1
|
Pei J, Zou Y, Wan C, Liu S, Hu B, Li Z, Tang Z. CX3CR1 mediates motor dysfunction in mice through 5-HTR2a. Behav Brain Res 2024; 461:114837. [PMID: 38145872 DOI: 10.1016/j.bbr.2023.114837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 12/16/2023] [Accepted: 12/22/2023] [Indexed: 12/27/2023]
Abstract
CX3CR1 knockout could induce motor dysfunction in several neurological disease models mainly through regulating microglia's function. While CX3CR1 was expressed on neurons in a few reports, whether neuronal CX3CR1 could affect the function of neurons and mediate motor dysfunction under physiological conditions is unknown. To elucidate the roles of neuronal CX3CR1 on motor dysfunction, CX3CR1 knockout mice were created. Rotarod test and Open field test found that the CX3CR1-/- mice's motor capacity was reduced. Immunofluorescence staining detected the expression of CX3CR1 in neurons both in vivo and in vitro. Immunohistochemistry and West blot found that knockout of CX3CR1 did not affect the neurons' number in both spinal cord and brain of mice. While inhibiting the function of CX3CR1 by AZD8797 could decrease the expression of 5-Hydroxytryptamine receptor(5-HTR2a), which involved in the regulation of motor function. Further investigation revealed that CX3CR1 regulated the expression of HTR2a through the NF-κB pathway. For the first time, we reported that neuronal CXCR1 mediates motor dysfunction. Our results suggest that modulating CXCR1 activity offers a novel therapeutic strategy for motor dysfunction.
Collapse
Affiliation(s)
- Jingchun Pei
- Department of Neurosurgery, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yongwei Zou
- Department of Neurosurgery, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Cheng Wan
- Department of Neurosurgery, The First Affiliated Hospital of Kunming Medical University, Kunming, China; Department of Medical Imaging, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Shuangshuang Liu
- Department of Neurosurgery, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Bin Hu
- Department of Neurosurgery, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Zhigao Li
- Department of Neurosurgery, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Zhiwei Tang
- Department of Neurosurgery, The First Affiliated Hospital of Kunming Medical University, Kunming, China.
| |
Collapse
|
2
|
Zawadzka M, Yeghiazaryan M, Niedziółka S, Miazga K, Kwaśniewska A, Bekisz M, Sławińska U. Forced Remyelination Promotes Axon Regeneration in a Rat Model of Spinal Cord Injury. Int J Mol Sci 2022; 24:ijms24010495. [PMID: 36613945 PMCID: PMC9820536 DOI: 10.3390/ijms24010495] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/22/2022] [Accepted: 12/25/2022] [Indexed: 12/29/2022] Open
Abstract
Spinal cord injuries result in the loss of motor and sensory functions controlled by neurons located at the site of the lesion and below. We hypothesized that experimentally enhanced remyelination supports axon preservation and/or growth in the total spinal cord transection in rats. Multifocal demyelination was induced by injection of ethidium bromide (EB), either at the time of transection or twice during transection and at 5 days post-injury. We demonstrated that the number of oligodendrocyte progenitor cells (OPCs) significantly increased 14 days after demyelination. Most OPCs differentiated into mature oligodendrocytes by 60-90 dpi in double-EB-injected rats; however, most axons were remyelinated by Schwann cells. A significant number of axons passed the injury epicenter and entered the distant segments of the spinal cord in the double-EB-injected rats. Moreover, some serotoninergic fibers, not detected in control animals, grew caudally through the injury site. Behavioral tests performed at 60-90 dpi revealed significant improvement in locomotor function recovery in double-EB-injected rats, which was impaired by the blockade of serotonin receptors, confirming the important role of restored serotonergic fibers in functional recovery. Our findings indicate that enhanced remyelination per se, without substantial inhibition of glial scar formation, is an important component of spinal cord injury regeneration.
Collapse
|
3
|
Fauss GNK, Hudson KE, Grau JW. Role of Descending Serotonergic Fibers in the Development of Pathophysiology after Spinal Cord Injury (SCI): Contribution to Chronic Pain, Spasticity, and Autonomic Dysreflexia. BIOLOGY 2022; 11:234. [PMID: 35205100 PMCID: PMC8869318 DOI: 10.3390/biology11020234] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/27/2022] [Accepted: 01/29/2022] [Indexed: 12/12/2022]
Abstract
As the nervous system develops, nerve fibers from the brain form descending tracts that regulate the execution of motor behavior within the spinal cord, incoming sensory signals, and capacity to change (plasticity). How these fibers affect function depends upon the transmitter released, the receptor system engaged, and the pattern of neural innervation. The current review focuses upon the neurotransmitter serotonin (5-HT) and its capacity to dampen (inhibit) neural excitation. A brief review of key anatomical details, receptor types, and pharmacology is provided. The paper then considers how damage to descending serotonergic fibers contributes to pathophysiology after spinal cord injury (SCI). The loss of serotonergic fibers removes an inhibitory brake that enables plasticity and neural excitation. In this state, noxious stimulation can induce a form of over-excitation that sensitizes pain (nociceptive) circuits, a modification that can contribute to the development of chronic pain. Over time, the loss of serotonergic fibers allows prolonged motor drive (spasticity) to develop and removes a regulatory brake on autonomic function, which enables bouts of unregulated sympathetic activity (autonomic dysreflexia). Recent research has shown that the loss of descending serotonergic activity is accompanied by a shift in how the neurotransmitter GABA affects neural activity, reducing its inhibitory effect. Treatments that target the loss of inhibition could have therapeutic benefit.
Collapse
Affiliation(s)
| | | | - James W. Grau
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, TX 77843, USA; (G.N.K.F.); (K.E.H.)
| |
Collapse
|
4
|
Zawadzka M, Kwaśniewska A, Miazga K, Sławińska U. Perspectives in the Cell-Based Therapies of Various Aspects of the Spinal Cord Injury-Associated Pathologies: Lessons from the Animal Models. Cells 2021; 10:cells10112995. [PMID: 34831217 PMCID: PMC8616284 DOI: 10.3390/cells10112995] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/25/2021] [Accepted: 10/31/2021] [Indexed: 02/07/2023] Open
Abstract
Traumatic injury of the spinal cord (SCI) is a devastating neurological condition often leading to severe dysfunctions, therefore an improvement in clinical treatment for SCI patients is urgently needed. The potential benefits of transplantation of various cell types into the injured spinal cord have been intensively investigated in preclinical SCI models and clinical trials. Despite the many challenges that are still ahead, cell transplantation alone or in combination with other factors, such as artificial matrices, seems to be the most promising perspective. Here, we reviewed recent advances in cell-based experimental strategies supporting or restoring the function of the injured spinal cord with a particular focus on the regenerative mechanisms that could define their clinical translation.
Collapse
|
5
|
Kwaśniewska A, Miazga K, Majczyński H, Jordan LM, Zawadzka M, Sławińska U. Noradrenergic Components of Locomotor Recovery Induced by Intraspinal Grafting of the Embryonic Brainstem in Adult Paraplegic Rats. Int J Mol Sci 2020; 21:ijms21155520. [PMID: 32752261 PMCID: PMC7432907 DOI: 10.3390/ijms21155520] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 07/29/2020] [Accepted: 07/30/2020] [Indexed: 11/24/2022] Open
Abstract
Intraspinal grafting of serotonergic (5-HT) neurons was shown to restore plantar stepping in paraplegic rats. Here we asked whether neurons of other phenotypes contribute to the recovery. The experiments were performed on adult rats after spinal cord total transection. Grafts were injected into the sub-lesional spinal cord. Two months later, locomotor performance was tested with electromyographic recordings from hindlimb muscles. The role of noradrenergic (NA) innervation was investigated during locomotor performance of spinal grafted and non-grafted rats using intraperitoneal application of α2 adrenergic receptor agonist (clonidine) or antagonist (yohimbine). Morphological analysis of the host spinal cords demonstrated the presence of tyrosine hydroxylase positive (NA) neurons in addition to 5-HT neurons. 5-HT fibers innervated caudal spinal cord areas in the dorsal and ventral horns, central canal, and intermediolateral zone, while the NA fiber distribution was limited to the central canal and intermediolateral zone. 5-HT and NA neurons were surrounded by each other’s axons. Locomotor abilities of the spinal grafted rats, but not in control spinal rats, were facilitated by yohimbine and suppressed by clonidine. Thus, noradrenergic innervation, in addition to 5-HT innervation, plays a potent role in hindlimb movement enhanced by intraspinal grafting of brainstem embryonic tissue in paraplegic rats.
Collapse
Affiliation(s)
- Anna Kwaśniewska
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, 02-093 Warsaw, Poland; (A.K.); (K.M.); (H.M.); (M.Z.)
| | - Krzysztof Miazga
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, 02-093 Warsaw, Poland; (A.K.); (K.M.); (H.M.); (M.Z.)
| | - Henryk Majczyński
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, 02-093 Warsaw, Poland; (A.K.); (K.M.); (H.M.); (M.Z.)
| | - Larry M. Jordan
- Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, MB R3E 0J9, Canada;
| | - Małgorzata Zawadzka
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, 02-093 Warsaw, Poland; (A.K.); (K.M.); (H.M.); (M.Z.)
| | - Urszula Sławińska
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, 02-093 Warsaw, Poland; (A.K.); (K.M.); (H.M.); (M.Z.)
