Hunan Province, Changsha, Hunan, China
| |
Collapse
|
8
|
Liu Y, Luo Z, Xie Y, Sun Y, Yuan F, Jiang L, Lu H, Hu J. Extracellular vesicles from UTX-knockout endothelial cells boost neural stem cell differentiation in spinal cord injury. Cell Commun Signal 2024; 22:155. [PMID: 38424563 PMCID: PMC10903014 DOI: 10.1186/s12964-023-01434-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 12/11/2023] [Indexed: 03/02/2024] Open
Abstract
BACKGROUND Vascular endothelial cells are pivotal in the pathophysiological progression following spinal cord injury (SCI). The UTX (Ubiquitously Transcribed Tetratripeptide Repeat on Chromosome X) serves as a significant regulator of endothelial cell phenotype. The manipulation of endogenous neural stem cells (NSCs) offers a compelling strategy for the amelioration of SCI. METHODS Two mouse models were used to investigate SCI: NSCs lineage-traced mice and mice with conditional UTX knockout (UTX KO) in endothelial cells. To study the effects of UTX KO on neural differentiation, we harvested extracellular vesicles (EVs) from both UTX KO spinal cord microvascular endothelial cells (SCMECs) and negative control SCMECs. These EVs were then employed to modulate the differentiation trajectory of endogenous NSCs in the SCI model. RESULTS In our NSCs lineage-traced mice model of SCI, a marked decrease in neurogenesis was observed post-injury. Notably, NSCs in UTX KO SCMECs mice showed enhanced neuronal differentiation compared to controls. RNA sequencing and western blot analyses revealed an upregulation of L1 cell adhesion molecule (L1CAM), a gene associated with neurogenesis, in UTX KO SCMECs and their secreted EVs. This aligns with the observed promotion of neurogenesis in UTX KO conditions. In vivo administration of L1CAM-rich EVs from UTX KO SCMECs (KO EVs) to the mice significantly enhanced neural differentiation. Similarly, in vitro exposure of NSCs to KO EVs resulted in increased activation of the Akt signaling pathway, further promoting neural differentiation. Conversely, inhibiting Akt phosphorylation or knocking down L1CAM negated the beneficial effects of KO EVs on NSC neuronal differentiation. CONCLUSIONS In conclusion, our findings substantiate that EVs derived from UTX KO SCMECs can act as facilitators of neural differentiation following SCI. This study not only elucidates a novel mechanism but also opens new horizons for therapeutic interventions in the treatment of SCI. Video Abstract.
Collapse
Affiliation(s)
- Yudong Liu
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, China
- Hunan Engineering Research Center of Sports and Health, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Zixiang Luo
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, China
- Hunan Engineering Research Center of Sports and Health, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Yong Xie
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, China
- Hunan Engineering Research Center of Sports and Health, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Yi Sun
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, China
- Hunan Engineering Research Center of Sports and Health, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Feifei Yuan
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, China
- Hunan Engineering Research Center of Sports and Health, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Liyuan Jiang
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha, China.
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, China.
- Hunan Engineering Research Center of Sports and Health, Changsha, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.
| | - Hongbin Lu
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, China.
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, China.
- Hunan Engineering Research Center of Sports and Health, Changsha, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.
| | - Jianzhong Hu
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha, China.
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, China.
- Hunan Engineering Research Center of Sports and Health, Changsha, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
9
|
Zhao Q, Ren YL, Zhu YJ, Huang RQ, Zhu RR, Cheng LM, Xie N. The origins and dynamic changes of C3- and S100A10-positive reactive astrocytes after spinal cord injury. Front Cell Neurosci 2023; 17:1276506. [PMID: 38188669 PMCID: PMC10766709 DOI: 10.3389/fncel.2023.1276506] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 12/01/2023] [Indexed: 01/09/2024] Open
Abstract
Accaumulating studies focus on the effects of C3-positive A1-like phenotypes and S100A10-positive A2-like phenotypes of reactive astrocytes on spinal cord injury (SCI), however the origins and dynamic changes of C3- and S100A10-positive reactive astrocytes after SCI remain poorly understood. Through transgenic mice and lineage tracing, we aimed to determine the origins of C3- and S100A10-positive reactive astrocytes. Meanwhile, the distribution and dynamic changes in C3- and S100A10-positive reactive astrocytes were also detected in juvenile and adult SCI mice models and cultured astrocytes. Combing with bulk RNA sequencing (RNA-seq), single-cell RNA sequencing (scRNA-seq) and bioinformatic analysis, we further explored the dynamic transcripts changes of C3- and S100A10-positive reactive astrocytes after SCI. We confirmed that resident astrocytes produced both C3- and S100A10-positive reactive astrocytes, whereas ependymal cells regenerated only S100A10-positive reactive astrocytes in lesion area. Importantly, C3-positive reactive astrocytes were predominantly activated in adult SCI mice, while S100A10-positive reactive astrocytes were hyperactivated in juvenile mice. Furthermore, we observed that C3- and S100A10-positive reactive astrocytes had a dynamic transformation process at different time in vitro and vivo, and a majority of intermediate states of C3- and S100A10-positive reactive astrocytes were found during transformation. RNA-seq and scRNA-seq results further confirmed that the transcripts of C3-positive reactive astrocytes and their lipid toxicity were gradually increased with time and age. In contrast, S100A10-positive reactive astrocytes transcripts increased at early time and then gradually decreased after SCI. Our results provide insight into the origins and dynamic changes of C3- and S100A10-positive reactive astrocytes after SCI, which would be valuable resources to further target C3- and S100A10-positive reactive astrocytes after SCI.
Collapse
Affiliation(s)
- Qing Zhao
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, School of Medicine, School of Life Sciences and Technology, Tongji University, Shanghai, China
- Division of Spine, Department of Orthopedics, Tongji Hospital, Tongji University School of Medicine, Tongji University, Shanghai, China
| | - Yi-long Ren
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, School of Medicine, School of Life Sciences and Technology, Tongji University, Shanghai, China
- Division of Spine, Department of Orthopedics, Tongji Hospital, Tongji University School of Medicine, Tongji University, Shanghai, China
| | - Yan-jing Zhu
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, School of Medicine, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Rui-qi Huang
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, School of Medicine, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Rong-rong Zhu
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, School of Medicine, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Li-ming Cheng
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, School of Medicine, School of Life Sciences and Technology, Tongji University, Shanghai, China
- Division of Spine, Department of Orthopedics, Tongji Hospital, Tongji University School of Medicine, Tongji University, Shanghai, China
- Clinical Center for Brain and Spinal Cord Research, Tongji University, Shanghai, China
| | - Ning Xie
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, School of Medicine, School of Life Sciences and Technology, Tongji University, Shanghai, China
- Division of Spine, Department of Orthopedics, Tongji Hospital, Tongji University School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
10
|
Alizadeh R, Asghari A, Taghizadeh-Hesary F, Moradi S, Farhadi M, Mehdizadeh M, Simorgh S, Nourazarian A, Shademan B, Susanabadi A, Kamrava K. Intranasal delivery of stem cells labeled by nanoparticles in neurodegenerative disorders: Challenges and opportunities. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2023; 15:e1915. [PMID: 37414546 DOI: 10.1002/wnan.1915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 05/05/2023] [Accepted: 06/11/2023] [Indexed: 07/08/2023]
Abstract
Neurodegenerative disorders occur through progressive loss of function or structure of neurons, with loss of sensation and cognition values. The lack of successful therapeutic approaches to solve neurologic disorders causes physical disability and paralysis and has a significant socioeconomic impact on patients. In recent years, nanocarriers and stem cells have attracted tremendous attention as a reliable approach to treating neurodegenerative disorders. In this regard, nanoparticle-based labeling combined with imaging technologies has enabled researchers to survey transplanted stem cells and fully understand their fate by monitoring their survival, migration, and differentiation. For the practical implementation of stem cell therapies in the clinical setting, it is necessary to accurately label and follow stem cells after administration. Several approaches to labeling and tracking stem cells using nanotechnology have been proposed as potential treatment strategies for neurological diseases. Considering the limitations of intravenous or direct stem cell administration, intranasal delivery of nanoparticle-labeled stem cells in neurological disorders is a new method of delivering stem cells to the central nervous system (CNS). This review describes the challenges and limitations of stem cell-based nanotechnology methods for labeling/tracking, intranasal delivery of cells, and cell fate regulation as theragnostic labeling. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Neurological Disease.
Collapse
Affiliation(s)
- Rafieh Alizadeh
- ENT and Head and Neck Research Center and Department, The Five Senses Health Institute, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Alimohamad Asghari
- Skull Base Research Center, The Five Senses Health Institute, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Farzad Taghizadeh-Hesary
- ENT and Head and Neck Research Center and Department, The Five Senses Health Institute, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Salah Moradi
- Department of Life Science Engineering, Faculty of New Science and Technology, University of Tehran, Tehran, Iran
| | - Mohammad Farhadi
- ENT and Head and Neck Research Center and Department, The Five Senses Health Institute, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mehdi Mehdizadeh
- Department of Anatomical Sciences, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Sara Simorgh
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Alireza Nourazarian
- Department of Basic Medical Sciences, Khoy University of Medical Sciences, Khoy, Iran
| | - Behrouz Shademan
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Alireza Susanabadi
- Department of Anesthesia and Pain Medicine, Arak University of Medical Sciences, Arak, Iran
| | - Kamran Kamrava
- ENT and Head and Neck Research Center and Department, The Five Senses Health Institute, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
11
|
Kim WK, Son YS, Lim JH, Kim WH, Kang BJ. Neural stem/progenitor cells from adult canine cervical spinal cord have the potential to differentiate into neural lineage cells. BMC Vet Res 2023; 19:193. [PMID: 37803301 PMCID: PMC10557334 DOI: 10.1186/s12917-023-03757-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 09/27/2023] [Indexed: 10/08/2023] Open
Abstract
BACKGROUND • Neural stem/progenitor cells (NSPCs) are multipotent self-renewing cells that can be isolated from the brain or spinal cord. As they need to be isolated from neural tissues, it is difficult to study human NSPCs. To facilitate NSPC research, we attempted to isolate NSPCs from dogs, as dogs share the environment and having many similar diseases with humans. We collected and established primary cultures of ependymal and subependymal cells from the central canal of the cervical spinal cord of adult dogs. To isolate pure NSPCs, we employed the monolayer culture and selective medium culture methods. We further tested the ability of the NSPCs to form neurospheres (using the suspension culture method) and evaluated their differentiation potential. RESULTS • The cells had the ability to grow as cultures for up to 10 passages; the growth curves of the cells at the 3rd, 6th, and 9th passages showed similar patterns. The NSPCs were able to grow as neurospheres as well as monolayers, and immunostaining at the 3rd, 6th, and 9th passages showed that these cells expressed NSPC markers such as nestin and SOX2 (immunofluorescent staining). Monolayer cultures of NSPCs at the 3rd, 6th, and 9th passages were cultured for approximately 14 days using a differentiation medium and were observed to successfully differentiate into neural lineage and glial cells (astrocytes, neurons, and oligodendrocytes) at all the three passages tested. CONCLUSION • It is feasible to isolate and propagate (up to at least 10 passages) canine cervical spinal cord-derived NSPCs with the capacity to differentiate into neuronal and glial cells. To the best of our knowledge this is the first study to successfully isolate, propagate, and differentiate canine NSPCs derived from cervical spinal cord in the adult canine, and we believe that these cells will contribute to the field of spinal cord regeneration in veterinary and comparative medicine.
Collapse
Affiliation(s)
- Woo Keyoung Kim
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, Korea
- BK21 FOUR Future Veterinary Medicine Leading Education and Research Center, Seoul National University, Seoul, 08826, Korea
| | - Yeon Sung Son
- Medical Research Center, College of Medicine, Seoul National University, Seoul, 03080, South Korea
| | - Ji-Hey Lim
- Department of Neurology/Neurosurgery, College of Veterinary Medicine, University of Missouri, Columbia, 65211, USA
| | - Wan Hee Kim
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, Korea
| | - Byung-Jae Kang
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, Korea.
- BK21 FOUR Future Veterinary Medicine Leading Education and Research Center, Seoul National University, Seoul, 08826, Korea.
| |
Collapse
|
12
|
Rodriguez-Jimenez FJ, Jendelova P, Erceg S. The activation of dormant ependymal cells following spinal cord injury. Stem Cell Res Ther 2023; 14:175. [PMID: 37408068 DOI: 10.1186/s13287-023-03395-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 06/02/2023] [Indexed: 07/07/2023] Open
Abstract
Ependymal cells, a dormant population of ciliated progenitors found within the central canal of the spinal cord, undergo significant alterations after spinal cord injury (SCI). Understanding the molecular events that induce ependymal cell activation after SCI represents the first step toward controlling the response of the endogenous regenerative machinery in damaged tissues. This response involves the activation of specific signaling pathways in the spinal cord that promotes self-renewal, proliferation, and differentiation. We review our current understanding of the signaling pathways and molecular events that mediate the SCI-induced activation of ependymal cells by focusing on the roles of some cell adhesion molecules, cellular membrane receptors, ion channels (and their crosstalk), and transcription factors. An orchestrated response regulating the expression of receptors and ion channels fine-tunes and coordinates the activation of ependymal cells after SCI or cell transplantation. Understanding the major players in the activation of ependymal cells may help us to understand whether these cells represent a critical source of cells contributing to cellular replacement and tissue regeneration after SCI. A more complete understanding of the role and function of individual signaling pathways in endogenous spinal cord progenitors may foster the development of novel targeted therapies to induce the regeneration of the injured spinal cord.
