1
|
Li Q, Wang W, Zhao N, Li P, Xin Y, Hu W. Identification and validation of a Schistosoma japonicum U6 promoter. Parasit Vectors 2017; 10:281. [PMID: 28583151 PMCID: PMC5460494 DOI: 10.1186/s13071-017-2207-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 05/18/2017] [Indexed: 11/10/2022] Open
Abstract
Background RNA polymerase III promoters have been widely used to express short hairpin-RNA (shRNA), microRNA (miRNA), and small guide RNA (sgRNA) in gene functional analysis in a variety of organisms including Schistosoma mansoni. However, no endogenous RNA polymerase III promoters have been identified in Schistosoma japonicum. The lack of appropriate promoters in S. japonicum has hindered its gene functional analysis. Identification of functional promoters in S. japonicum is therefore in urgent need. Results Via sequence alignment, a 347 bp sequence upstream from the coding region of S. japonicum U6 small nuclear RNA (snRNA) was identified, cloned, and named as S. japonicum U6 (sjU6) promoter. A sgRNA sequence named as sgRNA970 was designed, and its Cas9 nuclease guiding activity was confirmed by in vitro cleavage assay. The sjU6 promoter was ligated with sgRNA970 coding sequence by overlap PCR to generate a sjU6-sgRNA970 expression cassette. The expression cassette was inserted into a lentiviral plasmid to construct the pHBLV-sgRNA970 plasmid. First, we tested the sjU6 promoter activity in HEK293 cells by transfecting HEK293 cells with the pHBLV-sgRNA970 plasmid. RT-PCR amplification of the total RNA from the transfected HEK293 cells confirmed the presence of sgRNA970 transcript and indicated sjU6 promoter was functional to initiate transcription in HEK293 cells. Then we transduced the lentivirus expressing Cas9-ZsGreen fusion protein into 14 dpi schistosomula to test whether lentivirus was capable to induce exogenous gene expression in S. japonicum. Fluorescence microscopy and western blot results confirmed the expression of Cas9-ZsGreen fusion protein in S. japonicum. Therefore, this lentiviral system was adapted to test promoter activity in S. japonicum. Finally, we transduced 14 dpi S. japonicum with lentivirus produced from the pHBLV-sgRNA970 plasmid. RT-PCR amplification of the total RNA from transduced schistosomula confirmed the presence of sgRNA970 transcript and therefore indicated sjU6 promoter was functional to initiate transcription in S. japonicum. Conclusion To our knowledge, sjU6 promoter would be the first identified and validated endogenous RNA polymerase III promoter in S. japonicum, which could be used for future CRISPR/Cas9 studies in S. japonicum. Electronic supplementary material The online version of this article (doi:10.1186/s13071-017-2207-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Qing Li
- State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory of Contemporary Anthropology, Department of Microbiology and Microbial Engineering, School of Life Science, Fudan University, Shanghai, 200433, China
| | - Wan Wang
- State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory of Contemporary Anthropology, Department of Microbiology and Microbial Engineering, School of Life Science, Fudan University, Shanghai, 200433, China
| | - Nan Zhao
- State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory of Contemporary Anthropology, Department of Microbiology and Microbial Engineering, School of Life Science, Fudan University, Shanghai, 200433, China
| | - Pengcheng Li
- State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory of Contemporary Anthropology, Department of Microbiology and Microbial Engineering, School of Life Science, Fudan University, Shanghai, 200433, China
| | - Yue Xin
- State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory of Contemporary Anthropology, Department of Microbiology and Microbial Engineering, School of Life Science, Fudan University, Shanghai, 200433, China
| | - Wei Hu
- State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory of Contemporary Anthropology, Department of Microbiology and Microbial Engineering, School of Life Science, Fudan University, Shanghai, 200433, China. .,Key Laboratory of Parasite and Vector Biology of MOH, WHO Cooperation Center for Tropical Diseases, National Institute of Parasitic Diseases, Chinese Center for Diseases Control and Prevention, Shanghai, 200025, China.