- Correspondence:
| |
Collapse
|
6
|
Jack AS, Hurd C, Martin J, Fouad K. Electrical Stimulation as a Tool to Promote Plasticity of the Injured Spinal Cord. J Neurotrauma 2020; 37:1933-1953. [PMID: 32438858 DOI: 10.1089/neu.2020.7033] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Unlike their peripheral nervous system counterparts, the capacity of central nervous system neurons and axons for regeneration after injury is minimal. Although a myriad of therapies (and different combinations thereof) to help promote repair and recovery after spinal cord injury (SCI) have been trialed, few have progressed from bench-top to bedside. One of the few such therapies that has been successfully translated from basic science to clinical applications is electrical stimulation (ES). Although the use and study of ES in peripheral nerve growth dates back nearly a century, only recently has it started to be used in a clinical setting. Since those initial experiments and seminal publications, the application of ES to restore function and promote healing have greatly expanded. In this review, we discuss the progression and use of ES over time as it pertains to promoting axonal outgrowth and functional recovery post-SCI. In doing so, we consider four major uses for the study of ES based on the proposed or documented underlying mechanism: (1) using ES to introduce an electric field at the site of injury to promote axonal outgrowth and plasticity; (2) using spinal cord ES to activate or to increase the excitability of neuronal networks below the injury; (3) using motor cortex ES to promote corticospinal tract axonal outgrowth and plasticity; and (4) leveraging the timing of paired stimuli to produce plasticity. Finally, the use of ES in its current state in the context of human SCI studies is discussed, in addition to ongoing research and current knowledge gaps, to highlight the direction of future studies for this therapeutic modality.
Collapse
Affiliation(s)
- Andrew S Jack
- Department of Neurological Surgery, University of California San Francisco (UCSF), San Francisco, California, USA
| | - Caitlin Hurd
- Department of Physical Therapy, Faculty of Rehabilitation Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - John Martin
- Department of Molecular, Cellular, and Biomedical Sciences, City University of New York School of Medicine, and City University of New York Graduate Center, New York, New York, USA
| | - Karim Fouad
- Department of Physical Therapy, Faculty of Rehabilitation Medicine, University of Alberta, Edmonton, Alberta, Canada.,Neuroscience and Mental Health Institute, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
7
|
Majczyński H, Cabaj AM, Jordan LM, Sławińska U. Contribution of 5-HT 2 Receptors to the Control of the Spinal Locomotor System in Intact Rats. Front Neural Circuits 2020; 14:14. [PMID: 32425760 PMCID: PMC7212388 DOI: 10.3389/fncir.2020.00014] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 03/24/2020] [Indexed: 11/13/2022] Open
Abstract
Applying serotonergic (5-HT) agonists or grafting of fetal serotonergic cells into the spinal cord improves locomotion after spinal cord injury. Little is known about the role of 5-HT receptors in the control of voluntary locomotion, so we administered inverse agonists of 5-HT2 (Cyproheptadine; Cypr), 5-HT2A neutral antagonist (Volinanserin; Volin), 5-HT2C neutral antagonist (SB 242084), and 5-HT2B/2C inverse agonist (SB 206553) receptors intrathecally in intact rats and monitored their effects on unrestrained locomotion. An intrathecal cannula was introduced at the low thoracic level and pushed caudally until the tip reached the L2/L3 or L5/L6 spinal segments. Locomotor performance was evaluated using EMG activity of hindlimb muscles during locomotion on a 2 m long runway. Motoneuron excitability was estimated using EMG recordings during dorsi- and plantar flexion at the ankle. Locomotion was dramatically impaired after the blockage of 5-HT2A receptors. The effect of Cypr was more pronounced than that of Volin since in the L5/L6 rats Cypr (but not Volin) induced significant alteration of the strength of interlimb coordination followed by total paralysis. These agents significantly decreased locomotor EMG amplitude and abolished or substantially decreased stretch reflexes. Blocking 5-HT2B/2C receptors had no effect either on locomotion or reflexes. We suggest that in intact rats serotonin controls timing and amplitude of muscle activity by acting on 5-HT2A receptors on both CPG interneurons and motoneurons, while 5-HT2B/2C receptors are not involved in control of the locomotor pattern in lumbar spinal cord.
Collapse
Affiliation(s)
- Henryk Majczyński
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Anna M Cabaj
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Larry M Jordan
- Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, MB, Canada
| | - Urszula Sławińska
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
8
|
Pajer K, Bellák T, Redl H, Nógrádi A. Neuroectodermal Stem Cells Grafted into the Injured Spinal Cord Induce Both Axonal Regeneration and Morphological Restoration via Multiple Mechanisms. J Neurotrauma 2019; 36:2977-2990. [PMID: 31111776 PMCID: PMC6791485 DOI: 10.1089/neu.2018.6332] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Spinal cord contusion injury leads to severe loss of gray and white matter and subsequent deficit of motor and sensory functions below the lesion. In this study, we investigated whether application of murine clonal embryonic neuroectodermal stem cells can prevent the spinal cord secondary damage and induce functional recovery. Stem cells (NE-GFP-4C cell line) were grafted intraspinally or intravenously immediately or one week after thoracic spinal cord contusion injury. Control animals received cell culture medium or fibrin intraspinally one week after injury. Functional tests (Basso, Beattie, Bresnahan, CatWalk®) and detailed morphological analysis were performed to evaluate the effects of grafted cells. Stem cells applied either locally or intravenously induced significantly improved functional recovery compared with their controls. Morphologically, stem cell grafting prevented the formation of secondary injury and promoted sparing of the gray and white matters. The transplanted cells integrated into the host tissue and differentiated into neurons, astrocytes, and oligodendrocytes. In intraspinally grafted animals, the corticospinal tract axons regenerated along the ventral border of the cavity and have grown several millimeters, even beyond the caudal end of the lesion. The extent of regeneration and functional improvement was inversely related to the amounts of chondroitin sulphate and ephrin-B2 molecules around the cavity and to the microglial and astrocytic reactions in the injured segment early after injury. The grafts produced glial cell derived neurotrophic factor, macrophage inflammatory protein-1a, interleukin (IL)-6 and IL-10 in a paracrine fashion for at least one week. Treating the grafted cords with neutralizing antibodies against these four factors through the use of osmotic pumps nearly completely abolished the effect of the graft. The non-significant functional improvement after function blocking is likely because the stem cell derivatives settled in the injured cord. These data suggest that grafted neuroectodermal stem cells are able to prevent the secondary spinal cord damage and induce significant regeneration via multiple mechanisms.
Collapse
Affiliation(s)
- Krisztián Pajer
- Department of Anatomy, Histology, and Embryology, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Tamás Bellák
- Department of Anatomy, Histology, and Embryology, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Heinz Redl
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, Vienna, Austria
| | - Antal Nógrádi
- Department of Anatomy, Histology, and Embryology, Faculty of Medicine, University of Szeged, Szeged, Hungary.,Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, Vienna, Austria
| |
Collapse
|
9
|
Perrin FE, Noristani HN. Serotonergic mechanisms in spinal cord injury. Exp Neurol 2019; 318:174-191. [PMID: 31085200 DOI: 10.1016/j.expneurol.2019.05.007] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 05/07/2019] [Accepted: 05/08/2019] [Indexed: 12/12/2022]
Abstract
Spinal cord injury (SCI) is a tragic event causing irreversible losses of sensory, motor, and autonomic functions, that may also be associated with chronic neuropathic pain. Serotonin (5-HT) neurotransmission in the spinal cord is critical for modulating sensory, motor, and autonomic functions. Following SCI, 5-HT axons caudal to the lesion site degenerate, and the degree of axonal degeneration positively correlates with lesion severity. Rostral to the lesion, 5-HT axons sprout, irrespective of the severity of the injury. Unlike callosal fibers and cholinergic projections, 5-HT axons are more resistant to an inhibitory milieu and undergo active sprouting and regeneration after central nervous system (CNS) traumatism. Numerous studies suggest that a chronic increase in serotonergic neurotransmission promotes 5-HT axon sprouting in the intact CNS. Moreover, recent studies in invertebrates suggest that 5-HT has a pro-regenerative role in injured axons. Here we present a brief description of 5-HT discovery, 5-HT innervation of the CNS, and physiological functions of 5-HT in the spinal cord, including its role in controlling bladder function. We then present a comprehensive overview of changes in serotonergic axons after CNS damage, and discuss their plasticity upon altered 5-HT neurotransmitter levels. Subsequently, we provide an in-depth review of therapeutic approaches targeting 5-HT neurotransmission, as well as other pre-clinical strategies to promote an increase in re-growth of 5-HT axons, and their functional consequences in SCI animal models. Finally, we highlight recent findings signifying the direct role of 5-HT in axon regeneration and suggest strategies to further promote robust long-distance re-growth of 5-HT axons across the lesion site and eventually achieve functional recovery following SCI.