Collapse
Affiliation(s)
- Francisco Javier Rodriguez-Jimenez
- Stem Cell Therapies in Neurodegenerative Diseases Lab, Research Center "Principe Felipe", C/Eduardo Primo Yúfera 3, 46012, Valencia, Spain.
| | - Pavla Jendelova
- Department of Neuroregeneration, Institute of Experimental Medicine, Czech Academy of Sciences, Prague, Czech Republic
| | - Slaven Erceg
- Stem Cell Therapies in Neurodegenerative Diseases Lab, Research Center "Principe Felipe", C/Eduardo Primo Yúfera 3, 46012, Valencia, Spain.
- National Stem Cell Bank - Valencia Node, Research Center "Principe Felipe", C/Eduardo Primo Yúfera 3, 46012, Valencia, Spain.
- Department of Neuroregeneration, Institute of Experimental Medicine, Czech Academy of Sciences, Prague, Czech Republic.
| |
Collapse
|
13
|
Ripoll C, Poulen G, Chevreau R, Lonjon N, Vachiery-Lahaye F, Bauchet L, Hugnot JP. Persistence of FoxJ1 + Pax6 + Sox2 + ependymal cells throughout life in the human spinal cord. Cell Mol Life Sci 2023; 80:181. [PMID: 37329342 PMCID: PMC11072198 DOI: 10.1007/s00018-023-04811-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 05/12/2023] [Accepted: 05/16/2023] [Indexed: 06/19/2023]
Abstract
Ependymal cells lining the central canal of the spinal cord play a crucial role in providing a physical barrier and in the circulation of cerebrospinal fluid. These cells express the FOXJ1 and SOX2 transcription factors in mice and are derived from various neural tube populations, including embryonic roof and floor plate cells. They exhibit a dorsal-ventral expression pattern of spinal cord developmental transcription factors (such as MSX1, PAX6, ARX, and FOXA2), resembling an embryonic-like organization. Although this ependymal region is present in young humans, it appears to be lost with age. To re-examine this issue, we collected 17 fresh spinal cords from organ donors aged 37-83 years and performed immunohistochemistry on lightly fixed tissues. We observed cells expressing FOXJ1 in the central region in all cases, which co-expressed SOX2 and PAX6 as well as RFX2 and ARL13B, two proteins involved in ciliogenesis and cilia-mediated sonic hedgehog signaling, respectively. Half of the cases exhibited a lumen and some presented portions of the spinal cord with closed and open central canals. Co-staining of FOXJ1 with other neurodevelopmental transcription factors (ARX, FOXA2, MSX1) and NESTIN revealed heterogeneity of the ependymal cells. Interestingly, three donors aged > 75 years exhibited a fetal-like regionalization of neurodevelopmental transcription factors, with dorsal and ventral ependymal cells expressing MSX1, ARX, and FOXA2. These results provide new evidence for the persistence of ependymal cells expressing neurodevelopmental genes throughout human life and highlight the importance of further investigation of these cells.
Collapse
Affiliation(s)
- Chantal Ripoll
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, 141 rue de la Cardonille, 34091, Montpellier, France
| | - Gaetan Poulen
- Neurosurgery Department, CHU Montpellier, Montpellier, France
| | - Robert Chevreau
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, 141 rue de la Cardonille, 34091, Montpellier, France
| | - Nicolas Lonjon
- Neurosurgery Department, CHU Montpellier, Montpellier, France
| | - Florence Vachiery-Lahaye
- Department of Donation and Transplantation, Coordination Unit, CHU Montpellier, Montpellier, France
| | - Luc Bauchet
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, 141 rue de la Cardonille, 34091, Montpellier, France
- Neurosurgery Department, CHU Montpellier, Montpellier, France
| | - Jean-Philippe Hugnot
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, 141 rue de la Cardonille, 34091, Montpellier, France.
| |
Collapse
|
14
|
Lu C, Wu X, Wang X, Xiao Z, Ma L, Dai J, Jian F. Single-cell transcriptomics reveals ependymal subtypes related to cytoskeleton dynamics as the core driver of syringomyelia pathological development. iScience 2023; 26:106850. [PMID: 37275526 PMCID: PMC10232665 DOI: 10.1016/j.isci.2023.106850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 03/05/2023] [Accepted: 05/04/2023] [Indexed: 06/07/2023] Open
Abstract
Syringomyelia is a common clinical lesion associated with cerebrospinal fluid flow abnormalities. By a reversible model with chronic extradural compression to mimic human canalicular syringomyelia, we explored the spatiotemporal pathological alterations during syrinx development. The most dynamic alterations were observed in ependymal cells (EPCs), oligodendrocyte lineage, and microglia, as a response to neuroinflammation. Among different cell types, EPC subtypes experienced obvious dynamic alterations, which were accompanied by ultrastructural changes involving the ependymal cytoskeleton, cilia, and dynamic injury in parenchyma primarily around the central canal, corresponding to the single-cell transcripts. After effective decompression, the syrinx resolved with the recovery of pathological damage and overall neurological function, implying that for syringomyelia in the early stage, there was still endogenous repair potential coexisting with immune microenvironment imbalance. Ependymal remodeling and cilia restoration might be important for better resolution of syringomyelia and parenchymal injury recovery.
Collapse
Affiliation(s)
- Chunli Lu
- Division of Spine, Department of Neurosurgery, Xuanwu Hospital, Capital Medical University (CCMU), Beijing, China
- Neurospine Center, China International Neuroscience Institute (CHINA-INI), Beijing, China
- Research Center of Spine and Spinal Cord, Beijing Institute of Brain Disorders, CCMU, Beijing, China
- Lab of Spinal Cord Injury and Function Reconstruction, CHINA-INI, Beijing, China
- National Center for Neurological Disorders, Beijing, China
| | - Xianming Wu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xinyu Wang
- Division of Spine, Department of Neurosurgery, Xuanwu Hospital, Capital Medical University (CCMU), Beijing, China
- Neurospine Center, China International Neuroscience Institute (CHINA-INI), Beijing, China
- Research Center of Spine and Spinal Cord, Beijing Institute of Brain Disorders, CCMU, Beijing, China
- Lab of Spinal Cord Injury and Function Reconstruction, CHINA-INI, Beijing, China
- National Center for Neurological Disorders, Beijing, China
| | - Zhifeng Xiao
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Longbing Ma
- Division of Spine, Department of Neurosurgery, Xuanwu Hospital, Capital Medical University (CCMU), Beijing, China
- Neurospine Center, China International Neuroscience Institute (CHINA-INI), Beijing, China
- Research Center of Spine and Spinal Cord, Beijing Institute of Brain Disorders, CCMU, Beijing, China
- Lab of Spinal Cord Injury and Function Reconstruction, CHINA-INI, Beijing, China
- National Center for Neurological Disorders, Beijing, China
| | - Jianwu Dai
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Fengzeng Jian
- Division of Spine, Department of Neurosurgery, Xuanwu Hospital, Capital Medical University (CCMU), Beijing, China
- Neurospine Center, China International Neuroscience Institute (CHINA-INI), Beijing, China
- Research Center of Spine and Spinal Cord, Beijing Institute of Brain Disorders, CCMU, Beijing, China
- Lab of Spinal Cord Injury and Function Reconstruction, CHINA-INI, Beijing, China
- National Center for Neurological Disorders, Beijing, China
| |
Collapse
|
15
|
Yu H, Yang S, Li H, Wu R, Lai B, Zheng Q. Activating Endogenous Neurogenesis for Spinal Cord Injury Repair: Recent Advances and Future Prospects. Neurospine 2023; 20:164-180. [PMID: 37016865 PMCID: PMC10080446 DOI: 10.14245/ns.2245184.296] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 11/29/2022] [Indexed: 04/03/2023] Open
Abstract
After spinal cord injury (SCI), endogenous neural stem cells are activated and migrate to the injury site where they differentiate into astrocytes, but they rarely differentiate into neurons. It is difficult for brain-derived information to be transmitted through the injury site after SCI because of the lack of neurons that can relay neural information through the injury site, and the functional recovery of adult mammals is difficult to achieve. The development of bioactive materials, tissue engineering, stem cell therapy, and physiotherapy has provided new strategies for the treatment of SCI and shown broad application prospects, such as promoting endogenous neurogenesis after SCI. In this review, we focus on novel approaches including tissue engineering, stem cell technology, and physiotherapy to promote endogenous neurogenesis and their therapeutic effects on SCI. Moreover, we explore the mechanisms and challenges of endogenous neurogenesis for the repair of SCI.
Collapse
Affiliation(s)
- Haiyang Yu
- Department of Orthopedics, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
- Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Shangbin Yang
- Department of Gastrointestinal Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Haotao Li
- Department of Orthopedics, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
- Shantou University Medical College, Shantou, China
| | - Rongjie Wu
- Department of Orthopedics, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
- Shantou University Medical College, Shantou, China
| | - Biqin Lai
- Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-sen University), Ministry of Education, Guangzhou, China
- Co-corresponding Author Biqin Lai Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-sen University), Ministry of Education, Guangzhou, China
| | - Qiujian Zheng
- Department of Orthopedics, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
- Southern Medical University, Guangzhou, China
- Corresponding Author Qiujian Zheng Department of Orthopedics, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| |
Collapse
|
16
|
Han T, Song P, Wu Z, Wang C, Liu Y, Ying W, Li K, Shen C. Inflammatory stimulation of astrocytes affects the expression of miRNA-22-3p within NSCs-EVs regulating remyelination by targeting KDM3A. Stem Cell Res Ther 2023; 14:52. [PMID: 36959678 PMCID: PMC10035185 DOI: 10.1186/s13287-023-03284-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 03/13/2023] [Indexed: 03/25/2023] Open
Abstract
BACKGROUND Endogenous neural stem cells (NSCs) are critical for the remyelination of axons following spinal cord injury (SCI). Cell-cell communication plays a key role in the regulation of the differentiation of NSCs. Astrocytes act as immune cells that encounter early inflammation, forming a glial barrier to prevent the spread of destructive inflammation following SCI. In addition, the cytokines released from astrocytes participate in the regulation of the differentiation of NSCs. The aim of this study was to investigate the effects of cytokines released from inflammation-stimulated astrocytes on the differentiation of NSCs following SCI and to explore the influence of these cytokines on NSC-NSC communication. RESULTS Lipopolysaccharide stimulation of astrocytes increased bone morphogenetic protein 2 (BMP2) release, which not only promoted the differentiation of NSCs into astrocytes and inhibited axon remyelination in SCI lesions but also enriched miRNA-22-3p within extracellular vesicles derived from NSCs. These miRNA-22 molecules function as a feedback loop to promote NSC differentiation into oligodendrocytes and the remyelination of axons following SCI by targeting KDM3A. CONCLUSIONS This study revealed that by releasing BMP2, astrocytes were able to regulate the differentiation of NSCs and NSC-NSC communication by enriching miRNA-22 within NSC-EVs, which in turn promoted the regeneration and remyelination of axons by targeting the KDM3A/TGF-beta axis and the recovery of neurological outcomes following SCI.
Collapse
Affiliation(s)
- Tianyu Han
- Department of Orthopedics (Spinal Surgery), The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Shushan District, Hefei City, Anhui Province, China
| | - Peiwen Song
- Department of Orthopedics (Spinal Surgery), The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Shushan District, Hefei City, Anhui Province, China
| | - Zuomeng Wu
- Department of Orthopedics (Spinal Surgery), The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Shushan District, Hefei City, Anhui Province, China
| | - Cancan Wang
- Department of Orthopedics (Spinal Surgery), The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Shushan District, Hefei City, Anhui Province, China
| | - Yunlei Liu
- Department of Clinical Laboratory, No.2 People's Hospital of Fuyang, Fuyang city, China
| | - Wang Ying
- Department of Medical Imaging, The First Affiliated Hospital of Anhui Medical University, Hefei city, China
| | - Kaixuan Li
- Department of Orthopedics (Spinal Surgery), The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Shushan District, Hefei City, Anhui Province, China
| | - Cailiang Shen
- Department of Orthopedics (Spinal Surgery), The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Shushan District, Hefei City, Anhui Province, China.
| |
Collapse
|
17
|
Zhao X, Gu R, Zhao Y, Wei F, Gao X, Zhuang Y, Xiao Z, Shen H, Dai J. Adult spinal cord tissue transplantation combined with local tacrolimus sustained-release collagen hydrogel promotes complete spinal cord injury repair. Cell Prolif 2023; 56:e13451. [PMID: 36916024 DOI: 10.1111/cpr.13451] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 02/26/2023] [Accepted: 03/03/2023] [Indexed: 03/16/2023] Open
Abstract
The strategy of replacing a completely damaged spinal cord with allogenic adult spinal cord tissues (aSCs) can potentially repair complete spinal cord injury (SCI) in combination with immunosuppressive drugs, such as tacrolimus (Tac), which suppress transplant rejection and improve graft survival. However, daily systemic administration of immunosuppressive agents may cause harsh side effects. Herein, a localized, sustained Tac-release collagen hydrogel (Col/Tac) was developed to maximize the immune regulatory efficacy but minimize the side effects of Tac after aSC transplantation in complete SCI recipients. Thoracic aSCs of rat donors were transplanted into the complete thoracic spinal cord transection rat recipients, after which Col/Tac hydrogel was implanted. The Tac-encapsulated collagen hydrogel exhibited suitable mechanical properties and long-term sustained Tac release behaviour. After Col/Tac hydrogel implantation in SCI rats with aSC transplantation, the recipients' survival rate significantly improved and the side effects on tissues were reduced compared with those with conventional Tac medication. Moreover, treatment with the Col/Tac hydrogel exhibited similarly reduced immune rejection levels by regulating immune responses and promoted neurogenesis compared to daily Tac injections, and thus improved functional restoration. Localized delivery of immunosuppressive agents by the Col/Tac hydrogel may be a promising strategy for overcoming immune rejection of transplants, with significant potential for clinical application in the future.
