1
|
La Loggia O, Antunes DF, Aubin-Horth N, Taborsky B. Social Complexity During Early Development has Long-Term Effects on Neuroplasticity in the Social Decision-Making Network. Mol Ecol 2025; 34:e17738. [PMID: 40116137 DOI: 10.1111/mec.17738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 03/07/2025] [Accepted: 03/10/2025] [Indexed: 03/23/2025]
Abstract
In social species, early social experience shapes the development of appropriate social behaviours during conspecific interactions referred to as social competence. However, the underlying neuronal mechanisms responsible for the acquisition of social competence are largely unknown. A key candidate to influence social competence is neuroplasticity, which functions to restructure neural networks in response to novel experiences or alterations of the environment. One important mediator of this restructuring is the neurotrophin BDNF, which is well conserved among vertebrates. We studied the highly social fish Neolamprologus pulcher, in which the impact of early social experience on social competence has been previously shown. We investigated experimentally how variation in the early social environment impacts markers of neuroplasticity by analysing the relative expression of the bdnf gene and its receptors p75NTR and TrkB across nodes of the social decision-making network. In fish raised in larger groups, bdnf and TrkB were upregulated in the anterior tuberal nucleus, compared to fish raised in smaller groups, while TrkB was downregulated and bdnf was upregulated in the lateral part of the dorsal telencephalon. In the preoptic area (POA), all three genes were upregulated in fish raised in large groups, suggesting that early social experiences might lead to changes of the neuronal connectivity in the POA. Our results highlight the importance of early social experience in programming the constitutive expression of neuroplasticity markers, suggesting that the effects of early social experience on social competence might be due to changes in neuroplasticity.
Collapse
Affiliation(s)
- Océane La Loggia
- Institute for Ecology and Evolution, Behavioural Ecology Division, University of Bern, Bern, Switzerland
| | - Diogo F Antunes
- Institute for Ecology and Evolution, Behavioural Ecology Division, University of Bern, Bern, Switzerland
| | - Nadia Aubin-Horth
- Département de Biologie and Institut de Biologie Intégrative et Des Systèmes, Université Laval, Quebec, Canada
| | - Barbara Taborsky
- Institute for Ecology and Evolution, Behavioural Ecology Division, University of Bern, Bern, Switzerland
| |
Collapse
|
2
|
Xiong R, Hu Y, Wang M, Han T, Hu Y, Ma C, Li B. Peripheral CD4 + T cells mediate the destructive effects of maternal separation on prefrontal myelination and cognitive functions. Proc Natl Acad Sci U S A 2025; 122:e2412995122. [PMID: 40238461 PMCID: PMC12037062 DOI: 10.1073/pnas.2412995122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Accepted: 03/12/2025] [Indexed: 04/18/2025] Open
Abstract
Maternal separation (MS), a chronic stress event in early life, impairs myelination in the prefrontal cortex (PFC) and leads to PFC cognitive disorders. It remains largely unclear how such deficits are mediated. Here, we show that peripheral CD4+ T cells play an essential role in mediating the destructive effects of MS on medial prefrontal cortical (mPFC) myelination and cognitive functions in mice. Offspring mice with MS experience (MS mice) exhibited an increase in CD4+ T cells and xanthine levels in peripheral blood and a severe deficit in mPFC-dependent cognitive functions such as working memory, social interaction, and anxiety/depression emotion regulation, along with a decrease in oligodendrocyte precursor cells (OPCs) and oligodendrocytes (OLs) in the mPFC. These phenotypes were rescued upon treatment with the antibody neutralizing peripheral CD4+ T cells. Rag1-/- immunodeficient mice receiving transplantation of CD4+ T cells isolated from the peripheral blood of MS mice showed similar phenotypes as observed in MS mice. Immunofluorescence staining revealed a rich expression of adenosine receptor A1 (A1) in OPCs in the mPFC, and the A1-expressing OPCs decreased in the Rag1-/- mice receiving CD4+ T cell transplantation. The present study demonstrates a causal link between peripheral CD4+ T cells and MS-induced prefrontal cortical hypomyelination and cognitive dysfunction, and such a link is probably mediated via xanthine-adenosine receptor A1 signaling in OPCs.
Collapse
Affiliation(s)
- Rui Xiong
- Institute of Life Science and School of Life Science, Nanchang University, Nanchang330031, China
| | - Yinyin Hu
- Institute of Life Science and School of Life Science, Nanchang University, Nanchang330031, China
| | - Menghan Wang
- Institute of Life Science and School of Life Science, Nanchang University, Nanchang330031, China
| | - Ting Han
- Institute of Life Science and School of Life Science, Nanchang University, Nanchang330031, China
| | - Yuying Hu
- Institute of Life Science and School of Life Science, Nanchang University, Nanchang330031, China
| | - Chaolin Ma
- Institute of Life Science and School of Life Science, Nanchang University, Nanchang330031, China
| | - Baoming Li
- Institute of Life Science and School of Life Science, Nanchang University, Nanchang330031, China
- Institute of Brain Science, School of Basic Medical Science, Hangzhou Normal University, Hangzhou311121, China
| |
Collapse
|
3
|
Zhang Y, Zhang W, Yu L, Shi Y, Xu M, Wang H, Li C, Tian J. The TAAR1 Agonist PCC0105004 Regulates Amygdala Synaptic Plasticity to Alleviate Anxiety-Like Behaviors in Rats. Pharmacol Res Perspect 2025; 13:e70068. [PMID: 40186385 PMCID: PMC11971484 DOI: 10.1002/prp2.70068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 12/26/2024] [Accepted: 01/10/2025] [Indexed: 04/07/2025] Open
Abstract
Anxiety disorder is a persistent, widespread, and intractable mood disorder, and the available pharmacotherapies have limited efficacy with significant side effects. Trace amine-associated receptor 1 (TAAR1) is an emerging drug target for neuropsychiatric disorders. This study examined the effects and underlying mechanisms of a novel TAAR1 agonist, PCC0105004, in a rat model of CUMS-induced anxiety-like behavior. The elevated zero maze and open field tests test were employed to evaluate the anti-anxiety-like activity of PCC0105004. PCC0105004 dose-dependently attenuated anxiety-like behaviors in rats without affecting spontaneous activity. Morphologically, PCC0104005 decreased the density of dendritic spines in the amygdala. For the mechanistic studies, whole-genome transcriptomic analysis revealed significant differences in the patterns of amygdala gene expression in the CUMS-induced anxiety rat model. These transcriptomic data were further confirmed by using RT-qPCR and western blotting, further revealing alterations associated with genes (Col1a1, DCN, Ewsr1) known to regulate synaptic plasticity, and PCC0105004 was able to reverse these changes. These results suggest that PCC0105004 is a promising anxiolytic candidate for pharmacotherapy of anxiety and warrants further examination and development.
