1
|
Silva-Freitas ML, Corrêa-Castro G, Da-Cruz AM, Santos-Oliveira JR. Insights to the HIV-associated visceral leishmaniasis clinical outcome: lessons learned about immune mediated disorders. Front Immunol 2025; 16:1516176. [PMID: 40145085 PMCID: PMC11937021 DOI: 10.3389/fimmu.2025.1516176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 02/19/2025] [Indexed: 03/28/2025] Open
Abstract
Most cases of visceral leishmaniasis (VL) and human immunodeficiency virus (HIV) co-infection (VL/HIV) in the Americas occur in Brazil, and the prevalence of VL/HIV has been increasing since 2019, reaching 19% in 2023. This association presents a challenge for the management of VL, since both VL and HIV infection share immunopathogenic characteristics that can reciprocally affect co-infected patients. Thus, VL may contribute to the immunosuppression and other immunological disturbances associated with the rapid progression to acquired immunodeficiency syndrome (AIDS), whereas HIV infection accelerates the development of active VL and reduces the probability of a successful response to anti-Leishmania therapy, resulting in an increase in the relapse and lethality rates of VL. In this synergistic impairment, one of the most critical hallmarks of VL/HIV co-infection is the enhancement of immunosuppression and intense chronic immune activation, caused not only by each infection per se, but also by the cytokine storm and translocation of microbial products. Thus, co-infected patients present with an impaired effector immune response that may result in inefficient parasitic control. In addition, the chronic activation environment in VL/HIV patients may favor progression to early immunosenescence and exhaustion, worsening the patients' clinical condition and increasing the frequency of disease relapse. Herein, we review the immunological parameters associated with the immunopathogenesis of VL/HIV co-infection that could serve as good biomarkers of clinical prognosis in terms of relapse and severity of VL.
Collapse
Affiliation(s)
- Maria Luciana Silva-Freitas
- Laboratório Interdisciplinar de Pesquisas Médicas - Instituto Oswaldo Cruz – Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Brazil
| | - Gabriela Corrêa-Castro
- Laboratório Interdisciplinar de Pesquisas Médicas - Instituto Oswaldo Cruz – Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Brazil
| | - Alda Maria Da-Cruz
- Laboratório Interdisciplinar de Pesquisas Médicas - Instituto Oswaldo Cruz – Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Brazil
- Departamento de Microbiologia, Immunologia e Parasitologia (DMIP), Faculdade de Ciências Médicas, Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro, Brazil
- Instituto Nacional de Ciência, Tecnologia e Inovação - Neuroimunomodulação (INCT - NIM), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Brasília, Brazil
- Departamento de Doenças Transmissíveis, Secretaria de Vigilância em Saúde e Ambiente, Ministério da Saúde, Brasília, Brazil
| | - Joanna Reis Santos-Oliveira
- Laboratório Interdisciplinar de Pesquisas Médicas - Instituto Oswaldo Cruz – Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Brazil
- Instituto Nacional de Ciência, Tecnologia e Inovação - Neuroimunomodulação (INCT - NIM), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Brasília, Brazil
- Núcleo de Ciências Biomédicas Aplicadas, Instituto Federal de Educação, Ciência e Tecnologia do Rio de Janeiro (IFRJ), Rio de Janeiro, Brazil
| |
Collapse
|
2
|
Zolfaghari A, Beheshti-Maal K, Ahadi AM, Monajemi R. A novel inhibitory strategy of Leishmania major using Kluyveromyces lactis and Saccharomyces cerevisiae killer toxins. Future Microbiol 2025; 20:189-199. [PMID: 39704759 PMCID: PMC11812320 DOI: 10.1080/17460913.2024.2443329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Accepted: 12/13/2024] [Indexed: 12/21/2024] Open
Abstract
AIM Leishmaniasis is a globally prevalent parasitic disease that has drawn significant attention. Killer yeasts offer a novel biological control method, presenting a potential alternative for treating leishmaniasis. This study evaluates the antileishmanial activity of Kluyveromyces lactis and Saccharomyces cerevisiae killer toxins against Leishmania major. MATERIALS & METHODS Killer yeasts were isolated using the Well method. The genes encoding K2 and K.L killer toxins were identified by PCR, and the toxins were purified via SDS-PAGE. Antileishmanial and cytotoxic effects on L. major promastigotes and amastigotes were evaluated using the MTT assay. RESULTS The first killer isolate was identified as Saccharomyces cerevisiae ZBAM (GenBank accession: OQ376749.1) and the second as Kluyveromyces lactis ZBAM (GenBank accession: OQ401036.1). IC50 values of K2 and K.L toxins against L. major promastigotes were significantly lower than Glucantime and Amphotericin B. The EC50 values at 24 hours for Glucantime, K2, and K.L were 11.83 ± 0.02 μg/ml, 2.35 ± 0.01 μg/ml, and 3.23 ± 0.03 μg/ml, respectively. The EC50 values for K2 and K.L against L. major amastigotes were also lower than Glucantime. CONCLUSION This is the first report of the antileishmanial effects of K2 and K.L toxins against L. major, suggesting these yeasts as promising candidates for biological leishmaniasis treatment.
Collapse
Affiliation(s)
- Azadeh Zolfaghari
- Department of Microbiology, Faculty of Biological Sciences, Falavarjan Branch, Islamic Azad University, Isfahan, Iran
| | - Keivan Beheshti-Maal
- Department of Microbiology, Faculty of Biological Sciences, Falavarjan Branch, Islamic Azad University, Isfahan, Iran
| | - Ali Mohammad Ahadi
- Department of Genetics, Faculty of Science, Shahrekord University, Isfahan, Iran
| | - Ramesh Monajemi
- Department of Biology, Faculty of Biological Sciences, Falavarjan Branch, Islamic Azad University, Isfahan, Iran
| |
Collapse
|
3
|
González-Matos M, Aguado ME, Izquierdo M, Monzote L, González-Bacerio J. Compounds with potentialities as novel chemotherapeutic agents in leishmaniasis at preclinical level. Exp Parasitol 2024; 260:108747. [PMID: 38518969 DOI: 10.1016/j.exppara.2024.108747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/27/2024] [Accepted: 03/19/2024] [Indexed: 03/24/2024]
Abstract
Leishmaniasis are neglected infectious diseases caused by kinetoplastid protozoan parasites from the genus Leishmania. These sicknesses are present mainly in tropical regions and almost 1 million new cases are reported each year. The absence of vaccines, as well as the high cost, toxicity or resistance to the current drugs determines the necessity of new treatments against these pathologies. In this review, several compounds with potentialities as new antileishmanial drugs are presented. The discussion is restricted to the preclinical level and molecules are organized according to their chemical nature, source and molecular targets. In this manner, we present antimicrobial peptides, flavonoids, withanolides, 8-aminoquinolines, compounds from Leish-Box, pyrazolopyrimidines, and inhibitors of tubulin polymerization/depolymerization, topoisomerase IB, proteases, pteridine reductase, N-myristoyltransferase, as well as enzymes involved in polyamine metabolism, response against oxidative stress, signaling pathways, and sterol biosynthesis. This work is a contribution to the general knowledge of these compounds as antileishmanial agents.