Collapse
Affiliation(s)
- Xinhao Zhao
- Key Laboratory for Nano-Bio Interface Research, Division of Nanobiomedicine, Suzhou Institute of NanoTech and NanoBionics, Chinese Academy of Sciences, Suzhou, China.,China-Japan Union Hospital of Jilin University, Changchun, China.,State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Rui Gu
- China-Japan Union Hospital of Jilin University, Changchun, China
| | - Yannan Zhao
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Feng Wei
- Key Laboratory for Nano-Bio Interface Research, Division of Nanobiomedicine, Suzhou Institute of NanoTech and NanoBionics, Chinese Academy of Sciences, Suzhou, China.,School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei, China
| | - Xu Gao
- Key Laboratory for Nano-Bio Interface Research, Division of Nanobiomedicine, Suzhou Institute of NanoTech and NanoBionics, Chinese Academy of Sciences, Suzhou, China.,China-Japan Union Hospital of Jilin University, Changchun, China
| | - Yan Zhuang
- Key Laboratory for Nano-Bio Interface Research, Division of Nanobiomedicine, Suzhou Institute of NanoTech and NanoBionics, Chinese Academy of Sciences, Suzhou, China.,School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei, China
| | - Zhifeng Xiao
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - He Shen
- Key Laboratory for Nano-Bio Interface Research, Division of Nanobiomedicine, Suzhou Institute of NanoTech and NanoBionics, Chinese Academy of Sciences, Suzhou, China.,School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei, China
| | - Jianwu Dai
- Key Laboratory for Nano-Bio Interface Research, Division of Nanobiomedicine, Suzhou Institute of NanoTech and NanoBionics, Chinese Academy of Sciences, Suzhou, China.,State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.,School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei, China
| |
Collapse
|
18
|
Rodrigo Albors A, Singer GA, Llorens-Bobadilla E, Frisén J, May AP, Ponting CP, Storey KG. An ependymal cell census identifies heterogeneous and ongoing cell maturation in the adult mouse spinal cord that changes dynamically on injury. Dev Cell 2023; 58:239-255.e10. [PMID: 36706756 DOI: 10.1016/j.devcel.2023.01.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 10/14/2022] [Accepted: 01/04/2023] [Indexed: 01/27/2023]
Abstract
The adult spinal cord stem cell potential resides within the ependymal cell population and declines with age. Ependymal cells are, however, heterogeneous, and the biological diversity this represents and how it changes with age remain unknown. Here, we present a single-cell transcriptomic census of spinal cord ependymal cells from adult and aged mice, identifying not only all known ependymal cell subtypes but also immature as well as mature cell states. By comparing transcriptomes of spinal cord and brain ependymal cells, which lack stem cell abilities, we identify immature cells as potential spinal cord stem cells. Following spinal cord injury, these cells re-enter the cell cycle, which is accompanied by a short-lived reversal of ependymal cell maturation. We further analyze ependymal cells in the human spinal cord and identify widespread cell maturation and altered cell identities. This in-depth characterization of spinal cord ependymal cells provides insight into their biology and informs strategies for spinal cord repair.
Collapse
Affiliation(s)
- Aida Rodrigo Albors
- Division of Molecular, Cell and Developmental Biology, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK.
| | - Gail A Singer
- Division of Molecular, Cell and Developmental Biology, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | | | - Jonas Frisén
- Department of Cell and Molecular Biology, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Andrew P May
- Chan Zuckerberg Biohub, San Francisco, CA 94158, USA; Tornado Bio, Inc., South San Francisco, CA 94080, USA
| | - Chris P Ponting
- Medical Research Council Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Kate G Storey
- Division of Molecular, Cell and Developmental Biology, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK.
| |
Collapse
|
19
|
New LE, Yanagawa Y, McConkey GA, Deuchars J, Deuchars SA. GABAergic regulation of cell proliferation within the adult mouse spinal cord. Neuropharmacology 2023; 223:109326. [PMID: 36336067 DOI: 10.1016/j.neuropharm.2022.109326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 10/17/2022] [Accepted: 10/31/2022] [Indexed: 11/05/2022]
Abstract
Manipulation of neural stem cell proliferation and differentiation in the postnatal CNS is receiving significant attention due to therapeutic potential. In the spinal cord, such manipulations may promote repair in conditions such as multiple sclerosis or spinal cord injury, but may also limit excessive cell proliferation contributing to tumours such as ependymomas. We show that when ambient γ-aminobutyric acid (GABA) is increased in vigabatrin-treated or decreased by GAD67 allele haplodeficiency in glutamic acid decarboxylase67-green fluorescent protein (GAD67-GFP) mice of either sex, the numbers of proliferating cells respectively decreased or increased. Thus, intrinsic spinal cord GABA levels are correlated with the extent of cell proliferation, providing important evidence for manipulating these levels. Diazepam binding inhibitor, an endogenous protein that interacts with GABA receptors and its breakdown product, octadecaneuropeptide, which preferentially activates central benzodiazepine (CBR) sites, were highly expressed in spinal cord, especially in ependymal cells surrounding the central canal. Furthermore, animals with reduced CBR activation via treatment with flumazenil or Ro15-4513, or with a G2F77I mutation in the CBR binding site had greater numbers of Ethynyl-2'-deoxyuridine positive cells compared to control, which maintained their stem cell status since the proportion of newly proliferated cells becoming oligodendrocytes or astrocytes was significantly lower. Altering endogenous GABA levels or modulating GABAergic signalling through specific sites on GABA receptors therefore influences NSC proliferation in the adult spinal cord. These findings provide a basis for further study into how GABAergic signalling could be manipulated to enable spinal cord self-regeneration and recovery or limit pathological proliferative activity.
Collapse
Affiliation(s)
- Lauryn E New
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, UK
| | - Yuchio Yanagawa
- Department of Genetic and Behavioural Neuroscience, Gunma University, Graduate School of Medicine, Maebashi, 371-8511, Japan
| | - Glenn A McConkey
- School of Biology, Faculty of Biological Sciences, University of Leeds, UK
| | - Jim Deuchars
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, UK
| | - Susan A Deuchars
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, UK.
| |
Collapse
|
20
|
Qian L, Yang K, Liu X, Zhang L, Zhao H, Qiu LZ, Chu Y, Hao W, Zhuang Y, Chen Y, Dai J. Baicalein-functionalized collagen scaffolds direct neuronal differentiation toward enhancing spinal cord injury repair. Biomater Sci 2023; 11:678-689. [PMID: 36511438 DOI: 10.1039/d2bm01467j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Spinal cord injury (SCI) repair remains a major challenge in clinics. Though neural stem cells (NSCs) have shown great potentials in SCI treatment, their applications were hampered since they primarily differentiate into astrocytes rather than neurons in the injured area, indicating a high demand for effective strategies to direct neuronal differentiation. Baicalein is a clinical drug with multiple pharmacological activities, while its effects on NSCs have rarely been reported. In the current work, inspired by a similarity of the metabolic reprogramming required in neuronal differentiation and that involved in chemoresistance reversal of cancer cells induced by baicalein, we studied the role of baicalein in NSC differentiation and discovered its promotion effects on neuronal differentiation. Based on this observation, baicalein-functionalized collagen scaffolds (BFCSs) were developed and applied for SCI treatment. The BFCSs released the payload in a sustained way and possessed comparable physical properties to the commonly used collagen. Both in vitro studies with primary NSCs and in vivo studies in SCI rats showed that the BFCSs containing a low amount of baicalein can facilitate not only neurogenesis and axon extension, but also reduce astrocyte production and glial scar formation. More importantly, the BFCS implantation led to improvement in the motor functional recovery of SCI rats. Thus, the BFCSs provided a potential strategy to induce neuronal differentiation towards facilitating SCI repair, as well as for the treatment of other central nervous system injuries.
Collapse
Affiliation(s)
- Lin Qian
- Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123 China.
| | - Keni Yang
- Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123 China.
| | - Xiru Liu
- Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123 China.
| | - Lulu Zhang
- Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123 China.
| | - Haitao Zhao
- Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123 China.
| | - Lin-Zi Qiu
- Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123 China.
| | - Yun Chu
- Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123 China.
| | - Wangping Hao
- Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123 China.
| | - Yan Zhuang
- Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123 China.
| | - Yanyan Chen
- Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123 China.
| | - Jianwu Dai
- Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123 China. .,Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101 China
| |
Collapse
|
21
|
Feng C, Deng L, Yong YY, Wu JM, Qin DL, Yu L, Zhou XG, Wu AG. The Application of Biomaterials in Spinal Cord Injury. Int J Mol Sci 2023; 24:816. [PMID: 36614259 PMCID: PMC9821025 DOI: 10.3390/ijms24010816] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/19/2022] [Accepted: 12/30/2022] [Indexed: 01/05/2023] Open
Abstract
The spinal cord and the brain form the central nervous system (CNS), which is the most important part of the body. However, spinal cord injury (SCI) caused by external forces is one of the most difficult types of neurological injury to treat, resulting in reduced or even absent motor, sensory and autonomic functions. It leads to the reduction or even disappearance of motor, sensory and self-organizing nerve functions. Currently, its incidence is increasing each year worldwide. Therefore, the development of treatments for SCI is urgently needed in the clinic. To date, surgery, drug therapy, stem cell transplantation, regenerative medicine, and rehabilitation therapy have been developed for the treatment of SCI. Among them, regenerative biomaterials that use tissue engineering and bioscaffolds to transport cells or drugs to the injured site are considered the most promising option. In this review, we briefly introduce SCI and its molecular mechanism and summarize the application of biomaterials in the repair and regeneration of tissue in various models of SCI. However, there is still limited evidence about the treatment of SCI with biomaterials in the clinic. Finally, this review will provide inspiration and direction for the future study and application of biomaterials in the treatment of SCI.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Xiao-Gang Zhou
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - An-Guo Wu
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| |
Collapse
|
22
|
Hao F, Jia F, Hao P, Duan H, Wang Z, Fan Y, Zhao W, Gao Y, Fan OR, Xu F, Yang Z, Sun YE, Li X. Proper wiring of newborn neurons to control bladder function after complete spinal cord injury. Biomaterials 2023; 292:121919. [PMID: 36455486 DOI: 10.1016/j.biomaterials.2022.121919] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 10/14/2022] [Accepted: 11/18/2022] [Indexed: 11/26/2022]
Abstract
Activation of endogenous neurogenesis by bioactive materials enables restoration of sensory/motor function after complete spinal cord injury (SCI) via formation of new relay neural circuits. The underlying wiring logic of newborn neurons in adult central nervous system (CNS) is unknown. Here, we report neurotrophin3-loaded chitosan biomaterial substantially recovered bladder function after SCI. Multiple neuro-circuitry tracing technologies using pseudorabies virus (PRV), rabies virus (RV), and anterograde adeno-associated virus (AAV), demonstrated that newborn neurons were integrated into the micturition neural circuits and reconnected higher brain centers and lower spinal cord centers to control voiding, and participated in the restoration of the lower urinary tract function, even in the absence of long-distance axonal regeneration. Opto- and chemo-genetic studies further supported the notion that the supraspinal control of the lower urinary tract function was partially recovered. Our data demonstrated that regenerated relay neurons could be properly integrated into disrupted long-range neural circuits to restore function of adult CNS.