Collapse
Affiliation(s)
- Yingtian Zhang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of EducationCollaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai UniversityYantaiPeople's Republic of China
| | - Wei Zhang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of EducationCollaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai UniversityYantaiPeople's Republic of China
| | - Linyao Yu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of EducationCollaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai UniversityYantaiPeople's Republic of China
| | - Yaoqin Shi
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of EducationCollaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai UniversityYantaiPeople's Republic of China
| | - Min Xu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of EducationCollaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai UniversityYantaiPeople's Republic of China
| | - Hui Wang
- State Key Laboratory of Advanced Drug Delivery and Release SystemsYantaiShandongPeople's Republic of China
| | - Chunmei Li
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of EducationCollaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai UniversityYantaiPeople's Republic of China
- State Key Laboratory of Advanced Drug Delivery and Release SystemsYantaiShandongPeople's Republic of China
| | - Jingwei Tian
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of EducationCollaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai UniversityYantaiPeople's Republic of China
- State Key Laboratory of Advanced Drug Delivery and Release SystemsYantaiShandongPeople's Republic of China
| |
Collapse
|
4
|
Montes-Rodríguez CJ, Hernández-Reyes ED, Piña-Díaz V, Muñoz-Torres Z, Pérez-Zarazúa I, Urteaga-Urías E, Prospéro-García O. Activity-Dependent Synaptic Plasticity in the Medial Prefrontal Cortex of Male Rats Underlies Resilience-Related Behaviors to Social Adversity. J Neurosci Res 2024; 102:e25377. [PMID: 39275861 DOI: 10.1002/jnr.25377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 07/02/2024] [Accepted: 08/11/2024] [Indexed: 09/16/2024]
Abstract
Individuals considered resilient can overcome adversity, achieving normal physical and psychological development, while those deemed vulnerable may not. Adversity promotes structural and functional alterations in the medial prefrontal cortex (mPFC) and hippocampus. Moreover, activity-dependent synaptic plasticity is intricately linked to neuronal shaping resulting from experiences. We hypothesize that this plasticity plays a crucial role in resilience processes. However, there is a notable absence of studies investigating this plasticity and behavioral changes following social adversity at different life stages. Consequently, we evaluated the impact of social adversity during early postnatal development (maternal separation [MS]), adulthood (social defeat [SD]), and a combined exposure (MS + SD) on behavioral outcomes (anxiety, motivation, anhedonia, and social interaction). We also examined cFos expression induced by social interaction in mPFC and hippocampus of adult male rats. Behavioral analyses revealed that SD-induced anhedonia, whereas MS + SD increased social interaction and mitigated SD-induced anhedonia. cFos evaluation showed that social interaction heightened plasticity in the prelimbic (PrL) and infralimbic (IL) cortices, dentate gyrus (DG), CA3, and CA1. Social interaction-associated plasticity was compromised in IL and PrL cortices of the MS and SD groups. Interestingly, social interaction-induced plasticity was restored in the MS + SD group. Furthermore, plasticity was impaired in DG by all social stressors, and in CA3 was impaired by SD. Our findings suggest in male rats (i) two adverse social experiences during development foster resilience; (ii) activity-dependent plasticity in the mPFC is a foundation for resilience to social adversity; (iii) plasticity in DG is highly susceptible to social adversity.
Collapse
Affiliation(s)
- Corinne J Montes-Rodríguez
- Centro de Investigación en Ciencias, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, Mexico
- Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| | - Erika D Hernández-Reyes
- Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
- Facultad de Psicología, UNAM, Mexico City, Mexico
| | - Vanessa Piña-Díaz
- Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
- Facultad de Psicología, UNAM, Mexico City, Mexico
| | - Zeidy Muñoz-Torres
- Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
- Facultad de Psicología, UNAM, Mexico City, Mexico
| | - Itzel Pérez-Zarazúa
- Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
- Facultad de Psicología, UNAM, Mexico City, Mexico
| | - Emiliano Urteaga-Urías
- Academia de Cultura Científica y Humanística, Universidad Autónoma de la Ciudad de México, Mexico City, Mexico
| | - Oscar Prospéro-García
- Laboratorio de Cannabinoides, Departamento de Fisiología, Facultad de Medicina, UNAM, Mexico City, Mexico
| |
Collapse
|
5
|
Ünel ÇÇ, Eroğlu E, Özatik O, Erol K. Chlorogenic acid co-administration alleviates cisplatin-induced peripheral neuropathy in rats. Fundam Clin Pharmacol 2024; 38:523-537. [PMID: 37996998 DOI: 10.1111/fcp.12970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 10/06/2023] [Accepted: 11/02/2023] [Indexed: 11/25/2023]
Abstract
BACKGROUND Chemotherapy-induced peripheral neuropathy (CIPN) is still an unresolved problem in cisplatin (CIS) use. OBJECTIVES This study investigates possible anti-neuropathic effect of chlorogenic acid (CGA) against CIS-induced CIPN in rats while also investigating the contribution of nitric oxide (NO) to this phenomenon. METHODS Initially, CGA (250-1000 μM) was tested by MTT assay on primary DRG neurons. Subsequently, CIPN was induced in Sprague-Dawley rats by 3 mg/kg intraperitoneal injections of CIS once/week for 5 weeks. CGA (100 mg/kg) was co-administered with CIS, both alone and in combination with l-arginine (LARG) or l-nitro-arginine-methyl-ester (LNAME), to elucidate the contribution of nitrergic system to anti-neuropathic effects. Mechanical allodynia, thermal hyperalgesia, and cold plate tests were performed to test CIPN. Rotarod, footprint analysis, and activitymeter were used to evaluate motor coordination and performance. Tumor necrosis factor alpha (TNF-α) was measured as a marker of inflammation. Histological evaluations of DRG and sciatic nerves (SNs) were performed utilizing toluidine blue staining. Two-way analysis of variance and Kruskal-Wallis following Tukey's test were used as statistical analysis. RESULTS Higher concentration of CGA (1000 μM) exhibited protective effect against in vitro neurotoxicity. Neither LARG nor LNAME exerted significant change in this effect. Co-administration of CGA alleviated histological abnormalities and neuropathic effects induced by CIS. Ameliorative effect of CGA was not changed in mechanical allodynia but attenuated in cold allodynia, and motor activity/coordination tests by LARG and LNAME. Neuropathic effects of CIS remained unchanged with LARG and LNAME in behavioral experiments. CONCLUSION The study identified CGA as candidate agent in mitigating CIPN. NO seems to play a modulatory role in this effect.
Collapse
Affiliation(s)
- Çiğdem Çengelli Ünel
- Faculty of Medicine, Department of Medical Pharmacology, Eskisehir Osmangazi University, Eskisehir, Turkey
| | - Ezgi Eroğlu
- Department of Clinical Research, Turkish Medicines and Medical Devices Agency, Ankara, Turkey
| | - Orhan Özatik
- Faculty of Medicine, Department of Histology and Embryology, Kutahya Health Sciences University, Kutahya, Turkey
| | - Kevser Erol
- Faculty of Medicine, Department of Pharmacology, Bahçeşehir University, Istanbul, Turkey
| |
Collapse
|
6
|
Creutzberg KC, Begni V, Orso R, Lumertz FS, Wearick-Silva LE, Tractenberg SG, Marizzoni M, Cattaneo A, Grassi-Oliveira R, Riva MA. Vulnerability and resilience to prenatal stress exposure: behavioral and molecular characterization in adolescent rats. Transl Psychiatry 2023; 13:358. [PMID: 37993429 PMCID: PMC10665384 DOI: 10.1038/s41398-023-02653-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 10/24/2023] [Accepted: 11/06/2023] [Indexed: 11/24/2023] Open
Abstract
Exposure to stress can lead to long lasting behavioral and neurobiological consequences, which may enhance the susceptibility for the onset of mental disorders. However, there are significant individual differences in the outcome of stress exposure since only a percentage of exposed individuals may show pathological consequences, whereas others appear to be resilient. In this study, we aimed to characterize the effects of prenatal stress (PNS) exposure in rats at adolescence and to identify subgroup of animals with a differential response to the gestational manipulation. PNS adolescent offspring (regardless of sex) showed impaired emotionality in different pathological domains, such as anhedonia, anxiety, and sociability. However, using cluster analysis of the behavioral data we could identify 70% of PNS-exposed animals as vulnerable (PNS-vul), whereas the remaining 30% were considered resilient (PNS-res). At the molecular level, we found that PNS-res males show a reduced basal activation of the ventral hippocampus whereas other regions, such as amygdala and dorsal hippocampus, show significant PNS-induced changes regardless from vulnerability or resilience. Taken together, our results provide evidence of the variability in the behavioral and neurobiological effects of PNS-exposed offspring at adolescence. While these data may advance our understanding of the association between exposure to stress during gestation and the risk for psychopathology, the investigation of the mechanisms associated to stress vulnerability or resilience may be instrumental to develop novel strategies for therapeutic intervention.