Collapse
Affiliation(s)
- Florence Evelyne Perrin
- University of Montpellier, Montpellier, F-34095 France; INSERM, U1198, Montpellier, F-34095 France; EPHE, Paris, F-75014 France
| | - Harun Najib Noristani
- Shriners Hospitals Pediatric Research Center, Center for Neural Repair, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA; Department of Anatomy and Cell Biology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA.
| |
Collapse
|
10
|
Blattner KM, Canney DJ, Pippin DA, Blass BE. Pharmacology and Therapeutic Potential of the 5-HT 7 Receptor. ACS Chem Neurosci 2019; 10:89-119. [PMID: 30020772 DOI: 10.1021/acschemneuro.8b00283] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
It is well-documented that serotonin (5-HT) exerts its pharmacological effects through a series of 5-HT receptors. The most recently identified member of this family, 5-HT7, was first identified in 1993. Over the course of the last 25 years, this receptor has been the subject of intense investigation, and it has been demonstrated that 5-HT7 plays an important role in a wide range of pharmacological processes. As a result of these findings, modulation of 5-HT7 activity has been the focus of numerous drug discovery and development programs. This review provides an overview of the roles of 5-HT7 in normal physiology and the therapeutic potential of this interesting drug target.
Collapse
Affiliation(s)
- Kevin M. Blattner
- Temple University School of Pharmacy, Department of Pharmaceutical Sciences, Moulder Center for Drug Discovery Research, 3307 North Broad Street, Philadelphia, Pennsylvania 19140, United States
| | - Daniel J. Canney
- Temple University School of Pharmacy, Department of Pharmaceutical Sciences, Moulder Center for Drug Discovery Research, 3307 North Broad Street, Philadelphia, Pennsylvania 19140, United States
| | - Douglas A. Pippin
- Praeventix, LLC, 665 Stockton Drive, Suite 200H, Exton, Pennsylvania 19341, United States
| | - Benjamin E. Blass
- Temple University School of Pharmacy, Department of Pharmaceutical Sciences, Moulder Center for Drug Discovery Research, 3307 North Broad Street, Philadelphia, Pennsylvania 19140, United States
| |
Collapse
|
11
|
Tanabe N, Kuboyama T, Tohda C. Matrine promotes neural circuit remodeling to regulate motor function in a mouse model of chronic spinal cord injury. Neural Regen Res 2019; 14:1961-1967. [PMID: 31290454 PMCID: PMC6676875 DOI: 10.4103/1673-5374.259625] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
In chronic phase of spinal cord injury, functional recovery is more untreatable compared with early intervention in acute phase of spinal cord injury. In the last decade, several combination therapies successfully improved motor dysfunction in chronic spinal cord injury. However, their effectiveness is not sufficient. We previously found a new effective compound for spinal cord injury, matrine, which induced axonal growth and functional recovery in acute spinal cord injury mice via direct activation of extracellular heat shock protein 90. Although our previous study clarified that matrine was an activator of extracellular heat shock protein 90, the potential of matrine for spinal cord injury in chronic phase has not been sufficiently evaluated. Thus, this study aimed to investigate whether matrine ameliorates chronic spinal cord injury in mice. Once daily intragastric administration of matrine (100 μmol/kg per day) to spinal cord injury mice were starte at 28 days after injury, and continued for 154 days. Continuous matrine treatment improved hindlimb motor function in chronic spinal cord injury mice. In injured spinal cords of the matrine-treated mice, the density of neurofilament-H-positive axons was increased. Moreover, matrine treatment increased the density of bassoon-positive presynapses in contact with choline acetyltransferase-positive motor neurons in the lumbar spinal cord. These findings suggest that matrine promotes remodeling and reconnection of neural circuits to regulate hindlimb movement. All protocols were approved by the Committee for Animal Care and Use of the Sugitani Campus of the University of Toyama (approval No. A2013INM-1 and A2016INM-3) on May 7, 2013 and May 17, 2016, respectively.
Collapse
Affiliation(s)
- Norio Tanabe
- Division of Neuromedical Science, Institute of Natural Medicine, University of Toyama, Toyama, Japan
| | - Tomoharu Kuboyama
- Division of Neuromedical Science, Institute of Natural Medicine, University of Toyama, Toyama, Japan
| | - Chihiro Tohda
- Division of Neuromedical Science, Institute of Natural Medicine, University of Toyama, Toyama, Japan
| |
Collapse
|
12
|
Kavanagh JJ, McFarland AJ, Taylor JL. Enhanced availability of serotonin increases activation of unfatigued muscle but exacerbates central fatigue during prolonged sustained contractions. J Physiol 2019; 597:319-332. [PMID: 30328105 PMCID: PMC6312415 DOI: 10.1113/jp277148] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 10/15/2018] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS Animal preparations have revealed that moderate synaptic release of serotonin (5-HT) onto motoneurones enhances motor activity via activation of 5-HT2 receptors, whereas intense release of 5-HT causes spillover of 5-HT to extrasynaptic 5-HT1A receptors on the axon initial segment to reduce motoneurone activity. We explored if increasing extracellular concentrations of endogenously released 5-HT (via the selective serotonin reuptake inhibitor paroxetine) influences the ability to perform unfatigued and fatigued maximal voluntary contractions in humans. Following the ingestion of paroxetine, voluntary muscle activation and torque generation increased during brief unfatigued maximal contractions. In contrast, the ability to generate maximal torque with increased 5-HT availability was compromised under fatigued conditions, which was consistent with paroxetine-induced reductions in motoneurone excitability and voluntary muscle activation. This is the first in vivo human study to provide evidence that 5-HT released onto the motoneurones could play a role in central fatigue. ABSTRACT Brief stimulation of the raphe-spinal pathway in the turtle spinal cord releases serotonin (5-HT) onto motoneurones to enhance excitability. However, intense release of 5-HT via prolonged stimulation results in 5-HT spillover to the motoneurone axon initial segment to activate inhibitory 5-HT1A receptors, thus providing a potential spinal mechanism for exercise-induced central fatigue. We examined how increased extracellular concentrations of 5-HT affect the ability to perform brief, as well as sustained, maximal voluntary contractions (MVCs) in humans. Paroxetine was used to enhance 5-HT concentrations by reuptake inhibition, and three studies were performed. Study 1 (n = 14) revealed that 5-HT reuptake inhibition caused an ∼4% increase in elbow flexion MVC. However, when maximal contractions were sustained, time-to-task failure was reduced and self-perceived fatigue was higher with enhanced availability of 5-HT. Study 2 (n = 11) used twitch interpolation to reveal that 5-HT-based changes in motor performance had a neural basis. Enhanced 5-HT availability increased voluntary activation for the unfatigued biceps brachii and decreased voluntary activation of the biceps brachii by 2-5% following repeated maximal elbow flexions. The final study (n = 8) investigated whether altered motoneurone excitability may contribute to 5-HT changes in voluntary activation. F-waves of the abductor digiti minimi (ADM) were unaffected by paroxetine for unfatigued muscle and marginally affected following a brief 2-s MVC. However, F-wave area and persistence were significantly decreased following a prolonged 60-s MVC of the ADM. Overall, high serotonergic drive provides a spinal mechanism by which higher concentrations of 5-HT may contribute to central fatigue.
Collapse
Affiliation(s)
- Justin J. Kavanagh
- Menzies Health Institute QueenslandGriffith UniversityGold CoastAustralia
| | - Amelia J. McFarland
- School of Pharmacy and PharmacologyGriffith UniversityGold CoastAustralia
- Quality Use of Medicines NetworkGriffith UniversityGold CoastAustralia
| | - Janet L. Taylor
- School of Medical and Health SciencesEdith Cowan UniversityPerthAustralia
- Neuroscience Research AustraliaSydneyAustralia
| |
Collapse
|
13
|
Intraspinal Grafting of Serotonergic Neurons Modifies Expression of Genes Important for Functional Recovery in Paraplegic Rats. Neural Plast 2018; 2018:4232706. [PMID: 30147717 PMCID: PMC6083740 DOI: 10.1155/2018/4232706] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2018] [Revised: 05/23/2018] [Accepted: 06/04/2018] [Indexed: 01/08/2023] Open
Abstract
Serotonin (5-hydroxytryptamine; 5-HT) plays an important role in control of locomotion, partly through direct effects on motoneurons. Spinal cord complete transection (SCI) results in changes in 5-HT receptors on motoneurons that influence functional recovery. Activation of 5-HT2A and 5-HT7 receptors improves locomotor hindlimb movements in paraplegic rats. Here, we analyzed the mRNA of 5-HT2A and 5-HT7 receptors (encoded by Htr2a and Htr7 genes, resp.) in motoneurons innervating tibialis anterior (TA) and gastrocnemius lateralis (GM) hindlimb muscles and the tail extensor caudae medialis (ECM) muscle in intact as well as spinal rats. Moreover, the effect of intraspinal grafting of serotonergic neurons on Htr2a and Htr7 gene expression was examined to test the possibility that the graft origin 5-HT innervation in the spinal cord of paraplegic rats could reverse changes in gene expression induced by SCI. Our results indicate that SCI at the thoracic level leads to changes in Htr2a and Htr7 gene expression, whereas transplantation of embryonic serotonergic neurons modifies these changes in motoneurons innervating hindlimb muscles but not those innervating tail muscles. This suggests that the upregulation of genes critical for locomotor recovery, resulting in limb motoneuron plasticity, might account for the improved locomotion in grafted animals.