Collapse
Affiliation(s)
- Maikel González-Matos
- Center for Protein Studies, Faculty of Biology, University of Havana, Calle 25 #455 Entre I y J, Vedado, La Habana, Cuba
| | - Mirtha Elisa Aguado
- Center for Protein Studies, Faculty of Biology, University of Havana, Calle 25 #455 Entre I y J, Vedado, La Habana, Cuba
| | - Maikel Izquierdo
- Center for Protein Studies, Faculty of Biology, University of Havana, Calle 25 #455 Entre I y J, Vedado, La Habana, Cuba
| | - Lianet Monzote
- Department of Parasitology, Center for Research, Diagnosis and Reference, Tropical Medicine Institute "Pedro Kourí", Autopista Novia Del Mediodía Km 6½, La Lisa, La Habana, Cuba.
| | - Jorge González-Bacerio
- Center for Protein Studies, Faculty of Biology, University of Havana, Calle 25 #455 Entre I y J, Vedado, La Habana, Cuba; Department of Biochemistry, Faculty of Biology, University of Havana, Calle 25 #455 Entre I y J, Vedado, La Habana, Cuba.
| |
Collapse
|
4
|
Ghadiri N, Javidan M, Sheikhi S, Taştan Ö, Parodi A, Liao Z, Tayybi Azar M, Ganjalıkhani-Hakemi M. Bioactive peptides: an alternative therapeutic approach for cancer management. Front Immunol 2024; 15:1310443. [PMID: 38327525 PMCID: PMC10847386 DOI: 10.3389/fimmu.2024.1310443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 01/08/2024] [Indexed: 02/09/2024] Open
Abstract
Cancer is still considered a lethal disease worldwide and the patients' quality of life is affected by major side effects of the treatments including post-surgery complications, chemo-, and radiation therapy. Recently, new therapeutic approaches were considered globally for increasing conventional cancer therapy efficacy and decreasing the adverse effects. Bioactive peptides obtained from plant and animal sources have drawn increased attention because of their potential as complementary therapy. This review presents a contemporary examination of bioactive peptides derived from natural origins with demonstrated anticancer, ant invasion, and immunomodulation properties. For example, peptides derived from common beans, chickpeas, wheat germ, and mung beans exhibited antiproliferative and toxic effects on cancer cells, favoring cell cycle arrest and apoptosis. On the other hand, peptides from marine sources showed the potential for inhibiting tumor growth and metastasis. In this review we will discuss these data highlighting the potential befits of these approaches and the need of further investigations to fully characterize their potential in clinics.
Collapse
Affiliation(s)
- Nooshin Ghadiri
- Department of Immunology, Faculty of Medicine, Ahvaz Jundishapour University of Medical Sciences, Ahvaz, Iran
| | - Moslem Javidan
- Department of Immunology, Faculty of Medicine, Ahvaz Jundishapour University of Medical Sciences, Ahvaz, Iran
| | - Shima Sheikhi
- Department of Immunology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Özge Taştan
- Department of Food Engineering, Faculty of Engineering, Yeditepe University, Istanbul, Türkiye
| | - Alessandro Parodi
- Scientific Center for Translation Medicine, Sirius University of Science and Technology, Sochi, Russia
| | - Ziwei Liao
- Department of Hematology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Mehdi Tayybi Azar
- Department of Biophysics, Faculty of Medicine, Yeditepe University, Istanbul, Türkiye
| | - Mazdak Ganjalıkhani-Hakemi
- Department of Immunology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
- Regenerative and Restorative Medicine Research Center (REMER), Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul, Türkiye
| |
Collapse
|
5
|
Koskela SA, Figueiredo CR. From antimicrobial to anticancer: the pioneering works of Prof. Luiz Rodolpho Travassos on bioactive peptides. Braz J Microbiol 2023; 54:2561-2570. [PMID: 37725261 PMCID: PMC10689714 DOI: 10.1007/s42770-023-01118-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 08/28/2023] [Indexed: 09/21/2023] Open
Abstract
Prof. Luiz Rodolpho Travassos, a distinguished Brazilian scientist, was instrumental in fostering an interdisciplinary research approach that seamlessly combined microbiology and oncology. This work has opened new pathways into the understanding of tumorigenesis and aided in the development of innovative therapeutic tools. One significant area of his work has been the exploration of bioactive peptides, many of which were first identified for their antimicrobial properties. These peptides demonstrate promise as potential cancer therapeutics due to their selectivity, cost-effectiveness, ease of synthesis, low antigenicity, and excellent tissue penetration. Prof. Travassos' pioneering work uncovered on the potential of peptides derived from microbiological sources, such as those obtained using phage display techniques. More importantly, in international cooperation, peptides derived from complementarity-determining regions (CDRs) that showed antimicrobial activity against Candida albicans further showed to be promising tools with cytotoxic properties against cancer cells. Similarly, peptides derived from natural sources, such as the gomesin peptide, not only had shown antimicrobial properties but could treat cutaneous melanoma in experimental models. These therapeutic tools allowed Prof. Travassos and his group to navigate the intricate landscape of factors and pathways that drive cancer development, including persistent proliferative signaling, evasion of tumor suppressor genes, inhibition of programmed cell death, and cellular immortality. This review examines the mechanisms of action of these peptides, aligning them with the universally recognized hallmarks of cancer, and evaluates their potential as drug candidates. It highlights the crucial need for more selective, microbiology-inspired anti-cancer strategies that spare healthy cells, a challenge that current therapies often struggle to address. By offering a comprehensive assessment of Prof. Travassos' innovative contributions and a detailed discussion on the increasing importance of microbiology-derived peptides, this review presents an informed and robust perspective on the possible future direction of cancer therapy.
