1
|
Freitas-Mesquita AL, Carvalho-Kelly LF, Majerowicz TSS, Meyer-Fernandes JR. Euglena gracilis: Biochemical properties of a membrane bound ecto-phosphatase activity modulated by fluoroaluminate complexes and different trophic conditions. Eur J Protistol 2023; 90:126010. [PMID: 37540916 DOI: 10.1016/j.ejop.2023.126010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 07/05/2023] [Accepted: 07/17/2023] [Indexed: 08/06/2023]
Abstract
The ecto-phosphatases belong to a group of enzymes closely associated with the cell surface that has its catalytic site facing the extracellular environment, where different phosphorylated substrates can be hydrolyzed. In the present work, we biochemically characterized the ecto-phosphatase activity of the freshwater microalgae Euglena gracilis, a model microorganism, ubiquitously distributed and resistant to several environmental stressors. The ecto-phosphatase activity is acidic, stimulated by copper and presents the following apparent kinetic parameters: Km = 2.52 ± 0.12 mM p-NPP and Vmax = 3.62 ± 0.06 nmol p-NP × h-1 × 106 cells. We observed that zinc, orthovanadate, molybdate, fluoride, and inorganic phosphate inhibit the ecto-phosphatase activity with different magnitudes. Fluoroaluminate complexes are also inhibitors of this ecto-phosphatase activity. They can be formed in the enzyme reaction conditions and are likely to occur in a natural environment where E. gracilis can be found. The ecto-phosphatase activity is constant through the culture growth phases and is negatively modulated after continuous subculturing in the dark when a shift from phototrophic to the heterotrophic metabolism is likely. The analysis of those biochemical parameters may contribute to understanding the role of E. gracilis ecto-phosphatase activity in natural environments.
Collapse
Affiliation(s)
- Anita Leocadio Freitas-Mesquita
- Instituto de Bioquímica Médica Leopoldo de Meis, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, 21941-590 Rio de Janeiro, RJ, Brazil; Instituto Nacional de Ciência e Tecnologia em Biologia Estrutural e Bioimagem, 21941-590 Rio de Janeiro, RJ, Brazil.
| | - Luiz Fernando Carvalho-Kelly
- Instituto de Bioquímica Médica Leopoldo de Meis, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, 21941-590 Rio de Janeiro, RJ, Brazil; Instituto Nacional de Ciência e Tecnologia em Biologia Estrutural e Bioimagem, 21941-590 Rio de Janeiro, RJ, Brazil
| | - Thaís Souza Silveira Majerowicz
- Instituto de Bioquímica Médica Leopoldo de Meis, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, 21941-590 Rio de Janeiro, RJ, Brazil; Instituto Federal de Educação, Ciência e Tecnologia do Rio de Janeiro, Rua Senador Furtado, 121. Maracanã, Rio de Janeiro, RJ 20270-021, Brazil
| | - José Roberto Meyer-Fernandes
- Instituto de Bioquímica Médica Leopoldo de Meis, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, 21941-590 Rio de Janeiro, RJ, Brazil; Instituto Nacional de Ciência e Tecnologia em Biologia Estrutural e Bioimagem, 21941-590 Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
2
|
Paes-Vieira L, Gomes-Vieira AL, Meyer-Fernandes JR. E-NTPDases: Possible Roles on Host-Parasite Interactions and Therapeutic Opportunities. Front Cell Infect Microbiol 2021; 11:769922. [PMID: 34858878 PMCID: PMC8630654 DOI: 10.3389/fcimb.2021.769922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 10/25/2021] [Indexed: 11/24/2022] Open
Abstract
Belonging to the GDA1/CD39 protein superfamily, nucleoside triphosphate diphosphohydrolases (NTPDases) catalyze the hydrolysis of ATP and ADP to the monophosphate form (AMP) and inorganic phosphate (Pi). Several NTPDase isoforms have been described in different cells, from pathogenic organisms to animals and plants. Biochemical characterization of nucleotidases/NTPDases has revealed the existence of isoforms with different specificities regarding divalent cations (such as calcium and magnesium) and substrates. In mammals, NTPDases have been implicated in the regulation of thrombosis and inflammation. In parasites, such as Trichomonas vaginalis, Trypanosoma spp., Leishmania spp., Schistosoma spp. and Toxoplasma gondii, NTPDases were found on the surface of the cell, and important processes like growth, infectivity, and virulence seem to depend on their activity. For instance, experimental evidence has indicated that parasite NTPDases can regulate the levels of ATP and Adenosine (Ado) of the host cell, leading to the modulation of the host immune response. In this work, we provide a comprehensive review showing the involvement of the nucleotidases/NTPDases in parasites infectivity and virulence, and how inhibition of NTPDases contributes to parasite clearance and the development of new antiparasitic drugs.
