1
|
Wang P, Bi Y, Li M, Chen J, Wang Z, Wen H, Zhou M, Luo M, Zhang W. Cortico-striatal gamma oscillations are modulated by dopamine D3 receptors in dyskinetic rats. Neural Regen Res 2025; 20:1164-1177. [PMID: 38989954 PMCID: PMC11438323 DOI: 10.4103/nrr.nrr-d-23-01240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 01/16/2024] [Indexed: 07/12/2024] Open
Abstract
JOURNAL/nrgr/04.03/01300535-202504000-00031/figure1/v/2024-07-06T104127Z/r/image-tiff Long-term levodopa administration can lead to the development of levodopa-induced dyskinesia. Gamma oscillations are a widely recognized hallmark of abnormal neural electrical activity in levodopa-induced dyskinesia. Currently, studies have reported increased oscillation power in cases of levodopa-induced dyskinesia. However, little is known about how the other electrophysiological parameters of gamma oscillations are altered in levodopa-induced dyskinesia. Furthermore, the role of the dopamine D3 receptor, which is implicated in levodopa-induced dyskinesia, in movement disorder-related changes in neural oscillations is unclear. We found that the cortico-striatal functional connectivity of beta oscillations was enhanced in a model of Parkinson's disease. Furthermore, levodopa application enhanced cortical gamma oscillations in cortico-striatal projections and cortical gamma aperiodic components, as well as bidirectional primary motor cortex (M1) ↔ dorsolateral striatum gamma flow. Administration of PD128907 (a selective dopamine D3 receptor agonist) induced dyskinesia and excessive gamma oscillations with a bidirectional M1 ↔ dorsolateral striatum flow. However, administration of PG01037 (a selective dopamine D3 receptor antagonist) attenuated dyskinesia, suppressed gamma oscillations and cortical gamma aperiodic components, and decreased gamma causality in the M1 → dorsolateral striatum direction. These findings suggest that the dopamine D3 receptor plays a role in dyskinesia-related oscillatory activity, and that it has potential as a therapeutic target for levodopa-induced dyskinesia.
Collapse
Affiliation(s)
- Pengfei Wang
- Neurosurgery Center, Department of Pediatric Neurosurgery, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | | | | | | | | | | | | | | | | |
Collapse
|
2
|
Svenningsson P, Odin P, Bergquist F, Wirdefeldt K, Nyholm D, Andréasson M, Markaki I, Johansson AC, Jergil M, Jankosky C, Varney MA, Herbrecht F, Johnson SA, Newman-Tancredi A. NLX-112 Randomized Phase 2A Trial: Safety, Tolerability, Anti-Dyskinetic, and Anti-Parkinsonian Efficacy. Mov Disord 2025. [PMID: 40091754 DOI: 10.1002/mds.30175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 02/13/2025] [Accepted: 03/03/2025] [Indexed: 03/19/2025] Open
Abstract
BACKGROUND Levodopa-induced dyskinesia (LID) in Parkinson's disease (PD) is associated with 'false neurotransmitter' release of dopamine from serotonin (5-HT) neurons. NLX-112 is a first-in-class, highly selective 5-HT1A receptor agonist which counteracts LIDs in experimental PD models. OBJECTIVES The primary objective was to evaluate the safety and tolerability of NLX-112 compared with placebo in people with PD. The secondary objective was to assess the preliminary efficacy of NLX-112 in reducing LID and its effects on PD symptoms. METHODS Participants received NLX-112 or placebo (2:1 ratio) alongside stable Parkinson's medications, with 22 participants completing the study. Dosing was up-titrated over 28 days to 2 mg/day (1 mg twice daily), stabilized for 14 days (to day 42), and down-titrated for 14 days. Efficacy was measured using the Unified Dyskinesia Rating Scale (UDysRS), Unified Parkinson's Disease Rating Scale (UPDRS), and Clinical Global Impression of Change (CGI-C) following a levodopa challenge (150% of usual dose). RESULTS Adverse events (AEs) were mainly central nervous system (CNS)-related and mostly occurred during up-titration, with no serious AEs in the NLX-112 group. There were no treatment-induced clinically significant changes in vital signs, electrocardiogram, or laboratory parameters. NLX-112 reduced LID from baseline levels: at day 42, UDysRS total score decreased by 6.3 points, whereas placebo group changes were not significant (-2.4). NLX-112 also reduced parkinsonism from baseline values: UPDRS Part 3 scores decreased by 3.7 points, whereas placebo group changes were non-significant (+0.1). In CGI-C assessment, the NLX-112 group showed greater improvement than the placebo group (53% vs. 29%). CONCLUSION These results support further clinical investigation of NLX-112 for treatment of PD LID. © 2025 Neurolixis SAS. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
| | - Per Odin
- Department of Clinical Sciences, Lund University, Skåne University Hospital, Lund, Sweden
| | - Filip Bergquist
- Sahlgrenska Hospital, Gothenburg, Sweden
- Department of Pharmacology, University of Gothenburg, Gothenburg, Sweden
| | - Karin Wirdefeldt
- Department of Neurology, Karolinska University Hospital, Solna, Sweden
| | | | | | | | | | - Måns Jergil
- Clinical Trial Consultants, AB, Uppsala, Sweden
| | | | | | | | | | | |
Collapse
|
3
|
Zimmer L, Newman-Tancredi A. Serotonin 5-HT 1A receptor biased agonists: The challenge of translating an innovative neuropharmacological concept into therapeutics. Neuropharmacology 2025; 265:110267. [PMID: 39681214 DOI: 10.1016/j.neuropharm.2024.110267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/24/2024] [Accepted: 12/11/2024] [Indexed: 12/18/2024]
Abstract
Serotonin 5-HT1A receptor agonists are prime candidates for CNS drug discovery due to their involvement physiological and pathological processes relevant to neurology and psychiatry. However, the lack of target specificity of many previously characterized agonists has long been a barrier to pharmacological and therapeutic progress. Some of the obstacles may be overcome through the recent concept of biased agonism, which has attracted considerable attention to the development of novel chemical entities at 5-HT, and particularly 5-HT1A receptors, by specifically targeting intracellular signalling pathways that may themselves be linked to specific brain regions and therapeutic indications. There is now abundant translational data demonstrating distinct molecular and functional pharmacological signatures between different 5-HT1A receptor agonists, opening new opportunities for research in neurology and psychiatry. Nevertheless, important limitations need to be overcome, including understanding the precise molecular basis for biased agonism, the need for improved translatable models, and the currently limited clinical data on biased agonists. Here, we review the current limits of our knowledge of 5-HT1A receptor biased agonists and the limitations of available pharmacological tools, counterbalanced by the translational possibilities and therapeutic perspectives opened by novel, highly selective 5-HT1A receptor drug-candidates. This article is part of the Special Issue on "Ligand Bias".