Collapse
Affiliation(s)
- Saara A Koskela
- Medical Immune Oncology Research Group (MIORG), Institute of Biomedicine, Faculty of Medicine, University of Turku, Turku, Finland
| | - Carlos R Figueiredo
- Medical Immune Oncology Research Group (MIORG), Institute of Biomedicine, Faculty of Medicine, University of Turku, Turku, Finland.
- InFLAMES Research Flagship Center, University of Turku, Turku, Finland.
| |
Collapse
|
6
|
Novel indol-3-yl-thiosemicarbazone derivatives: Obtaining, evaluation of in vitro leishmanicidal activity and ultrastructural studies. Chem Biol Interact 2019; 315:108899. [PMID: 31738906 DOI: 10.1016/j.cbi.2019.108899] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Accepted: 11/12/2019] [Indexed: 12/19/2022]
Abstract
Parasitic diseases still represent serious public health problems, since the high and steady emergence of resistant strains is evident. Because parasitic infections are distributed predominantly in developing countries, less toxic, more efficient, safer and more accessible drugs have become desirable in the treatment of the infected population. This is the case of leishmaniasis, an infectious disease caused by a protozoan of the genus Leishmania sp., responsible for triggering pathological processes from the simplest to the most severe forms leading to high rates of morbidity and mortality throughout the world. In the search for new leishmanicidal drugs, the thiosemicarbazones and the indole fragments have been identified as promising structures for leishmanicidal activity. The present study proposes the synthesis and structural characterization of new indole-thiosemicarbazone derivatives (2a-j), in addition to performing in vitro evaluations through cytotoxicity assays using macrophages (J774) activity against forms of Leishmania infantum and Leishmania amazonensis promastigote as well as ultrastructural analyzes in promastigotes of L. infantum. Results show that the indole-thiosemicarbazone derivatives were obtained with yield values varying from 32.09 to 94.64%. In the evaluation of cytotoxicity, the indole-thiosemicarbazone compounds presented CC50 values between 53.23 and 357.97 μM. Concerning the evaluation against L. amazonensis promastigote forms, IC50 values ranged between 12.31 and > 481.52 μM, while the activity against L. infantum promastigotes obtained IC50 values between 4.36 and 23.35 μM. The compounds 2d and 2i tested against L. infantum were the most promising in the series, as they showed the lowest IC50 values: 5.60 and 4.36 respectively. The parasites treated with the compounds 2d and 2i showed several structural alterations, such as shrinkage of the cell body, shortening and loss of the flagellum, intense mitochondrial swelling and vacuolization of the cytoplasm leading the parasite to cellular unviability. Therefore, the indole-thiosemicarbazone compounds are promising because they yield considerable synthesis, have low cytotoxicity to mammalian cells and act as leishmanicidal agents.
Collapse
|
7
|
van de Sande WWJ, Vonk AG. Mycovirus therapy for invasive pulmonary aspergillosis? Med Mycol 2019; 57:S179-S188. [PMID: 30816971 DOI: 10.1093/mmy/myy073] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 06/21/2018] [Indexed: 12/13/2022] Open
Abstract
With the current revived interest in the use of bacteriophages for the treatment of bacterial infections, the study of mycoviruses as novel therapeutic solutions for invasive aspergillosis is the logical next step. Although ssRNA, dsRNA, and ssDNA mycoviruses have been identified, the majority of characterised mycoviruses have dsRNA genomes. Prevalence of dsRNA mycoviruses in Aspergillus spp. varies, and mycoviruses can have different effects on their fungal hosts: hypovirulence, hypervirulence, or a killer phenotype. Therapeutically, extracellular transmission of the mycovirus is essential. DsRNA mycoviruses lack an extracellular phase; however, a single ssDNA mycovirus with homologues in Aspergillus genomes has been described with an extracellular mode of transmission. Mycoviruses can induce hypovirulence or a killer phenotype, and both can be exploited therapeutically. Mycoviruses inducing hypovirulence have been used to control chestnut blight, however for aspergillosis no such mycovirus has been identified yet. Mycovirus encoded killer toxins or anti-idiotypic antibodies and killer peptides derived from these have been demonstrated to control fungal infections including aspergillosis in animals. This indicates that mycoviruses inducing both phenotypes could be exploited therapeutically as long as the right mycovirus has been identified.
Collapse
Affiliation(s)
- Wendy W J van de Sande
- ErasmusMC, Department of Medical Microbiology and Infectious Diseases, Wytemaweg 80, 3015 CE Rotterdam, The Netherlands
| | - Alieke G Vonk
- ErasmusMC, Department of Medical Microbiology and Infectious Diseases, Wytemaweg 80, 3015 CE Rotterdam, The Netherlands
| |
Collapse
|
8
|
Giovati L, Santinoli C, Mangia C, Vismarra A, Belletti S, D'Adda T, Fumarola C, Ciociola T, Bacci C, Magliani W, Polonelli L, Conti S, Kramer LH. Novel Activity of a Synthetic Decapeptide Against Toxoplasma gondii Tachyzoites. Front Microbiol 2018; 9:753. [PMID: 29731744 PMCID: PMC5920037 DOI: 10.3389/fmicb.2018.00753] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 04/04/2018] [Indexed: 12/31/2022] Open
Abstract
The killer peptide KP is a synthetic decapeptide derived from the sequence of the variable region of a recombinant yeast killer toxin-like microbicidal single-chain antibody. KP proved to exert significant activities against diverse microbial and viral pathogens through different mechanisms of action, but little is known of its effect on apicomplexan protozoa. The aim of the present study was to evaluate the in vitro activity of KP against Toxoplasma gondii, a globally widespread protozoan parasite of great medical interest. The effect of KP treatment and its potential mechanism of action on T. gondii were evaluated by various methods, including light microscopy, quantitative PCR, flow cytometry, confocal microscopy, and transmission electron microscopy. In the presence of KP, the number of T. gondii tachyzoites able to invade Vero cells and the parasite intracellular proliferation were significantly reduced. Morphological observation and analysis of apoptotic markers suggested that KP is able to trigger an apoptosis-like cell death in T. gondii. Overall, our results indicate that KP could be a promising candidate for the development of new anti-Toxoplasma drugs with a novel mechanism of action.