| |
Collapse
|
2
|
Evaluation of the CCA Immuno-Chromatographic Test to Diagnose Schistosoma mansoni in Minas Gerais State, Brazil. PLoS Negl Trop Dis 2016; 10:e0004357. [PMID: 26752073 PMCID: PMC4709075 DOI: 10.1371/journal.pntd.0004357] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Accepted: 12/14/2015] [Indexed: 12/21/2022] Open
Abstract
Background The Kato-Katz (KK) stool smear is the standard test for the diagnosis of Schistosoma mansoni infection, but suffers from low sensitivity when infections intensities are moderate to low. Thus, misdiagnosed individuals remain untreated and contribute to the disease transmission, thereby forestalling public health efforts to move from a modality of disease control to one of elimination. As an alternative, the urine-based diagnosis of schistosomiasis mansoni via the circulating cathodic antigen immuno-chromatographic test (CCA-ICT) has been extensively evaluated in Africa with the conclusion that it may replace the KK test in areas where prevalences are moderate or high. Methods and Findings The objective was to measure the performance of the CCA-ICT in a sample study population composed of residents from non-endemic and endemic areas for schistosomiasis mansoni in two municipalities of Minas Gerais state, Brazil. Volunteers (130) were classified into three infection status groups based on duplicate Kato-Katz thick smears from one stool sample (2KK test): 41 negative individuals from non-endemic areas, 41 negative individuals from endemic areas and 48 infected individuals from endemic areas. Infection status was also determined by the CCA-ICT and infection exposure by antibody ELISA (enzyme-linked immunosorbent assay) to S. mansoni soluble egg antigen (SEA) and soluble (adult) worm antigen preparation (SWAP). Sensitivity and specificity were influenced by whether the trace score visually adjudicated in the CCA-ICT was characterized as positive or negative for S. mansoni infection. An analysis of a two-graph receiver operating characteristic was performed to change the cutoff point. When the trace score was interpreted as a positive rather than as a negative result, the specificity decreased from 97.6% to 78.0% whereas sensitivity increased from 68.7% to 85.4%. A significantly positive correlation between the CCA-ICT scores and egg counts was identified (r = 0.6252, p = 0.0001). However, the CCA-ICT misdiagnosed as negative 14.6% of 2KK positive individuals, predominantly those with light infections (fewer than 100 eggs/g feces). Considering 2KK as reference test, the discriminating power of the CCA-ICT (the area under the curve [AUC] = 0.817) was greater than the SEA-ELISA (AUC = 0.744) and SWAP-ELISA (AUC = 0.704). Conclusion Our data for the performance of the CCA-ICT in the Brazilian communities endemic for schistosomiasis mansoni support those from Africa, i.e., in areas with greater infection prevalence and intensities, the CCA-ICT may be useful as a tool to indicate community-based preventative chemotherapy without individual diagnosis. However, because of the Brazilian Ministry of Health’s recommendation for individual diagnosis in areas where prevalence is less than 15%, i.e., those areas in which infection intensities are likely to be lowest, the CCA-ICT lacks the sensitivity to be used as standalone diagnostic tool. Detecting parasite eggs in stool by the Kato-Katz (KK) stool smear is the standard diagnostic test for infection with the flatworm parasite, Schistosoma mansoni. However, the test can miss those who have low burdens of infection, i.e., with few eggs in their feces. These misdiagnosed individuals, therefore, do not receive drug treatment and can continue to transmit the parasite into the environment putting the community at risk of infection. As an alternative diagnostic approach, the circulating cathodic antigen immuno-chromatographic test (CCA-ICT) is a simple-to-use handheld device (similar to a pregnancy test) that only needs urine to provide a quick and visual indication of whether one is infected or not. The consensus from studies in Africa is that the CCA-ICT could replace the KK test in those areas where people are more likely to harbor moderate to high worm burdens (i.e., more eggs in stool), but, like the KK test, it can miss those harboring light infection intensities. We evaluated the CCA-ICT performance in urine samples from 130 individuals living in areas non-endemic and endemic for schistosomiasis mansoni within the municipalities of Governador Valadares and Manhuaçu, Minas Gerais state, Brazil. The CCA-ICT performance characteristics, chiefly, sensitivity and specificity, depended on whether a ‘trace’ visual reading of the test was considered as a positive or negative diagnosis. We noted a positive correlation between the CCA-ICT scores and egg counts. However, the CCA-ICT misdiagnosed as negative about 15% of KK positive individuals, predominantly those with light infections. The CCA-ICT, nonetheless, had better discriminating power than commonly used antibody-based tests. We conclude that the CCA-ICT offers reasonable performance to diagnosis S. mansoni infection. However, in areas where infections intensities are light, the test lacks the sensitivity to be used as standalone diagnostic tool.
Collapse
|
3
|
Transfection of Platyhelminthes. BIOMED RESEARCH INTERNATIONAL 2015; 2015:206161. [PMID: 26090388 PMCID: PMC4450235 DOI: 10.1155/2015/206161] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/09/2014] [Accepted: 09/15/2014] [Indexed: 01/22/2023]
Abstract
Flatworms are one of the most diverse groups within Lophotrochozoa with more than 20,000 known species, distributed worldwide in different ecosystems, from the free-living organisms in the seas and lakes to highly specialized parasites living in a variety of hosts, including humans. Several infections caused by flatworms are considered major neglected diseases affecting countries in the Americas, Asia, and Africa. For several decades, a particular interest on free-living flatworms was due to their ability to regenerate considerable portions of the body, implying the presence of germ cells that could be important for medicine. The relevance of reverse genetics for this group is clear; understanding the phenotypic characteristics of specific genes will shed light on developmental traits of free-living and parasite worms. The genetic manipulation of flatworms will allow learning more about the mechanisms for tissue regeneration, designing new and more effective anthelmintic drugs, and explaining the host-parasite molecular crosstalk so far partially inaccessible for experimentation. In this review, availability of transfection techniques is analyzed across flatworms, from the initial transient achievements to the stable manipulations now developed for free-living and parasite species.