Collapse
Affiliation(s)
- Luc Zimmer
- Université Claude Bernard Lyon 1, Inserm, CNRS, Lyon Neuroscience Research Center, Lyon, France; Hospices Civils de Lyon, Lyon, France.
| | | |
Collapse
|
4
|
Stan TL, Ronaghi A, Barrientos SA, Halje P, Censoni L, Garro-Martínez E, Nasretdinov A, Malinina E, Hjorth S, Svensson P, Waters S, Sahlholm K, Petersson P. Neurophysiological treatment effects of mesdopetam, pimavanserin and clozapine in a rodent model of Parkinson's disease psychosis. Neurotherapeutics 2024; 21:e00334. [PMID: 38368170 PMCID: PMC10937958 DOI: 10.1016/j.neurot.2024.e00334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/29/2024] [Accepted: 02/06/2024] [Indexed: 02/19/2024] Open
Abstract
Psychosis in Parkinson's disease is a common phenomenon associated with poor outcomes. To clarify the pathophysiology of this condition and the mechanisms of antipsychotic treatments, we have here characterized the neurophysiological brain states induced by clozapine, pimavanserin, and the novel prospective antipsychotic mesdopetam in a rodent model of Parkinson's disease psychosis, based on chronic dopaminergic denervation by 6-OHDA lesions, levodopa priming, and the acute administration of an NMDA antagonist. Parallel recordings of local field potentials from eleven cortical and sub-cortical regions revealed shared neurophysiological treatment effects for the three compounds, despite their different pharmacological profiles, involving reversal of features associated with the psychotomimetic state, such as a reduction of aberrant high-frequency oscillations in prefrontal structures together with a decrease of abnormal synchronization between different brain regions. Other drug-induced neurophysiological features were more specific to each treatment, affecting network oscillation frequencies and entropy, pointing to discrete differences in mechanisms of action. These findings indicate that neurophysiological characterization of brain states is particularly informative when evaluating therapeutic mechanisms in conditions involving symptoms that are difficult to assess in rodents such as psychosis, and that mesdopetam should be further explored as a potential novel antipsychotic treatment option for Parkinson psychosis.
Collapse
Affiliation(s)
- Tiberiu Loredan Stan
- The Group for Integrative Neurophysiology and Neurotechnology, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Abdolaziz Ronaghi
- The Group for Integrative Neurophysiology, Department of Medical and Translational Biology, Umeå University, Umeå, Sweden
| | - Sebastian A Barrientos
- The Group for Integrative Neurophysiology and Neurotechnology, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Pär Halje
- The Group for Integrative Neurophysiology and Neurotechnology, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Luciano Censoni
- The Group for Integrative Neurophysiology, Department of Medical and Translational Biology, Umeå University, Umeå, Sweden
| | - Emilio Garro-Martínez
- The Group for Integrative Neurophysiology, Department of Medical and Translational Biology, Umeå University, Umeå, Sweden; Department of Medical and Translational Biology, Wallenberg Centre for Molecular Medicine, Umeå University, Umeå, Sweden
| | - Azat Nasretdinov
- The Group for Integrative Neurophysiology, Department of Medical and Translational Biology, Umeå University, Umeå, Sweden
| | - Evgenya Malinina
- The Group for Integrative Neurophysiology, Department of Medical and Translational Biology, Umeå University, Umeå, Sweden
| | - Stephan Hjorth
- Integrative Research Laboratories Sweden AB, Göteborg, Sweden
| | - Peder Svensson
- Integrative Research Laboratories Sweden AB, Göteborg, Sweden
| | - Susanna Waters
- Integrative Research Laboratories Sweden AB, Göteborg, Sweden
| | - Kristoffer Sahlholm
- Department of Medical and Translational Biology, Wallenberg Centre for Molecular Medicine, Umeå University, Umeå, Sweden; Department of Physiology and Pharmacology, Karolinska Institutet, Solna, Sweden
| | - Per Petersson
- The Group for Integrative Neurophysiology, Department of Medical and Translational Biology, Umeå University, Umeå, Sweden; The Group for Integrative Neurophysiology and Neurotechnology, Department of Experimental Medical Science, Lund University, Lund, Sweden.