Collapse
Affiliation(s)
- Laura Giovati
- Laboratory of Microbiology and Virology, Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Claudia Santinoli
- Laboratory of Microbiology and Virology, Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Carlo Mangia
- Department of Veterinary Science, University of Parma, Parma, Italy
| | - Alice Vismarra
- Department of Veterinary Science, University of Parma, Parma, Italy
| | - Silvana Belletti
- Laboratory of Histology, Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Tiziana D'Adda
- Laboratory of Pathological Anatomy, Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Claudia Fumarola
- Laboratory of Experimental Oncology, Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Tecla Ciociola
- Laboratory of Microbiology and Virology, Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Cristina Bacci
- Department of Veterinary Science, University of Parma, Parma, Italy
| | - Walter Magliani
- Laboratory of Microbiology and Virology, Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Luciano Polonelli
- Laboratory of Microbiology and Virology, Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Stefania Conti
- Laboratory of Microbiology and Virology, Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Laura H Kramer
- Department of Veterinary Science, University of Parma, Parma, Italy
| |
Collapse
|
9
|
Valzano M, Cecarini V, Cappelli A, Capone A, Bozic J, Cuccioloni M, Epis S, Petrelli D, Angeletti M, Eleuteri AM, Favia G, Ricci I. A yeast strain associated to Anopheles mosquitoes produces a toxin able to kill malaria parasites. Malar J 2016; 15:21. [PMID: 26754943 PMCID: PMC4709964 DOI: 10.1186/s12936-015-1059-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Accepted: 12/17/2015] [Indexed: 11/18/2022] Open
Abstract
Background Malaria control strategies are focusing on new approaches, such as the symbiotic control, which consists in the use of microbial symbionts to prevent parasite development in the mosquito gut and to block the transmission of the infection to humans. Several microbes, bacteria and fungi, have been proposed for malaria or other mosquito-borne diseases control strategies. Among these, the yeast Wickerhamomyces anomalus has been recently isolated from the gut of Anopheles mosquitoes, where it releases a natural antimicrobial toxin. Interestingly, many environmental strains of W. anomalus exert a wide anti-bacterial/fungal activity and some of these ‘killer’ yeasts are already used in industrial applications as food and feed bio-preservation agents. Since a few studies showed that W. anomalus killer strains have antimicrobial effects also against protozoan parasites, the possible anti-plasmodial activity of the yeast was investigated. Methods A yeast killer toxin (KT), purified through combined chromatographic techniques from a W. anomalus strain isolated from the malaria vector Anopheles stephensi, was tested as an effector molecule to target the sporogonic stages of the rodent malaria parasite Plasmodium berghei, in vitro. Giemsa staining was used to detect morphological damages in zygotes/ookinetes after treatment with the KT. Furthermore, the possible mechanism of action of the KT was investigated pre-incubating the protein with castanospermine, an inhibitor of β-glucanase activity. Results A strong anti-plasmodial effect was observed when the P. berghei sporogonic stages were treated with KT, obtaining an inhibition percentage up to around 90 %. Microscopy analysis revealed several ookinete alterations at morphological and structural level, suggesting the direct implication of the KT-enzymatic activity. Moreover, evidences of the reduction of KT activity upon treatment with castanospermine propose a β-glucanase-mediated activity. Conclusion The results showed the in vitro killing efficacy of a protein produced by a mosquito strain of W. anomalus against malaria parasites. Further studies are required to test the KT activity against the sporogonic stages in vivo, nevertheless this work opens new perspectives for the possible use of killer strains in innovative strategies to impede the development of the malaria parasite in mosquito vectors by the means of microbial symbionts. Electronic supplementary material The online version of this article (doi:10.1186/s12936-015-1059-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Matteo Valzano
- School of Biosciences and Veterinary Medicine, University of Camerino, 62032, Camerino, Italy.
| | - Valentina Cecarini
- School of Biosciences and Veterinary Medicine, University of Camerino, 62032, Camerino, Italy.
| | - Alessia Cappelli
- School of Biosciences and Veterinary Medicine, University of Camerino, 62032, Camerino, Italy.
| | - Aida Capone
- School of Biosciences and Veterinary Medicine, University of Camerino, 62032, Camerino, Italy.
| | - Jovana Bozic
- School of Biosciences and Veterinary Medicine, University of Camerino, 62032, Camerino, Italy.
| | - Massimiliano Cuccioloni
- School of Biosciences and Veterinary Medicine, University of Camerino, 62032, Camerino, Italy.
| | - Sara Epis
- Department of Veterinary Sciences and Public Health, University of Milan, 20133, Milan, Italy.
| | - Dezemona Petrelli
- School of Biosciences and Veterinary Medicine, University of Camerino, 62032, Camerino, Italy.
| | - Mauro Angeletti
- School of Biosciences and Veterinary Medicine, University of Camerino, 62032, Camerino, Italy.
| | - Anna Maria Eleuteri
- School of Biosciences and Veterinary Medicine, University of Camerino, 62032, Camerino, Italy.
| | - Guido Favia
- School of Biosciences and Veterinary Medicine, University of Camerino, 62032, Camerino, Italy.
| | - Irene Ricci
- School of Biosciences and Veterinary Medicine, University of Camerino, 62032, Camerino, Italy.
| |
Collapse
|
10
|
Magliani W, Giovati L, Ciociola T, Sperindè M, Santinoli C, Conti G, Conti S, Polonelli L. Antibodies as a source of anti-infective peptides: an update. Future Microbiol 2015; 10:1163-75. [PMID: 26119210 DOI: 10.2217/fmb.15.36] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
This review focuses on antibodies (Abs) and their function in immune protection, with particular emphasis on microbicidal Abs. Some aspects of Abs and Ab-drug conjugates as targeting therapeutic agents are also discussed. The main aim, however, is devoted to Ab-derived peptides modulating functions of the immune system and to the latest experimental evidence of Abs as a source of anti-infective and antitumor peptides derived from their complementarity determining regions and constant regions.