Collapse
Affiliation(s)
| | - Veronica Begni
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Rodrigo Orso
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | | | | | - Saulo Gantes Tractenberg
- School of Medicine, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Moira Marizzoni
- Biological Psychiatry Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
- Lab of Neuroimaging and Alzheimer's Epidemiology, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Via Pilastroni, 4, Brescia, 25125, Italy
| | - Annamaria Cattaneo
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
- Biological Psychiatry Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Rodrigo Grassi-Oliveira
- School of Medicine, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, RS, Brazil
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Marco Andrea Riva
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy.
- Biological Psychiatry Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy.
| |
Collapse
|
7
|
Wang C, Li H, Chen C, Yao X, Yang C, Yu Z, Ren J, Ming Y, Huang Y, Rong Y, Ma Y, Liu L. High-Fat Diet Consumption Induces Neurobehavioral Abnormalities and Neuronal Morphological Alterations Accompanied by Excessive Microglial Activation in the Medial Prefrontal Cortex in Adolescent Mice. Int J Mol Sci 2023; 24:ijms24119394. [PMID: 37298345 DOI: 10.3390/ijms24119394] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/19/2023] [Accepted: 05/26/2023] [Indexed: 06/12/2023] Open
Abstract
The association between a high-fat diet (HFD) consumption and emotional/cognitive disorders is widely documented. One distinctive feature of the prefrontal cortex (PFC), a kernel emotion- and cognition-related brain region, is its protracted adolescent maturation, which makes it highly vulnerable to the detrimental effects of environmental factors during adolescence. Disruption of the PFC structure and function is linked to emotional/cognitive disorders, especially those that emerge in late adolescence. A HFD consumption is common among adolescents, yet its potential effects on PFC-related neurobehavior in late adolescence and any related underlying mechanisms are yet to be established. In the present study, adolescent (postnatal days 28-56) male C57BL/6J mice were fed a control diet (CD) or a HFD and underwent behavioral tests in addition to Golgi staining and immunofluorescence targeting of the medial PFC (mPFC). The HFD-fed adolescent mice exhibited anxiety- and depression-like behavior and abnormal mPFC pyramidal neuronal morphology accompanied by alterations in microglial morphology indicative of a heightened state of activation and increased microglial PSD95+ inclusions signifying excessive phagocytosis of the synaptic material in the mPFC. These findings offer novel insights into the neurobehavioral effects due to adolescent HFD consumption and suggest a contributing role in microglial dysfunction and prefrontal neuroplasticity deficits for HFD-associated mood disorders in adolescents.
Collapse
Affiliation(s)
- Conghui Wang
- Medical College, Southeast University, Nanjing 210009, China
| | - Hong Li
- School of Life Science and Technology, Southeast University, Nanjing 210009, China
| | - Chen Chen
- Medical College, Southeast University, Nanjing 210009, China
| | - Xiuting Yao
- Medical College, Southeast University, Nanjing 210009, China
| | - Chenxi Yang
- Medical College, Southeast University, Nanjing 210009, China
| | - Zhehao Yu
- Medical College, Southeast University, Nanjing 210009, China
| | - Jiayi Ren
- Medical College, Southeast University, Nanjing 210009, China
| | - Yue Ming
- Medical College, Southeast University, Nanjing 210009, China
| | - Yi Huang
- Medical College, Southeast University, Nanjing 210009, China
| | - Yi Rong
- Medical College, Southeast University, Nanjing 210009, China
| | - Yu Ma
- Medical College, Southeast University, Nanjing 210009, China
| | - Lijie Liu
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Physiology, School of Medicine, Southeast University, Nanjing 210009, China
| |
Collapse
|
8
|
Ma J, Li K, Sun X, Liang JN, An XQ, Tian M, Li J, Yan F, Yin Y, Yang YA, Chen FY, Zhang LQ, He XX, He ZX, Guo WX, Zhu XJ, Yu HL. Dysregulation of AMPK-mTOR signaling leads to comorbid anxiety in Dip2a KO mice. Cereb Cortex 2022; 33:4977-4989. [PMID: 36227200 DOI: 10.1093/cercor/bhac393] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 09/08/2022] [Accepted: 09/09/2022] [Indexed: 11/12/2022] Open
Abstract
Autism is often comorbid with other psychiatric disorders. We have previously shown that Dip2a knockout (KO) induces autism-like behaviors in mice. However, the role of Dip2a in other psychiatric disorders remains unclear. In this paper, we revealed that Dip2a KO mice had comorbid anxiety. Dip2a KO led to a reduction in the dendritic length of cortical and hippocampal excitatory neurons. Molecular mechanism studies suggested that AMPK was overactivated and suppressed the mTOR cascade, contributing to defects in dendritic morphology. Deletion of Dip2a in adult-born hippocampal neurons (Dip2a conditional knockout (cKO)) increased susceptibility to anxiety upon acute stress exposure. Application of (2R,6R)-hydroxynorketamine (HNK), an inhibitor of mTOR, rescued anxiety-like behaviors in Dip2a KO and Dip2a cKO mice. In addition, 6 weeks of high-fat diet intake alleviated AMPK-mTOR signaling and attenuated the severity of anxiety in both Dip2a KO mice and Dip2a cKO mice. Taken together, these results reveal an unrecognized function of DIP2A in anxiety pathophysiology via regulation of AMPK-mTOR signaling.
Collapse
Affiliation(s)
- Jun Ma
- Key Laboratory of Molecular Epigenetics, Ministry of Education and Institute of Cytology and Genetics, Northeast Normal University, Changchun 130024, China.,Department of Oral Anatomy and Physiology, School and Hospital of Stomatology, Jilin University, Changchun 130021, China
| | - Kai Li
- Department of Anesthesia, China-Japan Union Hospital, Jilin University, Changchun 130033, China
| | - Xue Sun
- Key Laboratory of Molecular Epigenetics, Ministry of Education and Institute of Cytology and Genetics, Northeast Normal University, Changchun 130024, China
| | - Jia-Nan Liang
- Key Laboratory of Molecular Epigenetics, Ministry of Education and Institute of Cytology and Genetics, Northeast Normal University, Changchun 130024, China
| | - Xian-Quan An
- Department of Anesthesiology, Second Hospital, Jilin University, Changchun 130041, China
| | - Meng Tian
- Key Laboratory of Molecular Epigenetics, Ministry of Education and Institute of Cytology and Genetics, Northeast Normal University, Changchun 130024, China
| | - Jing Li
- Key Laboratory of Molecular Epigenetics, Ministry of Education and Institute of Cytology and Genetics, Northeast Normal University, Changchun 130024, China
| | - Fang Yan
- Key Laboratory of Molecular Epigenetics, Ministry of Education and Institute of Cytology and Genetics, Northeast Normal University, Changchun 130024, China
| | - Yue Yin
- Key Laboratory of Molecular Epigenetics, Ministry of Education and Institute of Cytology and Genetics, Northeast Normal University, Changchun 130024, China
| | - Ying-Ao Yang
- Key Laboratory of Molecular Epigenetics, Ministry of Education and Institute of Cytology and Genetics, Northeast Normal University, Changchun 130024, China
| | - Fei-Yang Chen
- Key Laboratory of Molecular Epigenetics, Ministry of Education and Institute of Cytology and Genetics, Northeast Normal University, Changchun 130024, China
| | - Lu-Qing Zhang
- Key Laboratory of Molecular Epigenetics, Ministry of Education and Institute of Cytology and Genetics, Northeast Normal University, Changchun 130024, China
| | - Xiao-Xiao He
- Key Laboratory of Molecular Epigenetics, Ministry of Education and Institute of Cytology and Genetics, Northeast Normal University, Changchun 130024, China
| | - Zi-Xuan He
- Key Laboratory of Molecular Epigenetics, Ministry of Education and Institute of Cytology and Genetics, Northeast Normal University, Changchun 130024, China
| | - Wei-Xiang Guo
- State Key Laboratory for Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Science, Beijing 100101, China
| | - Xiao-Juan Zhu
- Key Laboratory of Molecular Epigenetics, Ministry of Education and Institute of Cytology and Genetics, Northeast Normal University, Changchun 130024, China
| | - Hua-Li Yu
- Key Laboratory of Molecular Epigenetics, Ministry of Education and Institute of Cytology and Genetics, Northeast Normal University, Changchun 130024, China
| |
Collapse
|
9
|
Braun K, Bock J, Wainstock T, Matas E, Gaisler-Salomon I, Fegert J, Ziegenhain U, Segal M. Experience-induced transgenerational (re-)programming of neuronal structure and functions: Impact of stress prior and during pregnancy. Neurosci Biobehav Rev 2020; 117:281-296. [DOI: 10.1016/j.neubiorev.2017.05.021] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 05/23/2017] [Accepted: 05/24/2017] [Indexed: 12/11/2022]
|
10
|
Murthy S, Gould E. How Early Life Adversity Influences Defensive Circuitry. Trends Neurosci 2020; 43:200-212. [PMID: 32209452 DOI: 10.1016/j.tins.2020.02.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 01/29/2020] [Accepted: 02/04/2020] [Indexed: 12/12/2022]
Abstract
Childhood maltreatment increases the likelihood of developing anxiety disorders in humans. Early life adversity (ELA) paradigms in rodents produce lasting increases in avoidant and inhibitory responses to both immediate and nonspecific threats, collectively referred to as defensive behaviors. This approach provides an opportunity to thoroughly investigate the underlying mechanisms, an effort that is currently under way. In this review, we consider the growing literature indicating that ELA alters the rhythmic firing of neurons in brain regions associated with defensive behavior, as well as potential neuronal, glial, and extracellular matrix contributions to functional changes in this circuitry. We also consider how ELA studies in rodents may inform us about both susceptible and resilient outcomes in humans.