Collapse
|
14
|
Ren LQ, Chen M, Hultborn H, Guo S, Zhang Y, Zhang M. Heterogenic Distribution of Aromatic L-Amino Acid Decarboxylase Neurons in the Rat Spinal Cord. Front Integr Neurosci 2017; 11:31. [PMID: 29225571 PMCID: PMC5706469 DOI: 10.3389/fnint.2017.00031] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 10/24/2017] [Indexed: 12/14/2022] Open
Abstract
Aromatic L-amino acid decarboxylase (AADC) is an essential enzyme in the synthesis of serotonin, dopamine, and certain trace amines and is present in a variety of organs including the brain and spinal cord. It is previously reported that in mammalian spinal cord AADC cells (called D-cells) were largely confined to a region around the central canal and that they do not produce monoamines. To date, there has not been a detailed description of their distribution and morphology in mammals. In the present study this issue is systematically investigated using immunohistochemistry. We have found that AADC cells in the rat spinal cord are both more numerous and more widely distributed than previously reported. In the gray matter, AADC neurons immunolabeled for NeuN were not only found in the region around the central canal but also in the dorsal horn, intermediate zone, and ventral horn. In the white matter a large number of glial cells were AADC-immunopositive in different spinal segments and the vast majority of these cells expressed oligodendrocyte and radial glial phenotypes. Additionally, a small number of AADC neurons labeled for NeuN were found in the white matter along the ventral median fissure. The shapes and sizes of AADC neurons varied according to their location. For example, throughout cervical and lumbar segments AADC neurons in the intermediate zone and ventral horn tended to be rather large and weakly immunolabeled, whereas those in comparable regions of sacrocaudal segments were smaller and more densely immunolabeled. The diverse morphological characteristics of the AADC cells suggests that they could be further divided into several subtypes. These results indicate that AADC cells are heterogeneously distributed in the rat spinal cord and they may exert different functions in different physiological and pathological situations.
Collapse
Affiliation(s)
- Li-Qun Ren
- Department of Neuroscience, University of Copenhagen, Copenhagen, Denmark.,Laboratory of Spinal Injury and Rehabilitation, Chengde Medical College, Chengde, China
| | - Meng Chen
- Department of Neuroscience, University of Copenhagen, Copenhagen, Denmark.,Laboratory of Spinal Injury and Rehabilitation, Chengde Medical College, Chengde, China
| | - Hans Hultborn
- Department of Neuroscience, University of Copenhagen, Copenhagen, Denmark.,Laboratory of Spinal Injury and Rehabilitation, Chengde Medical College, Chengde, China
| | - Sen Guo
- Department of Neuroscience, University of Copenhagen, Copenhagen, Denmark.,Laboratory of Spinal Injury and Rehabilitation, Chengde Medical College, Chengde, China
| | - Yifan Zhang
- Department of Neuroscience, University of Copenhagen, Copenhagen, Denmark
| | - Mengliang Zhang
- Department of Neuroscience, University of Copenhagen, Copenhagen, Denmark.,Neuronano Research Center, Department of Experimental Medical Sciences, Lund University, Lund, Sweden
| |
Collapse
|
15
|
Mao L, Gao W, Chen S, Song Y, Song C, Zhou Z, Zhao H, Zhou K, Wang W, Zhu K, Liu C, Mei X. Epothilone B impairs functional recovery after spinal cord injury by increasing secretion of macrophage colony-stimulating factor. Cell Death Dis 2017; 8:e3162. [PMID: 29095439 PMCID: PMC5775408 DOI: 10.1038/cddis.2017.542] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2017] [Revised: 08/30/2017] [Accepted: 09/12/2017] [Indexed: 12/13/2022]
Abstract
The microtubule-stabilizing drug epothilone B (epoB) has shown potential value in the treatment of spinal cord injury (SCI) through diverse mechanisms. However, it remains elusive why a limited overall effect was observed. We aim to investigate the limiting factors underlying functional recovery promoted by epoB. The same SCI model treated by epoB was established as discussed previously. We used a cerebrospinal fluid (CSF) sample to assess the changes in cytokines in milieu of the SCI lesion site after epoB treatment. We then analyzed the source of cytokines, the state of microglia/macrophages/monocytes (M/Ms), and the recruitment of neutrophil in the lesion site by using the results of antibody array. Following these findings, we further evaluated the motor functional recovery caused by the reshaped microenvironment. Systemic administration of epoB significantly increased levels of several cytokines in the CSF of the rat SCI model; macrophage colony-stimulating factor (M-CSF) secreted by intact central nervous system (CNS) cells was one of the cytokines with increased levels. Along with epoB and other cytokines, M-CSF reshapes the SCI milieu by activating the microglias, killing bone marrow-derived macrophages, polarizing the M/M to M1 phenotype, and activating downstream cytokines to exacerbate the SCI injury, but it also increases the expression of neurotrophic factors. Anti-inflammatory therapy using a neutralizing antibody mix shows encouraging results. Using in vivo experiments, our findings indicate that epoB inhibits the SCI functional recovery in many ways by reshaping the milieu, which counteracts the therapeutic efficacy that led to the limited overall effectiveness.
Collapse
Affiliation(s)
- Liang Mao
- Department of Oncology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou 121000, People's Republic of China
- Key Laboratory of Medical Tissue Engineering of Liaoning Province, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou 121000, People's Republic of China
| | - Wei Gao
- Department of Basic Medical Sciences, Jinzhou Medical University, Jinzhou 121000, People's Republic of China
| | - Shurui Chen
- Jinzhou Medical University, Jinzhou 121000, People's Republic of China
| | - Ying Song
- Key Laboratory of Medical Tissue Engineering of Liaoning Province, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou 121000, People's Republic of China
| | - Changwei Song
- Key Laboratory of Medical Tissue Engineering of Liaoning Province, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou 121000, People's Republic of China
- Department of Hand Surgery, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou 121000, People's Republic of China
| | - Zipeng Zhou
- Department of Orthopedic Surgery, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou 121000, People's Republic of China
| | - Haosen Zhao
- Department of Orthopedic Surgery, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou 121000, People's Republic of China
| | - Kang Zhou
- Department of Orthopedic Surgery, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou 121000, People's Republic of China
| | - Wei Wang
- Department of Orthopedic Surgery, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou 121000, People's Republic of China
| | - Kunming Zhu
- Department of Orthopedic Surgery, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou 121000, People's Republic of China
| | - Chang Liu
- Department of Endocrinology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou 121000, People's Republic of China
| | - Xifan Mei
- Key Laboratory of Medical Tissue Engineering of Liaoning Province, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou 121000, People's Republic of China
- Department of Orthopedic Surgery, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou 121000, People's Republic of China
| |
Collapse
|
16
|
Manohar A, Foffani G, Ganzer PD, Bethea JR, Moxon KA. Cortex-dependent recovery of unassisted hindlimb locomotion after complete spinal cord injury in adult rats. eLife 2017; 6. [PMID: 28661400 PMCID: PMC5499944 DOI: 10.7554/elife.23532] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2016] [Accepted: 06/22/2017] [Indexed: 12/29/2022] Open
Abstract
After paralyzing spinal cord injury the adult nervous system has little ability to ‘heal’ spinal connections, and it is assumed to be unable to develop extra-spinal recovery strategies to bypass the lesion. We challenge this assumption, showing that completely spinalized adult rats can recover unassisted hindlimb weight support and locomotion without explicit spinal transmission of motor commands through the lesion. This is achieved with combinations of pharmacological and physical therapies that maximize cortical reorganization, inducing an expansion of trunk motor cortex and forepaw sensory cortex into the deafferented hindlimb cortex, associated with sprouting of corticospinal axons. Lesioning the reorganized cortex reverses the recovery. Adult rats can thus develop a novel cortical sensorimotor circuit that bypasses the lesion, probably through biomechanical coupling, to partly recover unassisted hindlimb locomotion after complete spinal cord injury. DOI:http://dx.doi.org/10.7554/eLife.23532.001
Collapse
Affiliation(s)
- Anitha Manohar
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, United States
| | - Guglielmo Foffani
- CINAC, Hospital Universitario HM Puerta del Sur, Universidad CEU-San Pablo, Madrid, Spain.,Hospital Nacional de Parapléjicos, Servicio de Salud de Castilla-La Mancha, Toledo, Spain
| | - Patrick D Ganzer
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, United States
| | - John R Bethea
- Department of Biology, Drexel University, Philadelphia, United States
| | - Karen A Moxon
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, United States.,Department of Biomedical Engineering, University of California, Davis, United States
| |
Collapse
|
17
|
Côté MP, Murray M, Lemay MA. Rehabilitation Strategies after Spinal Cord Injury: Inquiry into the Mechanisms of Success and Failure. J Neurotrauma 2016; 34:1841-1857. [PMID: 27762657 DOI: 10.1089/neu.2016.4577] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
Body-weight supported locomotor training (BWST) promotes recovery of load-bearing stepping in lower mammals, but its efficacy in individuals with a spinal cord injury (SCI) is limited and highly dependent on injury severity. While animal models with complete spinal transections recover stepping with step-training, motor complete SCI individuals do not, despite similarly intensive training. In this review, we examine the significant differences between humans and animal models that may explain this discrepancy in the results obtained with BWST. We also summarize the known effects of SCI and locomotor training on the muscular, motoneuronal, interneuronal, and supraspinal systems in human and non-human models of SCI and address the potential causes for failure to translate to the clinic. The evidence points to a deficiency in neuronal activation as the mechanism of failure, rather than muscular insufficiency. While motoneuronal and interneuronal systems cannot be directly probed in humans, the changes brought upon by step-training in SCI animal models suggest a beneficial re-organization of the systems' responsiveness to descending and afferent feedback that support locomotor recovery. The literature on partial lesions in humans and animal models clearly demonstrate a greater dependency on supraspinal input to the lumbar cord in humans than in non-human mammals for locomotion. Recent results with epidural stimulation that activates the lumbar interneuronal networks and/or increases the overall excitability of the locomotor centers suggest that these centers are much more dependent on the supraspinal tonic drive in humans. Sensory feedback shapes the locomotor output in animal models but does not appear to be sufficient to drive it in humans.