Collapse
Affiliation(s)
- Lisvane Paes-Vieira
- Laboratório de Bioquímica Celular, Instituto de Bioquímica Médica Leopoldo de Meis, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - André Luiz Gomes-Vieira
- Departamento de Bioquímica, Instituto de Química, Universidade Federal Rural do Rio de Janeiro, Seropédica, Brazil
| | - José Roberto Meyer-Fernandes
- Laboratório de Bioquímica Celular, Instituto de Bioquímica Médica Leopoldo de Meis, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Instituto Nacional de Ciência e Tecnologia em Biologia Estrutural e Bioimagem, Rio de Janeiro, Brazil
| |
Collapse
|
3
|
da Silva W, da Rocha Torres N, de Melo Agripino J, da Silva VHF, de Souza ACA, Ribeiro IC, de Oliveira TA, de Souza LA, Andrade LKR, de Moraes JVB, Diogo MA, de Castro RB, Polêto MD, Afonso LCC, Fietto JLR. ENTPDases from Pathogenic Trypanosomatids and Purinergic Signaling: Shedding Light towards Biotechnological Applications. Curr Top Med Chem 2021; 21:213-226. [PMID: 33019932 DOI: 10.2174/1568026620666201005125146] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 07/27/2020] [Accepted: 08/24/2020] [Indexed: 11/22/2022]
Abstract
ENTPDases are enzymes known for hydrolyzing extracellular nucleotides and playing an essential role in controlling the nucleotide signaling via nucleotide/purinergic receptors P2. Moreover, ENTPDases, together with Ecto-5´-nucleotidase activity, affect the adenosine signaling via P1 receptors. These signals control many biological processes, including the immune system. In this context, ATP is considered as a trigger to inflammatory signaling, while adenosine (Ado) induces anti-inflammatory response. The trypanosomatids Leishmania and Trypanosoma cruzi, pathogenic agents of Leishmaniasis and Chagas Disease, respectively, have their own ENTPDases named "TpENTPDases," which can affect the nucleotide signaling, adhesion and infection, in order to favor the parasite. Besides, TpENTPDases are essential for the parasite nutrition, since the Purine De Novo synthesis pathway is absent in them, which makes these pathogens dependent on the intake of purines and nucleopurines for the Salvage Pathway, in which TpENTPDases also take place. Here, we review information regarding TpNTPDases, including their known biological roles and their effect on the purinergic signaling. We also highlight the roles of these enzymes in parasite infection and their biotechnological applications, while pointing to future developments.