Collapse
|
4
|
Dell'Oca N, Basika T, Corvo I, Castillo E, Brindley PJ, Rinaldi G, Tort JF. RNA interference in Fasciola hepatica newly excysted juveniles: long dsRNA induces more persistent silencing than siRNA. Mol Biochem Parasitol 2014; 197:28-35. [PMID: 25307443 DOI: 10.1016/j.molbiopara.2014.10.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2014] [Revised: 09/29/2014] [Accepted: 10/01/2014] [Indexed: 12/24/2022]
Abstract
In trematodes RNA interference is the current tool of choice for functional analysis of genes since classical reverse genetic approaches remain unavailable. Whereas this approach has been optimized in schistosomes, few reports are available for other trematodes, likely reflecting the difficulties in the establishment of the technology. Here we standardized conditions for RNAi in the liver fluke Fasciola hepatica, the causative agent of fasciolosis, one of the most problematic infections affecting livestock worldwide. Targeting a single copy gene, encoding leucine aminopeptidase (LAP) as a model, we refined delivery conditions which identified electro-soaking, i.e. electroporation and subsequent incubation as efficient for introduction of small RNAs into the fluke. Knock down of LAP was achieved with as little as 2.5 μg/ml dsRNA concentrations, which may reduce or obviate off-target effects. However, at these concentrations, tracking incorporation by fluorescent labeling was difficult. While both long dsRNA and short interfering RNA (siRNA) are equally effective at inducing a short-term knock down, dsRNA induced persistent silencing up to 21 days after treatment, suggesting that mechanisms of amplification of the interfering signal can be present in this pathogen. Persistent silencing of the invasive stage for up to 3 weeks (close to what it takes for the fluke to reach the liver) opens the possibility of using RNAi for the validation of putative therapeutic targets.
Collapse
Affiliation(s)
- Nicolás Dell'Oca
- Departamento de Genética, Facultad de Medicina, Universidad de la República (UDELAR), Gral. Flores 2125, CP 11800 Montevideo, Uruguay.
| | - Tatiana Basika
- Departamento de Genética, Facultad de Medicina, Universidad de la República (UDELAR), Gral. Flores 2125, CP 11800 Montevideo, Uruguay.
| | - Ileana Corvo
- Departamento de Genética, Facultad de Medicina, Universidad de la República (UDELAR), Gral. Flores 2125, CP 11800 Montevideo, Uruguay.
| | - Estela Castillo
- Sección Bioquímica, Facultad de Ciencias, Universidad de la Republica (UDELAR), Iguá 4225, CP 11400 Montevideo, Uruguay.
| | - Paul J Brindley
- Department of Microbiology, Immunology and Tropical Medicine, and Research Center for Neglected Diseases of Poverty, School of Medicine & Health Sciences, The George Washington University, 2300 I Street NW, Washington, DC 20037, USA.
| | - Gabriel Rinaldi
- Departamento de Genética, Facultad de Medicina, Universidad de la República (UDELAR), Gral. Flores 2125, CP 11800 Montevideo, Uruguay; Department of Microbiology, Immunology and Tropical Medicine, and Research Center for Neglected Diseases of Poverty, School of Medicine & Health Sciences, The George Washington University, 2300 I Street NW, Washington, DC 20037, USA.
| | - Jose F Tort
- Departamento de Genética, Facultad de Medicina, Universidad de la República (UDELAR), Gral. Flores 2125, CP 11800 Montevideo, Uruguay.
| |
Collapse
|
5
|
Ye Q, Dong HF, Grevelding CG, Hu M. In vitro cultivation of Schistosoma japonicum-parasites and cells. Biotechnol Adv 2013; 31:1722-37. [DOI: 10.1016/j.biotechadv.2013.09.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2013] [Revised: 09/06/2013] [Accepted: 09/08/2013] [Indexed: 11/27/2022]
|
6
|
Liang S, Knight M, Jolly ER. Polyethyleneimine mediated DNA transfection in schistosome parasites and regulation of the WNT signaling pathway by a dominant-negative SmMef2. PLoS Negl Trop Dis 2013; 7:e2332. [PMID: 23936566 PMCID: PMC3723562 DOI: 10.1371/journal.pntd.0002332] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Accepted: 06/14/2013] [Indexed: 01/17/2023] Open
Abstract
Schistosomiasis is a serious global problem and the second most devastating parasitic disease following malaria. Parasitic worms of the genus Schistosoma are the causative agents of schistosomiasis and infect more than 240 million people worldwide. The paucity of molecular tools to manipulate schistosome gene expression has made an understanding of genetic pathways in these parasites difficult, increasing the challenge of identifying new potential drugs for treatment. Here, we describe the use of a formulation of polyethyleneimine (PEI) as an alternative to electroporation for the efficacious transfection of genetic material into schistosome parasites. We show efficient expression of genes from a heterologous CMV promoter and from the schistosome Sm23 promoter. Using the schistosome myocyte enhancer factor 2 (SmMef2), a transcriptional activator critical for myogenesis and other developmental pathways, we describe the development of a dominant-negative form of the schistosome Mef2. Using this mutant, we provide evidence that SmMef2 may regulate genes in the WNT pathway. We also show that SmMef2 regulates its own expression levels. These data demonstrate the use of PEI to facilitate effective transfection of nucleic acids into schistosomes, aiding in the study of schistosome gene expression and regulation, and development of genetic tools for the characterization of molecular pathways in these parasites.