Collapse
Affiliation(s)
- Marie-Pascale Côté
- 1 Department of Neurobiology and Anatomy, Drexel University College of Medicine , Philadelphia, Pennsylvania
| | - Marion Murray
- 1 Department of Neurobiology and Anatomy, Drexel University College of Medicine , Philadelphia, Pennsylvania
| | - Michel A Lemay
- 2 Department of Bioengineering, Temple University , Philadelphia, Pennsylvania
| |
Collapse
|
18
|
Cabaj AM, Majczyński H, Couto E, Gardiner PF, Stecina K, Sławińska U, Jordan LM. Serotonin controls initiation of locomotion and afferent modulation of coordination via 5-HT 7 receptors in adult rats. J Physiol 2016; 595:301-320. [PMID: 27393215 DOI: 10.1113/jp272271] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 06/30/2016] [Indexed: 12/16/2022] Open
Abstract
KEY POINTS Experiments on neonatal rodent spinal cord showed that serotonin (5-HT), acting via 5-HT7 receptors, is required for initiation of locomotion and for controlling the action of interneurons responsible for inter- and intralimb coordination, but the importance of the 5-HT system in adult locomotion is not clear. Blockade of spinal 5-HT7 receptors interfered with voluntary locomotion in adult rats and fictive locomotion in paralysed decerebrate rats with no afferent feedback, consistent with a requirement for activation of descending 5-HT neurons for production of locomotion. The direct control of coordinating interneurons by 5-HT7 receptors observed in neonatal animals was not found during fictive locomotion, revealing a developmental shift from direct control of locomotor interneurons in neonates to control of afferent input from the moving limb in adults. An understanding of the afferents controlled by 5-HT during locomotion is required for optimal use of rehabilitation therapies involving the use of serotonergic drugs. ABSTRACT Serotonergic pathways to the spinal cord are implicated in the control of locomotion based on studies using serotonin type 7 (5-HT7 ) receptor agonists and antagonists and 5-HT7 receptor knockout mice. Blockade of these receptors is thought to interfere with the activity of coordinating interneurons, a conclusion derived primarily from in vitro studies on isolated spinal cord of neonatal rats and mice. Developmental changes in the effects of serotonin (5-HT) on spinal neurons have recently been described, and there is increasing data on control of sensory input by 5-HT7 receptors on dorsal root ganglion cells and/or dorsal horn neurons, leading us to determine the effects of 5-HT7 receptor blockade on voluntary overground locomotion and on locomotion without afferent input from the moving limb (fictive locomotion) in adult animals. Intrathecal injections of the selective 5-HT7 antagonist SB269970 in adult intact rats suppressed locomotion by partial paralysis of hindlimbs. This occurred without a direct effect on motoneurons as revealed by an investigation of reflex activity. The antagonist disrupted intra- and interlimb coordination during locomotion in all intact animals but not during fictive locomotion induced by stimulation of the mesencephalic locomotor region (MLR). MLR-evoked fictive locomotion was transiently blocked, then the amplitude and frequency of rhythmic activity were reduced by SB269970, consistent with the notion that the MLR activates 5-HT neurons, leading to excitation of central pattern generator neurons with 5-HT7 receptors. Effects on coordination in adults required the presence of afferent input, suggesting a switch to 5-HT7 receptor-mediated control of sensory pathways during development.
Collapse
Affiliation(s)
- Anna M Cabaj
- Department of Neurophysiology, Nencki Institute of Experimental Biology PAS, 02-093, Warsaw, Poland.,Department of Nerve-Muscle Engineering, Institute of Biocybernetics and Biomedical Engineering PAS, 02-109, Warsaw, Poland
| | - Henryk Majczyński
- Department of Neurophysiology, Nencki Institute of Experimental Biology PAS, 02-093, Warsaw, Poland
| | - Erika Couto
- Department of Physiology & Pathophysiology, Spinal Cord Research Centre, University of Manitoba, Winnipeg, MB, R3E 0J9, Canada
| | - Phillip F Gardiner
- Department of Physiology & Pathophysiology, Spinal Cord Research Centre, University of Manitoba, Winnipeg, MB, R3E 0J9, Canada
| | - Katinka Stecina
- Department of Physiology & Pathophysiology, Spinal Cord Research Centre, University of Manitoba, Winnipeg, MB, R3E 0J9, Canada
| | - Urszula Sławińska
- Department of Neurophysiology, Nencki Institute of Experimental Biology PAS, 02-093, Warsaw, Poland
| | - Larry M Jordan
- Department of Physiology & Pathophysiology, Spinal Cord Research Centre, University of Manitoba, Winnipeg, MB, R3E 0J9, Canada
| |
Collapse
|
19
|
Dougherty BJ, Gonzalez-Rothi EJ, Lee KZ, Ross HH, Reier PJ, Fuller DD. Respiratory outcomes after mid-cervical transplantation of embryonic medullary cells in rats with cervical spinal cord injury. Exp Neurol 2016; 278:22-6. [PMID: 26808660 DOI: 10.1016/j.expneurol.2016.01.017] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Revised: 01/11/2016] [Accepted: 01/21/2016] [Indexed: 11/24/2022]
Abstract
Respiratory motor output after cervical spinal cord injury (cSCI) is profoundly influenced by spinal serotonin. We hypothesized that intraspinal transplantation of embryonic midline brainstem (MB) cells rich in serotonergic raphé neurons would improve respiratory outcomes after cSCI. One week after hemisection of the 2nd cervical segment (C2Hx) a suspension of either embryonic (E14) MB cells, fetal spinal cord cells (FSC), or media only (sham) was delivered to the dorsal C3 spinal cord of adult male rats. Six weeks later, ventilation was evaluated using plethysmography; phrenic nerve activity was evaluated in a subset of rats. Seven of 12 rats receiving MB-derived grafts had clear histological evidence of serotonin-positive neurons in the C3-4 dorsal white matter. The transplantations had no impact on baseline breathing patterns, but during a brief respiratory challenge (7% inspired CO2) rats with successful MB grafts had increased ventilation compared to rats with failed MB grafts, FSC or sham grafts. Recordings from the phrenic nerve ipsilateral to C2Hx also indicated increased output during respiratory challenge in rats with successful MB grafts. We conclude that intraspinal allografting of E14 MB cells can have a positive impact on respiratory motor recovery following high cSCI.
Collapse
Affiliation(s)
- B J Dougherty
- University of Florida, College of Public Health and Health Professions, McKnight Brain Institute, Department of Physical Therapy, 1225 Center Drive, Gainesville, FL 32610, PO Box 100154, United States
| | - E J Gonzalez-Rothi
- University of Florida, College of Public Health and Health Professions, McKnight Brain Institute, Department of Physical Therapy, 1225 Center Drive, Gainesville, FL 32610, PO Box 100154, United States
| | - K Z Lee
- University of Florida, College of Public Health and Health Professions, McKnight Brain Institute, Department of Physical Therapy, 1225 Center Drive, Gainesville, FL 32610, PO Box 100154, United States
| | - H H Ross
- University of Florida, College of Public Health and Health Professions, McKnight Brain Institute, Department of Physical Therapy, 1225 Center Drive, Gainesville, FL 32610, PO Box 100154, United States
| | - P J Reier
- University of Florida, College of Medicine, McKnight Brain Institute, Department of Neuroscience, PO Box 100244, 100 S. Newell Dr, Gainesville, FL 32610, United States; Center for Respiratory Research and Rehabilitation, University of Florida, United States
| | - D D Fuller
- University of Florida, College of Public Health and Health Professions, McKnight Brain Institute, Department of Physical Therapy, 1225 Center Drive, Gainesville, FL 32610, PO Box 100154, United States; Center for Respiratory Research and Rehabilitation, University of Florida, United States.
| |
Collapse
|
20
|
Leszczyńska AN, Majczyński H, Wilczyński GM, Sławińska U, Cabaj AM. Thoracic Hemisection in Rats Results in Initial Recovery Followed by a Late Decrement in Locomotor Movements, with Changes in Coordination Correlated with Serotonergic Innervation of the Ventral Horn. PLoS One 2015; 10:e0143602. [PMID: 26606275 PMCID: PMC4659566 DOI: 10.1371/journal.pone.0143602] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 11/06/2015] [Indexed: 11/18/2022] Open
Abstract
Lateral thoracic hemisection of the rodent spinal cord is a popular model of spinal cord injury, in which the effects of various treatments, designed to encourage locomotor recovery, are tested. Nevertheless, there are still inconsistencies in the literature concerning the details of spontaneous locomotor recovery after such lesions, and there is a lack of data concerning the quality of locomotion over a long time span after the lesion. In this study, we aimed to address some of these issues. In our experiments, locomotor recovery was assessed using EMG and CatWalk recordings and analysis. Our results showed that after hemisection there was paralysis in both hindlimbs, followed by a substantial recovery of locomotor movements, but even at the peak of recovery, which occurred about 4 weeks after the lesion, some deficits of locomotion remained present. The parameters that were abnormal included abduction, interlimb coordination and speed of locomotion. Locomotor performance was stable for several weeks, but about 3-4 months after hemisection secondary locomotor impairment was observed with changes in parameters, such as speed of locomotion, interlimb coordination, base of hindlimb support, hindlimb abduction and relative foot print distance. Histological analysis of serotonergic innervation at the lumbar ventral horn below hemisection revealed a limited restoration of serotonergic fibers on the ipsilateral side of the spinal cord, while on the contralateral side of the spinal cord it returned to normal. In addition, the length of these fibers on both sides of the spinal cord correlated with inter- and intralimb coordination. In contrast to data reported in the literature, our results show there is not full locomotor recovery after spinal cord hemisection. Secondary deterioration of certain locomotor functions occurs with time in hemisected rats, and locomotor recovery appears partly associated with reinnervation of spinal circuitry by serotonergic fibers.