Collapse
Affiliation(s)
- Fei Hao
- Beijing Key Laboratory for Biomaterials and Neural Regeneration, School of Engineering Medicine, Beihang University, Beijing, 100191, China
| | - Fan Jia
- Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, The Brain Cognition and Brain Disease Institute (BCBDI), Translational Research Center for the Nervous System (TRCNS), Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences; Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518055, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Peng Hao
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Hongmei Duan
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Zijue Wang
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Yubo Fan
- Key Laboratory for Biomechanics and Mechanobiology of the Ministry of Education, Beijing Advanced Innovation Centre for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China; School of Engineering Medicine, Beihang University, Beijing, 100191, China
| | - Wen Zhao
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Yudan Gao
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Orion R Fan
- Department of Evolution and Ecology, University of California, Davis, CA, 90007, USA
| | - Fuqiang Xu
- Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, The Brain Cognition and Brain Disease Institute (BCBDI), Translational Research Center for the Nervous System (TRCNS), Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences; Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518055, China; University of Chinese Academy of Sciences, Beijing, 100049, China; State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Center for Magnetic Resonance, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, China.
| | - Zhaoyang Yang
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China.
| | - Yi E Sun
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration (Tongji University), Ministry of Education, Shanghai, 200065, China; Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai East Hospital, Tongji University, School of Medicine, Shanghai, 200120, China.
| | - Xiaoguang Li
- Beijing Key Laboratory for Biomaterials and Neural Regeneration, School of Engineering Medicine, Beihang University, Beijing, 100191, China; Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China.
| |
Collapse
|
23
|
Shi M, Xu Q, Ding L, Xia Y, Zhang C, Lai H, Liu C, Deng DYB. Cell Infiltrative Inner Connected Porous Hydrogel Improves Neural Stem Cell Migration and Differentiation for Functional Repair of Spinal Cord Injury. ACS Biomater Sci Eng 2022; 8:5307-5318. [PMID: 36455201 DOI: 10.1021/acsbiomaterials.2c01127] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
The disadvantages of cell-adaptive microenvironments and cellular diffusion out of the lesion have limited hydrogel-based scaffold transplantation treatment for neural connectivity, leading to permanent neurological disability from spinal cord injury. Herein, porous GelMA scaffold was prepared, in which the inner porous structure was optimized. The average pore size was 168 ± 71 μm with a porosity of 77.1%. The modulus of porous hydrogel was 593 ± 4 Pa compared to 1535 ± 85 Pa of bulk GelMA. The inner connected porous structure provided a cell-infiltrative matrix for neural stem cell migration and differentiation in vitro and eventually enhanced neuron differentiation and hindlimb strength and movement of animals in in vivo experiments. Furthermore, inflammation response and apoptosis were also alleviated after implantation. This work demonstrated that the porous hydrogel with appropriately connected micropores exhibit favorable cellular responses compared with traditional non-porous GelMA hydrogel. Taken together, our findings suggest that porous hydrogel is a promising scaffold for future delivery of stem cells and has prospects in material design for the treatment of spinal cord injury.
Collapse
Affiliation(s)
- Ming Shi
- Department of Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen518107, China
| | - Qi Xu
- Department of Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen518107, China
| | - Lu Ding
- Department of Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen518107, China
| | - Yu Xia
- Department of Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen518107, China
| | - Changlin Zhang
- Department of Gynecology, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen518107, China.,Pelvic Floor Disorders Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen518107, China
| | - Haibin Lai
- Department of Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen518107, China
| | - Changxuan Liu
- Department of Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen518107, China
| | - David Y B Deng
- Department of Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen518107, China
| |
Collapse
|
24
|
Wu Y, Tang Z, Zhang J, Wang Y, Liu S. Restoration of spinal cord injury: From endogenous repairing process to cellular therapy. Front Cell Neurosci 2022; 16:1077441. [PMID: 36523818 PMCID: PMC9744968 DOI: 10.3389/fncel.2022.1077441] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 11/08/2022] [Indexed: 09/26/2023] Open
Abstract
Spinal cord injury (SCI) disrupts neurological pathways and impacts sensory, motor, and autonomic nerve function. There is no effective treatment for SCI currently. Numerous endogenous cells, including astrocytes, macrophages/microglia, and oligodendrocyte, are involved in the histological healing process following SCI. By interfering with cells during the SCI repair process, some advancements in the therapy of SCI have been realized. Nevertheless, the endogenous cell types engaged in SCI repair and the current difficulties these cells confront in the therapy of SCI are poorly defined, and the mechanisms underlying them are little understood. In order to better understand SCI and create new therapeutic strategies and enhance the clinical translation of SCI repair, we have comprehensively listed the endogenous cells involved in SCI repair and summarized the six most common mechanisms involved in SCI repair, including limiting the inflammatory response, protecting the spared spinal cord, enhancing myelination, facilitating neovascularization, producing neurotrophic factors, and differentiating into neural/colloidal cell lines.
Collapse
Affiliation(s)
| | | | | | | | - Shengwen Liu
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
25
|
Cuenca-Ortolá I, Martínez-Rojas B, Moreno-Manzano V, García Castelló M, Monleón Pradas M, Martínez-Ramos C, Más Estellés J. A Strategy for Magnetic and Electric Stimulation to Enhance Proliferation and Differentiation of NPCs Seeded over PLA Electrospun Membranes. Biomedicines 2022; 10:2736. [PMID: 36359255 PMCID: PMC9687775 DOI: 10.3390/biomedicines10112736] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 10/07/2022] [Accepted: 10/25/2022] [Indexed: 09/30/2023] Open
Abstract
Neural progenitor cells (NPCs) have been shown to serve as an efficient therapeutic strategy in different cell therapy approaches, including spinal cord injury treatment. Despite the reported beneficial effects of NPC transplantation, the low survival and differentiation rates constrain important limitations. Herein, a new methodology has been developed to overcome both limitations by applying a combination of wireless electrical and magnetic stimulation to NPCs seeded on aligned poly(lactic acid) nanofibrous scaffolds for in vitro cell conditioning prior transplantation. Two stimulation patterns were tested and compared, continuous (long stimulus applied once a day) and intermittent (short stimulus applied three times a day). The results show that applied continuous stimulation promotes NPC proliferation and preferential differentiation into oligodendrocytic and neuronal lineages. A neural-like phenotypic induction was observed when compared to unstimulated NPCs. In contrast, intermittent stimulation patterns did not affect NPC proliferation and differentiation to oligodendrocytes or astrocytes morphology with a detrimental effect on neuronal differentiation. This study provides a new approach of using a combination of electric and magnetic stimulation to induce proliferation and further neuronal differentiation, which would improve therapy outcomes in disorders such as spinal cord injury.
Collapse
Affiliation(s)
- Irene Cuenca-Ortolá
- Center for Biomaterials and Tissue Engineering, Universitat Politècnica de València, Cno. de Vera s/n, 46022 Valencia, Spain
| | - Beatriz Martínez-Rojas
- Neuronal and Tissue Regeneration Laboratory, Centro de Investigación Príncipe Felipe, 46012 Valencia, Spain
| | - Victoria Moreno-Manzano
- Neuronal and Tissue Regeneration Laboratory, Centro de Investigación Príncipe Felipe, 46012 Valencia, Spain
| | - Marcos García Castelló
- Center for Biomaterials and Tissue Engineering, Universitat Politècnica de València, Cno. de Vera s/n, 46022 Valencia, Spain
| | - Manuel Monleón Pradas
- Center for Biomaterials and Tissue Engineering, Universitat Politècnica de València, Cno. de Vera s/n, 46022 Valencia, Spain
- Biomedical Research Networking Center in Bioengineering Biomaterials and Nanomedicine, CIBER-BBN, 28029 Madrid, Spain
| | - Cristina Martínez-Ramos
- Center for Biomaterials and Tissue Engineering, Universitat Politècnica de València, Cno. de Vera s/n, 46022 Valencia, Spain
- Unitat Predepartamental de Medicina, Universitat Jaume I, Avda/Sos Baynat, s/n, 12071 Castellón de la Plana, Spain
| | - Jorge Más Estellés
- Center for Biomaterials and Tissue Engineering, Universitat Politècnica de València, Cno. de Vera s/n, 46022 Valencia, Spain
| |
Collapse
|
26
|
Feng Y, Wang K, Wang N, Jia P, Zhang L, Yuan H, Lu P, Lu Y, Zhang H, Li R, Zhang Y, Li Q, Zhang P. Tetramethylpyrazine protects neural stem cells against sevoflurane-induced toxicity through Akt/GSK-3β pathway. Metab Brain Dis 2022; 37:2457-2466. [PMID: 35838869 DOI: 10.1007/s11011-022-01008-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 05/16/2022] [Indexed: 11/28/2022]
Abstract
Sevoflurane, a commonly used anesthetic, has been found to cause neural stem cell (NSC) injury, thereby contributing to neurocognitive impairment following general anesthesia. Tetramethylpyrazine (TMP), one of the most widely used medicinal compounds isolated from a traditional Chinese herb, possess neuroprotective activity. However, its effect on sevoflurane-induced NSC injury remains unclear. NSCs were pretreated with indicated concentrations of TMP for 2 h and then exposed to sevoflurane for 6 h. Cell injury was measured using lactate dehydrogenase (LDH) release assay. Cell viability and proliferation were detected by cell counting kit-8 (CCK-8) assay and 5-bromo-2'-deoxyuridine (BrdU) labeling, respectively. Apoptotic cells were detected using terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay. The levels of cleaved caspase-3, phosphorylated protein kinase B (Akt) and phosphorylated glycogen synthase kinase-3β (GSK-3β) were detected by western blotting. Our results showed exposure to sevoflurane decreased the viability and proliferation of NSCs, while TMP preserved NSC viability and proliferation after sevoflurane exposure. In addition, the expression of cleaved caspase-3 and TUNEL positive cells were markedly decreased in TMP-treated NSCs compared with the control. Furthermore, pretreatment with TMP significantly increased the levels of phosphorylated Akt and GSK-3β in sevoflurane-injured NSCs. However, an upstream inhibitor of Akt, LY294002 abolished the protective of TMP on the cell viability of NSCs. In conclusion, these findings indicate that TMP protects NSCs from sevoflurane-induced toxicity through Akt/GSK-3β pathway.
Collapse
Affiliation(s)
- Yan Feng
- Department of Anesthesiology, The Second Affiliated Hospital of Xi'an Jiaotong University, 157# West 5 Road, 710004, Xi'an, Shaanxi, China
- Department of Anesthesiology, Xi'an People's Hospital (Xi'an Fourth Hospital), 710004, Xi'an, Shaanxi, China
| | - Kui Wang
- Department of Anesthesiology, The Second Affiliated Hospital of Xi'an Jiaotong University, 157# West 5 Road, 710004, Xi'an, Shaanxi, China
| | - Ning Wang
- Department of Anesthesiology, The Second Affiliated Hospital of Xi'an Jiaotong University, 157# West 5 Road, 710004, Xi'an, Shaanxi, China
| | - Pengyu Jia
- Department of Anesthesiology, The Second Affiliated Hospital of Xi'an Jiaotong University, 157# West 5 Road, 710004, Xi'an, Shaanxi, China
| | - Lei Zhang
- Department of Anesthesiology, The Second Affiliated Hospital of Xi'an Jiaotong University, 157# West 5 Road, 710004, Xi'an, Shaanxi, China
- Department of Anesthesiology, Xi'an People's Hospital (Xi'an Fourth Hospital), 710004, Xi'an, Shaanxi, China
| | - Haozheng Yuan
- Department of Anesthesiology, The Second Affiliated Hospital of Xi'an Jiaotong University, 157# West 5 Road, 710004, Xi'an, Shaanxi, China
| | - Pan Lu
- Department of Anesthesiology, The Second Affiliated Hospital of Xi'an Jiaotong University, 157# West 5 Road, 710004, Xi'an, Shaanxi, China
| | - Yang Lu
- Department of Anesthesiology, The Second Affiliated Hospital of Xi'an Jiaotong University, 157# West 5 Road, 710004, Xi'an, Shaanxi, China
| | - Hong Zhang
- Department of Anesthesiology, The Second Affiliated Hospital of Xi'an Jiaotong University, 157# West 5 Road, 710004, Xi'an, Shaanxi, China
| | - Rong Li
- Department of Anesthesiology, The Second Affiliated Hospital of Xi'an Jiaotong University, 157# West 5 Road, 710004, Xi'an, Shaanxi, China
| | - Yan Zhang
- Department of Anesthesiology, The Second Affiliated Hospital of Xi'an Jiaotong University, 157# West 5 Road, 710004, Xi'an, Shaanxi, China
| | - Qianqian Li
- Department of Anesthesiology, The Second Affiliated Hospital of Xi'an Jiaotong University, 157# West 5 Road, 710004, Xi'an, Shaanxi, China
| | - Pengbo Zhang
- Department of Anesthesiology, The Second Affiliated Hospital of Xi'an Jiaotong University, 157# West 5 Road, 710004, Xi'an, Shaanxi, China.
| |
Collapse
|
27
|
Electroacupuncture-Regulated miR-34a-3p/PDCD6 Axis Promotes Post-Spinal Cord Injury Recovery in Both In Vitro and In Vivo Settings. J Immunol Res 2022; 2022:9329494. [PMID: 36132985 PMCID: PMC9484976 DOI: 10.1155/2022/9329494] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 08/04/2022] [Accepted: 08/12/2022] [Indexed: 11/18/2022] Open
Abstract
Electroacupuncture (EA) could enhance neuroregeneration and posttraumatic conditions; however, the underlying regulatory mechanisms remain ambiguous. PDCD6 (programmed cell death 6) is an established proapoptotic regulator which is responsible for motoneuronal death. However, its potential regulatory role in post-spinal cord injury (SCI) regeneration has remained largely unknown. Further investigations are warranted to clarify the involvement of PDCD6 post-SCI recovery and the underlying mechanisms. In our study, based on bioinformatics prediction, we found that miR-34a-3p might be an upstream regulator miRNA for PDCD6, which was subsequently validated through combined utilization of the qRT-PCR, western blot, and dual-luciferase reporter system. Our in vitro results showed that miR-34a-3p might promote the in vitro differentiation of neural stem cell (NSC) through suppressing PDCD6 and regulating other important neural markers such as fibroblast growth factor receptor 1 (FGFR1), MAP1/2 (MAP kinase kinases 1/2), myelin basic protein (MBP), βIII-tubulin Class III β-tubulin (βIII tubulin), and glial fibrillary acidic protein (GFAP). Notably, in the post-SCI rat model, exogenous miR-34a-3p agomir obviously inhibited the expression of PDCD6 at the protein level and promoted neuronal proliferation, motoneurons regeneration, and axonal myelination. The restorations at cellular level might contribute to the improved hindlimbs functions of post-SCI rats, which was manifested by the Basso-Beattie-Bresnahan (BBB) locomotor test. The impact of miR-34a-3p was further promoted by EA treatment in vivo. Conclusively, this paper argues that a miR-34a-3p/PDCD6 axis might be a candidate therapeutic target for treating SCI and that the therapeutic effect of EA is driven through this pathway.