| |
Collapse
|
5
|
Skovgård K, Barrientos SA, Petersson P, Halje P, Cenci MA. Distinctive Effects of D1 and D2 Receptor Agonists on Cortico-Basal Ganglia Oscillations in a Rodent Model of L-DOPA-Induced Dyskinesia. Neurotherapeutics 2023; 20:304-324. [PMID: 36344723 PMCID: PMC10119363 DOI: 10.1007/s13311-022-01309-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/19/2022] [Indexed: 11/09/2022] Open
Abstract
L-DOPA-induced dyskinesia (LID) in Parkinson's disease has been linked to oscillatory neuronal activities in the cortico-basal ganglia network. We set out to examine the pattern of cortico-basal ganglia oscillations induced by selective agonists of D1 and D2 receptors in a rat model of LID. Local field potentials were recorded in freely moving rats using large-scale electrodes targeting three motor cortical regions, dorsomedial and dorsolateral striatum, external globus pallidus, and substantial nigra pars reticulata. Abnormal involuntary movements were elicited by the D1 agonist SKF82958 or the D2 agonist sumanirole, while overall motor activity was quantified using video analysis (DeepLabCut). Both SKF82958 and sumanirole induced dyskinesia, although with significant differences in temporal course, overall severity, and body distribution. The D1 agonist induced prominent narrowband oscillations in the high gamma range (70-110 Hz) in all recorded structures except for the nigra reticulata. Additionally, the D1 agonist induced strong functional connectivity between the recorded structures and the phase analysis revealed that the primary motor cortex (forelimb area) was leading a supplementary motor area and striatum. Following treatment with the D2 agonist, narrowband gamma oscillations were detected only in forelimb motor cortex and dorsolateral striatum, while prominent oscillations in the theta band occurred in the globus pallidus and nigra reticulata. Our results reveal that the dyskinetic effects of D1 and D2 receptor agonists are associated with distinct patterns of cortico-basal ganglia oscillations, suggesting a recruitment of partially distinct networks.
Collapse
Affiliation(s)
- Katrine Skovgård
- Basal Ganglia Pathophysiology Unit, Department of Experimental Medical Science, Lund University, BMC A13, 221 84, Lund, Sweden
- The Group for Integrative Neurophysiology and Neurotechnology, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Sebastian A Barrientos
- The Group for Integrative Neurophysiology and Neurotechnology, Department of Experimental Medical Science, Lund University, Lund, Sweden
- Department of Integrative Medical Biology, Umeå University, Umeå, Sweden
| | - Per Petersson
- The Group for Integrative Neurophysiology and Neurotechnology, Department of Experimental Medical Science, Lund University, Lund, Sweden
- Department of Integrative Medical Biology, Umeå University, Umeå, Sweden
| | - Pär Halje
- The Group for Integrative Neurophysiology and Neurotechnology, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - M Angela Cenci
- Basal Ganglia Pathophysiology Unit, Department of Experimental Medical Science, Lund University, BMC A13, 221 84, Lund, Sweden.
| |
Collapse
|
6
|
Censoni L, Halje P, Axelsson J, Skovgård K, Ramezani A, Malinina E, Petersson P. Verification of multi-structure targeting in chronic microelectrode brain recordings from CT scans. J Neurosci Methods 2022; 382:109719. [PMID: 36195238 DOI: 10.1016/j.jneumeth.2022.109719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 09/07/2022] [Accepted: 09/29/2022] [Indexed: 11/07/2022]
Abstract
BACKGROUND Large-scale microelectrode recordings offer a unique opportunity to study neurophysiological processes at the network level with single cell resolution. However, in the small brains of many experimental animals, it is often technically challenging to verify the correct targeting of the intended structures, which inherently limits the reproducibility of acquired data. NEW METHOD To mitigate this problem, we have developed a method to programmatically segment the trajectory of electrodes arranged in larger arrays from acquired CT-images and thereby determine the position of individual recording tips with high spatial resolution, while also allowing for coregistration with an anatomical atlas, without pre-processing of the animal samples or post-imaging histological analyses. RESULTS Testing the technical limitations of the developed method, we found that the choice of scanning angle influences the achievable spatial resolution due to shadowing effects caused by the electrodes. However, under optimal acquisition conditions, individual electrode tip locations within arrays with 250 µm inter-electrode spacing were possible to reliably determine. COMPARISON TO EXISTING METHODS Comparison to a histological verification method suggested that, under conditions where individual wires are possible to track in slices, a 90% correspondence could be achieved in terms of the number of electrodes groups that could be reliably assigned to the same anatomical structure. CONCLUSIONS The herein reported semi-automated procedure to verify anatomical targeting of brain structures in the rodent brain could help increasing the quality and reproducibility of acquired neurophysiological data by reducing the risk of assigning recorded brain activity to incorrectly identified anatomical locations. DATA AVAILABILITY The tools developed in this study are freely available as a software package at: https://github.com/NRC-Lund/ct-tools.
Collapse
Affiliation(s)
- Luciano Censoni
- Department of Integrative Medical Biology, Umeå University, Umeå, Sweden
| | - Pär Halje
- The Group for Integrative Neurophysiology and Neurotechnology, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Jan Axelsson
- Department of Radiation Science, Umeå University, Umeå, Sweden
| | - Katrine Skovgård
- The Group for Integrative Neurophysiology and Neurotechnology, Department of Experimental Medical Science, Lund University, Lund, Sweden; Basal Ganglia Pathophysiology Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Arash Ramezani
- Department of Integrative Medical Biology, Umeå University, Umeå, Sweden
| | - Evgenya Malinina
- Department of Integrative Medical Biology, Umeå University, Umeå, Sweden
| | - Per Petersson
- Department of Integrative Medical Biology, Umeå University, Umeå, Sweden; The Group for Integrative Neurophysiology and Neurotechnology, Department of Experimental Medical Science, Lund University, Lund, Sweden.