Collapse
Affiliation(s)
| | | | | | | | - Anna M Cabaj
- Nencki Insitute of Experimental Biology, PAS, Warsaw, Poland.,Nałęcz Institute of Biocybernetics and Biomedical Engineering, PAS, Warsaw, Poland
| |
Collapse
|
21
|
Alluin O, Delivet-Mongrain H, Rossignol S. Inducing hindlimb locomotor recovery in adult rat after complete thoracic spinal cord section using repeated treadmill training with perineal stimulation only. J Neurophysiol 2015; 114:1931-46. [PMID: 26203108 PMCID: PMC4579296 DOI: 10.1152/jn.00416.2015] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Accepted: 07/20/2015] [Indexed: 01/18/2023] Open
Abstract
Although a complete thoracic spinal cord section in various mammals induces paralysis of voluntary movements, the spinal lumbosacral circuitry below the lesion retains its ability to generate hindlimb locomotion. This important capacity may contribute to the overall locomotor recovery after partial spinal cord injury (SCI). In rats, it is usually triggered by pharmacological and/or electrical stimulation of the cord while a robot sustains the animals in an upright posture. In the present study we daily trained a group of adult spinal (T7) rats to walk with the hindlimbs for 10 wk (10 min/day for 5 days/wk), using only perineal stimulation. Kinematic analysis and terminal electromyographic recordings revealed a strong effect of training on the reexpression of hindlimb locomotion. Indeed, trained animals gradually improved their locomotion while untrained animals worsened throughout the post-SCI period. Kinematic parameters such as averaged and instant swing phase velocity, step cycle variability, foot drag duration, off period duration, and relationship between the swing features returned to normal values only in trained animals. The present results clearly demonstrate that treadmill training alone, in a normal horizontal posture, elicited by noninvasive perineal stimulation is sufficient to induce a persistent hindlimb locomotor recovery without the need for more complex strategies. This provides a baseline level that should be clearly surpassed if additional locomotor-enabling procedures are added. Moreover, it has a clinical value since intrinsic spinal reorganization induced by training should contribute to improve locomotor recovery together with afferent feedback and supraspinal modifications in patients with incomplete SCI.
Collapse
Affiliation(s)
- Olivier Alluin
- Department of Neuroscience and Groupe de Recherche sur le Système Nerveux Central (GRSNC), Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada; and SensoriMotor Rehabilitation Research Team, Canadian Institutes of Health Research, Montreal, Quebec, Canada
| | - Hugo Delivet-Mongrain
- Department of Neuroscience and Groupe de Recherche sur le Système Nerveux Central (GRSNC), Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada; and SensoriMotor Rehabilitation Research Team, Canadian Institutes of Health Research, Montreal, Quebec, Canada
| | - Serge Rossignol
- Department of Neuroscience and Groupe de Recherche sur le Système Nerveux Central (GRSNC), Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada; and SensoriMotor Rehabilitation Research Team, Canadian Institutes of Health Research, Montreal, Quebec, Canada
| |
Collapse
|
22
|
Rossignol S, Martinez M, Escalona M, Kundu A, Delivet-Mongrain H, Alluin O, Gossard JP. The "beneficial" effects of locomotor training after various types of spinal lesions in cats and rats. PROGRESS IN BRAIN RESEARCH 2015; 218:173-98. [PMID: 25890137 DOI: 10.1016/bs.pbr.2014.12.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
This chapter reviews a number of experiments on the recovery of locomotion after various types of spinal lesions and locomotor training mainly in cats. We first recall the major evidence on the recovery of hindlimb locomotion in completely spinalized cats at the T13 level and the role played by the spinal locomotor network, also known as the central pattern generator, as well as the beneficial effects of locomotor training on this recovery. Having established that hindlimb locomotion can recover, we raise the issue as to whether spinal plastic changes could also contribute to the recovery after partial spinal lesions such as unilateral hemisections. We found that after such hemisection at T10, cats could recover quadrupedal locomotion and that deficits could be improved by training. We further showed that, after a complete spinalization a few segments below the first hemisection (at T13, i.e., the level of previous studies on spinalization), cats could readily walk with the hindlimbs within hours of completely severing the remaining spinal tracts and not days as is usually the case with only a single complete spinalization. This suggests that neuroplastic changes occurred below the first hemisection so that the cat was already primed to walk after the spinalization subsequent to the hemispinalization 3 weeks before. Of interest is the fact that some characteristic kinematic features in trained or untrained hemispinalized cats could remain after complete spinalization, suggesting that spinal changes induced by training could also be durable. Other studies on reflexes and on the pattern of "fictive" locomotion recorded after curarization corroborate this view. More recent work deals with training cats in more demanding situations such as ladder treadmill (vs. flat treadmill) to evaluate how the locomotor training regimen can influence the spinal cord. Finally, we report our recent studies in rats using compressive lesions or surgical complete spinalization and find that some principles of locomotor recovery in cats also apply to rats when adequate locomotor training is provided.
Collapse
Affiliation(s)
- Serge Rossignol
- Department of Neuroscience and Groupe de Recherche sur le Système Nerveux Central (GRSNC), Faculty of Medicine, Université de Montréal, P.O. Box 6128, Montreal, Quebec, Canada; SensoriMotor Rehabilitation Research Team of the Canadian Institute of Health Research, Montreal, Quebec, Canada.
| | - Marina Martinez
- Department of Neuroscience and Groupe de Recherche sur le Système Nerveux Central (GRSNC), Faculty of Medicine, Université de Montréal, P.O. Box 6128, Montreal, Quebec, Canada; SensoriMotor Rehabilitation Research Team of the Canadian Institute of Health Research, Montreal, Quebec, Canada
| | - Manuel Escalona
- Department of Neuroscience and Groupe de Recherche sur le Système Nerveux Central (GRSNC), Faculty of Medicine, Université de Montréal, P.O. Box 6128, Montreal, Quebec, Canada
| | - Aritra Kundu
- Department of Neuroscience and Groupe de Recherche sur le Système Nerveux Central (GRSNC), Faculty of Medicine, Université de Montréal, P.O. Box 6128, Montreal, Quebec, Canada
| | - Hugo Delivet-Mongrain
- Department of Neuroscience and Groupe de Recherche sur le Système Nerveux Central (GRSNC), Faculty of Medicine, Université de Montréal, P.O. Box 6128, Montreal, Quebec, Canada
| | - Olivier Alluin
- Department of Neuroscience and Groupe de Recherche sur le Système Nerveux Central (GRSNC), Faculty of Medicine, Université de Montréal, P.O. Box 6128, Montreal, Quebec, Canada; SensoriMotor Rehabilitation Research Team of the Canadian Institute of Health Research, Montreal, Quebec, Canada
| | - Jean-Pierre Gossard
- Department of Neuroscience and Groupe de Recherche sur le Système Nerveux Central (GRSNC), Faculty of Medicine, Université de Montréal, P.O. Box 6128, Montreal, Quebec, Canada; SensoriMotor Rehabilitation Research Team of the Canadian Institute of Health Research, Montreal, Quebec, Canada
| |
Collapse
|
23
|
Ruschel J, Hellal F, Flynn KC, Dupraz S, Elliott DA, Tedeschi A, Bates M, Sliwinski C, Brook G, Dobrindt K, Peitz M, Brüstle O, Norenberg MD, Blesch A, Weidner N, Bunge MB, Bixby JL, Bradke F. Axonal regeneration. Systemic administration of epothilone B promotes axon regeneration after spinal cord injury. Science 2015; 348:347-52. [PMID: 25765066 DOI: 10.1126/science.aaa2958] [Citation(s) in RCA: 341] [Impact Index Per Article: 34.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 02/25/2015] [Indexed: 12/14/2022]
Abstract
After central nervous system (CNS) injury, inhibitory factors in the lesion scar and poor axon growth potential prevent axon regeneration. Microtubule stabilization reduces scarring and promotes axon growth. However, the cellular mechanisms of this dual effect remain unclear. Here, delayed systemic administration of a blood-brain barrier-permeable microtubule-stabilizing drug, epothilone B (epoB), decreased scarring after rodent spinal cord injury (SCI) by abrogating polarization and directed migration of scar-forming fibroblasts. Conversely, epothilone B reactivated neuronal polarization by inducing concerted microtubule polymerization into the axon tip, which propelled axon growth through an inhibitory environment. Together, these drug-elicited effects promoted axon regeneration and improved motor function after SCI. With recent clinical approval, epothilones hold promise for clinical use after CNS injury.