Collapse
Affiliation(s)
- Sahana Murthy
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544, USA
| | - Elizabeth Gould
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544, USA.
| |
Collapse
|
11
|
Doreste-Mendez R, Ríos-Ruiz EJ, Rivera-López LL, Gutierrez A, Torres-Reveron A. Effects of Environmental Enrichment in Maternally Separated Rats: Age and Sex-Specific Outcomes. Front Behav Neurosci 2019; 13:198. [PMID: 31555107 PMCID: PMC6727005 DOI: 10.3389/fnbeh.2019.00198] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 08/13/2019] [Indexed: 01/10/2023] Open
Abstract
Maternal separation (MS) early in life is related to an increase in anxiety and depressive-like behaviors and neurobiological alterations mostly related to alterations in hypothalamic pituitary adrenal (HPA) axis reactivity. Environmental enrichment (EE) has been used to ameliorate the effects of MS. However, the outcomes of this intervention at different developmental periods after MS have not been studied. We subjected male and female Sprague–Dawley pups to MS and subsequently compared the effects of EE started either in the pre-pubertal period [postnatal day (PND) 22] or adulthood (PND 78). Anxiety and depressive-like behaviors as well as in hippocampal synaptic density and basal corticosterone, oxytocin, and vasopressin levels were measured. Our results support the beneficial effects of adulthood EE in decreasing anxiety in males as well as promoting synaptic density in ventral hippocampal CA3. Males displayed higher levels of vasopressin while females displayed higher oxytocin, with no changes in basal corticosterone for any group after EE.
Collapse
Affiliation(s)
- Raura Doreste-Mendez
- Department of Basic Sciences, Physiology and Pharmacology, Ponce Research Institute, Ponce Health Sciences University, Ponce, PR, United States.,School of Brain and Behavioral Sciences, Ponce Research Institute, Ponce Health Sciences University, Ponce, PR, United States
| | - Efraín J Ríos-Ruiz
- School of Brain and Behavioral Sciences, Ponce Research Institute, Ponce Health Sciences University, Ponce, PR, United States.,Institute of Translational Research in Behavioral Sciences, University of Puerto Rico-Ponce Campus, Ponce, PR, United States
| | - Leslie L Rivera-López
- Department of Neuroscience, University of Texas at Rio Grande Valley School of Medicine, Edinburg, TX, United States
| | - Alfredo Gutierrez
- Department of Community Health, School of Arts and Sciences, Tufts University, Medford, MA, United States
| | - Annelyn Torres-Reveron
- Department of Neuroscience, University of Texas at Rio Grande Valley School of Medicine, Edinburg, TX, United States.,Department of Human Genetics, University of Texas at Rio Grande Valley School of Medicine, Edinburg, TX, United States
| |
Collapse
|
12
|
Abstract
The medial prefrontal cortex (mPFC) is a crucial cortical region that integrates information from numerous cortical and subcortical areas and converges updated information to output structures. It plays essential roles in the cognitive process, regulation of emotion, motivation, and sociability. Dysfunction of the mPFC has been found in various neurological and psychiatric disorders, such as depression, anxiety disorders, schizophrenia, autism spectrum disorders, Alzheimer's disease, Parkinson's disease, and addiction. In the present review, we summarize the preclinical and clinical studies to illustrate the role of the mPFC in these neurological diseases.
Collapse
Affiliation(s)
- Pan Xu
- Department of Pharmacology and Physiology, The George Washington University, Washington, District of Columbia
| | - Ai Chen
- Department of Pediatrics, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan China
| | - Yipeng Li
- Department of Biomedical Engineering, The George Washington University, Washington, District of Columbia
| | - Xuezhi Xing
- Department of Pharmacology and Physiology, The George Washington University, Washington, District of Columbia
| | - Hui Lu
- Department of Pharmacology and Physiology, The George Washington University, Washington, District of Columbia
| |
Collapse
|
13
|
Esquivel-Rendón E, Vargas-Mireles J, Cuevas-Olguín R, Miranda-Morales M, Acosta-Mares P, García-Oscos F, Pineda JC, Salgado H, Rose-John S, Atzori M. Interleukin 6 Dependent Synaptic Plasticity in a Social Defeat-Susceptible Prefrontal Cortex Circuit. Neuroscience 2019; 414:280-296. [DOI: 10.1016/j.neuroscience.2019.07.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 06/08/2019] [Accepted: 07/01/2019] [Indexed: 12/29/2022]
|
14
|
Walsh E, Blake Y, Donati A, Stoop R, von Gunten A. Early Secure Attachment as a Protective Factor Against Later Cognitive Decline and Dementia. Front Aging Neurosci 2019; 11:161. [PMID: 31333443 PMCID: PMC6622219 DOI: 10.3389/fnagi.2019.00161] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Accepted: 06/12/2019] [Indexed: 01/07/2023] Open
Abstract
The etiology of neurodegenerative disorders such as dementia is complex and incompletely understood. Interest in a developmental perspective to these pathologies is gaining momentum. An early supportive social environment seems to have important implications for social, affective and cognitive abilities across the lifespan. Attachment theory may help to explain the link between these early experiences and later outcomes. This theory considers early interactions between an infant and its caregiver to be crucial to shaping social behavior and emotion regulation strategies throughout adult life. Furthermore, research has demonstrated that such early attachment experiences can, potentially through epigenetic mechanisms, have profound neurobiological and cognitive consequences. Here we discuss how early attachment might influence the development of affective, cognitive, and neurobiological resources that could protect against cognitive decline and dementia. We argue that social relations, both early and late in life, are vital to ensuring cognitive and neurobiological health. The concepts of brain and cognitive reserve are crucial to understanding how environmental factors may impact cognitive decline. We examine the role that attachment might play in fostering brain and cognitive reserve in old age. Finally, we put forward the concept of affective reserve, to more directly frame the socio-affective consequences of early attachment as protectors against cognitive decline. We thereby aim to highlight that, in the study of aging, cognitive decline and dementia, it is crucial to consider the role of affective and social factors such as attachment.