Collapse
|
28
|
Xie J, Li J, Ma J, Li M, Wang X, Fu X, Ma Y, Yang H, Li B, Saijilafu. Magnesium Oxide/Poly(l-lactide-co-ε-caprolactone) Scaffolds Loaded with Neural Morphogens Promote Spinal Cord Repair through Targeting the Calcium Influx and Neuronal Differentiation of Neural Stem Cells. Adv Healthc Mater 2022; 11:e2200386. [PMID: 35587044 PMCID: PMC11469078 DOI: 10.1002/adhm.202200386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 04/22/2022] [Indexed: 11/08/2022]
Abstract
Because of the limited regenerative ability of the central nervous system (CNS), effective treatments for spinal cord injury (SCI) are still lacking. After SCI, neuron loss and axon regeneration failure often result in irreversible functional impairment. The calcium overload induced by the N-methyl-D-aspartate receptor (NMDAR) overactivation is critical for cell death in SCI. It has been reported that the magnesium ion (Mg2+ ) can competitively block the NMDAR and reduce the calcium influx, and that sonic hedgehog (Shh) and retinoic acid (RA) are the critical regulators of neuronal differentiation of endogenous neural stem cells (NSCs). Here, magnesium oxide (MgO)/poly (l-lactide-co-ε-caprolactone) (PLCL) scaffold loaded with purmorphamine (PUR, a Shh signaling agonist) and RA is developed and its feasibility in SCI repair is tested. The results showed that the Mg2+ released from MgO attenuated cell apoptosis by blocking the calcium influx, and the PUR/RA promoted the recruitment and neuronal differentiation of endogenous NSCs, thereby reducing the glial scar formation at the SCI lesion site. Furthermore, implantation of PUR/RA-loaded MgO/PLCL scaffold facilitates the partial recovery of a locomotor function of SCI mouse in vivo. Together, findings from this study imply that PUR/RA-loaded MgO/PLCL scaffold may be a promising biomaterial for the clinical treatment of SCI.
Collapse
Affiliation(s)
- Jile Xie
- Department of OrthopaedicsThe First Affiliated Hospital of Soochow University899 Pinghai RoadSuzhouJiangsu215006China
| | - Jiaying Li
- Orthopaedic InstituteMedical CollegeSoochow University1 Shizi RoadSuzhouJiangsu215006China
| | - Jinjin Ma
- Orthopaedic InstituteMedical CollegeSoochow University1 Shizi RoadSuzhouJiangsu215006China
| | - Meimei Li
- Orthopaedic InstituteMedical CollegeSoochow University1 Shizi RoadSuzhouJiangsu215006China
| | - Xingran Wang
- Orthopaedic InstituteMedical CollegeSoochow University1 Shizi RoadSuzhouJiangsu215006China
| | - Xinya Fu
- Orthopaedic InstituteMedical CollegeSoochow University1 Shizi RoadSuzhouJiangsu215006China
| | - Yanxia Ma
- Orthopaedic InstituteMedical CollegeSoochow University1 Shizi RoadSuzhouJiangsu215006China
| | - Huilin Yang
- Department of OrthopaedicsThe First Affiliated Hospital of Soochow University899 Pinghai RoadSuzhouJiangsu215006China
- Orthopaedic InstituteMedical CollegeSoochow University1 Shizi RoadSuzhouJiangsu215006China
| | - Bin Li
- Department of OrthopaedicsThe First Affiliated Hospital of Soochow University899 Pinghai RoadSuzhouJiangsu215006China
- Orthopaedic InstituteMedical CollegeSoochow University1 Shizi RoadSuzhouJiangsu215006China
| | - Saijilafu
- Department of OrthopaedicsThe First Affiliated Hospital of Soochow University899 Pinghai RoadSuzhouJiangsu215006China
- Orthopaedic InstituteMedical CollegeSoochow University1 Shizi RoadSuzhouJiangsu215006China
| |
Collapse
|
29
|
Hou Y, Luo D, Hou Y, Luan J, Zhan J, Chen Z, E S, Xu L, Lin D. Bu Shen Huo Xue decoction promotes functional recovery in spinal cord injury mice by improving the microenvironment to promote axonal regeneration. Chin Med 2022; 17:85. [PMID: 35820953 PMCID: PMC9277908 DOI: 10.1186/s13020-022-00639-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 06/28/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Bu-Shen-Huo-Xue (BSHX) decoction has been used in the postoperative rehabilitation of patients with spinal cord injury in China. In the present study, we aim to reveal the bioactive compounds in BSHX decoction and comprehensively explore the effects of BSHX decoction and the underlying mechanism in spinal cord injury recovery. METHODS The main chemical constituents in BSHX decoction were determined by UPLC-MS/MS. SCI mice were induced by a pneumatic impact device at T9-T10 level of the vertebra, and treated with BSHX decoction. Basso-Beattie-Bresnahan (BBB) score, footprint analysis, hematoxylin-eosin (H&E) staining, Nissl staining and a series of immunofluorescence staining were performed to investigate the functional recovery, glial scar formation and axon regeneration after BSHX treatment. Immunofluorescent staining of bromodeoxyuridine (BrdU), neuronal nuclei (NeuN) and glial fibrillary acidic protein (GFAP) was performed to evaluate the effect of BSHX decoction on neural stem cells (NSCs) proliferation and differentiation. RESULTS We found that the main compounds in BSHX decoction were Gallic acid, 3,4-Dihydroxybenzaldehyde, (+)-Catechin, Paeoniflorin, Rosmarinic acid, and Diosmetin. BSHX decoction improved the pathological findings in SCI mice through invigorating blood circulation and cleaning blood stasis in the lesion site. In addition, it reduced tissue damage and neuron loss by inhibiting astrocytes activation, and promoting the polarization of microglia towards M2 phenotype. The functional recovery test revealed that BSHX treatment improved the motor function recovery post SCI. CONCLUSIONS Our study provided evidence that BSHX treatment could improve the microenvironment of the injured spinal cord to promote axonal regeneration and functional recovery in SCI mice.
Collapse
Affiliation(s)
- Yonghui Hou
- Department of Orthopedic Surgery, Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, No. 111 Dade Road, Guangzhou, 510120, Guangdong, People's Republic of China.,Guangzhou University of Chinese Medicine, No. 12, Jichang Road, Baiyun District, Guangzhou, 510405, Guangdong, People's Republic of China.,Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong, People's Republic of China
| | - Dan Luo
- Department of Orthopedic Surgery, Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, No. 111 Dade Road, Guangzhou, 510120, Guangdong, People's Republic of China.,Guangzhou University of Chinese Medicine, No. 12, Jichang Road, Baiyun District, Guangzhou, 510405, Guangdong, People's Republic of China.,Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong, People's Republic of China
| | - Yu Hou
- Department of Orthopedic Surgery, Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, No. 111 Dade Road, Guangzhou, 510120, Guangdong, People's Republic of China.,Guangzhou University of Chinese Medicine, No. 12, Jichang Road, Baiyun District, Guangzhou, 510405, Guangdong, People's Republic of China.,Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong, People's Republic of China
| | - Jiyao Luan
- Department of Orthopedic Surgery, Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, No. 111 Dade Road, Guangzhou, 510120, Guangdong, People's Republic of China.,Guangzhou University of Chinese Medicine, No. 12, Jichang Road, Baiyun District, Guangzhou, 510405, Guangdong, People's Republic of China.,Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong, People's Republic of China
| | - Jiheng Zhan
- Department of Orthopedic Surgery, Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, No. 111 Dade Road, Guangzhou, 510120, Guangdong, People's Republic of China.,Guangzhou University of Chinese Medicine, No. 12, Jichang Road, Baiyun District, Guangzhou, 510405, Guangdong, People's Republic of China.,Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong, People's Republic of China
| | - Zepeng Chen
- Department of Orthopedic Surgery, Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, No. 111 Dade Road, Guangzhou, 510120, Guangdong, People's Republic of China.,Guangzhou University of Chinese Medicine, No. 12, Jichang Road, Baiyun District, Guangzhou, 510405, Guangdong, People's Republic of China.,Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong, People's Republic of China
| | - Shunmei E
- Guangzhou University of Chinese Medicine, No. 12, Jichang Road, Baiyun District, Guangzhou, 510405, Guangdong, People's Republic of China.,Department of Laboratory Medicine, Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou Higher Education Mega Center, 55 Neihuan Xi Road, Panyu District, Guangzhou, 510120, Guangdong, People's Republic of China
| | - Liangliang Xu
- Guangzhou University of Chinese Medicine, No. 12, Jichang Road, Baiyun District, Guangzhou, 510405, Guangdong, People's Republic of China. .,Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong, People's Republic of China. .,Key Laboratory of Orthopaedics & Traumatology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, People's Republic of China.
| | - Dingkun Lin
- Department of Orthopedic Surgery, Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, No. 111 Dade Road, Guangzhou, 510120, Guangdong, People's Republic of China. .,Guangzhou University of Chinese Medicine, No. 12, Jichang Road, Baiyun District, Guangzhou, 510405, Guangdong, People's Republic of China.
| |
Collapse
|
30
|
Damianakis EI, Benetos IS, Evangelopoulos DS, Kotroni A, Vlamis J, Pneumaticos SG. Stem Cell Therapy for Spinal Cord Injury: A Review of Recent Clinical Trials. Cureus 2022; 14:e24575. [PMID: 35664388 PMCID: PMC9148387 DOI: 10.7759/cureus.24575] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/28/2022] [Indexed: 02/06/2023] Open
|
31
|
Yuan TY, Zhang J, Yu T, Wu JP, Liu QY. 3D Bioprinting for Spinal Cord Injury Repair. Front Bioeng Biotechnol 2022; 10:847344. [PMID: 35519617 PMCID: PMC9065470 DOI: 10.3389/fbioe.2022.847344] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Accepted: 03/18/2022] [Indexed: 11/13/2022] Open
Abstract
Spinal cord injury (SCI) is considered to be one of the most challenging central nervous system injuries. The poor regeneration of nerve cells and the formation of scar tissue after injury make it difficult to recover the function of the nervous system. With the development of tissue engineering, three-dimensional (3D) bioprinting has attracted extensive attention because it can accurately print complex structures. At the same time, the technology of blending and printing cells and related cytokines has gradually been matured. Using this technology, complex biological scaffolds with accurate cell localization can be manufactured. Therefore, this technology has a certain potential in the repair of the nervous system, especially the spinal cord. So far, this review focuses on the progress of tissue engineering of the spinal cord, landmark 3D bioprinting methods, and landmark 3D bioprinting applications of the spinal cord in recent years.
Collapse
|
32
|
Xu GY, Xu S, Zhang YX, Yu ZY, Zou F, Ma XS, Xia XL, Zhang WJ, Jiang JY, Song J. Cell-Free Extracts from Human Fat Tissue with a Hyaluronan-Based Hydrogel Attenuate Inflammation in a Spinal Cord Injury Model through M2 Microglia/Microphage Polarization. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2107838. [PMID: 35333441 DOI: 10.1002/smll.202107838] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 02/25/2022] [Indexed: 06/14/2023]
Abstract
Treatment for spinal cord injuries (SCIs) is often ineffective because SCIs result in a loss of nerve tissue, glial scar formation, local ischemia and secondary inflammation. The current promising strategy for SCI is the combination of bioactive materials and cytokines. Bioactive materials support the injured spinal cord, stabilize the morphology, and avoid excessive inflammatory responses. Fat extract (FE) is a cell-free liquid component containing a variety of cytokines extracted from human fat tissue using mechanical methods. In this research, a biocompatible HAMC (hyaluronan and methylcellulose) loaded with FE is used to treat a model of spinal cord contusion in mice. The composite not only inhibits death of neuro- and vascular cells and leads to the preservation of neural and vascular structure, but also modulates the inflammatory phenotype of macrophages in the locally injured region. Specifically, FE promotes the polarization of macrophages from an inflammatory M1 phenotype to an anti-inflammatory M2 phenotype. During the screening of the involved pathways, it is corroborated that activation of the STAT6/Arg-1 signaling pathway is involved in macrophage M2 polarization. In summary, FE is a promising treatment for SCI, as it is easy to obtain, nonimmunogenic, and effective.