Collapse
Affiliation(s)
- Walter Magliani
- Department of Biomedical, Biotechnological & Translational Sciences, Microbiology & Virology Unit, University of Parma, 43125 Parma, Italy
| | - Laura Giovati
- Department of Biomedical, Biotechnological & Translational Sciences, Microbiology & Virology Unit, University of Parma, 43125 Parma, Italy
| | - Tecla Ciociola
- Department of Biomedical, Biotechnological & Translational Sciences, Microbiology & Virology Unit, University of Parma, 43125 Parma, Italy
| | - Martina Sperindè
- Department of Biomedical, Biotechnological & Translational Sciences, Microbiology & Virology Unit, University of Parma, 43125 Parma, Italy
| | - Claudia Santinoli
- Department of Biomedical, Biotechnological & Translational Sciences, Microbiology & Virology Unit, University of Parma, 43125 Parma, Italy
| | - Giorgio Conti
- Department of Biomedical, Biotechnological & Translational Sciences, Microbiology & Virology Unit, University of Parma, 43125 Parma, Italy
| | - Stefania Conti
- Department of Biomedical, Biotechnological & Translational Sciences, Microbiology & Virology Unit, University of Parma, 43125 Parma, Italy
| | - Luciano Polonelli
- Department of Biomedical, Biotechnological & Translational Sciences, Microbiology & Virology Unit, University of Parma, 43125 Parma, Italy
| |
Collapse
|
11
|
Ciociola T, Giovati L, Sperindè M, Magliani W, Santinoli C, Conti G, Conti S, Polonelli L. Peptides from the inside of the antibodies are active against infectious agents and tumours. J Pept Sci 2015; 21:370-8. [DOI: 10.1002/psc.2748] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Revised: 12/22/2014] [Accepted: 12/29/2014] [Indexed: 12/21/2022]
Affiliation(s)
- Tecla Ciociola
- Microbiology and Virology Unit, Department of Biomedical, Biotechnological and Translational Sciences; University of Parma; Parma Italy
| | - Laura Giovati
- Microbiology and Virology Unit, Department of Biomedical, Biotechnological and Translational Sciences; University of Parma; Parma Italy
| | - Martina Sperindè
- Microbiology and Virology Unit, Department of Biomedical, Biotechnological and Translational Sciences; University of Parma; Parma Italy
| | - Walter Magliani
- Microbiology and Virology Unit, Department of Biomedical, Biotechnological and Translational Sciences; University of Parma; Parma Italy
| | - Claudia Santinoli
- Microbiology and Virology Unit, Department of Biomedical, Biotechnological and Translational Sciences; University of Parma; Parma Italy
| | - Giorgio Conti
- Microbiology and Virology Unit, Department of Biomedical, Biotechnological and Translational Sciences; University of Parma; Parma Italy
| | - Stefania Conti
- Microbiology and Virology Unit, Department of Biomedical, Biotechnological and Translational Sciences; University of Parma; Parma Italy
| | - Luciano Polonelli
- Microbiology and Virology Unit, Department of Biomedical, Biotechnological and Translational Sciences; University of Parma; Parma Italy
| |
Collapse
|
12
|
Cappelli A, Ulissi U, Valzano M, Damiani C, Epis S, Gabrielli MG, Conti S, Polonelli L, Bandi C, Favia G, Ricci I. A Wickerhamomyces anomalus killer strain in the malaria vector Anopheles stephensi. PLoS One 2014; 9:e95988. [PMID: 24788884 PMCID: PMC4006841 DOI: 10.1371/journal.pone.0095988] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Accepted: 04/02/2014] [Indexed: 11/18/2022] Open
Abstract
The yeast Wickerhamomyces anomalus has been investigated for several years for its wide biotechnological potential, especially for applications in the food industry. Specifically, the antimicrobial activity of this yeast, associated with the production of Killer Toxins (KTs), has attracted a great deal of attention. The strains of W. anomalus able to produce KTs, called “killer” yeasts, have been shown to be highly competitive in the environment. Different W. anomalus strains have been isolated from diverse habitats and recently even from insects. In the malaria mosquito vector Anopheles stephensi these yeasts have been detected in the midgut and gonads. Here we show that the strain of W. anomalus isolated from An. stephensi, namely WaF17.12, is a killer yeast able to produce a KT in a cell-free medium (in vitro) as well as in the mosquito body (in vivo). We showed a constant production of WaF17.12-KT over time, after stimulation of toxin secretion in yeast cultures and reintroduction of the activated cells into the mosquito through the diet. Furthermore, the antimicrobial activity of WaF17.12-KT has been demonstrated in vitro against sensitive microbes, showing that strain WaF17.12 releases a functional toxin. The mosquito-associated yeast WaF17.12 thus possesses an antimicrobial activity, which makes this yeast worthy of further investigations, in view of its potential as an agent for the symbiotic control of malaria.
Collapse
Affiliation(s)
- Alessia Cappelli
- Scuola di Bioscienze e Medicina Veterinaria, Università degli Studi di Camerino, Camerino, Italy
| | - Ulisse Ulissi
- Scuola di Bioscienze e Medicina Veterinaria, Università degli Studi di Camerino, Camerino, Italy
| | - Matteo Valzano
- Scuola di Bioscienze e Medicina Veterinaria, Università degli Studi di Camerino, Camerino, Italy
| | - Claudia Damiani
- Scuola di Bioscienze e Medicina Veterinaria, Università degli Studi di Camerino, Camerino, Italy
| | - Sara Epis
- Dipartimento di Patologia Animale, Igiene e Sanità Pubblica Veterinaria, Università degli Studi di Milano, Milan, Italy
| | | | - Stefania Conti
- Dipartimento di Scienze Biomediche, Biotecnologiche e Traslazionali, Università degli Studi di Parma, Parma, Italy
| | - Luciano Polonelli
- Dipartimento di Scienze Biomediche, Biotecnologiche e Traslazionali, Università degli Studi di Parma, Parma, Italy
| | - Claudio Bandi
- Dipartimento di Patologia Animale, Igiene e Sanità Pubblica Veterinaria, Università degli Studi di Milano, Milan, Italy
| | - Guido Favia
- Scuola di Bioscienze e Medicina Veterinaria, Università degli Studi di Camerino, Camerino, Italy
| | - Irene Ricci
- Scuola di Bioscienze e Medicina Veterinaria, Università degli Studi di Camerino, Camerino, Italy
- * E-mail:
| |
Collapse
|
13
|
Ciociola T, Magliani W, Giovati L, Sperindè M, Santinoli C, Conti G, Conti S, Polonelli L. Antibodies as an unlimited source of anti-infective, anti-tumour and immunomodulatory peptides. Sci Prog 2014; 97:215-33. [PMID: 25549407 PMCID: PMC10365341 DOI: 10.3184/003685014x14049273183515] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Antibodies (Abs) are emerging as an important class of therapeutic agents for the treatment of various human diseases, often conjugated to drugs or toxic substances. In recent years, the incidence of cancer and infectious diseases has increased dramatically making it imperative to discover new effective therapeutic molecules. Among these, small peptides are arousing great interest. Synthetic peptides, representative of variable and constant region fragments of Abs, were proved to exert in vitro, ex vivo and/or in vivo anti-microbial, anti-viral, anti-tumour and/or immunomodulatory activities, mediated by different mechanisms of action and regardless of the specificity and isotype of the Ab. Some of these synthetic peptides possess the ability to spontaneously and reversibly self-assemble in an organised network of fibril-like structure. Ab fragments may represent a novel model of targeted anti-infective and anti-tumour auto-delivering drugs.