Collapse
Affiliation(s)
- Walmir da Silva
- Departamento de Bioquimica e Biologia Molecular, Universidade Federal de Vicosa, Vicosa, Minas Gerais, Brazil
| | - Nancy da Rocha Torres
- Departamento de Biologia Geral, Universidade Federal de Vicosa, Vicosa, Minas Gerais, Brazil
| | - Joice de Melo Agripino
- Departamento de Bioquimica e Biologia Molecular, Universidade Federal de Vicosa, Vicosa, Minas Gerais, Brazil
| | | | - Anna Cláudia Alves de Souza
- Departamento de Bioquimica e Biologia Molecular, Universidade Federal de Vicosa, Vicosa, Minas Gerais, Brazil
| | - Isadora Cunha Ribeiro
- Departamento de Bioquimica e Biologia Molecular, Universidade Federal de Vicosa, Vicosa, Minas Gerais, Brazil
| | | | - Luciana Angelo de Souza
- Departamento de Biologia Geral, Universidade Federal de Vicosa, Vicosa, Minas Gerais, Brazil
| | | | | | - Marcel Arruda Diogo
- Departamento de Bioquimica e Biologia Molecular, Universidade Federal de Vicosa, Vicosa, Minas Gerais, Brazil
| | - Raíssa Barbosa de Castro
- Departamento de Bioquimica e Biologia Molecular, Universidade Federal de Vicosa, Vicosa, Minas Gerais, Brazil
| | - Marcelo Depolo Polêto
- Departamento de Biologia Geral, Universidade Federal de Vicosa, Vicosa, Minas Gerais, Brazil
| | - Luis Carlos Crocco Afonso
- Nucleo de Pesquisa em Ciencias Biologicas (NUPEB), Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, Brazil
| | - Juliana Lopes Rangel Fietto
- Departamento de Bioquimica e Biologia Molecular, Universidade Federal de Vicosa, Vicosa, Minas Gerais, Brazil
| |
Collapse
|
4
|
Arora K, Rai AK. Dependence of Leishmania parasite on host derived ATP: an overview of extracellular nucleotide metabolism in parasite. J Parasit Dis 2019; 43:1-13. [PMID: 30956439 PMCID: PMC6423245 DOI: 10.1007/s12639-018-1061-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Accepted: 11/24/2018] [Indexed: 12/29/2022] Open
Affiliation(s)
- Kashika Arora
- Department of Biotechnology, Motilal Nehru National Institute of Technology (MNNIT) Allahabad, Allahabad, 211004 U.P. India
- Present Address: Biomedical Research Center, Ghent University Global Campus, Incheon, 21985 South Korea
| | - Ambak Kumar Rai
- Department of Biotechnology, Motilal Nehru National Institute of Technology (MNNIT) Allahabad, Allahabad, 211004 U.P. India
| |
Collapse
|
5
|
Lauri N, Bazzi Z, Alvarez CL, Leal Denis MF, Schachter J, Herlax V, Ostuni MA, Schwarzbaum PJ. ATPe Dynamics in Protozoan Parasites. Adapt or Perish. Genes (Basel) 2018; 10:E16. [PMID: 30591699 PMCID: PMC6356682 DOI: 10.3390/genes10010016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 12/18/2018] [Accepted: 12/19/2018] [Indexed: 01/25/2023] Open
Abstract
In most animals, transient increases of extracellular ATP (ATPe) are used for physiological signaling or as a danger signal in pathological conditions. ATPe dynamics are controlled by ATP release from viable cells and cell lysis, ATPe degradation and interconversion by ecto-nucleotidases, and interaction of ATPe and byproducts with cell surface purinergic receptors and purine salvage mechanisms. Infection by protozoan parasites may alter at least one of the mechanisms controlling ATPe concentration. Protozoan parasites display their own set of proteins directly altering ATPe dynamics, or control the activity of host proteins. Parasite dependent activation of ATPe conduits of the host may promote infection and systemic responses that are beneficial or detrimental to the parasite. For instance, activation of organic solute permeability at the host membrane can support the elevated metabolism of the parasite. On the other hand ecto-nucleotidases of protozoan parasites, by promoting ATPe degradation and purine/pyrimidine salvage, may be involved in parasite growth, infectivity, and virulence. In this review, we will describe the complex dynamics of ATPe regulation in the context of protozoan parasite⁻host interactions. Particular focus will be given to features of parasite membrane proteins strongly controlling ATPe dynamics. This includes evolutionary, genetic and cellular mechanisms, as well as structural-functional relationships.
Collapse
Affiliation(s)
- Natalia Lauri
- Institute of Biological Chemistry and Physicochemistry (IQUIFIB) "Prof. Alejandro C. Paladini", Faculty of Pharmacy and Biochemistry, University of Buenos Aires, National Scientific and Technical Research Council (CONICET), Junín 956 Buenos Aires, Argentina.
- Faculty of Pharmacy and Biochemistry, Department of Biological Chemistry, Chair of Biological Chemistry, University of Buenos Aires, Junín 956 Buenos Aires, Argentina.
| | - Zaher Bazzi
- Institute of Biological Chemistry and Physicochemistry (IQUIFIB) "Prof. Alejandro C. Paladini", Faculty of Pharmacy and Biochemistry, University of Buenos Aires, National Scientific and Technical Research Council (CONICET), Junín 956 Buenos Aires, Argentina.
| | - Cora L Alvarez
- Institute of Biological Chemistry and Physicochemistry (IQUIFIB) "Prof. Alejandro C. Paladini", Faculty of Pharmacy and Biochemistry, University of Buenos Aires, National Scientific and Technical Research Council (CONICET), Junín 956 Buenos Aires, Argentina.