Collapse
Affiliation(s)
- Shuang Liang
- Department of Biology, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Matty Knight
- Biomedical Research Institute, Rockville, Maryland, United States of America
| | - Emmitt R. Jolly
- Department of Biology, Case Western Reserve University, Cleveland, Ohio, United States of America
- * E-mail:
| |
Collapse
|
7
|
Salehi N, Peng CA. Gene transfection of Toxoplasma gondii using PEI/DNA polyplexes. J Microbiol Methods 2012; 91:133-7. [DOI: 10.1016/j.mimet.2012.08.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Revised: 07/31/2012] [Accepted: 08/02/2012] [Indexed: 11/25/2022]
|
8
|
Hagen J, Lee EF, Fairlie WD, Kalinna BH. Functional genomics approaches in parasitic helminths. Parasite Immunol 2012; 34:163-82. [PMID: 21711361 DOI: 10.1111/j.1365-3024.2011.01306.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
As research on parasitic helminths is moving into the post-genomic era, an enormous effort is directed towards deciphering gene function and to achieve gene annotation. The sequences that are available in public databases undoubtedly hold information that can be utilized for new interventions and control but the exploitation of these resources has until recently remained difficult. Only now, with the emergence of methods to genetically manipulate and transform parasitic worms will it be possible to gain a comprehensive understanding of the molecular mechanisms involved in nutrition, metabolism, developmental switches/maturation and interaction with the host immune system. This review focuses on functional genomics approaches in parasitic helminths that are currently used, to highlight potential applications of these technologies in the areas of cell biology, systems biology and immunobiology of parasitic helminths.
Collapse
Affiliation(s)
- J Hagen
- Department of Veterinary Science, Centre for Animal Biotechnology, The University of Melbourne, Vic., Australia
| | | | | | | |
Collapse
|
9
|
Liu Y, Brindley PJ, Zeng Q, Li Y, Zhou J, Chen Y, Yang S, Zhang Z, Liu B, Cai L, McManus DP. Identification of phage display peptides with affinity for the tegument of Schistosoma japonicum schistosomula. Mol Biochem Parasitol 2011; 180:86-98. [PMID: 21930161 DOI: 10.1016/j.molbiopara.2011.09.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2011] [Revised: 08/31/2011] [Accepted: 09/05/2011] [Indexed: 01/06/2023]
Abstract
Peptides, bound to the tegument of live Schistosoma japonicum schistosomula, were differentially screened by phage display in vitro using three rounds of reverse absorption and bio-panning. Three M13 phage peptides were isolated and identified by determination of their recovery rate, immunohistochemical localization, immunoblot analysis, and their anti-schistosomal effects in vivo and in vitro. Of the three, M13 phage peptide ZL4 (MppZL4, YSGLQDSSLRLR, 1.4kDa, pI 8.8) bound to the tegument of mechanically transformed schistosomula and to other developmental stages of S. japonicum from the mammalian host. By contrast, MppZL4 did not bind to the surface of cercariae. To further examine its binding properties, MppZL4 was conjugated to Rhodamine B (RhB-YSGLQDSSLRLR, RhB-ZL4) and a peptide control (RhB-AIPYFSGILQWR, RhB-12P) was similarly synthesized. The binding capacities of RhB-ZL4 to the surface membrane of S. japonicum schistosomula in vitro and of S. japonicum adult worms in vivo were examined and revealed specificity for binding. When examined for anti-parasite activity, both MppZL4 and RhB-ZL4 exhibited a potent schistosomicidal effect in vitro. Further MppZL4 also affected the growth and development of schistosomula in vivo. These findings extend previous studies showing that phage display techniques can recover polypeptides that bind specifically to living schistosomes and, moreover, that these bound peptides have the potential to inhibit key physiological processes in these parasites. Our findings suggest further that ectogenic polypeptides, which can bind to the tegument of S. japonicum, might be adapted as vectors to deliver experimental probes and/or pharmacologically relevant compounds to the schistosome tegument, including drugs and immunological mediators.