Collapse
Affiliation(s)
- Tecla Ciociola
- Department of Biomedical, Biotechnological, and Translational Sciences, Microbiology and Virology Unit, University of Parma, 43125 Parma, Italy
| | - Walter Magliani
- Department of Biomedical, Biotechnological, and Translational Sciences, Microbiology and Virology Unit, University of Parma, 43125 Parma, Italy
| | - Laura Giovati
- Department of Biomedical, Biotechnological, and Translational Sciences, Microbiology and Virology Unit, University of Parma, 43125 Parma, Italy
| | - Martina Sperindè
- Department of Biomedical, Biotechnological, and Translational Sciences, Microbiology and Virology Unit, University of Parma, 43125 Parma, Italy
| | - Claudia Santinoli
- Department of Biomedical, Biotechnological, and Translational Sciences, Microbiology and Virology Unit, University of Parma, 43125 Parma, Italy
| | - Giorgio Conti
- Department of Biomedical, Biotechnological, and Translational Sciences, Microbiology and Virology Unit, University of Parma, 43125 Parma, Italy
| | - Stefania Conti
- Department of Biomedical, Biotechnological, and Translational Sciences, Microbiology and Virology Unit, University of Parma, 43125 Parma, Italy
| | - Luciano Polonelli
- Department of Biomedical, Biotechnological, and Translational Sciences, Microbiology and Virology Unit, University of Parma, 43125 Parma, Italy
| |
Collapse
|
14
|
Arruda DC, Santos LCP, Melo FM, Pereira FV, Figueiredo CR, Matsuo AL, Mortara RA, Juliano MA, Rodrigues EG, Dobroff AS, Polonelli L, Travassos LR. β-Actin-binding complementarity-determining region 2 of variable heavy chain from monoclonal antibody C7 induces apoptosis in several human tumor cells and is protective against metastatic melanoma. J Biol Chem 2012; 287:14912-22. [PMID: 22334655 DOI: 10.1074/jbc.m111.322362] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Complementarity-determining regions (CDRs) from monoclonal antibodies tested as synthetic peptides display anti-infective and antitumor activities, independent of the specificity of the native antibody. Previously, we have shown that the synthetic peptide C7H2, based on the heavy chain CDR 2 from monoclonal antibody C7, a mAb directed to a mannoprotein of Candida albicans, significantly reduced B16F10 melanoma growth and lung colony formation by triggering tumor apoptosis. The mechanism, however, by which C7H2 induced apoptosis in tumor cells remained unknown. Here, we demonstrate that C7H2 interacts with components of the tumor cells cytoskeleton, being rapidly internalized after binding to the tumor cell surface. Mass spectrometry analysis and in vitro validation revealed that β-actin is the receptor of C7H2 in the tumor cells. C7H2 induces β-actin polymerization and F-actin stabilization, linked with abundant generation of superoxide anions and apoptosis. Major phenotypes following peptide binding were chromatin condensation, DNA fragmentation, annexin V binding, lamin disruption, caspase 8 and 3 activation, and organelle alterations. Finally, we evaluated the cytotoxic efficacy of C7H2 in a panel of human tumor cell lines. All tumor cell lines studied were equally susceptible to C7H2 in vitro. The C7H2 amide without further derivatization significantly reduced lung metastasis of mice endovenously challenged with B16F10-Nex2 melanoma cells. No significant cytotoxicity was observed toward nontumorigenic cell lines on short incubation in vitro or in naïve mice injected with a high dose of the peptide. We believe that C7H2 is a promising peptide to be developed as an anticancer drug.
Collapse
Affiliation(s)
- Denise C Arruda
- Experimental Oncology Unit (UNONEX), Universidade Federal de São Paulo (UNIFESP), São Paulo SP 04023-062, Brazil
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Killer peptide: a novel paradigm of antimicrobial, antiviral and immunomodulatory auto-delivering drugs. Future Med Chem 2012; 3:1209-31. [PMID: 21806382 DOI: 10.4155/fmc.11.71] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The incidence of life-threatening viral and microbial infections has dramatically increased over recent decades. Despite significant developments in anti-infective chemotherapy, many issues have increasingly narrowed the therapeutic options, making it imperative to discover new effective molecules. Among them, small peptides are arousing great interest. This review will focus in particular on a killer peptide, engineered from an anti-idiotypic recombinant antibody that mimics the activity of a wide-spectrum antimicrobial yeast killer toxin targeting β-glucan cell-wall receptors. The in vitro and in vivo antimicrobial, antiviral and immunomodulatory activities of killer peptide and its ability to spontaneously and reversibly self-assemble and slowly release its active dimeric form over time will be discussed as a novel paradigm of targeted auto-delivering drugs.