- Faculty of Exact and Natural Sciences, Department of Biodiversity and Experimental Biology, University of Buenos Aires, Intendente Güiraldes, Buenos Aires 2160, Argentina.
| | - María F Leal Denis
- Institute of Biological Chemistry and Physicochemistry (IQUIFIB) "Prof. Alejandro C. Paladini", Faculty of Pharmacy and Biochemistry, University of Buenos Aires, National Scientific and Technical Research Council (CONICET), Junín 956 Buenos Aires, Argentina.
- Chair of Analytical Chemistry and Physicochemistry, Faculty of Pharmacy and Biochemistry, Department of Analytical Chemistry, University of Buenos Aires, Junín 956 Buenos Aires, Argentina.
| | - Julieta Schachter
- Institute of Biological Chemistry and Physicochemistry (IQUIFIB) "Prof. Alejandro C. Paladini", Faculty of Pharmacy and Biochemistry, University of Buenos Aires, National Scientific and Technical Research Council (CONICET), Junín 956 Buenos Aires, Argentina.
| | - Vanesa Herlax
- Biochemistry Research Institute of La Plata (INIBIOLP) "Prof. Dr. Rodolfo R. Brenner", Faculty of Medical Sciences, National University of La Plata, National Scientific and Technical Research Council, Av. 60 y Av. 120 La Plata, Argentina.
- National University of La Plata, Faculty of Medical Sciences, Av. 60 y Av. 120 La Plata, Argentina.
| | - Mariano A Ostuni
- UMR-S1134, Integrated Biology of Red Blood Cells, INSERM, Paris Diderot University, Sorbonne Paris Cité, University of La Réunion, University of Antilles, F-75015 Paris, France.
- National Institute of Blood Transfusion (INTS), Laboratory of Excellence GR-Ex, F-75015 Paris, France.
| | - Pablo J Schwarzbaum
- Institute of Biological Chemistry and Physicochemistry (IQUIFIB) "Prof. Alejandro C. Paladini", Faculty of Pharmacy and Biochemistry, University of Buenos Aires, National Scientific and Technical Research Council (CONICET), Junín 956 Buenos Aires, Argentina.
- Faculty of Pharmacy and Biochemistry, Department of Biological Chemistry, Chair of Biological Chemistry, University of Buenos Aires, Junín 956 Buenos Aires, Argentina.
| |
Collapse
|
6
|
Paes-Vieira L, Gomes-Vieira AL, Meyer-Fernandes JR. NTPDase activities: possible roles onLeishmania sppinfectivity and virulence. Cell Biol Int 2018; 42:670-682. [DOI: 10.1002/cbin.10944] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 01/27/2018] [Indexed: 11/09/2022]
Affiliation(s)
- Lisvane Paes-Vieira
- Laboratório de Bioquímica Celular, Instituto de Bioquímica Médica Leopoldo de Meis, Centro de Ciências da Saúde; Universidade Federal do Rio de Janeiro; Rio de Janeiro RJ 21941-590 Brazil
| | - André Luiz Gomes-Vieira
- Instituto de Ciências Exatas, Departamento de Química; Universidade Federal Rural do Rio de Janeiro; Seropédica RJ Brazil
| | - José Roberto Meyer-Fernandes
- Laboratório de Bioquímica Celular, Instituto de Bioquímica Médica Leopoldo de Meis, Centro de Ciências da Saúde; Universidade Federal do Rio de Janeiro; Rio de Janeiro RJ 21941-590 Brazil
- Instituto Nacional de Ciência e Tecnologia em Biologia Estrutural e Bioimagem; Rio de Janeiro RJ Brazil
| |
Collapse
|
7
|
Russo-Abrahão T, Koeller CM, Steinmann ME, Silva-Rito S, Marins-Lucena T, Alves-Bezerra M, Lima-Giarola NL, de-Paula IF, Gonzalez-Salgado A, Sigel E, Bütikofer P, Gondim KC, Heise N, Meyer-Fernandes JR. H +-dependent inorganic phosphate uptake in Trypanosoma brucei is influenced by myo-inositol transporter. J Bioenerg Biomembr 2017; 49:183-194. [PMID: 28185085 DOI: 10.1007/s10863-017-9695-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 01/22/2017] [Indexed: 10/20/2022]
Abstract