Collapse
Affiliation(s)
- Emilie Walsh
- Service of Old Age Psychiatry, Department of Psychiatry, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Yvonne Blake
- Center for Psychiatric Neurosciences, Department of Psychiatry, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Alessia Donati
- Service of Old Age Psychiatry, Department of Psychiatry, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Ron Stoop
- Center for Psychiatric Neurosciences, Department of Psychiatry, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Armin von Gunten
- Service of Old Age Psychiatry, Department of Psychiatry, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| |
Collapse
|
15
|
Abstract
The developmental period constitutes a critical window of sensitivity to stress. Indeed, early-life adversity increases the risk to develop psychiatric diseases, but also gastrointestinal disorders such as the irritable bowel syndrome at adulthood. In the past decade, there has been huge interest in the gut-brain axis, especially as regards stress-related emotional behaviours. Animal models of early-life adversity, in particular, maternal separation (MS) in rodents, demonstrate lasting deleterious effects on both the gut and the brain. Here, we review the effects of MS on both systems with a focus on stress-related behaviours. In addition, we discuss more recent findings showing the impact of gut-directed interventions, including nutrition with pre- and probiotics, illustrating the role played by gut microbiota in mediating the long-term effects of MS. Overall, preclinical studies suggest that nutritional approaches with pro- and prebiotics may constitute safe and efficient strategies to attenuate the effects of early-life stress on the gut-brain axis. Further research is required to understand the complex mechanisms underlying gut-brain interaction dysfunctions after early-life stress as well as to determine the beneficial impact of gut-directed strategies in a context of early-life adversity in human subjects.
Collapse
|
16
|
Ogrizek M, Grgurevič N, Snoj T, Majdič G. Injections to pregnant mice produce prenatal stress that affects aggressive behavior in their adult male offspring. Horm Behav 2018; 106:35-43. [PMID: 30201533 DOI: 10.1016/j.yhbeh.2018.09.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 09/04/2018] [Accepted: 09/06/2018] [Indexed: 12/11/2022]
Abstract
Maternal stress could reprogram the developing fetal nervous system. A common target of maternal glucocorticoids is fetal neuro-endocrine axis. In the present study, pregnant mice were exposed to stress by injection and their male offspring were tested for sexual and aggressive behaviors in adult life. Three groups of pregnant mice were exposed to stress by sham syringe injection. The first group was injected on days 13, 14, and 15 p.c., the second group was injected on days 17 and 18 p.c., and the third group was injected daily from days 13 to 18 p.c. while control mice were not injected. Male offspring that were exposed to stress on days 13-18 p.c. and 17-18 p.c. were less aggressive and had lower blood testosterone levels in comparison to the control group. In male sexual behavior, there were no statistically significant differences between the groups. Body weight differed significantly with groups injected on days 13-18 p.c. and 13-15 p.c. having significantly higher body weight in adult life than the other two groups. After behavioral testing, brains were processed for immunohistochemical staining with antibodies against vasopressin (AVP) and calbindin (CALB). The expression of AVP and CALB in the lateral septum and in the preoptic area, respectively, did not differ between groups, suggesting that these two masculinization markers were not affected by prenatal stress. Present study therefore shows that even presumably mild and short prenatal stress weakens aggressive behavior of adult male mice, possibly due to reduced testosterone levels in blood.
Collapse
Affiliation(s)
- Monika Ogrizek
- Institute of Preclinical Sciences, Veterinary Faculty, University of Ljubljana, Gerbičeva 60, 1000 Ljubljana, Slovenia
| | - Neža Grgurevič
- Institute of Preclinical Sciences, Veterinary Faculty, University of Ljubljana, Gerbičeva 60, 1000 Ljubljana, Slovenia
| | - Tomaž Snoj
- Institute of Preclinical Sciences, Veterinary Faculty, University of Ljubljana, Gerbičeva 60, 1000 Ljubljana, Slovenia
| | - Gregor Majdič
- Institute of Preclinical Sciences, Veterinary Faculty, University of Ljubljana, Gerbičeva 60, 1000 Ljubljana, Slovenia; Institute of Physiology, Medical School, University of Maribor, Maribor, Slovenia.
| |
Collapse
|
17
|
Niu H, Shen L, Li T, Ren C, Ding S, Wang L, Zhang Z, Liu X, Zhang Q, Geng D, Wu X, Li H. Alpha-synuclein overexpression in the olfactory bulb initiates prodromal symptoms and pathology of Parkinson's disease. Transl Neurodegener 2018; 7:25. [PMID: 30356861 PMCID: PMC6192070 DOI: 10.1186/s40035-018-0128-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 09/11/2018] [Indexed: 01/08/2023] Open
Abstract
Background Parkinson's disease (PD) is a neurodegenerative disease characterized by intraneuronal Lewy Body (LB) aggregates composed of misfolded alpha-synuclein (α-syn). The spread of misfolded α-syn follows a typical pattern: starting in the olfactory bulb (OB) and the gut, this pathology is followed by the progressive invasion of misfolded α-syn to the posterior part of the brain. It is unknown whether the administration of human mutant alpha-synuclein (hm-α-syn, a human mutation which occurs in familial PD) into the OB of rats would trigger similar α-syn propagation and subsequently cause pathological changes in broader brain fields associated to PD and establish an animal model of prodromal PD. Methods hm-α-syn was overexpressed in the OB of rats with an AAV injection. Then motor and non-motor symptoms of the SD rats were tested in different behavioral tasks following the AAV injection. In follow-up studies, pathological mechanisms of α-syn spread were explored at the histological, biochemical and micro-structure levels. Results The experimental results indicated that hm-α-syn was overexpressed in the OB 3 weeks after the AAV injection. 1) overexpression of the Hm-α-syn in the OB by the AAV injection could transfer to wider adjacent fields beyond the monosynaptic scope. 2) The number of tyrosine hydroxylase positive cells body and fibers was decreased in the substantia nigra (SN) 12 weeks after AAV injection. This was consistent with decreased levels of the DA neurotransmitter. Importantly, behavioral dysfunctions were found that included olfactory impairment after 3 weeks, motor ability impairment and decreased muscular coordination on a rotarod 6 weeks after the AAV injection.3) The morphological level studies found that the Golgi staining revealed the number of neuronal branches and synapses in the OB, prefrontal cortex (PFC), hippocampus (Hip) and striatum caudate putamen (CPU) were decreased. 4) phosphorylated α-syn, at Ser-129 (pSer129), was found to be increased in hm-α-syn injected animals in comparison to controls that overexpressed GFP alone, which was also found in the most of LB stained by the thioflavine S (ThS) in the SN field. 5) A marker of autophagy (LC3B) was increased in serval fields, which was colacolizated with a marker of apoptosis in the SN field. Conclusions These results demonstrate that expression of exogenous mutant α-syn in the OB induces pathological changes in the sensitive brain fields by transferring pathogenic α-syn to adjacent fields. This method may be useful for establishing an animal model of prodromal PD.