| |
Collapse
|
7
|
Wiest C, Torrecillos F, Tinkhauser G, Pogosyan A, Morgante F, Pereira EA, Tan H. Finely-tuned gamma oscillations: Spectral characteristics and links to dyskinesia. Exp Neurol 2022; 351:113999. [PMID: 35143832 PMCID: PMC7612436 DOI: 10.1016/j.expneurol.2022.113999] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 01/27/2022] [Accepted: 02/02/2022] [Indexed: 01/22/2023]
Abstract
Gamma oscillations comprise a loosely defined, heterogeneous group of functionally different activities between 30 and 100 Hz in the cortical and subcortical local field potential (LFP) of the motor network. Two distinct patterns seem to emerge which are easily conflated: Finely-tuned gamma (FTG) oscillations - a narrowband activity with peaks between 60 and 90 Hz - have been observed in multiple movement disorders and are induced by dopaminergic medication or deep brain stimulation (DBS). FTG has been linked with levodopa or DBS-induced dyskinesias, which makes it a putative biomarker for adaptive DBS. On the other hand, gamma activity can also present as a broad phenomenon (30-100 Hz) in the context of motor activation and dynamic processing. Here, we contrast FTG, either levodopa-induced or DBS-induced, from movement-related broadband gamma synchronisation and further elaborate on the functional role of FTG and its potential implications for adaptive DBS. Given the unclear distinction of FTG and broad gamma in literature, we appeal for more careful separation of the two. To better characterise cortical and subcortical FTG as biomarkers for dyskinesia, their sensitivity and specificity need to be investigated in a large clinical trial.
Collapse
Affiliation(s)
- C Wiest
- Medical Research Council Brain Network Dynamics Unit, University of Oxford, Oxford, UK; Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - F Torrecillos
- Medical Research Council Brain Network Dynamics Unit, University of Oxford, Oxford, UK; Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - G Tinkhauser
- Department of Neurology, Bern University Hospital and University of Bern, Bern, Switzerland
| | - A Pogosyan
- Medical Research Council Brain Network Dynamics Unit, University of Oxford, Oxford, UK; Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - F Morgante
- Neurosciences Research Centre, Molecular and Clinical Sciences Institute, St. George's, University of London, London, UK; Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - E A Pereira
- Neurosciences Research Centre, Molecular and Clinical Sciences Institute, St. George's, University of London, London, UK
| | - H Tan
- Medical Research Council Brain Network Dynamics Unit, University of Oxford, Oxford, UK; Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, UK.
| |
Collapse
|
8
|
Jiang X, Liang P, Wang K, Jia J, Wang X. Serotonin 1A receptor agonist modulation of motor deficits and cortical oscillations by NMDA receptor interaction in parkinsonian rats. Neuropharmacology 2022; 203:108881. [PMID: 34785162 DOI: 10.1016/j.neuropharm.2021.108881] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 10/15/2021] [Accepted: 11/08/2021] [Indexed: 12/11/2022]
Abstract
Although serotonin 1A (5-HT1A) receptor agonists are widely used as the additive compound to reduce l-dopa-induced dyskinesia in Parkinson's disease (PD), few studies focused on the effect and mechanism of 5-HT1A receptor agonist on the motor symptoms of PD. Unilateral 6-hydroxydopamine (6-OHDA)-lesioned rats were used and implantation of electrodes was performed in the motor cortex of these rats. So the effect of 5-HT1A receptor agonist 8-OH-DPAT on motor behaviors and oscillatory activities were evaluated. In addition, 8-OH-DPAT combined with D2 receptor antagonist raclopride, NMDA receptor antagonist MK-801, or its agonist d-cycloserine (DCS) were co-administrated. 8-OH-DPAT administration significantly improved spontaneous locomotor activity and asymmetric forepaw function in 6-OHDA-lesioned rats. Meanwhile, 8-OH-DPAT identified selective modulation of the abnormal high beta oscillations (25-40 Hz) in the motor cortex of 6-OHDA-lesioned rats, without inducing pathological finely tuned gamma around 80 Hz. Different from 8-OH-DPAT, l-dopa treatment produced a prolonged improvement on motor performances and differential regulation of high beta and gamma oscillations. However, dopamine D2 receptor antagonist had no influence on the 8-OH-DPAT-mediated-motor behaviors and beta oscillations in 6-OHDA-lesioned rats. In contrast, subthreshold NMDA receptor antagonist MK-801 obviously elevated the 8-OH-DPAT-mediated-motor behaviors, while NMDA receptor agonist DCS partially impaired the 8-OH-DPAT-mediated symptoms in 6-OHDA-lesioned rats. This study suggests that 5-HT1A receptor agonist 8-OH-DPAT improves motor activity and modulates the oscillations in the motor cortex of parkinsonian rats. Different from l-dopa, 8-OH-DPAT administration ameliorates motor symptoms of PD through glutamatergic rather than the dopaminergic pathway.
Collapse
Affiliation(s)
- Xinxin Jiang
- Departments of Neurobiology and Physiology, Capital Medical University, Beijing, 100069, China.
| | - Peirong Liang
- Departments of Neurobiology and Physiology, Capital Medical University, Beijing, 100069, China.
| | - Ke Wang
- Departments of Neurobiology and Physiology, Capital Medical University, Beijing, 100069, China.
| | - Jun Jia
- Departments of Neurobiology and Physiology, Capital Medical University, Beijing, 100069, China.
| | - Xiaomin Wang
- Departments of Neurobiology and Physiology, Capital Medical University, Beijing, 100069, China.
| |
Collapse
|
9
|
Ganguly U, Singh S, Chakrabarti S, Saini AK, Saini RV. Immunotherapeutic interventions in Parkinson's disease: Focus on α-Synuclein. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2021; 129:381-433. [PMID: 35305723 DOI: 10.1016/bs.apcsb.2021.11.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder characterized classically by motor manifestations. However, nonmotor symptoms appear early in the course of the disease progression, making both diagnosis and treatment difficult. The pathology of PD is complicated by the accumulation and aggregation of misfolded proteins in intracellular cytoplasmic inclusions called Lewy bodies (LBs). The main toxic component of LBs is the protein α-Synuclein which plays a pivotal role in PD pathogenesis. α-Synuclein can propagate from cell-to-cell exhibiting prion-like properties and spread PD pathology throughout the central nervous system. Immunotherapeutic interventions in PD, both active and passive immunization, have targeted α-Synuclein in both experimental models and clinical trials. In addition, targeting the hyperactive inflammation in PD also holds promise in designing potential immunotherapeutics. The inflammatory and proteotoxic pathways are interlinked and contribute immensely to the disease pathology. In this chapter, we critically review the targets of immunotherapeutic interventions in PD, focusing on the pathogenetic mechanisms of PD, particularly neuroinflammation and α-Synuclein misfolding, aggregation, and propagation. We thoroughly summarized the various immunotherapeutic strategies designed to treat PD-in vitro, in vivo, and clinical trials. The development of these targeted immunotherapies could open a new avenue in the treatment of patients with PD.