Collapse
Affiliation(s)
- Guang-Yu Xu
- Department of Orthopedics, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Shun Xu
- Department of Orthopedics, Shanghai Fifth People's Hospital, Fudan University, Shanghai, 200240, China
| | - Yu-Xuan Zhang
- Department of Orthopedics, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Zi-You Yu
- Department of Plastic and Reconstructive Surgery, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- Shanghai Key Laboratory of Tissue Engineering, Shanghai, 200011, China
| | - Fei Zou
- Department of Orthopedics, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Xiao-Sheng Ma
- Department of Orthopedics, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Xin-Lei Xia
- Department of Orthopedics, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Wen-Jie Zhang
- Department of Plastic and Reconstructive Surgery, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- Shanghai Key Laboratory of Tissue Engineering, Shanghai, 200011, China
| | - Jian-Yuan Jiang
- Department of Orthopedics, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Jian Song
- Department of Orthopedics, Huashan Hospital, Fudan University, Shanghai, 200040, China
| |
Collapse
|
33
|
Zabarsky ZK, Luo TD, Ma X, Dean GM, Smith TL. Pharmacologic Recruitment of Endogenous Neural Stem/Progenitor Cells for the Treatment of Spinal Cord Injury. Spine (Phila Pa 1976) 2022; 47:505-513. [PMID: 34669674 DOI: 10.1097/brs.0000000000004264] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN Laboratory study using a rat T9 contusion model of spinal cord injury. OBJECTIVE This study aims to examine whether a combinatory treatment of Pioglitazone (PGZ) and granulocyte colony-stimulating factor (GCSF) can support neural stem/progenitor cells (NSPCs) directly and provide a sustainable microenvironment through immunomodulatory mechanisms. SUMMARY OF BACKGROUND DATA Neuroinflammation plays a crucial role in the progression of spinal cord injury (SCI) and hinders NSPC-mediated repair and regeneration. Broad acting drugs that mitigate inflammation and support NSPC proliferation have not been tested together in SCI research models. METHODS Isolated NSPCs were treated with vehicle control, PGZ, GCSF, or both PGZ and GSCF for 24 hours and stained with proliferation marker Ki67. Adult female Sprague-Dawley rats sustained moderate-to-severe contusion-based SCI at T9 and were administered either vehicle control, PGZ, GCSF, or both PGZ and GCSF treatments. RESULTS Immunocytochemistry revealed that cultured NSPCs treated with both drugs produced higher numbers of actively proliferating cells and total cell numbers. ELISA on spinal cord tissue lysates at 1, 3, and 7 days post-injury (DPI) demonstrated that animals treated with PGZ, GCSF, or combination therapy showed significantly higher doublecortin levels at 7 DPI compared to control animals (P < 0.05). Immunohistochemistry of injured tissue at 3, 7, and 14 DPI revealed no difference of ependymal NSPC proliferation between groups, but showed a significant decrease in lesion size with combination therapy compared to controls. Functional recovery was assessed by the Basso, Beattie, Bresnahan locomotor rating scale. Animals treated with both drugs had significantly higher levels of function at 1 (P < 0.001), 3 (P < 0.001), 7 (P < 0.05), and 14 (P < 0.05) DPI compared to controls. CONCLUSION These results indicate that PGZ and GCSF treatment synergistically enhance NSPCs numbers and improve functional recovery after SCI. Our findings support an immunomodulatory strategy to recruit native NSPCs as a potential acute care intervention for SCI.Level of Evidence: N/A.
Collapse
Affiliation(s)
- Zachary K Zabarsky
- Wake Forest School of Medicine, Department of Orthopaedic Surgery, Winston-Salem, NC
| | | | | | | | | |
Collapse
|
34
|
Shaker MR, Kahtan A, Prasad R, Lee JH, Pietrogrande G, Leeson HC, Sun W, Wolvetang EJ, Slonchak A. Neural Epidermal Growth Factor-Like Like Protein 2 Is Expressed in Human Oligodendroglial Cell Types. Front Cell Dev Biol 2022; 10:803061. [PMID: 35265611 PMCID: PMC8899196 DOI: 10.3389/fcell.2022.803061] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 01/06/2022] [Indexed: 01/14/2023] Open
Abstract
Neural epidermal growth factor-like like 2 (NELL2) is a cytoplasmic and secreted glycosylated protein with six epidermal growth factor-like domains. In animal models, NELL2 is predominantly expressed in neural tissues where it regulates neuronal differentiation, polarization, and axon guidance, but little is known about the role of NELL2 in human brain development. In this study, we show that rostral neural stem cells (rNSC) derived from human-induced pluripotent stem cell (hiPSC) exhibit particularly strong NELL2 expression and that NELL2 protein is enriched at the apical side of neural rosettes in hiPSC-derived brain organoids. Following differentiation of human rostral NSC into neurons, NELL2 remains robustly expressed but changes its subcellular localization from >20 small cytoplasmic foci in NSC to one–five large peri-nuclear puncta per neuron. Unexpectedly, we discovered that in human brain organoids, NELL2 is readily detectable in the oligodendroglia and that the number of NELL2 puncta increases as oligodendrocytes mature. Artificial intelligence-based machine learning further predicts a strong association of NELL2 with multiple human white matter diseases, suggesting that NELL2 may possess yet unexplored roles in regulating oligodendrogenesis and/or myelination during human cortical development and maturation.
Collapse
Affiliation(s)
- Mohammed R Shaker
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, Australia
| | - Amna Kahtan
- St Cloud Technical & Community College, St Cloud, MN, United States
| | - Renuka Prasad
- Department of Anatomy, Brain Korea 21 Plus Program for Biomedical Science, Korea University College of Medicine, Seoul, South Korea
| | - Ju-Hyun Lee
- Department of Anatomy, Brain Korea 21 Plus Program for Biomedical Science, Korea University College of Medicine, Seoul, South Korea
| | - Giovanni Pietrogrande
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, Australia
| | - Hannah C Leeson
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, Australia
| | - Woong Sun
- Department of Anatomy, Brain Korea 21 Plus Program for Biomedical Science, Korea University College of Medicine, Seoul, South Korea
| | - Ernst J Wolvetang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, Australia
| | - Andrii Slonchak
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
35
|
Kiyotake EA, Martin MD, Detamore MS. Regenerative rehabilitation with conductive biomaterials for spinal cord injury. Acta Biomater 2022; 139:43-64. [PMID: 33326879 DOI: 10.1016/j.actbio.2020.12.021] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 11/24/2020] [Accepted: 12/09/2020] [Indexed: 02/07/2023]
Abstract
The individual approaches of regenerative medicine efforts alone and rehabilitation efforts alone have not yet fully restored function after severe spinal cord injury (SCI). Regenerative rehabilitation may be leveraged to promote regeneration of the spinal cord tissue, and promote reorganization of the regenerated neural pathways and intact spinal circuits for better functional recovery for SCI. Conductive biomaterials may be a linchpin that empowers the synergy between regenerative medicine and rehabilitation approaches, as electrical stimulation applied to the spinal cord could facilitate neural reorganization. In this review, we discuss current regenerative medicine approaches in clinical trials and the rehabilitation, or neuromodulation, approaches for SCI, along with their respective translational limitations. Furthermore, we review the translational potential, in a surgical context, of conductive biomaterials (e.g., conductive polymers, carbon-based materials, metallic nanoparticle-based materials) as they pertain to SCI. While pre-formed scaffolds may be difficult to translate to human contusion SCIs, injectable composites that contain blended conductive components and can form within the injury may be more translational. However, given that there are currently no in vivo SCI studies that evaluated conductive materials combined with rehabilitation approaches, we discuss several limitations of conductive biomaterials, including demonstrating safety and efficacy, that will need to be addressed in the future for conductive biomaterials to become SCI therapeutics. Even so, the use of conductive biomaterials creates a synergistic opportunity to merge the fields of regenerative medicine and rehabilitation and redefine what regenerative rehabilitation means for the spinal cord. STATEMENT OF SIGNIFICANCE: For spinal cord injury (SCI), the individual approaches of regenerative medicine and rehabilitation are insufficient to fully restore functional recovery; however, the goal of regenerative rehabilitation is to combine these two disparate fields to maximize the functional outcomes. Concepts similar to regenerative rehabilitation for SCI have been discussed in several reviews, but for the first time, this review considers how conductive biomaterials may synergize the two approaches. We cover current regenerative medicine and rehabilitation approaches for SCI, and the translational advantages and disadvantages, in a surgical context, of conductive biomaterials used in biomedical applications that may be additionally applied to SCI. Furthermore, we identify the current limitations and translational challenges for conductive biomaterials before they may become therapeutics for SCI.
Collapse
|
36
|
Repetitive Trans Spinal Magnetic Stimulation Improves Functional Recovery and Tissue Repair in Contusive and Penetrating Spinal Cord Injury Models in Rats. Biomedicines 2021; 9:biomedicines9121827. [PMID: 34944643 PMCID: PMC8698720 DOI: 10.3390/biomedicines9121827] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 11/30/2021] [Accepted: 12/01/2021] [Indexed: 12/22/2022] Open
Abstract
Spinal cord injury (SCI) is an incurable condition in which the brain is disconnected partially or completely from the periphery. Mainly, SCIs are traumatic and are due to traffic, domestic or sport accidents. To date, SCIs are incurable and, most of the time, leave the patients with a permanent loss of sensitive and motor functions. Therefore, for several decades, researchers have tried to develop treatments to cure SCI. Among them, recently, our lab has demonstrated that, in mice, repetitive trans-spinal magnetic stimulation (rTSMS) can, after SCI, modulate the lesion scar and can induce functional locomotor recovery non-invasively. These results are promising; however, before we can translate them to humans, it is important to reproduce them in a more clinically relevant model. Indeed, SCIs do not lead to the same cellular events in mice and humans. In particular, SCIs in humans induce the formation of cystic cavities. That is why we propose here to validate the effects of rTSMS in a rat animal model in which SCI leads to the formation of cystic cavities after penetrating and contusive SCI. To do so, several techniques, including immunohistochemical, behavioral and MRI, were performed. Our results demonstrate that rTSMS, in both SCI models, modulates the lesion scar by decreasing the formation of cystic cavities and by improving axonal survival. Moreover, rTSMS, in both models, enhances functional locomotor recovery. Altogether, our study describes that rTSMS exerts positive effects after SCI in rats. This study is a further step towards the use of this treatment in humans.
Collapse
|
37
|
Chevreau R, Ghazale H, Ripoll C, Chalfouh C, Delarue Q, Hemonnot-Girard AL, Mamaeva D, Hirbec H, Rothhut B, Wahane S, Perrin FE, Noristani HN, Guerout N, Hugnot JP. RNA Profiling of Mouse Ependymal Cells after Spinal Cord Injury Identifies the Oncostatin Pathway as a Potential Key Regulator of Spinal Cord Stem Cell Fate. Cells 2021; 10:cells10123332. [PMID: 34943841 PMCID: PMC8699053 DOI: 10.3390/cells10123332] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 10/30/2021] [Accepted: 11/05/2021] [Indexed: 01/31/2023] Open
Abstract
Ependymal cells reside in the adult spinal cord and display stem cell properties in vitro. They proliferate after spinal cord injury and produce neurons in lower vertebrates but predominantly astrocytes in mammals. The mechanisms underlying this glial-biased differentiation remain ill-defined. We addressed this issue by generating a molecular resource through RNA profiling of ependymal cells before and after injury. We found that these cells activate STAT3 and ERK/MAPK signaling post injury and downregulate cilia-associated genes and FOXJ1, a central transcription factor in ciliogenesis. Conversely, they upregulate 510 genes, seven of them more than 20-fold, namely Crym, Ecm1, Ifi202b, Nupr1, Rbp1, Thbs2 and Osmr—the receptor for oncostatin, a microglia-specific cytokine which too is strongly upregulated after injury. We studied the regulation and role of Osmr using neurospheres derived from the adult spinal cord. We found that oncostatin induced strong Osmr and p-STAT3 expression in these cells which is associated with reduction of proliferation and promotion of astrocytic versus oligodendrocytic differentiation. Microglial cells are apposed to ependymal cells in vivo and co-culture experiments showed that these cells upregulate Osmr in neurosphere cultures. Collectively, these results support the notion that microglial cells and Osmr/Oncostatin pathway may regulate the astrocytic fate of ependymal cells in spinal cord injury.
Collapse
Affiliation(s)
- Robert Chevreau
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, 34295 Montpellier, France; (R.C.); (H.G.); (C.R.); (A.L.H.-G.); (H.H.); (B.R.)
| | - Hussein Ghazale
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, 34295 Montpellier, France; (R.C.); (H.G.); (C.R.); (A.L.H.-G.); (H.H.); (B.R.)
| | - Chantal Ripoll
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, 34295 Montpellier, France; (R.C.); (H.G.); (C.R.); (A.L.H.-G.); (H.H.); (B.R.)
| | - Chaima Chalfouh
- EA3830 GRHV, Institute for Research and Innovation in Biomedicine (IRIB), Normandie Université, UNIROUEN, 76000 Rouen, France; (C.C.); (Q.D.); (N.G.)
| | - Quentin Delarue
- EA3830 GRHV, Institute for Research and Innovation in Biomedicine (IRIB), Normandie Université, UNIROUEN, 76000 Rouen, France; (C.C.); (Q.D.); (N.G.)
| | - Anne Laure Hemonnot-Girard
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, 34295 Montpellier, France; (R.C.); (H.G.); (C.R.); (A.L.H.-G.); (H.H.); (B.R.)
| | - Daria Mamaeva
- Institut des Neurosciences de Montpellier, Université de Montpellier, INSERM, 34295 Montpellier, France;
| | - Helene Hirbec
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, 34295 Montpellier, France; (R.C.); (H.G.); (C.R.); (A.L.H.-G.); (H.H.); (B.R.)
| | - Bernard Rothhut
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, 34295 Montpellier, France; (R.C.); (H.G.); (C.R.); (A.L.H.-G.); (H.H.); (B.R.)
| | - Shalaka Wahane
- Departments of Neurobiology and Neurosurgery, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA;
| | - Florence Evelyne Perrin
- Department of Biology, University of Montpellier, INSERM MMDN, EPHE, 34295 Montpellier, France;
- Institut Universitaire de France (IUF), 75231 Paris, France
| | - Harun Najib Noristani
- Shriners Hospitals Pediatric Research Center and Center for Neural Repair, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA;
| | - Nicolas Guerout
- EA3830 GRHV, Institute for Research and Innovation in Biomedicine (IRIB), Normandie Université, UNIROUEN, 76000 Rouen, France; (C.C.); (Q.D.); (N.G.)
| | - Jean Philippe Hugnot
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, 34295 Montpellier, France; (R.C.); (H.G.); (C.R.); (A.L.H.-G.); (H.H.); (B.R.)