Collapse
|
16
|
From Pichia anomala killer toxin through killer antibodies to killer peptides for a comprehensive anti-infective strategy. Antonie van Leeuwenhoek 2010; 99:35-41. [PMID: 20714805 DOI: 10.1007/s10482-010-9496-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2010] [Accepted: 08/04/2010] [Indexed: 10/19/2022]
Abstract
"Antibiobodies", antibodies (Abs) with antibiotic activity, internal image of a Pichia anomala killer toxin (PaKT) characterized by microbicidal activity against microorganisms expressing β-glucans cell-wall receptors (PaKTRs), were produced by idiotypic vaccination with a PaKT-neutralizing monoclonal Ab (PaKT-like Abs) or induced by a protein-conjugated β-glucan. Human natural PaKT-like Abs (PaKTAbs) were found in the vaginal fluid of women infected with KT-sensitive microorganisms. Monoclonal and recombinant PaKT-like Abs, and PaKTAbs proved to be protective against experimental candidiasis, cryptococcosis and aspergillosis. A killer decapeptide (KP), synthesized from the sequence of a recombinant PaKT-like Ab or produced in transgenic plants, showed a microbicidal activity in vitro, neutralized by β-glucans, a therapeutic effect in vivo, against experimental mucosal and systemic mycoses, and a prophylactic role in planta, against phytopathogenic microorganisms, respectively. KP showed fungicidal properties against all the defective mutants of a Saccharomyces cerevisiae library, inclusive of strains recognized to be resistant to conventional antifungal drugs. KP inhibited in vitro, ex vivo and/or in vivo HIV-1 and Influenza A virus replication, owing to down-regulation of CCR5 co-receptors, physical block of the gp120-receptor interaction and reduction in the synthesis of glycoproteins, HA and M1 in particular. KP modulated the expression of costimulatory and MHC molecules on murine dendritic cells, improving their capacity to induce lymphocyte proliferation. KP, proven to be devoid of cytotoxicity on human cells, showed self-assembly-releasing hydrogel-like properties, catalyzed by β 1,3 glucan. PaKT's biotechnological derivatives may represent the prototypes of novel antifungal vaccines and anti-infective drugs characterized by different mechanisms of action.
Collapse
|
17
|
Gabrielli E, Pericolini E, Cenci E, Ortelli F, Magliani W, Ciociola T, Bistoni F, Conti S, Vecchiarelli A, Polonelli L. Antibody complementarity-determining regions (CDRs): a bridge between adaptive and innate immunity. PLoS One 2009; 4:e8187. [PMID: 19997599 PMCID: PMC2781551 DOI: 10.1371/journal.pone.0008187] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2009] [Accepted: 11/12/2009] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND It has been documented that, independently from the specificity of the native antibody (Ab) for a given antigen (Ag), complementarity determining regions (CDR)-related peptides may display differential antimicrobial, antiviral and antitumor activities. METHODOLOGY/PRINCIPAL FINDINGS In this study we demonstrate that a synthetic peptide with sequence identical to V(H)CDR3 of a mouse monoclonal Ab (mAb) specific for difucosyl human blood group A is easily taken up by macrophages with subsequent stimulation of: i) proinflammatory cytokine production; ii) PI3K-Akt pathway and iii) TLR-4 expression. Significantly, V(H)CDR3 exerts therapeutic effect against systemic candidiasis without possessing direct candidacidal properties. CONCLUSIONS/SIGNIFICANCE These results open a new scenario about the possibility that, beyond the half life of immunoglobulins, Ab fragments may effectively influence the antiinfective cellular immune response in a way reminiscent of regulatory peptides of innate immunity.
Collapse
Affiliation(s)
- Elena Gabrielli
- Microbiology Section, Department of Experimental Medicine and Biochemical Sciences, University of Perugia, Perugia, Italy
| | - Eva Pericolini
- Microbiology Section, Department of Experimental Medicine and Biochemical Sciences, University of Perugia, Perugia, Italy
| | - Elio Cenci
- Microbiology Section, Department of Experimental Medicine and Biochemical Sciences, University of Perugia, Perugia, Italy
| | - Federica Ortelli
- Microbiology Section, Department of Experimental Medicine and Biochemical Sciences, University of Perugia, Perugia, Italy
| | - Walter Magliani
- Microbiology Section, Department of Pathology and Laboratory Medicine, University of Parma, Parma, Italy
| | - Tecla Ciociola
- Microbiology Section, Department of Pathology and Laboratory Medicine, University of Parma, Parma, Italy
| | - Francesco Bistoni
- Microbiology Section, Department of Experimental Medicine and Biochemical Sciences, University of Perugia, Perugia, Italy
| | - Stefania Conti
- Microbiology Section, Department of Pathology and Laboratory Medicine, University of Parma, Parma, Italy
| | - Anna Vecchiarelli
- Microbiology Section, Department of Experimental Medicine and Biochemical Sciences, University of Perugia, Perugia, Italy
- * E-mail:
| | - Luciano Polonelli
- Microbiology Section, Department of Pathology and Laboratory Medicine, University of Parma, Parma, Italy
| |
Collapse
|
18
|
Kückelhaus SA, Leite JRS, Muniz-Junqueira MI, Sampaio RN, Bloch C, Tosta CE. Antiplasmodial and antileishmanial activities of phylloseptin-1, an antimicrobial peptide from the skin secretion of Phyllomedusa azurea (Amphibia). Exp Parasitol 2009; 123:11-6. [DOI: 10.1016/j.exppara.2009.05.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2009] [Revised: 05/05/2009] [Accepted: 05/06/2009] [Indexed: 01/08/2023]
|
19
|
Pertinhez TA, Conti S, Ferrari E, Magliani W, Spisni A, Polonelli L. Reversible self-assembly: a key feature for a new class of autodelivering therapeutic peptides. Mol Pharm 2009; 6:1036-9. [PMID: 19366260 DOI: 10.1021/mp900024z] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Effective delivery is a critical issue in the use of conventional free drugs. Studies on the structure-function relationship of a therapeutic antibody-derived candidacidal decapeptide (killer peptide, KP) revealed its ability to spontaneously and reversibly self-assemble in an organized network of fibril-like structures. This process is catalyzed by 1,3-beta-glucans. While the self-assembled state may provide protection against proteases and the slow kinetic of dissociation assures a release of the active dimeric form over time, the beta-glucan affinity is responsible for targeted delivery. Thus, KP represents a novel paradigm of targeted autodelivering drugs.