Collapse
Affiliation(s)
- Upasana Ganguly
- Department of Biochemistry and Central Research Cell, Maharishi Markandeshwar Institute of Medical Sciences and Research, Maharishi Markandeshwar University (Deemed to be), Mullana, India
| | - Sukhpal Singh
- Department of Biochemistry and Central Research Cell, Maharishi Markandeshwar Institute of Medical Sciences and Research, Maharishi Markandeshwar University (Deemed to be), Mullana, India
| | - Sasanka Chakrabarti
- Department of Biochemistry and Central Research Cell, Maharishi Markandeshwar Institute of Medical Sciences and Research, Maharishi Markandeshwar University (Deemed to be), Mullana, India
| | - Adesh K Saini
- Department of Biotechnology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar (Deemed to be University), Mullana, India
| | - Reena V Saini
- Department of Biotechnology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar (Deemed to be University), Mullana, India.
| |
Collapse
|
10
|
Newman-Tancredi A, Depoortère RY, Kleven MS, Kołaczkowski M, Zimmer L. Translating biased agonists from molecules to medications: Serotonin 5-HT 1A receptor functional selectivity for CNS disorders. Pharmacol Ther 2021; 229:107937. [PMID: 34174274 DOI: 10.1016/j.pharmthera.2021.107937] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 06/01/2021] [Accepted: 06/17/2021] [Indexed: 12/18/2022]
Abstract
Biased agonism (or "functional selectivity") at G-protein-coupled receptors has attracted rapidly increasing interest as a means to improve discovery of more efficacious and safer pharmacotherapeutics. However, most studies are limited to in vitro tests of cellular signaling and few biased agonists have progressed to in vivo testing. As concerns 5-HT1A receptors, which exert a major control of serotonergic signaling in diverse CNS regions, study of biased agonism has previously been limited by the poor target selectivity and/or partial agonism of classically available ligands. However, a new generation of highly selective, efficacious and druggable agonists has advanced the study of biased agonism at this receptor and created new therapeutic opportunities. These novel agonists show differential properties for G-protein signaling, cellular signaling (particularly pERK), electrophysiological effects, neurotransmitter release, neuroimaging by PET and pharmacoMRI, and behavioral tests of mood, motor activity and side effects. Overall, NLX-101 (a.k.a. F15599) exhibits preferential activation of cortical and brain stem 5-HT1A receptors, whereas NLX-112 (a.k.a. befiradol or F13640) shows prominent activation of 5-HT1A autoreceptors in Raphe nuclei and in regions associated with motor control. Accordingly, NLX-101 is potently active in rodent models of depression and respiratory control, whereas NLX-112 shows promising activity in models of Parkinson's disease across several species - rat, marmoset and macaque. Moreover, NLX-112 has also been labeled with 18F to produce the first agonist PET radiopharmaceutical (known as [18F]-F13640) for investigation of the active state of 5-HT1A receptors in rodent, primate and human. The structure-functional activity relationships of biased agonists have been investigated by receptor modeling and novel compounds have been identified which exhibit increased affinity at 5-HT1A receptors and new profiles of cellular signaling bias, notably for β-arrestin recruitment versus pERK. Taken together, the data suggest that 5-HT1A receptor biased agonists constitute potentially superior pharmacological agents for treatment of CNS disorders involving serotonergic mechanisms.
Collapse
Affiliation(s)
| | | | | | | | - Luc Zimmer
- Université Claude Bernard Lyon1, Lyon, France; Hospices Civils de Lyon, Lyon, France; Lyon Neuroscience Research Center, CNRS-INSERM, France
| |
Collapse
|
11
|
Yang J, Liang R, Wang L, Zheng C, Xiao X, Ming D. Repetitive Transcranial Magnetic Stimulation (rTMS) Improves the Gait Disorders of Rats Under Simulated Microgravity Conditions Associated With the Regulation of Motor Cortex. Front Physiol 2021; 12:587515. [PMID: 33613305 PMCID: PMC7890125 DOI: 10.3389/fphys.2021.587515] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Accepted: 01/15/2021] [Indexed: 11/25/2022] Open
Abstract
In previous studies, it has been proved that repetitive transcranial magnetic stimulation (rTMS) improves dyskinesia induced by conditions such as spinal cord injury, Parkinson diseases and cerebral ischemia. However, it is still unknown whether it can be used as a countermeasure for gait disorders in astronauts during space flight. In this study, we evaluated the effects of rTMS on the rat gait function under simulated microgravity (SM) conditions. The SM procedure continued for consecutive 21 days in male Wistar rats. Meanwhile, the high-frequency rTMS (10 Hz) was applied for 14 days from the eighth day of SM procedure. The behavioral results showed that SM could cause gait disorders such as decreased walking ability and contralateral limb imbalance in rats, which could be reversed by rTMS. Furthermore, rTMS affected the neural oscillations of motor cortex, enhancing in δ (2–4 Hz) band, suppressing in θ (4–7 Hz), and α (7–12 Hz) bands. Additionally, rTMS could activate mTOR in the motor cortex. These data suggests that the improvement effects of rTMS on gait disorders in rats under SM conditions might be associated with its regulation on neural oscillations in the cerebral motor cortex and the expression of some motor-related proteins which may enhance the control of nervous system on muscle function. Based on our results, rTMS can be used as an potential effective supplement in the field of clinical and rehabilitation research to reduce gait disorders caused by the space environment.