- Correspondence:
| |
Collapse
|
38
|
Santos SIP, de Oliveira VC, Pieri NCG, Bressan FF, Ambrósio CE, Feitosa MLT. Isolation and characterization of neural stem cells from fetal canine spinal cord. Neurosci Lett 2021; 765:136293. [PMID: 34662661 DOI: 10.1016/j.neulet.2021.136293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 09/29/2021] [Accepted: 10/10/2021] [Indexed: 10/20/2022]
Abstract
Neurogenesis in adult mammals occurs mainly in the subventricular and subgranular areas of the brain, but there are also reports of its occurrence in the spinal cord. In a study on rats, neural stem cells and neuroprogenitor cells could be obtained through primary spinal cord culture, but there are no studies on these cells in canine species, to date. Dogs represent an appropriate animal model for studies on neurogenesis and neurological disorders. In addition, they are animals of great affective value, and the therapeutic use of neural stem cells can represent a breakthrough in regenerative veterinary medicine. Therefore, this study aimed to determine a protocol for the isolation, culture, and characterization of neural and neuroprogenitor stem cells derived from the spinal cord of canine fetuses. The cells were isolated from spinal cord fragments and cultured in serum-free culture medium supplemented with EGF and FGF-2 growth factors. These cells were observed daily by optical microscopy to analyze their morphological characteristics. From the third day in vitro, it was possible to observe translucent cell groupings, similar to the neurospheres, which approximately ranged from 50 µm to 200 µm at seven days in vitro. Throughout the culture period, the neurospheres developed ribbons in their periphery that migrated and communicated with other neurospheres. RT-PCR revealed that the cells expressed the characteristic genes SOX2, NESTIN, and GFAP. In addition to gene expression, the cells were phenotypically marked in the immunofluorescence assay for the proteins Nestin, GFAP, and β-tubulin III, characterizing them as neurospheres. Our results suggest that the spinal cord may be a source of neural stem cells and neural progenitor cells in canine fetuses. These cells may be an interesting option for neurogenesis and neuroregenerative therapy studies.
Collapse
Affiliation(s)
- Sarah Ingrid Pinto Santos
- Department of Veterinary Clinics, State University of Maranhão, Maranhão, Brazil; Faculty of Animal Science and Food Engineering, Sao Paulo University, São Paulo, Brazil
| | | | | | | | | | | |
Collapse
|
39
|
Campos J, Silva NA, Salgado AJ. Nutritional interventions for spinal cord injury: preclinical efficacy and molecular mechanisms. Nutr Rev 2021; 80:1206-1221. [PMID: 34472615 DOI: 10.1093/nutrit/nuab068] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Spinal cord injury (SCI) is a debilitating condition that leads to motor, sensory, and autonomic impairments. Its intrinsic pathophysiological complexity has hindered the establishment of effective treatments for decades. Nutritional interventions (NIs) for SCI have been proposed as a route to circumvent some of the problems associated with this condition. Results obtained in animal models point to a more holistic effect, rather than to specific modulation, of several relevant SCI pathophysiological processes. Indeed, published data have shown NI improves energetic imbalance, oxidative damage, and inflammation, which are promoters of improved proteostasis and neurotrophic signaling, leading ultimately to neuroprotection and neuroplasticity. This review focuses on the most well-documented Nis. The mechanistic implications and their translational potential for SCI are discussed.
Collapse
Affiliation(s)
- Jonas Campos
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Nuno A Silva
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - António J Salgado
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| |
Collapse
|
40
|
Diversity of Adult Neural Stem and Progenitor Cells in Physiology and Disease. Cells 2021; 10:cells10082045. [PMID: 34440814 PMCID: PMC8392301 DOI: 10.3390/cells10082045] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/23/2021] [Accepted: 08/03/2021] [Indexed: 02/07/2023] Open
Abstract
Adult neural stem and progenitor cells (NSPCs) contribute to learning, memory, maintenance of homeostasis, energy metabolism and many other essential processes. They are highly heterogeneous populations that require input from a regionally distinct microenvironment including a mix of neurons, oligodendrocytes, astrocytes, ependymal cells, NG2+ glia, vasculature, cerebrospinal fluid (CSF), and others. The diversity of NSPCs is present in all three major parts of the CNS, i.e., the brain, spinal cord, and retina. Intrinsic and extrinsic signals, e.g., neurotrophic and growth factors, master transcription factors, and mechanical properties of the extracellular matrix (ECM), collectively regulate activities and characteristics of NSPCs: quiescence/survival, proliferation, migration, differentiation, and integration. This review discusses the heterogeneous NSPC populations in the normal physiology and highlights their potentials and roles in injured/diseased states for regenerative medicine.
Collapse
|
41
|
Patel M, Anderson J, Lei S, Finkel Z, Rodriguez B, Esteban F, Risman R, Li Y, Lee KB, Lyu YL, Cai L. Nkx6.1 enhances neural stem cell activation and attenuates glial scar formation and neuroinflammation in the adult injured spinal cord. Exp Neurol 2021; 345:113826. [PMID: 34343529 DOI: 10.1016/j.expneurol.2021.113826] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 07/06/2021] [Accepted: 07/27/2021] [Indexed: 12/31/2022]
Abstract
Nkx6.1 plays an essential role during the embryonic development of the spinal cord. However, its role in the adult and injured spinal cord is not well understood. Here we show that lentivirus-mediated Nkx6.1 expression in the adult injured mouse spinal cord promotes cell proliferation and activation of endogenous neural stem/progenitor cells (NSPCs) at the acute phase of injury. In the chronic phase, Nkx6.1 increases the number of interneurons, reduces the number of reactive astrocytes, minimizes glial scar formation, and represses neuroinflammation. Transcriptomic analysis reveals that Nkx6.1 upregulates the sequential expression of genes involved in cell proliferation, neural differentiation, and Notch signaling pathway, downregulates genes and pathways involved in neuroinflammation, reactive astrocyte activation, and glial scar formation. Together, our findings support the potential role of Nkx6.1 in neural regeneration in the adult injured spinal cord.
Collapse
Affiliation(s)
- Misaal Patel
- Department of Biomedical Engineering, Rutgers University, 599 Taylor Road, Piscataway, NJ 08854, USA
| | - Jeremy Anderson
- Department of Biomedical Engineering, Rutgers University, 599 Taylor Road, Piscataway, NJ 08854, USA
| | - Shunyao Lei
- Department of Biomedical Engineering, Rutgers University, 599 Taylor Road, Piscataway, NJ 08854, USA
| | - Zachary Finkel
- Department of Biomedical Engineering, Rutgers University, 599 Taylor Road, Piscataway, NJ 08854, USA
| | - Brianna Rodriguez
- Department of Biomedical Engineering, Rutgers University, 599 Taylor Road, Piscataway, NJ 08854, USA
| | - Fatima Esteban
- Department of Biomedical Engineering, Rutgers University, 599 Taylor Road, Piscataway, NJ 08854, USA
| | - Rebecca Risman
- Department of Biomedical Engineering, Rutgers University, 599 Taylor Road, Piscataway, NJ 08854, USA
| | - Ying Li
- Department of Biomedical Engineering, Rutgers University, 599 Taylor Road, Piscataway, NJ 08854, USA
| | - Ki-Bum Lee
- Department of Biomedical Engineering, Rutgers University, 599 Taylor Road, Piscataway, NJ 08854, USA; Department of Chemistry and Chemical Biology, Rutgers University, 123 Bevier Road, Piscataway, NJ 08854, USA
| | - Yi Lisa Lyu
- Department of Pharmacology, Rutgers University-Robert Wood Johnson Medical School, 675 Hoes Lane, Piscataway, NJ 08854, USA
| | - Li Cai
- Department of Biomedical Engineering, Rutgers University, 599 Taylor Road, Piscataway, NJ 08854, USA.
| |
Collapse
|
42
|
Guérout N. Plasticity of the Injured Spinal Cord. Cells 2021; 10:cells10081886. [PMID: 34440655 PMCID: PMC8395000 DOI: 10.3390/cells10081886] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 07/21/2021] [Accepted: 07/23/2021] [Indexed: 12/11/2022] Open
Abstract
Complete spinal cord injury (SCI) leads to permanent motor, sensitive and sensory deficits. In humans, there is currently no therapy to promote recovery and the only available treatments include surgical intervention to prevent further damage and symptomatic relief of pain and infections in the acute and chronic phases, respectively. Basically, the spinal cord is classically viewed as a nonregenerative tissue with limited plasticity. Thereby the establishment of the “glial” scar which appears within the SCI is mainly described as a hermetic barrier for axon regeneration. However, recent discoveries have shed new light on the intrinsic functional plasticity and endogenous recovery potential of the spinal cord. In this review, we will address the different aspects that the spinal cord plasticity can take on. Indeed, different experimental paradigms have demonstrated that axonal regrowth can occur even after complete SCI. Moreover, recent articles have demonstrated too that the “glial” scar is in fact composed of several cellular populations and that each of them exerts specific roles after SCI. These recent discoveries underline the underestimation of the plasticity of the spinal cord at cellular and molecular levels. Finally, we will address the modulation of this endogenous spinal cord plasticity and the perspectives of future therapeutic opportunities which can be offered by modulating the injured spinal cord microenvironment.
Collapse
Affiliation(s)
- Nicolas Guérout
- EA3830 GRHV, Institute for Research and Innovation in Biomedicine (IRIB), Normandie Université, UNIROUEN, 76000 Rouen, France
| |
Collapse
|
43
|
Fang C, Sun J, Wei L, Gao F, Qian J. Oscillating field stimulation promotes recovery from spinal cord injury in rats by regulating the differentiation of endogenous neural stem cells. Exp Ther Med 2021; 22:979. [PMID: 34345261 PMCID: PMC8311232 DOI: 10.3892/etm.2021.10411] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 06/26/2020] [Indexed: 12/25/2022] Open
Abstract
The mammalian spinal cord (SC) has a limited self-repair capacity and exogenous treatments are yet to produce substantial functional recovery following SC injury (SCI). The SC contains endogenous neural stem cells (NSCs) with multi-lineage differentiation potential and it may be possible to restore function via interventions that promote NSC differentiation following SCI. Oscillating field stimulation (OFS) has been reported to regulate the Wnt signaling pathway, a known modulator of NSC differentiation. However, the effects of OFS on NSC differentiation following SCI and associated functional recovery have not been previously examined. In the current study, the Basso-Beattie-Bresnahan (BBB) score was used to assess locomotion recovery following SCI in rats and immunofluorescence double-staining was used to examine the regeneration of neurons and oligodendrocytes derived from NSCs. Furthermore, Nissl staining was performed to assess the viability and survival of neurons following SCI, while recovery of the myelin sheath was examined by uranium-lead staining under transmission electron microscopy. OFS delivered via an implanted stimulator enhanced the differentiation of NSCs into neurons and oligodendrocytes and accelerated the regeneration of myelinated axons. Additionally, BBB scores revealed superior locomotion recovery in OFS-treated rats compared with SCI controls. Collectively, these results indicated that OFS may be a feasible strategy to promote SCI recovery by regulating the differentiation of endogenous NSCs.
Collapse
Affiliation(s)
- Chao Fang
- Department of Orthopedics, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, P.R. China
| | - Jian Sun
- Department of Orthopedics, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, P.R. China
| | - Laifu Wei
- Department of Spine Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230031, P.R. China
| | - Fei Gao
- Department of Spine Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230031, P.R. China
| | - Jun Qian
- Department of Spine Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230031, P.R. China
| |
Collapse
|
44
|
Zhao CG, Qin J, Li J, Jiang S, Ju F, Sun W, Ren Z, Ji YQ, Wang R, Sun XL, Mou X, Yuan H. LINGO-1 regulates Wnt5a signaling during neural stem and progenitor cell differentiation by modulating miR-15b-3p levels. Stem Cell Res Ther 2021; 12:372. [PMID: 34187584 PMCID: PMC8243903 DOI: 10.1186/s13287-021-02452-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 06/07/2021] [Indexed: 11/22/2022] Open
Abstract
Background Manipulation of neural stem and progenitor cells (NSPCs) is critical for the successful treatment of spinal cord injury (SCI) by NSPC transplantation, since their differentiation into neurons and oligodendrocytes can be inhibited by factors present in inflamed myelin. In this study, we examined the effects of LINGO-1 on spinal cord-derived NSPC (sp-NSPC) differentiation, the underlying mechanisms of action, and the functional recovery of mice after transplantation of manipulated cells. Methods sp-NSPCs were harvested from female adult C57/BL6 mice after SCI induced with an NYU impactor. These cells were infected with lentiviral vectors containing LINGO-1 shRNA sequence or a scrambled control and transplanted into SCI mice. Tuj-1- and GFAP-positive cells were assessed by immunofluorescence staining. Wnt5a, p-JNK, JNK, and β-catenin expression was determined by Western blot and RT-qPCR. miRNAs were sequenced to detect changes in miRNA expression. Motor function was evaluated 0–35 days post-surgery by means of the Basso Mouse Scale (BMS) and by the rotarod performance test. Results We discovered that LINGO-1 shRNA increased neuronal differentiation of sp-NSPCs while decreasing astrocyte differentiation. These effects were accompanied by elevated Wnt5a protein expression, but unexpectedly, no changes in Wnt5a mRNA levels. miRNA-sequence analysis demonstrated that miR-15b-3p was a downstream mediator of LINGO-1 which suppressed Wnt5a expression. Transplantation of LINGO-1 shRNA-treated sp-NSPCs into SCI mice promoted neural differentiation, wound compaction, and motor function recovery. Conclusions LINGO-1 shRNA promotes neural differentiation of sp-NSPCs and Wnt5a expression, probably by downregulating miR-15b-3p. Transplantation of LINGO-1 shRNA-treated NSPCs promotes recovery of motor function after SCI, highlighting its potential as a target for SCI treatment.