Collapse
Affiliation(s)
- Yan Liu
- Centre of Cell and Molecular Biology Experiment, Xiangya School of Medicine, Central South University (CSU), 410013 Tongzipo Road 172#, Changsha, Hunan, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Abstract
SUMMARYIn parasitological research, significant progress has been made with respect to genomics and transcriptomics but transgenic systems for functional gene analyses are mainly restricted to the protozoan field. Gene insertion and knockout strategies can be applied to parasitic protozoa as well as gene silencing by RNA interference (RNAi). By contrast, research on parasitic helminthes still lags behind. Along with the major advances in genome and transcriptome analyses e.g. for schistosomes, methods for the functional characterization of genes of interest are still in their initial phase and have to be elaborated now, at the beginning of the post-genomic era. In this review we will summarize attempts made in the last decade regarding the establishment of protocols to transiently and stably transform or transfect schistosomes. Besides approaches using particle bombardment, electroporation or virus-based infection strateies to introduce DNA constructs into adult and larval schistosome stages to express reporter genes, first approaches have also been made in establishing protocols based on soaking, lipofection, and/or electroporation for RNA interference to silence gene activity. Although in these cases remarkable progress can be seen, the schistosome community eagerly awaits major breakthroughs especially with respect to stable transformation, but also for silencing or knock-down strategies for every schistosome gene of interest.
Collapse
|
11
|
Abstract
Draft genome sequences for Schistosoma japonicum and S. mansoni are now available. The schistosome genome encodes ∼13,000 protein-encoding genes for which the functions of few are well understood. Nonetheless, the new genes represent potential intervention targets, and molecular tools are being developed to determine their importance. Over the past 15 years, noteworthy progress has been achieved towards development of tools for gene manipulation and transgenesis of schistosomes. A brief history of genetic manipulation is presented, along with a review of the field with emphasis on reports of integration of transgenes into schistosome chromosomes.
Collapse
|
12
|
Tchoubrieva E, Kalinna B. Advances in mRNA silencing and transgene expression: a gateway to functional genomics in schistosomes. Biotechnol Genet Eng Rev 2011; 26:261-80. [PMID: 21415884 DOI: 10.5661/bger-26-261] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The completion of the WHO Schistosoma Genome Project in 2008, although not fully annotated, provides a golden opportunity to actively pursue fundamental research on the parasites genome. This analysis will aid identification of targets for drugs, vaccines and markers for diagnostic tools as well as for studying the biological basis of drug resistance, infectivity and pathology. For the validation of drug and vaccine targets, the genomic sequence data is only of use if functional analyses can be conducted (in the parasite itself). Until recently, gene manipulation approaches had not been seriously addressed. This situation is now changing and rapid advances have been made in gene silencing and transgenesis of schistosomes.
Collapse
Affiliation(s)
- Elissaveta Tchoubrieva
- Centre for Animal Biotechnology, Faculty of Veterinary Science, The University of Melbourne, Parkville, 3010 VIC, Australia
| | | |
Collapse
|
13
|
Yang S, Brindley PJ, Zeng Q, Li Y, Zhou J, Liu Y, Liu B, Cai L, Zeng T, Wei Q, Lan L, McManus DP. Transduction of Schistosoma japonicum schistosomules with vesicular stomatitis virus glycoprotein pseudotyped murine leukemia retrovirus and expression of reporter human telomerase reverse transcriptase in the transgenic schistosomes. Mol Biochem Parasitol 2010; 174:109-16. [PMID: 20692298 PMCID: PMC3836731 DOI: 10.1016/j.molbiopara.2010.07.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2009] [Revised: 07/25/2010] [Accepted: 07/28/2010] [Indexed: 01/21/2023]
Abstract
Although draft genome sequences of two of the major human schistosomes, Schistosoma japonicum and Schistosoma mansoni are available, the structures and characteristics of most genes and the influence of exogenous genes on the metabolism of schistosomes remain uncharacterized. Furthermore, which functional genomics approaches will be tractable for schistosomes are not yet apparent. Here, the vesicular stomatitis virus glycoprotein (VSVG)-pseudotyped pantropic retroviral vector pBABE-puro was modified to incorporate the human telomerase reverse transcriptase gene (hTERT) as a reporter, under the control of the retroviral long terminal repeat (LTR). Pseudotyped virions were employed to transduce S. japonicum to investigate the utility of retrovirus-mediated transgenesis of S. japonicum and the activity of human telomerase reverse transcriptase as a reporter transgene in schistosomes. Schistosomules perfused from experimentally infected rabbits were cultured for 6 days after exposure to the virions after which genomic DNAs from virus exposed and control worms were extracted. Analysis of RNA from transduced parasites and immunohistochemistry of thin parasite sections revealed expression of hTERT in the transduced worms. Expression of hTERT was also confirmed by immunoblot analysis. These findings indicated that S. japonicum could be effectively transduced by VSVG-pseudotyped retrovirus carrying the hTERT gene. Given the potential of hTERT to aid in derivation of immortalized cells, these findings suggest that this pantropic retroviral approach can be employed to transduce cells from specific tissues and organs of schistosomes to investigate the influence of transgene hTERT on growth and proliferation of schistosome cells.