Collapse
Affiliation(s)
- Jiajia Yang
- Institute of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China.,School of Precision Instrument and Opto-Electronics Engineering, Tianjin University, Tianjin, China.,Tianjin Key Laboratory of Brain Science and Neural Engineering, Tianjin University, Tianjin, China
| | - Rong Liang
- Institute of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
| | - Ling Wang
- School of Precision Instrument and Opto-Electronics Engineering, Tianjin University, Tianjin, China
| | - Chenguang Zheng
- School of Precision Instrument and Opto-Electronics Engineering, Tianjin University, Tianjin, China.,Tianjin Key Laboratory of Brain Science and Neural Engineering, Tianjin University, Tianjin, China
| | - Xi Xiao
- Institute of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China.,Tianjin Key Laboratory of Brain Science and Neural Engineering, Tianjin University, Tianjin, China
| | - Dong Ming
- Institute of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China.,School of Precision Instrument and Opto-Electronics Engineering, Tianjin University, Tianjin, China.,Tianjin Key Laboratory of Brain Science and Neural Engineering, Tianjin University, Tianjin, China
| |
Collapse
|
12
|
Serotonergic control of the glutamatergic neurons of the subthalamic nucleus. PROGRESS IN BRAIN RESEARCH 2021; 261:423-462. [PMID: 33785138 DOI: 10.1016/bs.pbr.2020.11.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The subthalamic nucleus (STN) houses a dense cluster of glutamatergic neurons that play a central role in the functional dynamics of the basal ganglia, a group of subcortical structures involved in the control of motor behaviors. Numerous anatomical, electrophysiological, neurochemical and behavioral studies have reported that serotonergic neurons from the midbrain raphe nuclei modulate the activity of STN neurons. Here, we describe this serotonergic innervation and the nature of the regulation exerted by serotonin (5-hydroxytryptamine, 5-HT) on STN neuron activity. This regulation can occur either directly within the STN or at distal sites, including other structures of the basal ganglia or cortex. The effect of 5-HT on STN neuronal activity involves several 5-HT receptor subtypes, including 5-HT1A, 5-HT1B, 5-HT2C and 5-HT4 receptors, which have garnered the highest attention on this topic. The multiple regulatory effects exerted by 5-HT are thought to be modified under pathological conditions, altering the activity of the STN, or due to the benefits and side effects of treatments used for Parkinson's disease, notably the dopamine precursor l-DOPA and high-frequency STN stimulation. Originally understood as a motor center, the STN is also associated with decision making and participates in mood regulation and cognitive performance, two domains of personality that are also regulated by 5-HT. The literature concerning the link between 5-HT and STN is already important, and the functional overlap is evident, but this link is still not entirely understood. The understanding of this link between 5-HT and STN should be increased due to the possible importance of this regulation in the control of fronto-STN loops and inherent motor and non-motor behaviors.
Collapse
|
13
|
Depoortere R, Johnston T, Fox S, Brotchie J, Newman-Tancredi A. The selective 5-HT1A receptor agonist, NLX-112, exerts anti-dyskinetic effects in MPTP-treated macaques. Parkinsonism Relat Disord 2020; 78:151-157. [DOI: 10.1016/j.parkreldis.2020.08.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 07/27/2020] [Accepted: 08/07/2020] [Indexed: 12/18/2022]
|
14
|
Vegas‐Suárez S, Pisanò CA, Requejo C, Bengoetxea H, Lafuente JV, Morari M, Miguelez C, Ugedo L. 6-Hydroxydopamine lesion and levodopa treatment modify the effect of buspirone in the substantia nigra pars reticulata. Br J Pharmacol 2020; 177:3957-3974. [PMID: 32464686 PMCID: PMC7429490 DOI: 10.1111/bph.15145] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 05/08/2020] [Accepted: 05/11/2020] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND AND PURPOSE l-DOPA-induced dyskinesia (LID) is considered a major complication in the treatment of Parkinson's disease (PD). Buspirone (5-HT1A partial agonist) have shown promising results in the treatment of PD and LID, however no 5-HT-based treatment has been approved in PD. The present study was aimed to investigate how the substantia nigra pars reticulata (SNr) is affected by buspirone and whether it is a good target to study 5-HT antidyskinetic treatments. EXPERIMENTAL APPROACH Buspirone was studied using in vivo single-unit, electrocorticogram, local field potential recordings along with microdialysis and immunohistochemistry in naïve/sham, 6-hydroxydopamine (6-OHDA)-lesioned or 6-OHDA-lesioned and l-DOPA-treated (6-OHDA/l-DOPA) rats. KEY RESULTS Local buspirone inhibited SNr neuron activity in all groups. However, systemic buspirone reduced burst activity in 6-OHDA-lesioned rats (with or without l-DOPA treatment), whereas 8-OH-DPAT, a full 5-HT1A agonist induced larger inhibitory effects in sham animals. Neither buspirone nor 8-OH-DPAT markedly modified the low-frequency oscillatory activity in the SNr or synchronization within the SNr with the cortex. In addition, local perfusion of buspirone increased GABA and glutamate release in the SNr of naïve and 6-OHDA-lesioned rats but no effect in 6-OHDA/l-DOPA rats. In the 6-OHDA/l-DOPA group, increased 5-HT transporter and decreased 5-HT1A receptor expression was found. CONCLUSIONS AND IMPLICATIONS The effects of buspirone in SNr are influenced by dopamine loss and l-DOPA treatment. The present results suggest that the regulation of burst activity of the SNr induced by DA loss may be a good target to test new drugs for the treatment of PD and LID.