Collapse
Affiliation(s)
- Chen-Guang Zhao
- Department of Rehabilitation Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Jie Qin
- Department of Orthopedics, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Jia Li
- Department of Medicine and Health, University Bretagne Occidentale, Brest, France
| | - Shan Jiang
- Department of Rehabilitation Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Fen Ju
- Department of Rehabilitation Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Wei Sun
- Department of Rehabilitation Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Zhen Ren
- Department of Ultrasound, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Yu-Qiang Ji
- Department of Central Laboratory, The First Hospital of Xi'an, Xi'an, China
| | - Rui Wang
- Department of Orthopedics, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xiao-Long Sun
- Department of Rehabilitation Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Xiang Mou
- Department of Rehabilitation Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Hua Yuan
- Department of Rehabilitation Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, China.
| |
Collapse
|
45
|
Single-cell RNA sequencing reveals Nestin + active neural stem cells outside the central canal after spinal cord injury. SCIENCE CHINA-LIFE SCIENCES 2021; 65:295-308. [PMID: 34061300 DOI: 10.1007/s11427-020-1930-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Accepted: 03/15/2021] [Indexed: 10/21/2022]
Abstract
Neural stem cells (NSCs) in the spinal cord hold great potential for repair after spinal cord injury (SCI). The ependyma in the central canal (CC) region has been considered as the NSCs source in the spinal cord. However, the ependyma function as NSCs after SCI is still under debate. We used Nestin as a marker to isolate potential NSCs and their immediate progeny, and characterized the cells before and after SCI by single-cell RNA-sequencing (scRNA-seq). We identified two subgroups of NSCs: the subgroup located within the CC cannot prime to active NSCs after SCI, while the subgroup located outside the CC were activated and exhibited the active NSCs properties after SCI. We demonstrated the comprehensive dynamic transcriptome of NSCs from quiescent to active NSCs after SCI. This study reveals that Nestin+ cells outside CC were NSCs that activated upon SCI and may thus serve as endogenous NSCs for regenerative treatment of SCI in the future.
Collapse
|
46
|
Nambu Y, Ohira K, Morita M, Yasumoto H, Kurganov E, Miyata S. Effects of leptin on proliferation of astrocyte- and tanycyte-like neural stem cells in the adult mouse medulla oblongata. Neurosci Res 2021; 173:44-53. [PMID: 34058263 DOI: 10.1016/j.neures.2021.05.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 05/19/2021] [Accepted: 05/26/2021] [Indexed: 10/21/2022]
Abstract
Astrocyte- and tanycyte-like neural stem cells (NSCs) were recently detected in the area postrema (AP) and central canal (CC) of the adult medulla oblongata, respectively. The present study aimed to examine dynamical behaviors of the astrocyte- and tanycyte-like NSCs of the mouse medulla oblongata to leptin. The neurosphere assay identified astrocytes in the AP and tanycytes in the CC as NSCs based on their self-renewing neurospherogenic potential. Both NSCs in neurosphere cultures were multipotent cells that generate astrocytes, oligodendrocytes, and neurons. Astrocyte-like NSCs actively proliferated and tanycyte-like NSCs were quiescent under physiologically-relevant in vivo conditions. Chronic leptin treatment promoted proliferation of astrocyte-like NSCs in the AP both in vitro and in vivo. Leptin receptors were expressed in astrocyte-like, but not tanycyte-like NSCs. Food deprivation significantly diminished proliferation of astrocyte-like NSCs. Therefore, the present study indicates that proliferation of astrocyte-like, but not tanycyte-like NSCs is regulated by nutritional conditions.
Collapse
Affiliation(s)
- Yuri Nambu
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan
| | - Koji Ohira
- Laboratory of Nutritional Brain Science, Department of Food Science and Nutrition, Mukogawa Women's University, Nishinomiya, Hyogo, Japan
| | - Mitsuhiro Morita
- Department of Biology, Graduate School of Science, Kobe University, Kobe, Japan
| | - Hiroki Yasumoto
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan
| | - Erkin Kurganov
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan
| | - Seiji Miyata
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan.
| |
Collapse
|
47
|
Patel M, Li Y, Anderson J, Castro-Pedrido S, Skinner R, Lei S, Finkel Z, Rodriguez B, Esteban F, Lee KB, Lyu YL, Cai L. Gsx1 promotes locomotor functional recovery after spinal cord injury. Mol Ther 2021; 29:2469-2482. [PMID: 33895323 PMCID: PMC8353206 DOI: 10.1016/j.ymthe.2021.04.027] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 03/01/2021] [Accepted: 04/16/2021] [Indexed: 12/12/2022] Open
Abstract
Promoting residential cells, particularly endogenous neural stem and progenitor cells (NSPCs), for tissue regeneration represents a potential strategy for the treatment of spinal cord injury (SCI). However, adult NSPCs differentiate mainly into glial cells and contribute to glial scar formation at the site of injury. Gsx1 is known to regulate the generation of excitatory and inhibitory interneurons during embryonic development of the spinal cord. In this study, we show that lentivirus-mediated expression of Gsx1 increases the number of NSPCs in a mouse model of lateral hemisection SCI during the acute stage. Subsequently, Gsx1 expression increases the generation of glutamatergic and cholinergic interneurons and decreases the generation of GABAergic interneurons in the chronic stage of SCI. Importantly, Gsx1 reduces reactive astrogliosis and glial scar formation, promotes serotonin (5-HT) neuronal activity, and improves the locomotor function of the injured mice. Moreover, RNA sequencing (RNA-seq) analysis reveals that Gsx1-induced transcriptome regulation correlates with NSPC signaling, NSPC activation, neuronal differentiation, and inhibition of astrogliosis and scar formation. Collectively, our study provides molecular insights for Gsx1-mediated functional recovery and identifies the potential of Gsx1 gene therapy for injuries in the spinal cord and possibly other parts of the central nervous system.
Collapse
Affiliation(s)
- Misaal Patel
- Department of Biomedical Engineering, Rutgers University, 599 Taylor Road, Piscataway, NJ 08854, USA
| | - Ying Li
- Department of Biomedical Engineering, Rutgers University, 599 Taylor Road, Piscataway, NJ 08854, USA
| | - Jeremy Anderson
- Department of Biomedical Engineering, Rutgers University, 599 Taylor Road, Piscataway, NJ 08854, USA
| | - Sofia Castro-Pedrido
- Department of Biomedical Engineering, Rutgers University, 599 Taylor Road, Piscataway, NJ 08854, USA
| | - Ryan Skinner
- Department of Biomedical Engineering, Rutgers University, 599 Taylor Road, Piscataway, NJ 08854, USA
| | - Shunyao Lei
- Department of Biomedical Engineering, Rutgers University, 599 Taylor Road, Piscataway, NJ 08854, USA
| | - Zachary Finkel
- Department of Biomedical Engineering, Rutgers University, 599 Taylor Road, Piscataway, NJ 08854, USA
| | - Brianna Rodriguez
- Department of Biomedical Engineering, Rutgers University, 599 Taylor Road, Piscataway, NJ 08854, USA
| | - Fatima Esteban
- Department of Biomedical Engineering, Rutgers University, 599 Taylor Road, Piscataway, NJ 08854, USA
| | - Ki-Bum Lee
- Department of Biomedical Engineering, Rutgers University, 599 Taylor Road, Piscataway, NJ 08854, USA; Department of Chemistry and Chemical Biology, Rutgers University, 123 Bevier Road, Piscataway, NJ 08854, USA
| | - Yi Lisa Lyu
- Department of Pharmacology, Rutgers-Robert Wood Johnson Medical School, 675 Hoes Lane, Piscataway, NJ 08854, USA
| | - Li Cai
- Department of Biomedical Engineering, Rutgers University, 599 Taylor Road, Piscataway, NJ 08854, USA.
| |
Collapse
|
48
|
Liu Y, Lou WPK, Fei JF. The engine initiating tissue regeneration: does a common mechanism exist during evolution? CELL REGENERATION (LONDON, ENGLAND) 2021; 10:12. [PMID: 33817749 PMCID: PMC8019671 DOI: 10.1186/s13619-020-00073-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 12/29/2020] [Indexed: 12/16/2022]
Abstract
A successful tissue regeneration is a very complex process that requires a precise coordination of many molecular, cellular and physiological events. One of the critical steps is to convert the injury signals into regeneration signals to initiate tissue regeneration. Although many efforts have been made to investigate the mechanisms triggering tissue regeneration, the fundamental questions remain unresolved. One of the major obstacles is that the injury and the initiation of regeneration are two highly coupled processes and hard to separate from one another. In this article, we review the major events occurring at the early injury/regeneration stage in a range of species, and discuss the possible common mechanisms during initiation of tissue regeneration.
Collapse
Affiliation(s)
- Yanmei Liu
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education; Institute for Brain Research and Rehabilitation, South China Normal University, 510631, Guangzhou, China
| | - Wilson Pak-Kin Lou
- School of Life Sciences, South China Normal University, 510631, Guangzhou, China.,Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Vienna, Austria
| | - Ji-Feng Fei
- Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, 510080, Guangzhou, China.
| |
Collapse
|
49
|
Lineage tracing reveals the origin of Nestin-positive cells are heterogeneous and rarely from ependymal cells after spinal cord injury. SCIENCE CHINA-LIFE SCIENCES 2021; 65:757-769. [PMID: 33772745 DOI: 10.1007/s11427-020-1901-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 02/22/2021] [Indexed: 12/22/2022]
Abstract
Nestin is expressed extensively in neural stem/progenitor cells during neural development, but its expression is mainly restricted to the ependymal cells in the adult spinal cord. After spinal cord injury (SCI), Nestin expression is reactivated and Nestin-positive (Nestin+) cells aggregate at the injury site. However, the derivation of Nestin+ cells is not clearly defined. Here, we found that Nestin expression was substantially increased in the lesion edge and lesion core after SCI. Using a tamoxifen inducible CreER(T2)-loxP system, we verified that ependymal cells contribute few Nestin+ cells either to the lesion core or the lesion edge after SCI. In the lesion edge, GFAP+ astrocytes were the main cell type that expressed Nestin; they then formed an astrocyte scar. In the lesion core, Nestin+ cells expressed αSMA or Desmin, indicating that they might be derived from pericytes. Our results reveal that Nestin+ cells in the lesion core and edge came from various cell types and rarely from ependymal cells after complete transected SCI, which may provide new insights into SCI repair.
Collapse
|
50
|
Xue W, Fan C, Chen B, Zhao Y, Xiao Z, Dai J. Direct neuronal differentiation of neural stem cells for spinal cord injury repair. STEM CELLS (DAYTON, OHIO) 2021; 39:1025-1032. [PMID: 33657255 DOI: 10.1002/stem.3366] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Accepted: 02/05/2021] [Indexed: 11/07/2022]
Abstract
Spinal cord injury (SCI) typically results in long-lasting functional deficits, largely due to primary and secondary white matter damage at the site of injury. The transplantation of neural stem cells (NSCs) has shown promise for re-establishing communications between separated regions of the spinal cord through the insertion of new neurons between the injured axons and target neurons. However, the inhibitory microenvironment that develops after SCI often causes endogenous and transplanted NSCs to differentiate into glial cells rather than neurons. Functional biomaterials have been shown to mitigate the effects of the adverse SCI microenvironment and promote the neuronal differentiation of NSCs. A clear understanding of the mechanisms of neuronal differentiation within the injury-induced microenvironment would likely allow for the development of treatment strategies designed to promote the innate ability of NSCs to differentiate into neurons. The increased differentiation of neurons may contribute to relay formation, facilitating functional recovery after SCI. In this review, we summarize current strategies used to enhance the neuronal differentiation of NSCs through the reconstruction of the SCI microenvironment and to improve the intrinsic neuronal differentiation abilities of NSCs, which is significant for SCI repair.
Collapse
Affiliation(s)
- Weiwei Xue
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Caixia Fan
- Key Laboratory for Nano-Bio Interface Research, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, People's Republic of China
| | - Bing Chen
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Yannan Zhao
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Zhifeng Xiao
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Jianwu Dai
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, People's Republic of China.,Key Laboratory for Nano-Bio Interface Research, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, People's Republic of China
| |
Collapse
|