Collapse
Affiliation(s)
- Jörg Ruschel
- Axonal Growth and Regeneration, German Center for Neurodegenerative Diseases, Ludwig-Erhard-Allee 2, 53175 Bonn, Germany
| | - Farida Hellal
- Axonal Growth and Regeneration, German Center for Neurodegenerative Diseases, Ludwig-Erhard-Allee 2, 53175 Bonn, Germany
| | - Kevin C Flynn
- Axonal Growth and Regeneration, German Center for Neurodegenerative Diseases, Ludwig-Erhard-Allee 2, 53175 Bonn, Germany
| | - Sebastian Dupraz
- Axonal Growth and Regeneration, German Center for Neurodegenerative Diseases, Ludwig-Erhard-Allee 2, 53175 Bonn, Germany
| | - David A Elliott
- Axonal Growth and Regeneration, German Center for Neurodegenerative Diseases, Ludwig-Erhard-Allee 2, 53175 Bonn, Germany
| | - Andrea Tedeschi
- Axonal Growth and Regeneration, German Center for Neurodegenerative Diseases, Ludwig-Erhard-Allee 2, 53175 Bonn, Germany
| | - Margaret Bates
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, 1095 Northwest 14th Terrace, Miami, FL33136, USA
| | - Christopher Sliwinski
- Spinal Cord Injury Center, Heidelberg University Hospital, Schlierbacher Landstr. 200A, 69118 Heidelberg, Germany
| | - Gary Brook
- Institute for Neuropathology, RWTH Aachen University, Steinbergweg 20, 52074, Aachen, Germany. Jülich-Aachen Research Alliance-Translational Brain Medicine
| | - Kristina Dobrindt
- Institute of Reconstructive Neurobiology, Life&Brain Center, University of Bonn and Hertie Foundation, Sigmund-Freud-Strasse 25, 53127 Bonn, Germany
| | - Michael Peitz
- Institute of Reconstructive Neurobiology, Life&Brain Center, University of Bonn and Hertie Foundation, Sigmund-Freud-Strasse 25, 53127 Bonn, Germany
| | - Oliver Brüstle
- Institute of Reconstructive Neurobiology, Life&Brain Center, University of Bonn and Hertie Foundation, Sigmund-Freud-Strasse 25, 53127 Bonn, Germany
| | - Michael D Norenberg
- Departments of Pathology, Biochemistry and Molecular Biology, University of Miami School of Medicine, Miami, FL 33101, USA
| | - Armin Blesch
- Spinal Cord Injury Center, Heidelberg University Hospital, Schlierbacher Landstr. 200A, 69118 Heidelberg, Germany
| | - Norbert Weidner
- Spinal Cord Injury Center, Heidelberg University Hospital, Schlierbacher Landstr. 200A, 69118 Heidelberg, Germany
| | - Mary Bartlett Bunge
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, 1095 Northwest 14th Terrace, Miami, FL33136, USA
| | - John L Bixby
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, 1095 Northwest 14th Terrace, Miami, FL33136, USA
| | - Frank Bradke
- Axonal Growth and Regeneration, German Center for Neurodegenerative Diseases, Ludwig-Erhard-Allee 2, 53175 Bonn, Germany.
| |
Collapse
|
24
|
Ghosh M, Pearse DD. The role of the serotonergic system in locomotor recovery after spinal cord injury. Front Neural Circuits 2015; 8:151. [PMID: 25709569 PMCID: PMC4321350 DOI: 10.3389/fncir.2014.00151] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Accepted: 12/28/2014] [Indexed: 11/30/2022] Open
Abstract
Serotonin (5-HT), a monoamine neurotransmitter synthesized in various populations of brainstem neurons, plays an important role in modulating the activity of spinal networks involved in vertebrate locomotion. Following spinal cord injury (SCI) there is a disruption of descending serotonergic projections to spinal motor areas, which results in a subsequent depletion in 5-HT, the dysregulation of 5-HT transporters as well as the elevated expression, super-sensitivity and/or constitutive auto-activation of specific 5-HT receptors. These changes in the serotonergic system can produce varying degrees of locomotor dysfunction through to paralysis. To date, various approaches targeting the different components of the serotonergic system have been employed to restore limb coordination and improve locomotor function in experimental models of SCI. These strategies have included pharmacological modulation of serotonergic receptors, through the administration of specific 5-HT receptor agonists, or by elevating the 5-HT precursor 5-hydroxytryptophan, which produces a global activation of all classes of 5-HT receptors. Stimulation of these receptors leads to the activation of the locomotor central pattern generator (CPG) below the site of injury to facilitate or improve the quality and frequency of movements, particularly when used in concert with the activation of other monoaminergic systems or coupled with electrical stimulation. Another approach has been to employ cell therapeutics to replace the loss of descending serotonergic input to the CPG, either through transplanted fetal brainstem 5-HT neurons at the site of injury that can supply 5-HT to below the level of the lesion or by other cell types to provide a substrate at the injury site for encouraging serotonergic axon regrowth across the lesion to the caudal spinal cord for restoring locomotion.
Collapse
Affiliation(s)
- Mousumi Ghosh
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine Miami, FL, USA ; Department of Neurological Surgery, University of Miami Miller School of Medicine Miami, FL, USA
| | - Damien D Pearse
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine Miami, FL, USA ; Department of Neurological Surgery, University of Miami Miller School of Medicine Miami, FL, USA ; The Neuroscience Program, University of Miami Miller School of Medicine Miami, FL, USA ; The Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine Miami, FL, USA
| |
Collapse
|
25
|
Dias J, Alekseenko Z, Applequist J, Ericson J. Tgfβ Signaling Regulates Temporal Neurogenesis and Potency of Neural Stem Cells in the CNS. Neuron 2014; 84:927-39. [DOI: 10.1016/j.neuron.2014.10.033] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/15/2014] [Indexed: 01/31/2023]
|
26
|
Jordan LM, McVagh JR, Noga BR, Cabaj AM, Majczyński H, Sławińska U, Provencher J, Leblond H, Rossignol S. Cholinergic mechanisms in spinal locomotion-potential target for rehabilitation approaches. Front Neural Circuits 2014; 8:132. [PMID: 25414645 PMCID: PMC4222238 DOI: 10.3389/fncir.2014.00132] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Accepted: 10/13/2014] [Indexed: 01/08/2023] Open
Abstract
Previous experiments implicate cholinergic brainstem and spinal systems in the control of locomotion. Our results demonstrate that the endogenous cholinergic propriospinal system, acting via M2 and M3 muscarinic receptors, is capable of consistently producing well-coordinated locomotor activity in the in vitro neonatal preparation, placing it in a position to contribute to normal locomotion and to provide a basis for recovery of locomotor capability in the absence of descending pathways. Tests of these suggestions, however, reveal that the spinal cholinergic system plays little if any role in the induction of locomotion, because MLR-evoked locomotion in decerebrate cats is not prevented by cholinergic antagonists. Furthermore, it is not required for the development of stepping movements after spinal cord injury, because cholinergic agonists do not facilitate the appearance of locomotion after spinal cord injury, unlike the dramatic locomotion-promoting effects of clonidine, a noradrenergic α-2 agonist. Furthermore, cholinergic antagonists actually improve locomotor activity after spinal cord injury, suggesting that plastic changes in the spinal cholinergic system interfere with locomotion rather than facilitating it. Changes that have been observed in the cholinergic innervation of motoneurons after spinal cord injury do not decrease motoneuron excitability, as expected. Instead, the development of a “hyper-cholinergic” state after spinal cord injury appears to enhance motoneuron output and suppress locomotion. A cholinergic suppression of afferent input from the limb after spinal cord injury is also evident from our data, and this may contribute to the ability of cholinergic antagonists to improve locomotion. Not only is a role for the spinal cholinergic system in suppressing locomotion after SCI suggested by our results, but an obligatory contribution of a brainstem cholinergic relay to reticulospinal locomotor command systems is not confirmed by our experiments.