Collapse
Affiliation(s)
- Haichen Niu
- 1Department of Genetics, Xuzhou Medical University, Xuzhou, 221004 China
| | - Lingyu Shen
- 2Department of Epidemiology and Health Statistics, Xuzhou Medical University, Xuzhou, 221004 China
| | - Tongzhou Li
- 2Department of Epidemiology and Health Statistics, Xuzhou Medical University, Xuzhou, 221004 China
| | - Chao Ren
- 3Department of Neurology, Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, 264000 China
| | - Sheng Ding
- 2Department of Epidemiology and Health Statistics, Xuzhou Medical University, Xuzhou, 221004 China
| | - Lei Wang
- 1Department of Genetics, Xuzhou Medical University, Xuzhou, 221004 China
| | - Zhonghai Zhang
- 1Department of Genetics, Xuzhou Medical University, Xuzhou, 221004 China
| | - Xiaoyu Liu
- 4College of Medicine, Institute for Behavioral Medicine Research, The Ohio State University, Columbus, OH USA
| | - Qiang Zhang
- 1Department of Genetics, Xuzhou Medical University, Xuzhou, 221004 China
| | - Deqin Geng
- 5Department of Neurology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221004 China
| | - Xiujuan Wu
- 2Department of Epidemiology and Health Statistics, Xuzhou Medical University, Xuzhou, 221004 China
| | - Haiying Li
- 6Department of Pathology, Xuzhou Medical University, Xuzhou, 221004 China
| |
Collapse
|
18
|
Pinzón-Parra C, Vidal-Jiménez B, Camacho-Abrego I, Flores-Gómez AA, Rodríguez-Moreno A, Flores G. Juvenile stress causes reduced locomotor behavior and dendritic spine density in the prefrontal cortex and basolateral amygdala in Sprague-Dawley rats. Synapse 2018; 73:e22066. [DOI: 10.1002/syn.22066] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 07/17/2018] [Accepted: 08/06/2018] [Indexed: 12/11/2022]
Affiliation(s)
- Cesar Pinzón-Parra
- Laboratorio de Neuropsiquiatría, Instituto de Fisiología; Benemérita Universidad Autónoma de Puebla; Puebla México
| | - Blanca Vidal-Jiménez
- Laboratorio de Neuropsiquiatría, Instituto de Fisiología; Benemérita Universidad Autónoma de Puebla; Puebla México
| | - Israel Camacho-Abrego
- Laboratorio de Neuropsiquiatría, Instituto de Fisiología; Benemérita Universidad Autónoma de Puebla; Puebla México
| | - Alejandra A. Flores-Gómez
- Departamento de Ciencias de la Salud; Licenciatura en Medicina, Universidad de las Américas Puebla; Cholula, Puebla México
| | - Antonio Rodríguez-Moreno
- Laboratorio de Neurociencia Celular y Plasticidad; Benemérita Universidad Pablo de Olavide; Sevilla España
| | - Gonzalo Flores
- Laboratorio de Neuropsiquiatría, Instituto de Fisiología; Benemérita Universidad Autónoma de Puebla; Puebla México
| |
Collapse
|
19
|
Protein kinase Mζ in medial prefrontal cortex mediates depressive-like behavior and antidepressant response. Mol Psychiatry 2018; 23:1878-1891. [PMID: 29180675 DOI: 10.1038/mp.2017.219] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2017] [Revised: 08/10/2017] [Accepted: 08/28/2017] [Indexed: 12/28/2022]
Abstract
Neuronal atrophy and alterations of synaptic structure and function in the medial prefrontal cortex (mPFC) have been implicated in the pathogenesis of depression, but the underlying molecular mechanisms are largely unknown. The protein kinase Mζ (PKMζ), a brain-specific atypical protein kinase C isoform, is important for maintaining long-term potentiation and storing memory. In the present study, we explored the role of PKMζ in mPFC in two rat models of depression, chronic unpredictable stress (CUS) and learned helplessness. The involvement of PKMζ in the antidepressant effects of conventional antidepressants and ketamine were also investigated. We found that chronic stress decreased the expression of PKMζ in the mPFC and hippocampus but not in the orbitofrontal cortex. Overexpression of PKMζ in mPFC prevented the depressive-like and anxiety-like behaviors induced by CUS, and reversed helplessness behaviors. Inhibition of PKMζ in mPFC by expressing a PKMζ dominant-negative mutant induced depressive-like behaviors after subthreshold unpredictable stress and increased learned helplessness behavior. Furthermore, stress-induced deficits in synaptic proteins and decreases in dendritic density and the frequency of miniature excitatory postsynaptic currents in the mPFC were prevented by PKMζ overexpression and potentiated by PKMζ inhibition in subthreshold stress rats. The antidepressants fluoxetine, desipramine and ketamine increased PKMζ expression in mPFC and PKMζ mediated the antidepressant effects of ketamine. These findings identify PKMζ in mPFC as a critical mediator of depressive-like behavior and antidepressant response, providing a potential therapeutic target in developing novel antidepressants.
Collapse
|
20
|
Zhang WJ, Cao WY, Huang YQ, Cui YH, Tu BX, Wang LF, Zou GJ, Liu Y, Hu ZL, Hu R, Li CQ, Xing XW, Li F. The Role of miR-150 in Stress-Induced Anxiety-Like Behavior in Mice. Neurotox Res 2018; 35:160-172. [PMID: 30120712 DOI: 10.1007/s12640-018-9943-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 07/28/2018] [Accepted: 08/02/2018] [Indexed: 02/06/2023]
Abstract
Stress plays a crucial role in several psychiatric disorders, including anxiety. However, the underlying mechanisms remain poorly understood. Here, we used acute stress (AS) and chronic restraint stress (CRS) models to develop anxiety-like behavior and investigate the role of miR-150 in the hippocampi of mice. Corticosterone levels as well as glutamate receptors in the hippocampus were evaluated. We found that anxiety-like behavior was induced after either AS or CRS, as determined by the open-field test (OFT) and elevated plus-maze test (EPM). Increased corticosterone levels were observed in the blood of AS and CRS groups, while the expression of miR-150 mRNA in the hippocampus was significantly decreased. The expressions of GluN2A, GluR1, GluR2, and V-Glut2 in the hippocampus were decreased after either AS or CRS. Hippocampal GAD67 expression was increased by AS but not CRS, and GluN2B expression was decreased by CRS but not AS. Adult miR-150 knockout mice showed anxiety-like behavior, as assessed by the OFT and EPM. The expressions of GluN2A, GluN2B, GluR1, and GluR2 were also downregulated, but the expression of V-Glut2 was upregulated in the hippocampi of miR-150 knockout mice compared with wild-type mice. Interestingly, we found that the miR-150 knockout mice showed decreased dendrite lengths, dendrite branchings, and numbers of dendrite spines in the hippocampus compared with wild-type mice. These results suggest that miR-150 may influence the synaptic plasticity of the hippocampus and play a significant role in stress-induced anxiety-like behavior in adult mice.
Collapse
Affiliation(s)
- Wen-Juan Zhang
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Tongzipo Road 172, Changsha, Hunan, China
| | - Wen-Yu Cao
- Clinical Anatomy & Reproductive Medicine Application Institute, University of South China, Hengyang, China
| | - Yan-Qing Huang
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Tongzipo Road 172, Changsha, Hunan, China
| | - Yan-Hui Cui
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Tongzipo Road 172, Changsha, Hunan, China
| | - Bo-Xuan Tu
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Tongzipo Road 172, Changsha, Hunan, China
| | - Lai-Fa Wang
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Tongzipo Road 172, Changsha, Hunan, China
| | - Guang-Jing Zou
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Tongzipo Road 172, Changsha, Hunan, China
| | - Yu Liu
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Tongzipo Road 172, Changsha, Hunan, China
| | - Zhao-Lan Hu
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Tongzipo Road 172, Changsha, Hunan, China
| | - Rong Hu
- Department of Pain, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Chang-Qi Li
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Tongzipo Road 172, Changsha, Hunan, China
| | - Xiao-Wei Xing
- Center for Medical Experiments, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China.
| | - Fang Li
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Tongzipo Road 172, Changsha, Hunan, China.