Collapse
Affiliation(s)
- Shenghui Yang
- Centre of Cell and Molecular Biology Experiment, Xiangya School of Medicine, Central South University, Changsha, Hunan province, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Pierson L, Mousley A, Devine L, Marks NJ, Day TA, Maule AG. RNA interference in a cestode reveals specific silencing of selected highly expressed gene transcripts. Int J Parasitol 2010; 40:605-15. [DOI: 10.1016/j.ijpara.2009.10.012] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2009] [Revised: 10/23/2009] [Accepted: 10/26/2009] [Indexed: 01/31/2023]
|
15
|
Schistosoma mansoni: signal transduction processes during the development of the reproductive organs. Parasitology 2010; 137:497-520. [PMID: 20163751 DOI: 10.1017/s0031182010000053] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Among the topics of considerable interest concerning our understanding of the unusual biology of schistosomes is the sexual maturation of the female. The identification of genes coding for signal transduction proteins controlling essential steps of the pairing-dependent differentiation of the reproductive organs, vitellarium and ovary will help to substantiate our knowledge about this unique parasite. Furthermore, such signalling proteins could be potential targets to interfere with the development of this parasite to combat schistosomiasis since its pathology is caused by the eggs. This review summarises first post-genomic steps to elucidate the function of gonad-specific signalling molecules which were identified by homology-based cloning strategies, by in silico identification or by yeast two-hybrid interaction analyses, using a combination of novel techniques. These include the in vitro culture of adult schistosomes, their treatment with chemical inhibitors to block enzyme activity, the use of RNAi to silence gene function post-transcriptionally, and confocal laser scanning microscopy to study the morphological consequences of these experimental approaches. Finally, we propose a first model of protein networks that are active in the ovary regulating mitogenic activity and differentiation. Some of these molecules are also active in the testes of males, probably fulfilling similar roles as in the ovary.
Collapse
|
16
|
Dvorák J, Beckmann S, Lim KC, Engel JC, Grevelding CG, McKerrow JH, Caffrey CR. Biolistic transformation of Schistosoma mansoni: Studies with modified reporter-gene constructs containing regulatory regions of protease genes. Mol Biochem Parasitol 2009; 170:37-40. [PMID: 19914302 DOI: 10.1016/j.molbiopara.2009.11.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2009] [Revised: 11/08/2009] [Accepted: 11/09/2009] [Indexed: 10/20/2022]
Abstract
Biolistics of the flatworm parasite Schistosoma mansoni facilitates the accurate spatial expression of transgenes under the control of gene-specific promoter elements. To improve transgene expression, either in the number of positive worms and/or an increased transgene signal per worm, we tested plasmid constructs incorporating 5' and 3' gene-specific genomic fragments, and parts of the open reading frame for two S. mansoni proteases, cathepsins F and D (SmCF and SmCD). GFP-expression was gut-localized, a novel finding for SmCD and consistent with previous data for SmCF. The mCherry fluorescent protein can also operate as a reporter. Though certain constructs imparted stronger and better distributed signals per positive worm, the low yields throughout (1-5% positive per experiment) precluded further quantifications of improvement. Electroporation of the same constructs was also weakly efficient (1-10% positives per experiment). However, reporter signals were found in tissues other than the gut, which may represent dysregulated transcription.
Collapse
Affiliation(s)
- Jan Dvorák
- Sandler Center for Basic Research in Parasitic Diseases, California Institute for Quantitative Biosciences (QB3), 1700 4th St., University of California, San Francisco, CA 94158-2550, USA.
| | | | | | | | | | | | | |
Collapse
|
17
|
Han ZG, Brindley PJ, Wang SY, Chen Z. Schistosoma genomics: new perspectives on schistosome biology and host-parasite interaction. Annu Rev Genomics Hum Genet 2009; 10:211-40. [PMID: 19630560 DOI: 10.1146/annurev-genom-082908-150036] [Citation(s) in RCA: 106] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Schistosomiasis, caused mainly by Schistosoma japonicum, S. mansoni, and S. hematobium, remains one of the most prevalent and serious parasitic diseases worldwide. The blood flukes have a complex life cycle requiring adaptation for survival in fresh water as free-living forms and as parasites in snail intermediate and vertebrate definitive hosts. Functional genomics analyses, including transcriptomic and proteomic approaches, have been performed on schistosomes, in particular S. mansoni and S. japonicum, using powerful high-throughput methodologies. These investigations have not only chartered gene expression profiles across genders and developmental stages within mammalian and snail hosts, but have also characterized the features of the surface tegument, the eggshell and excretory-secretory proteomes of schistosomes. The integration of the genomic, transcriptomic, and proteomic information, together with genetic manipulation on individual genes, will provide a global insight into the molecular architecture of the biology, pathogenesis, and host-parasite interactions of the human blood flukes. Importantly, these functional genomics analyses lay a foundation on which to develop new antischistosome vaccines as well as drug targets and diagnostic markers for treatment and control of schistosomiasis.