Collapse
Affiliation(s)
- Sergio Vegas‐Suárez
- Department of Pharmacology, Faculty of Medicine and NursingUniversity of the Basque Country (UPV/EHU)LeioaSpain
- Autonomic and Movement Disorders Unit, Neurodegenerative DiseasesBiocruces Health Research InstituteBarakaldoBizkaiaSpain
| | - Clarissa Anna Pisanò
- Department of Medical Sciences, Section of PharmacologyUniversity of FerraraFerraraItaly
- Neuroscience Center and National Institute of NeuroscienceUniversity of FerraraFerraraItaly
| | - Catalina Requejo
- LaNCE, Department of NeuroscienceUniversity of the Basque Country (UPV/EHU)LeioaSpain
| | - Harkaitz Bengoetxea
- LaNCE, Department of NeuroscienceUniversity of the Basque Country (UPV/EHU)LeioaSpain
| | - Jose Vicente Lafuente
- LaNCE, Department of NeuroscienceUniversity of the Basque Country (UPV/EHU)LeioaSpain
| | - Michele Morari
- Department of Medical Sciences, Section of PharmacologyUniversity of FerraraFerraraItaly
- Neuroscience Center and National Institute of NeuroscienceUniversity of FerraraFerraraItaly
| | - Cristina Miguelez
- Department of Pharmacology, Faculty of Medicine and NursingUniversity of the Basque Country (UPV/EHU)LeioaSpain
- Autonomic and Movement Disorders Unit, Neurodegenerative DiseasesBiocruces Health Research InstituteBarakaldoBizkaiaSpain
| | - Luisa Ugedo
- Department of Pharmacology, Faculty of Medicine and NursingUniversity of the Basque Country (UPV/EHU)LeioaSpain
- Autonomic and Movement Disorders Unit, Neurodegenerative DiseasesBiocruces Health Research InstituteBarakaldoBizkaiaSpain
| |
Collapse
|
15
|
Petersson P, Halje P, Cenci MA. Significance and Translational Value of High-Frequency Cortico-Basal Ganglia Oscillations in Parkinson's Disease. JOURNAL OF PARKINSONS DISEASE 2020; 9:183-196. [PMID: 30594935 PMCID: PMC6484276 DOI: 10.3233/jpd-181480] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The mechanisms and significance of basal ganglia oscillations is a fundamental research question engaging both clinical and basic investigators. In Parkinson’s disease (PD), neural activity in basal ganglia nuclei is characterized by oscillatory patterns that are believed to disrupt the dynamic processing of movement-related information and thus generate motor symptoms. Beta-band oscillations associated with hypokinetic states have been reviewed in several excellent previous articles. Here we focus on faster oscillatory phenomena that have been reported in association with a diverse range of motor states. We review the occurrence of different types of fast oscillations and the evidence supporting their pathophysiological role. We also provide a general discussion on the definition, possible mechanisms, and translational value of synchronized oscillations of different frequencies in cortico-basal ganglia structures. Revealing how oscillatory phenomena are caused and spread in cortico-basal ganglia-thalamocortical networks will offer a key to unlock the neural codes of both motor and non-motor symptoms in PD. In preclinical therapeutic research, recording of oscillatory neural activities holds the promise to unravel mechanisms of action of current and future treatments.
Collapse
Affiliation(s)
- Per Petersson
- Department of Integrative Medical Biology, Umeå University, Umeå, Sweden.,Department of Experimental Medical Science, The Group for Integrative Neurophysiology and Neurotechnology, Lund University, Lund, Sweden
| | - Pär Halje
- Department of Integrative Medical Biology, Umeå University, Umeå, Sweden.,Department of Experimental Medical Science, The Group for Integrative Neurophysiology and Neurotechnology, Lund University, Lund, Sweden
| | - M Angela Cenci
- Department of Experimental Medical Science, Basal Ganglia Pathophysiology Unit, Lund University, Lund, Sweden
| |
Collapse
|
16
|
Fisher R, Hikima A, Morris R, Jackson MJ, Rose S, Varney MA, Depoortere R, Newman-Tancredi A. The selective 5-HT 1A receptor agonist, NLX-112, exerts anti-dyskinetic and anti-parkinsonian-like effects in MPTP-treated marmosets. Neuropharmacology 2020; 167:107997. [PMID: 32057799 PMCID: PMC7103782 DOI: 10.1016/j.neuropharm.2020.107997] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 02/03/2020] [Accepted: 02/09/2020] [Indexed: 11/16/2022]
Abstract
l-DOPA is the gold-standard pharmacotherapy for treatment of Parkinson's disease (PD) but can lead to the appearance of troubling dyskinesia which are attributable to 'false neurotransmitter' release of dopamine by serotonergic neurons. Reducing the activity of these neurons diminishes l-DOPA-induced dyskinesia (LID), but there are currently no clinically approved selective, high efficacy 5-HT1A receptor agonists. Here we describe the effects of NLX-112, a highly selective and efficacious 5-HT1A receptor agonist, on LID in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-treated marmosets, a non-human primate model of PD. NLX-112 exhibited modest plasma half-life (~2h) and marked plasma protein binding (96%). When administered to parkinsonian marmosets with l-DOPA (7 mg/kg p.o.), NLX-112 (0.025, 0.1 and 0.4 mg/kg p.o.) reduced LID scores at early time-points after administration, whilst only minimally interfering with the l-DOPA-induced reversal of motor disability. In contrast, the prototypical 5-HT1A receptor agonist, (+)8-OH-DPAT (0.6 and 2 mg/kg p. o.), reduced LID but also abolished l-DOPA's anti-disability activity. Administered by itself, NLX-112 (0.1, 0.2 mg/kg p.o.) produced very little dyskinesia or locomotor activity, but reduced motor disability scores by about half the extent elicited by l-DOPA, suggesting that it may have motor facilitation effects of its own. Both NLX-112 and (+)8-OH-DPAT induced unusual and dose-limiting behaviors in marmoset that resembled 'serotonin behavioral syndrome' observed previously in rat. Overall, the present study showed that NLX-112 has anti-LID activity at the doses tested as well as reducing motor disability. The data suggest that additional investigation of NLX-112 is desirable to explore its potential as a treatment for PD and PD-LID.