| |
Collapse
|
21
|
Hidaka C, Kashio T, Uchigaki D, Mitsui S. Vulnerability or resilience of motopsin knockout mice to maternal separation stress depending on adulthood behaviors. Neuropsychiatr Dis Treat 2018; 14:2255-2268. [PMID: 30233183 PMCID: PMC6129033 DOI: 10.2147/ndt.s170281] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Both environmental and genetic conditions contribute to the robust development of neuronal circuits and adulthood behaviors. Loss of motopsin gene function causes severe intellectual disability in humans and enhanced social behavior in mice. Furthermore, childhood maltreatment is a risk factor for some psychiatric disorders, and children with disabilities have a higher risk of abuse than healthy children. MATERIALS AND METHODS In this study, we investigated the effects of maternal separation (MS) on adulthood behaviors of motopsin knockout (KO) and wild-type (WT) mice. RESULTS The MS paradigm decreased the duration that WT mice stayed in the center area of an open field, but not for motopsin KO mice; however, it decreased the novel object recognition index in both genotypes. In the marble burying test, motopsin KO mice buried fewer marbles than WT mice, regardless of the rearing conditions. The MS paradigm slightly increased and reduced open arm entry in the elevated plus maze by WT and motopsin KO mice, respectively. In the three-chamber test, the rate of sniffing the animal cage was increased by the MS paradigm only for motopsin KO mice. After the three-chamber test, motopsin KO mice had fewer cFos-positive cells in the prelimbic cortex, which is involved in emotional response, than WT mice. In the infralimbic cortex, the MS paradigm decreased the number of cFos-positive cells in motopsin KO mice. CONCLUSION Our results suggest that motopsin deficiency and childhood adversity independently affect some behaviors, but they may interfere with each other for other behaviors. Defective neuronal circuits in the prefrontal cortex may add to this complexity.
Collapse
Affiliation(s)
- Chiharu Hidaka
- Department of Rehabilitation Sciences, Gunma University Graduate School of Health Sciences, Maebashi, Japan, .,Department of Neurobiology and Anatomy, Kochi Medical School, Kochi University, Nankoku, Japan
| | - Taiki Kashio
- Department of Rehabilitation Sciences, Gunma University Graduate School of Health Sciences, Maebashi, Japan,
| | - Daiju Uchigaki
- Department of Occupational Therapy, Gunma University, Maebashi, Japan,
| | - Shinichi Mitsui
- Department of Rehabilitation Sciences, Gunma University Graduate School of Health Sciences, Maebashi, Japan, .,Department of Occupational Therapy, Gunma University, Maebashi, Japan,
| |
Collapse
|
22
|
Blaze J, Asok A, Borrelli K, Tulbert C, Bollinger J, Ronca AE, Roth TL. Intrauterine exposure to maternal stress alters Bdnf IV DNA methylation and telomere length in the brain of adult rat offspring. Int J Dev Neurosci 2017; 62:56-62. [PMID: 28330827 PMCID: PMC5600826 DOI: 10.1016/j.ijdevneu.2017.03.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Revised: 03/14/2017] [Accepted: 03/17/2017] [Indexed: 12/16/2022] Open
Abstract
DNA methylation (addition of methyl groups to cytosines) and changes in telomere length (TTAGGG repeats on the ends of chromosomes) are two molecular modifications that result from stress and could contribute to the long-term effects of intrauterine exposure to maternal stress on offspring behavior. Here, we measured methylation of DNA associated with the Brain-derived neurotrophic factor (Bdnf) gene, a gene important in development and plasticity, and telomere length in the brains of adult rat male and female offspring whose mothers were exposed to unpredictable and variable stressors throughout gestation. Males exposed to prenatal stress had greater methylation (Bdnf IV) in the medial prefrontal cortex (mPFC) compared to non-stressed male controls and stressed females. Further, prenatally-stressed animals had shorter telomeres than controls in the mPFC. Together findings indicate a long-term impact of prenatal stress on brain DNA methylation and telomere biology with relevance for behavioral and health outcomes, and contribute to a growing literature linking stress to intergenerational molecular changes.
Collapse
Affiliation(s)
- Jennifer Blaze
- Department of Psychological and Brain Sciences, University of Delaware, Newark, DE,United States
| | - Arun Asok
- Department of Psychological and Brain Sciences, University of Delaware, Newark, DE,United States
| | - Kristyn Borrelli
- Department of Psychological and Brain Sciences, University of Delaware, Newark, DE,United States
| | - Christina Tulbert
- Obstetrics and Gynecology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Justin Bollinger
- Obstetrics and Gynecology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - April E Ronca
- Obstetrics and Gynecology, Wake Forest School of Medicine, Winston-Salem, NC, United States; Program in Neuroscience, Wake Forest School of Medicine, Winston-Salem, NC, United States; Space Biosciences Research Division, NASA Ames Research Center, Moffett Field, CA
| | - Tania L Roth
- Department of Psychological and Brain Sciences, University of Delaware, Newark, DE,United States.
| |
Collapse
|
23
|
Rincel M, Lépinay AL, Janthakhin Y, Soudain G, Yvon S, Da Silva S, Joffre C, Aubert A, Séré A, Layé S, Theodorou V, Ferreira G, Darnaudéry M. Maternal high-fat diet and early life stress differentially modulate spine density and dendritic morphology in the medial prefrontal cortex of juvenile and adult rats. Brain Struct Funct 2017; 223:883-895. [DOI: 10.1007/s00429-017-1526-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 09/19/2017] [Indexed: 12/14/2022]
|
24
|
In vivo and in vitro sex differences in the dendritic morphology of developing murine hippocampal and cortical neurons. Sci Rep 2017; 7:8486. [PMID: 28814778 PMCID: PMC5559594 DOI: 10.1038/s41598-017-08459-z] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 07/12/2017] [Indexed: 12/20/2022] Open
Abstract
Altered dendritic morphology is common in neurodevelopmental disorders (NDDs), many of which show sex biases in prevalence, onset and/or severity. However, whether dendritic morphology varies as a function of sex in juvenile mice or primary neuronal cell cultures is largely unknown even though both are widely used models for studying NDDs. To address this gap, we quantified dendritic morphology in CA1 pyramidal hippocampal and adjacent somatosensory pyramidal cortical neurons from male and female postnatal day (P)28 C57BL/6J mice. As determined by Sholl analysis of Golgi-stained brain sections, dendritic arbors of male hippocampal neurons are more complex than females. Conversely, dendritic morphology of female cortical neurons is more complex than males. In primary neuron-glia co-cultures from P0 mouse hippocampi, male neurons have more complex dendritic arbors than female neurons. Sex differences are less pronounced in cortical cultures. In vitro sex differences in dendritic morphology are driven in part by estrogen-dependent mechanisms, as evidenced by decreased dendritic complexity in male hippocampal neurons cultured in phenol red-free media or in the presence of an estrogen receptor antagonist. Evidence that sex influences dendritic morphogenesis in two models of neurodevelopment in a region-specific manner has significant mechanistic implications regarding sex biases in NDDs.
Collapse
|
25
|
Banqueri M, Méndez M, Arias JL. Behavioral effects in adolescence and early adulthood in two length models of maternal separation in male rats. Behav Brain Res 2017; 324:77-86. [DOI: 10.1016/j.bbr.2017.02.006] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 01/30/2017] [Accepted: 02/04/2017] [Indexed: 12/11/2022]
|
26
|
Zouikr I, Karshikoff B. Lifetime Modulation of the Pain System via Neuroimmune and Neuroendocrine Interactions. Front Immunol 2017; 8:276. [PMID: 28348566 PMCID: PMC5347117 DOI: 10.3389/fimmu.2017.00276] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 02/24/2017] [Indexed: 12/12/2022] Open
Abstract
Chronic pain is a debilitating condition that still is challenging both clinicians and researchers. Despite intense research, it is still not clear why some individuals develop chronic pain while others do not or how to heal this disease. In this review, we argue for a multisystem approach to understand chronic pain. Pain is not only to be viewed simply as a result of aberrant neuronal activity but also as a result of adverse early-life experiences that impact an individual's endocrine, immune, and nervous systems and changes which in turn program the pain system. First, we give an overview of the ontogeny of the central nervous system, endocrine, and immune systems and their windows of vulnerability. Thereafter, we summarize human and animal findings from our laboratories and others that point to an important role of the endocrine and immune systems in modulating pain sensitivity. Taking "early-life history" into account, together with the past and current immunological and endocrine status of chronic pain patients, is a necessary step to understand chronic pain pathophysiology and assist clinicians in tailoring the best therapeutic approach.