Collapse
Affiliation(s)
- Larry M Jordan
- Department of Physiology and Pathophysiology, Spinal Cord Research Centre, University of Manitoba Winnipeg, MB, Canada
| | - J R McVagh
- Department of Physiology and Pathophysiology, Spinal Cord Research Centre, University of Manitoba Winnipeg, MB, Canada
| | - B R Noga
- Department of Neurological Surgery, The Miami Project to Cure Paralysis, University of Miami Miami, FL, USA
| | - A M Cabaj
- Department of Neurophysiology, Nencki Institute of Experimental Biology PAS Warsaw, Poland ; Department of Nerve-Muscle Engineering, Institute of Biocybernetics and Biomedical Engineering PAS Warsaw, Poland
| | - H Majczyński
- Department of Neurophysiology, Nencki Institute of Experimental Biology PAS Warsaw, Poland
| | - Urszula Sławińska
- Department of Neurophysiology, Nencki Institute of Experimental Biology PAS Warsaw, Poland
| | - J Provencher
- Groupe de Recherche sur le Système Nerveux Central and Department of Neuroscience, Faculty of Medicine, Université de Montréal Montreal, QC, Canada
| | - H Leblond
- Groupe de Recherche sur le Système Nerveux Central and Department of Neuroscience, Faculty of Medicine, Université de Montréal Montreal, QC, Canada
| | - Serge Rossignol
- Groupe de Recherche sur le Système Nerveux Central and Department of Neuroscience, Faculty of Medicine, Université de Montréal Montreal, QC, Canada
| |
Collapse
|
27
|
Gackière F, Vinay L. Serotonergic modulation of post-synaptic inhibition and locomotor alternating pattern in the spinal cord. Front Neural Circuits 2014; 8:102. [PMID: 25221477 PMCID: PMC4148025 DOI: 10.3389/fncir.2014.00102] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Accepted: 08/05/2014] [Indexed: 11/16/2022] Open
Abstract
The central pattern generators (CPGs) for locomotion, located in the lumbar spinal cord, are functional at birth in the rat. Their maturation occurs during the last few days preceding birth, a period during which the first projections from the brainstem start to reach the lumbar enlargement of the spinal cord. Locomotor burst activity in the mature intact spinal cord alternates between flexor and extensor motoneurons through reciprocal inhibition and between left and right sides through commisural inhibitory interneurons. By contrast, all motor bursts are in phase in the fetus. The alternating pattern disappears after neonatal spinal cord transection which suppresses supraspinal influences upon the locomotor networks. This article will review the role of serotonin (5-HT), in particular 5-HT2 receptors, in shaping the alternating pattern. For instance, pharmacological activation of these receptors restores the left-right alternation after injury. Experiments aimed at either reducing the endogenous level of serotonin in the spinal cord or blocking the activation of 5-HT2 receptors. We then describe recent evidence that the action of 5-HT2 receptors is mediated, at least in part, through a modulation of chloride homeostasis. The postsynaptic action of GABA and glycine depends on the intracellular concentration of chloride ions which is regulated by a protein in the plasma membrane, the K+-Cl− cotransporter (KCC2) extruding both K+ and Cl− ions. Absence or reduction of KCC2 expression leads to a depolarizing action of GABA and glycine and a marked reduction in the strength of postsynaptic inhibition. This latter situation is observed early during development and in several pathological conditions, such as after spinal cord injury, thereby causing spasticity and chronic pain. It was recently shown that specific activation of 5-HT2A receptors is able to up-regulate KCC2, restore endogenous inhibition and reduce spasticity.
Collapse
Affiliation(s)
- Florian Gackière
- Institut de Neurosciences de la Timone, UMR 7289, CNRS, Aix Marseille Université Marseille, France
| | - Laurent Vinay
- Institut de Neurosciences de la Timone, UMR 7289, CNRS, Aix Marseille Université Marseille, France
| |
Collapse
|
28
|
Sławińska U, Miazga K, Jordan LM. 5-HT₂ and 5-HT₇ receptor agonists facilitate plantar stepping in chronic spinal rats through actions on different populations of spinal neurons. Front Neural Circuits 2014; 8:95. [PMID: 25191231 PMCID: PMC4137449 DOI: 10.3389/fncir.2014.00095] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Accepted: 07/21/2014] [Indexed: 01/13/2023] Open
Abstract
There is considerable evidence from research in neonatal and adult rat and mouse preparations to warrant the conclusion that activation of 5-HT2 and 5-HT1A/7 receptors leads to activation of the spinal cord circuitry for locomotion. These receptors are involved in control of locomotor movements, but it is not clear how they are implicated in the responses to 5-HT agonists observed after spinal cord injury. Here we used agonists that are efficient in promoting locomotor recovery in paraplegic rats, 8-hydroxy-2-(di-n-propylamino)-tetralin (8-OHDPAT) (acting on 5-HT1A/7 receptors) and quipazine (acting on 5-HT2 receptors), to examine this issue. Analysis of intra- and interlimb coordination confirmed that the locomotor performance was significantly improved by either drug, but the data revealed marked differences in their mode of action. Interlimb coordination was significantly better after 8-OHDPAT application, and the activity of the extensor soleus muscle was significantly longer during the stance phase of locomotor movements enhanced by quipazine. Our results show that activation of both receptors facilitates locomotion, but their effects are likely exerted on different populations of spinal neurons. Activation of 5-HT2 receptors facilitates the output stage of the locomotor system, in part by directly activating motoneurons, and also through activation of interneurons of the locomotor central pattern generator (CPG). Activation of 5-HT7/1A receptors facilitates the activity of the locomotor CPG, without direct actions on the output components of the locomotor system, including motoneurons. Although our findings show that the combined use of these two drugs results in production of well-coordinated weight supported locomotion with a reduced need for exteroceptive stimulation, they also indicate that there might be some limitations to the utility of combined treatment. Sensory feedback and some intraspinal circuitry recruited by the drugs can conflict with the locomotor activation.
Collapse
Affiliation(s)
- Urszula Sławińska
- Department of Neurophysiology, Nencki Institute of Experimental Biology PAS Warsaw, Poland
| | - Krzysztof Miazga
- Department of Neurophysiology, Nencki Institute of Experimental Biology PAS Warsaw, Poland
| | - Larry M Jordan
- Department of Physiology, Spinal Cord Research Centre, University of Manitoba Winnipeg, MB, Canada
| |
Collapse
|
29
|
Takakusaki K. Neurophysiology of gait: from the spinal cord to the frontal lobe. Mov Disord 2014; 28:1483-91. [PMID: 24132836 DOI: 10.1002/mds.25669] [Citation(s) in RCA: 304] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2013] [Revised: 08/09/2013] [Accepted: 08/12/2013] [Indexed: 12/19/2022] Open
Abstract
Locomotion is a purposeful, goal-directed behavior initiated by signals arising from either volitional processing in the cerebral cortex or emotional processing in the limbic system. Regardless of whether the locomotion initiation is volitional or emotional, locomotion is accompanied by automatic controlled movement processes, such as the adjustment of postural muscle tone and rhythmic limb movements. Sensori-motor integration in the brainstem and the spinal cord plays crucial roles in this process. The basic locomotor motor pattern is generated by spinal interneuronal networks, termed central pattern generators (CPGs). Responding to signals in proprioceptive and skin afferents, the spinal interneuronal networks modify the locomotor pattern in cooperation with descending signals from the brainstem structures and the cerebral cortex. Information processing between the basal ganglia, the cerebellum, and the brainstem may enable automatic regulation of muscle tone and rhythmic limb movements in the absence of conscious awareness. However, when a locomoting subject encounters obstacles, the subject has to intentionally adjust bodily alignment to guide limb movements. Such an intentional gait modification requires motor programming in the premotor cortices. The motor programs utilize one's bodily information, such as the body schema, which is preserved and updated in the temporoparietal cortex. The motor programs are transmitted to the brainstem by the corticoreticulospinal system, so that one's posture is anticipatorily controlled. These processes enable the corticospinal system to generate limb trajectory and achieve accurate foot placement. Loops from the motor cortical areas to the basal ganglia and the cerebellum can serve this purpose.
Collapse
Affiliation(s)
- Kaoru Takakusaki
- The Research Center for Brain Function and Medical Engineering, School of Medicine, Asahikawa Medical University, Asahikawa, Japan; Department of Precision Engineering, School of Engineering, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
30
|
D'Amico JM, Condliffe EG, Martins KJB, Bennett DJ, Gorassini MA. Recovery of neuronal and network excitability after spinal cord injury and implications for spasticity. Front Integr Neurosci 2014; 8:36. [PMID: 24860447 PMCID: PMC4026713 DOI: 10.3389/fnint.2014.00036] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Accepted: 04/17/2014] [Indexed: 01/08/2023] Open
Abstract
The state of areflexia and muscle weakness that immediately follows a spinal cord injury (SCI) is gradually replaced by the recovery of neuronal and network excitability, leading to both improvements in residual motor function and the development of spasticity. In this review we summarize recent animal and human studies that describe how motoneurons and their activation by sensory pathways become hyperexcitable to compensate for the reduction of functional activation of the spinal cord and the eventual impact on the muscle. Specifically, decreases in the inhibitory control of sensory transmission and increases in intrinsic motoneuron excitability are described. We present the idea that replacing lost patterned activation of the spinal cord by activating synaptic inputs via assisted movements, pharmacology or electrical stimulation may help to recover lost spinal inhibition. This may lead to a reduction of uncontrolled activation of the spinal cord and thus, improve its controlled activation by synaptic inputs to ultimately normalize circuit function. Increasing the excitation of the spinal cord with spared descending and/or peripheral inputs by facilitating movement, instead of suppressing it pharmacologically, may provide the best avenue to improve residual motor function and manage spasticity after SCI.
Collapse
Affiliation(s)
- Jessica M D'Amico
- Centre for Neuroscience, University of Alberta Edmonton, AB, Canada ; Faculty of Medicine and Dentistry, University of Alberta Edmonton, AB, Canada
| | - Elizabeth G Condliffe
- Centre for Neuroscience, University of Alberta Edmonton, AB, Canada ; Faculty of Medicine and Dentistry, University of Alberta Edmonton, AB, Canada ; Department of Biomedical Engineering, University of Alberta Edmonton, AB, Canada ; Division of Physical Medicine and Rehabilitation, University of Alberta Edmonton, AB, Canada
| | - Karen J B Martins
- Centre for Neuroscience, University of Alberta Edmonton, AB, Canada ; Faculty of Physical Education and Recreation, University of Alberta Edmonton, AB, Canada
| | - David J Bennett
- Centre for Neuroscience, University of Alberta Edmonton, AB, Canada ; Faculty of Rehabilitation Medicine, University of Alberta Edmonton, AB, Canada
| | - Monica A Gorassini
- Centre for Neuroscience, University of Alberta Edmonton, AB, Canada ; Faculty of Medicine and Dentistry, University of Alberta Edmonton, AB, Canada ; Department of Biomedical Engineering, University of Alberta Edmonton, AB, Canada
| |
Collapse
|