Collapse
|
20
|
Endsley JJ, Torres AG, Gonzales CM, Kosykh VG, Motin VL, Peterson JW, Estes DM, Klimpel GR. Comparative antimicrobial activity of granulysin against bacterial biothreat agents. Open Microbiol J 2009; 3:92-6. [PMID: 19587798 PMCID: PMC2705080 DOI: 10.2174/1874285800903010092] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2009] [Revised: 05/07/2009] [Accepted: 05/08/2009] [Indexed: 11/22/2022] Open
Abstract
Granulysin is a cationic protein produced by human T cells and natural killer cells that can kill bacterial pathogens through disruption of microbial membrane integrity. Herein we demonstrate antimicrobial activity of the granulysin peptide derived from the active site against Bacillus anthracis, Yersinia pestis, Francisella tularensis, and Burkholderia mallei, and show pathogen-specific differences in granulysin peptide effects. The susceptibility of Y. pestis to granulysin is temperature dependent, being less susceptible when grown at the flea arthropod vector temperature (26°C) than when grown at human body temperature. These studies suggest that augmentation of granulysin expression by cytotoxic lymphocytes, or therapeutic application of granulysin peptides, could constitute important strategies for protection against select agent bacterial pathogens. Investigations of the microbial surface molecules that determine susceptibility to granulysin may identify important mechanisms that contribute to pathogenesis.
Collapse
Affiliation(s)
- Janice J Endsley
- Department of Microbiology and Immunology , University of Texas Medical Branch, Galveston, TX 77555-0436, USA.
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Magliani W, Conti S, Travassos LR, Polonelli L. From yeast killer toxins to antibiobodies and beyond. FEMS Microbiol Lett 2008; 288:1-8. [DOI: 10.1111/j.1574-6968.2008.01340.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
22
|
Therapeutic activity of an anti-idiotypic antibody-derived killer peptide against influenza A virus experimental infection. Antimicrob Agents Chemother 2008; 52:4331-7. [PMID: 18824612 DOI: 10.1128/aac.00506-08] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The in vitro and in vivo activities of a killer decapeptide (KP) against influenza A virus is described, and the mechanisms of action are suggested. KP represents the functional internal image of a yeast killer toxin that proved to exert antimicrobial and anti-human immunodeficiency virus type 1 (HIV-1) activities. Treatment with KP demonstrated a significant inhibitory activity on the replication of two strains of influenza A virus in different cell lines, as evaluated by hemagglutination, hemadsorption, and plaque assays. The complete inhibition of virus particle production and a marked reduction of the synthesis of viral proteins (membrane protein and hemagglutinin, in particular) were observed at a KP concentration of 4 microg/ml. Moreover, KP administered intraperitoneally at a dose of 100 microg/mice once a day for 10 days to influenza A/NWS/33 (H1N1) virus-infected mice improved the survival of the animals by 40% and significantly decreased the viral titers in their lungs. Overall, KP appears to be the first anti-idiotypic antibody-derived peptide that displays inhibitory activity and that has a potential therapeutic effect against pathogenic microorganisms, HIV-1, and influenza A virus by different mechanisms of action.
Collapse
|
23
|
Synthesis and antimicrobial activity of dermaseptin S1 analogues. Bioorg Med Chem 2008; 16:8205-9. [PMID: 18676150 DOI: 10.1016/j.bmc.2008.07.032] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2008] [Revised: 07/04/2008] [Accepted: 07/16/2008] [Indexed: 11/21/2022]
Abstract
Dermaseptins are peptides found in the skin secretions of Phyllomedusinae frogs. These peptides exert lytic action on some microorganisms without substantial haemolysis. In an attempt to understand the antimicrobial activity of these peptides we designed several dermaseptin S1 (ALWKTMLKKLGTMALHAGKAALGAAADTISQGTQ) (DS1) analogues. All peptides were tested on the growth of prokaryotic (Gram-positive and Gram-negative bacteria) and eukaryotic (the yeast Candida albicans and the protozoon Leishmania major) organisms. Our data showed a dose-dependent killing effect by most DS1 derivatives. Maximal antibacterial activity was displayed by a 16-mer peptide that was more active than native DS1.
Collapse
|
24
|
Cell-penetrating peptide TP10 shows broad-spectrum activity against both Plasmodium falciparum and Trypanosoma brucei brucei. Antimicrob Agents Chemother 2008; 52:3414-7. [PMID: 18519720 DOI: 10.1128/aac.01450-07] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Malaria and trypanosomiasis are diseases which afflict millions and for which novel therapies are urgently required. We have tested two well-characterized cell-penetrating peptides (CPPs) for antiparasitic activity. One CPP, designated TP10, has broad-spectrum antiparasitic activity against Plasmodium falciparum, both blood and mosquito stages, and against blood-stage Trypanosoma brucei brucei.
Collapse
|
25
|
Manfredi M, Merigo E, Salati A, Conti S, Savi A, Polonelli L, Bonanini M, Vescovi P. In vitro candidacidal activity of a synthetic killer decapeptide (KP) against Candida albicans cells adhered to resin acrylic discs. J Oral Pathol Med 2007; 36:468-71. [PMID: 17686004 DOI: 10.1111/j.1600-0714.2007.00561.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
BACKGROUND Oral Candida spp., and C. albicans in particular, are considered as important aetiological agents in the pathogenesis of denture-induced stomatitis. Several studies have reported that C. albicans is able to easily adhere to different medical devices, such as vascular and urinary catheters or acrylic denture surfaces, and that adhesion is a fundamental step in the initial pathogenic process of colonization and further possible infection. Recently, a synthetic decapeptide (KP) derived from the sequence of a single-chain recombinant anti-idiotypic antibody, acting as a functional internal image of a microbicidal, broad spectrum yeast killer toxin, has been reported to kill in vitro C. albicans cells and to exert a therapeutic activity against experimental mucosal and systemic candidiasis. METHODS The aim of this study was to evaluate, through a CFU assay, the candidacidal activity of KP on sanded acrylic resin discs, previously colonized by C. albicans cells. RESULTS AND CONCLUSIONS At 100 microg/ml KP showed over 90% of killing activity on C. albicans cells adhered to resin discs, when compared with a scramble peptide used as control. The results of this study suggest a potential effect of KP on C. albicans cells adhered on the surface of resin materials, such as prosthetic dentures.
Collapse
Affiliation(s)
- M Manfredi
- Sezione di Odontostomatologia, Dipartimento di Scienze-Otorino-Odonto-Oftalmologiche e Cervico-Facciali, Università di Parma, Parma, Italy.
| | | | | | | | | | | | | | | |
Collapse
|