Collapse
Affiliation(s)
- Ihssane Zouikr
- Laboratory for Molecular Mechanisms of Thalamus Development, RIKEN BSI , Wako , Japan
| | - Bianka Karshikoff
- Department of Clinical Neuroscience, Division for Psychology, Karolinska Institutet, Solna, Sweden; Stress Research Institute, Stockholm University, Stockholm, Sweden
| |
Collapse
|
27
|
Early-life stress impairs recognition memory and perturbs the functional maturation of prefrontal-hippocampal-perirhinal networks. Sci Rep 2017; 7:42042. [PMID: 28169319 PMCID: PMC5294456 DOI: 10.1038/srep42042] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 01/06/2017] [Indexed: 12/15/2022] Open
Abstract
Early life exposure to stressful situations impairs cognitive performance of adults and contributes to the etiology of several psychiatric disorders. Most of affected cognitive abilities rely on coupling by synchrony within complex neuronal networks, including prefrontal cortex (PFC), hippocampus (HP), and perirhinal cortex (PRH). Yet it remains poorly understood how early life stress (ELS) induces dysfunction within these networks during the course of development. Here we used intermittent maternal separation during the first 2 postnatal weeks to mimic ELS and monitored the recognition memory and functional coupling within prefrontal-hippocampal-perirhinal circuits in juvenile rats. While maternally-separated female rats showed largely normal behavior, male rats experiencing this form of ELS had poorer location and recency recognition memory. Simultaneous multi-site extracellular recordings of network oscillations and neuronal spiking from PFC, HP, and PRH in vivo revealed corresponding decrease of oscillatory activity in theta and beta frequency bands in the PFC of male but not female rats experiencing maternal separation. This deficit was accompanied by weaker cross-frequency coupling within juvenile prefrontal-hippocampal networks. These results indicate that already at juvenile age ELS mimicked by maternal separation induces sex-specific deficits in recognition memory that might have as underlying mechanism a disturbed communication between PFC and HP.
Collapse
|
28
|
Sex-dependent changes in neuronal morphology and psychosocial behaviors after pediatric brain injury. Behav Brain Res 2016; 319:48-62. [PMID: 27829127 DOI: 10.1016/j.bbr.2016.10.045] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 10/28/2016] [Accepted: 10/28/2016] [Indexed: 12/12/2022]
Abstract
Chronic social behavior problems after pediatric traumatic brain injury (TBI) significantly contribute to poor quality of life for survivors. Using a well-characterized mouse model of early childhood TBI, we have previously demonstrated that young brain-injured mice develop social deficits by adulthood. As biological sex may influence both normal and aberrant social development, we here evaluated potential sex differences in post-TBI psychosocial deficits by comparing the behavior of male and female mice at adulthood (8 weeks post-injury). Secondly, we hypothesized that pediatric TBI would influence neuronal morphology identified by Golgi-Cox staining in the hippocampus and prefrontal cortex, regions involved in social cognition and behavior, before the onset of social problems (3 weeks post-injury). Morphological analysis of pyramidal neurons in the ipsilateral prefrontal cortex and granule cells of the hippocampal dentate gyrus revealed a reduction in dendritic complexity after pediatric TBI. This was most apparent in TBI males, whereas neurons from females were less affected. At adulthood, consistent with previous studies, TBI males showed deficits in sociability and social recognition. TBI females also showed a reduction in sociability, but intact social recognition and increased sociosexual avoidance. Together, these findings indicate that sex is a determinant of regional neuroplasticity and social outcomes after pediatric TBI. Reduced neuronal complexity in the prefrontal cortex and hippocampus, several weeks after injury in male mice, appears to precede the subsequent emergence of social deficits. Sex-specific alterations in the social brain network are thus implicated as an underlying mechanism of social dysfunction after pediatric TBI.
Collapse
|
29
|
Remmes J, Bodden C, Richter SH, Lesting J, Sachser N, Pape HC, Seidenbecher T. Impact of Life History on Fear Memory and Extinction. Front Behav Neurosci 2016; 10:185. [PMID: 27757077 PMCID: PMC5047906 DOI: 10.3389/fnbeh.2016.00185] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 09/20/2016] [Indexed: 11/22/2022] Open
Abstract
Behavioral profiles are strongly shaped by an individual's whole life experience. The accumulation of negative experiences over lifetime is thought to promote anxiety-like behavior in adulthood (“allostatic load hypothesis”). In contrast, the “mismatch hypothesis” of psychiatric disease suggests that high levels of anxiety-like behavior are the result of a discrepancy between early and late environment. The aim of the present study was to investigate how different life histories shape the expression of anxiety-like behavior and modulate fear memory. In addition, we aimed to clarify which of the two hypotheses can better explain the modulation of anxiety and fear. For this purpose, male mice grew up under either adverse or beneficial conditions during early phase of life. In adulthood they were further subdivided in groups that either matched or mismatched the condition experienced before, resulting in four different life histories. The main results were: (i) Early life benefit followed by late life adversity caused decreased levels of anxiety-like behavior. (ii) Accumulation of adversity throughout life history led to impaired fear extinction learning. Late life adversity as compared to late life benefit mainly affected extinction training, while early life adversity as compared to early life benefit interfered with extinction recall. Concerning anxiety-like behavior, the results do neither support the allostatic load nor the mismatch hypothesis, but rather indicate an anxiolytic effect of a mismatched early beneficial and later adverse life history. In contrast, fear memory was strongly affected by the accumulation of adverse experiences over the lifetime, therefore supporting allostatic load hypothesis. In summary, this study highlights that anxiety-like behavior and fear memory are differently affected by specific combinations of adverse or beneficial events experienced throughout life.
Collapse
Affiliation(s)
- Jasmin Remmes
- Institute of Physiology I, Westfälische Wilhelms-UniversityMünster, Germany; Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, Westfälische Wilhelms-UniversityMünster, Germany
| | - Carina Bodden
- Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, Westfälische Wilhelms-UniversityMünster, Germany; Department of Behavioural Biology, Westfälische Wilhelms-UniversityMünster, Germany
| | - S Helene Richter
- Department of Behavioural Biology, Westfälische Wilhelms-University Münster, Germany
| | - Jörg Lesting
- Institute of Physiology I, Westfälische Wilhelms-UniversityMünster, Germany; Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, Westfälische Wilhelms-UniversityMünster, Germany
| | - Norbert Sachser
- Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, Westfälische Wilhelms-UniversityMünster, Germany; Department of Behavioural Biology, Westfälische Wilhelms-UniversityMünster, Germany
| | - Hans-Christian Pape
- Institute of Physiology I, Westfälische Wilhelms-UniversityMünster, Germany; Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, Westfälische Wilhelms-UniversityMünster, Germany
| | - Thomas Seidenbecher
- Institute of Physiology I, Westfälische Wilhelms-UniversityMünster, Germany; Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, Westfälische Wilhelms-UniversityMünster, Germany
| |
Collapse
|
30
|
Yang Y, Zhang Y, Luo F, Li B. Chronic stress regulates NG2+ cell maturation and myelination in the prefrontal cortex through induction of death receptor 6. Exp Neurol 2016; 277:202-214. [DOI: 10.1016/j.expneurol.2016.01.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2015] [Revised: 12/24/2015] [Accepted: 01/05/2016] [Indexed: 10/22/2022]
|