Collapse
Affiliation(s)
- Ze-Guang Han
- Shanghai-MOST Key Laboratory for Disease and Health Genomics, Chinese National Human Genome Center at Shanghai, Shanghai 201203, China.
| | | | | | | |
Collapse
|
18
|
Rinaldi G, Morales ME, Cancela M, Castillo E, Brindley PJ, Tort JF. Development of functional genomic tools in trematodes: RNA interference and luciferase reporter gene activity in Fasciola hepatica. PLoS Negl Trop Dis 2008; 2:e260. [PMID: 18612418 PMCID: PMC2440534 DOI: 10.1371/journal.pntd.0000260] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2007] [Accepted: 06/11/2008] [Indexed: 02/03/2023] Open
Abstract
The growing availability of sequence information from diverse parasites through genomic and transcriptomic projects offer new opportunities for the identification of key mediators in the parasite–host interaction. Functional genomics approaches and methods for the manipulation of genes are essential tools for deciphering the roles of genes and to identify new intervention targets in parasites. Exciting advances in functional genomics for parasitic helminths are starting to occur, with transgene expression and RNA interference (RNAi) reported in several species of nematodes, but the area is still in its infancy in flatworms, with reports in just three species. While advancing in model organisms, there is a need to rapidly extend these technologies to other parasites responsible for several chronic diseases of humans and cattle. In order to extend these approaches to less well studied parasitic worms, we developed a test method for the presence of a viable RNAi pathway by silencing the exogenous reporter gene, firefly luciferase (fLUC). We established the method in the human blood fluke Schistosoma mansoni and then confirmed its utility in the liver fluke Fasciola hepatica. We transformed newly excysted juveniles of F. hepatica by electroporation with mRNA of fLUC and three hours later were able to detect luciferase enzyme activity, concentrated mainly in the digestive ceca. Subsequently, we tested the presence of an active RNAi pathway in F. hepatica by knocking down the exogenous luciferase activity by introduction into the transformed parasites of double-stranded RNA (dsRNA) specific for fLUC. In addition, we tested the RNAi pathway targeting an endogenous F. hepatica gene encoding leucine aminopeptidase (FhLAP), and observed a significant reduction in specific mRNA levels. In summary, these studies demonstrated the utility of RNAi targeting reporter fLUC as a reporter gene assay to establish the presence of an intact RNAi pathway in helminth parasites. These could facilitate the study of gene function and the identification of relevant targets for intervention in organisms that are by other means intractable. More specifically, these results open new perspectives for functional genomics of F. hepatica, which hopefully can lead to the development of new interventions for fascioliasis. Reverse genetics tools allow assessing the function of unknown genes. Their application for the study of neglected infectious diseases could lead eventually to the identification of relevant gene products to be used in diagnosis, or as drug targets or immunization candidates. Being technically more simple and less demanding than other reverse genetics tools such as transgenesis or knockouts, the suppression of gene activity mediated by double-stranded RNA has emerged as a powerful tool for the analysis of gene function. RNAi appeared as an obvious alternative to apply in complex biological systems where information is still scarce, a situation common to several infectious and parasitic diseases. However, several technical or practical difficulties have hampered the development of this technique in parasites to the expectations originally generated. We developed a simple method to test the presence of a viable RNAi pathway by silencing an exogenous reporter gene. The method was tested in F. hepatica, describing the conditions for transfection and confirming the existence of a viable RNAi pathway in this parasite. The experimental design created can be useful as a first approach in organisms where genetic analysis is still unavailable, providing a tool to unravel gene function and probably advancing new candidates relevant in pathobiology, prevention or treatment.
Collapse
Affiliation(s)
- Gabriel Rinaldi
- Department of Tropical Medicine, Tulane University Health Sciences Center, New Orleans, Louisiana, United States of America
- Departamento de Genética, Facultad de Medicina, Universidad de la República, Udelar, Montevideo, Uruguay
| | - Maria E. Morales
- Department of Tropical Medicine, Tulane University Health Sciences Center, New Orleans, Louisiana, United States of America
| | - Martín Cancela
- Departamento de Genética, Facultad de Medicina, Universidad de la República, Udelar, Montevideo, Uruguay
| | - Estela Castillo
- Sección Bioquímica, Facultad de Ciencias, Universidad de la República, Udelar, Montevideo, Uruguay
| | - Paul J. Brindley
- Department of Tropical Medicine, Tulane University Health Sciences Center, New Orleans, Louisiana, United States of America
| | - José F. Tort
- Departamento de Genética, Facultad de Medicina, Universidad de la República, Udelar, Montevideo, Uruguay
- * E-mail:
| |
Collapse
|
19
|
PEARCE EJ, FREITAS TC. Reverse genetics and the study of the immune response to schistosomes. Parasite Immunol 2008; 30:215-21. [DOI: 10.1111/j.1365-3024.2007.01005.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
20
|
Cheng G, Davis RE. An improved and secreted luciferase reporter for schistosomes. Mol Biochem Parasitol 2007; 155:167-71. [PMID: 17681388 PMCID: PMC3641815 DOI: 10.1016/j.molbiopara.2007.06.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2007] [Revised: 06/25/2007] [Accepted: 06/27/2007] [Indexed: 01/22/2023]
Abstract
Schistosomes are multicellular parasites of humans exhibiting interesting biological adaptations to their parasitic lifestyle. Concerted and in depth analyses of these adaptations and their cell and molecular biology requires further development of molecular genetic tools in schistosomes. In the current study, we demonstrate that a Gaussia luciferase reporter leads to significantly higher levels of luciferase activity in schistosomes compared to other tested luciferases. In addition, Gaussia luciferase can be secreted into culture media enabling non-invasive analysis of reporter activity. The secretion of Gaussia luciferase should allow a variety of new experimental paradigms for schistosome studies. Comparison of biolistic and electroporation transfection methods using luciferase RNA reporters and the luciferase acitivty produced indicates that electroporation of sporocysts and schistosomula is the most efficient transfection method for the four stages analyzed. These data should facilitate additional studies in schistosomes and provide a framework for further development of DNA transfection and gene expression analysis.