Collapse
Affiliation(s)
- Ria Fisher
- Faculty of Life Sciences and Medicine, Hodgkin Building, King's College London, Guy's Campus, London, SE1 1UL, UK
| | - Atsuko Hikima
- Faculty of Life Sciences and Medicine, Hodgkin Building, King's College London, Guy's Campus, London, SE1 1UL, UK
| | - Rebecca Morris
- Faculty of Life Sciences and Medicine, Hodgkin Building, King's College London, Guy's Campus, London, SE1 1UL, UK
| | - Michael J Jackson
- Faculty of Life Sciences and Medicine, Hodgkin Building, King's College London, Guy's Campus, London, SE1 1UL, UK
| | - Sarah Rose
- Faculty of Life Sciences and Medicine, Hodgkin Building, King's College London, Guy's Campus, London, SE1 1UL, UK
| | - Mark A Varney
- Neurolixis SAS, 2 Rue Georges Charpak, 81100, Castres, France
| | | | | |
Collapse
|
17
|
Basal ganglia oscillations as biomarkers for targeting circuit dysfunction in Parkinson's disease. PROGRESS IN BRAIN RESEARCH 2020; 252:525-557. [PMID: 32247374 DOI: 10.1016/bs.pbr.2020.02.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Oscillations are a naturally occurring phenomenon in highly interconnected dynamical systems. However, it is thought that excessive synchronized oscillations in brain circuits can be detrimental for many brain functions by disrupting neuronal information processing. Because synchronized basal ganglia oscillations are a hallmark of Parkinson's disease (PD), it has been suggested that aberrant rhythmic activity associated with symptoms of the disease could be used as a physiological biomarker to guide pharmacological and electrical neuromodulatory interventions. We here briefly review the various manifestations of basal ganglia oscillations observed in human subjects and in animal models of PD. In this context, we also review the evidence supporting a pathophysiological role of different oscillations for the suppression of voluntary movements as well as for the induction of excessive motor activity. In light of these findings, it is discussed how oscillations could be used to guide a more precise targeting of dysfunctional circuits to obtain improved symptomatic treatment of PD.
Collapse
|
18
|
Halje P, Brys I, Mariman JJ, da Cunha C, Fuentes R, Petersson P. Oscillations in cortico-basal ganglia circuits: implications for Parkinson’s disease and other neurologic and psychiatric conditions. J Neurophysiol 2019; 122:203-231. [DOI: 10.1152/jn.00590.2018] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Cortico-basal ganglia circuits are thought to play a crucial role in the selection and control of motor behaviors and have also been implicated in the processing of motivational content and in higher cognitive functions. During the last two decades, electrophysiological recordings in basal ganglia circuits have shown that several disease conditions are associated with specific changes in the temporal patterns of neuronal activity. In particular, synchronized oscillations have been a frequent finding suggesting that excessive synchronization of neuronal activity may be a pathophysiological mechanism involved in a wide range of neurologic and psychiatric conditions. We here review the experimental support for this hypothesis primarily in relation to Parkinson’s disease but also in relation to dystonia, essential tremor, epilepsy, and psychosis/schizophrenia.
Collapse
Affiliation(s)
- Pär Halje
- Group for Integrative Neurophysiology and Neurotechnology, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Ivani Brys
- Federal University of Vale do São Francisco, Petrolina, Brazil
| | - Juan J. Mariman
- Research and Development Direction, Universidad Tecnológica de Chile, Inacap, Santiago, Chile
- Department of Physical Therapy, Faculty of Medicine, Universidad de Chile, Santiago, Chile
- Department of Physical Therapy, Faculty of Arts and Physical Education, Universidad Metropolitana de Ciencias de la Educación, Santiago, Chile
| | - Claudio da Cunha
- Laboratório de Fisiologia e Farmacologia do Sistema Nervoso Central, Programas de Pós-Graduação em Farmacologia e Bioquímica, Universidade Federal do Paraná, Curitiba, Brazil
| | - Romulo Fuentes
- Department of Neurocience, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Per Petersson
- Group for Integrative Neurophysiology and Neurotechnology, Department of Experimental Medical Science, Lund University, Lund, Sweden
- Department of Integrative Medical Biology, Umeå University, Umeå, Sweden
| |
Collapse
|
19
|
Abstract
Symptomatic treatment options for Parkinson disease have steadily improved, and individualized therapeutic approaches are becoming established for every stage of the disease. However, disease-modifying therapy with a causal approach is still unavailable. The central causative role of alpha-synuclein pathology, including its progressive spread to most areas of the CNS, has been widely recognized, and a strong involvement of immune responses has recently been discovered. New immunologic technologies have been shown to effectively prevent the progression of alpha-synuclein pathology in animal models. These approaches have recently been translated into the first human clinical trials, representing a novel starting point for the causal therapy of Parkinson disease. In this review, the pathomechanistic role of alpha-synuclein and its influence on the surrounding cellular environment are analyzed with a strong focus on immune responses and neuroinflammation. The potential of novel immunotherapeutic approaches that reduce the burden of alpha-synuclein pathology in the CNS is critically evaluated, and currently ongoing human clinical trials are presented. The clinical development of these new immunotherapies is progressing rapidly and gives reason to hope that a causal therapy of Parkinson disease could be possible in the foreseeable future.
Collapse
|
20
|
Effects of the Serotonin 5-HT1A Receptor Biased Agonists, F13714 and F15599, on Striatal Neurotransmitter Levels Following l-DOPA Administration in Hemi-Parkinsonian Rats. Neurochem Res 2018; 43:1035-1046. [DOI: 10.1007/s11064-018-2514-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 03/15/2018] [Accepted: 03/20/2018] [Indexed: 11/27/2022]
|