Collapse
Affiliation(s)
| | - Richard E. Davis
- Address correspondence to: Dr. Richard E. Davis, Departments of Pediatrics and Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Mail Stop 8101, RC-1 South, P.O. Box 6511, 12801 East 17th Avenue, Aurora, CO 80045; Tel: 303-724-3226; Fax: 303-724-3215;
| |
Collapse
|
21
|
Brindley PJ, Pearce EJ. Genetic manipulation of schistosomes. Int J Parasitol 2007; 37:465-73. [PMID: 17280677 DOI: 10.1016/j.ijpara.2006.12.012] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2006] [Revised: 12/10/2006] [Accepted: 12/11/2006] [Indexed: 10/23/2022]
Abstract
In contrast to the situations with model organisms and parasitic protozoa, progress with gene manipulation with schistosomes has been delayed by impediments that include our inability to maintain the life cycle in vitro, absence of immortalized cell lines, large genome sizes, unavailability of drug resistance markers and other difficulties. However, in the past few years, tangible progress has been reported towards development of tools for gene manipulation and transgenesis of schistosomes, and there is reason to believe that the field is on the verge of transformation into an era where genetic manipulation is routine. Recent reports dealing with approaches and tools to manipulate the genome and gene expression in schistosomes are reviewed here.
Collapse
Affiliation(s)
- Paul J Brindley
- Department of Tropical Medicine, Tulane University Health Sciences Center, New Orleans, Louisiana 70112, USA.
| | | |
Collapse
|
22
|
Kalinna BH, Brindley PJ. Manipulating the manipulators: advances in parasitic helminth transgenesis and RNAi. Trends Parasitol 2007; 23:197-204. [PMID: 17383233 DOI: 10.1016/j.pt.2007.03.007] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2006] [Revised: 02/01/2007] [Accepted: 03/12/2007] [Indexed: 01/26/2023]
Abstract
Because tropical medicine and parasitology research has moved into the postgenomic era, an enormous amount of gene sequence information for parasitic helminths is now accumulating. These sequences undoubtedly hold information that can be used for new interventions and control. However, to exploit the new resource, methods for gene manipulation and transformation of parasitic worms are needed. Until recently, gene manipulation approaches had not been seriously addressed. This situation is now changing in response to the availability of genome sequences and other advances. In this article, we review advances in the transgenesis and gene silencing of parasitic worms.
Collapse
Affiliation(s)
- Bernd H Kalinna
- Centre for Animal Biotechnology, Faculty of Veterinary Science, The University of Melbourne, Parkville, 3010 VIC, Australia.
| | | |
Collapse
|
23
|
Correnti JM, Jung E, Freitas TC, Pearce EJ. Transfection of Schistosoma mansoni by electroporation and the description of a new promoter sequence for transgene expression. Int J Parasitol 2007; 37:1107-15. [PMID: 17482194 DOI: 10.1016/j.ijpara.2007.02.011] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2006] [Revised: 02/13/2007] [Accepted: 02/15/2007] [Indexed: 11/22/2022]
Abstract
We sought to investigate the efficacy of electroporation for the introduction of plasmid-based DNA constructs into Schistosoma mansoni, and expanded our study to examine parameters governing transgene expression, including requirements of a 5' and 3' flanking sequence, as well as parasite developmental effects on transgene expression. We used luciferase as a reporter gene for this application. Our data show that electroporation allows the transfection of immature schistosomes, and defines 5' promoter sequence from the schistosome actin gene (SmAct1.1), coupled promiscuously with various 3' terminator sequences, as a powerful promoter of transgene expression in growing, but not early non-growing, schistosomula. The methodology described herein will facilitate ectopic expression of genes of interest in schistosomes.
Collapse
Affiliation(s)
- Jason M Correnti
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, 318 Hill Pavilion, 380 South University Avenue, Philadelphia, PA 19104-4539, USA
| | | | | | | |
Collapse
|