Trypanosoma brucei is an extracellular protozoan parasite that causes human African trypanosomiasis or "sleeping sickness". During the different phases of its life cycle, T. brucei depends on exogenous inorganic phosphate (Pi), but little is known about the transport of Pi in this organism. In the present study, we showed that the transport of 32Pi across the plasma membrane follows Michaelis-Menten kinetics and is modulated by pH variation, with higher activity at acidic pH. Bloodstream forms presented lower Pi transport in comparison to procyclic forms, that displayed an apparent K0.5 = 0.093 ± 0.008 mM. Additionally, FCCP (H+-ionophore), valinomycin (K+-ionophore) and SCH28080 (H+, K+-ATPase inhibitor) inhibited the Pi transport. Gene Tb11.02.3020, previously described to encode the parasite H+:myo-inositol transporter (TbHMIT), was hypothesized to be potentially involved in the H+:Pi cotransport because of its similarity with the Pho84 transporter described in S. cerevisiae and other trypanosomatids. Indeed, the RNAi mediated knockdown remarkably reduced TbHMIT gene expression, compromised cell growth and decreased Pi transport by half. In addition, Pi transport was inhibited when parasites were incubated in the presence of concentrations of myo-inositol that are above 300 μM. However, when expressed in Xenopus laevis oocytes, two-electrode voltage clamp experiments provided direct electrophysiological evidence that the protein encoded by TbHMIT is definitely a myo-inositol transporter that may be only marginally affected by the presence of Pi. These results confirmed the presence of a Pi carrier in T. brucei, similar to the H+-dependent inorganic phosphate system described in S. cerevisiae and other trypanosomatids. This transport system contributes to the acquisition of Pi and may be involved in the growth and survival of procyclic forms. In summary, this work presents the first description of a Pi transport system in T. brucei.
Collapse
Affiliation(s)
- Thais Russo-Abrahão
- Instituto de Microbiologia Professor Paulo de Góes, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil.,Instituto de Bioquímica Médica Leopoldo de Meis, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-590, Brazil.,Instituto Nacional de Ciência e Tecnologia em Biologia Estrutural e Bioimagem, Rio de Janeiro, RJ, Brazil
| | - Carolina Macedo Koeller
- Instituto de Biofísica Carlos Chagas Filho, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-590, Brazil
| | - Michael E Steinmann
- Institute of Biochemistry and Molecular Medicine, University of Bern, 3012, Bern, Switzerland
| | - Stephanie Silva-Rito
- Instituto de Bioquímica Médica Leopoldo de Meis, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-590, Brazil.,Instituto Nacional de Ciência e Tecnologia em Biologia Estrutural e Bioimagem, Rio de Janeiro, RJ, Brazil
| | - Thaissa Marins-Lucena
- Instituto de Bioquímica Médica Leopoldo de Meis, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-590, Brazil.,Instituto Nacional de Ciência e Tecnologia em Biologia Estrutural e Bioimagem, Rio de Janeiro, RJ, Brazil
| | - Michele Alves-Bezerra
- Instituto de Bioquímica Médica Leopoldo de Meis, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-590, Brazil.,Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, RJ, Brazil
| | - Naira Ligia Lima-Giarola
- Instituto de Bioquímica Médica Leopoldo de Meis, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-590, Brazil.,Instituto Nacional de Ciência e Tecnologia em Biologia Estrutural e Bioimagem, Rio de Janeiro, RJ, Brazil
| | - Iron Francisco de-Paula
- Instituto de Bioquímica Médica Leopoldo de Meis, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-590, Brazil.,Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, RJ, Brazil
| | - Amaia Gonzalez-Salgado
- Institute of Biochemistry and Molecular Medicine, University of Bern, 3012, Bern, Switzerland
| | - Erwin Sigel
- Institute of Biochemistry and Molecular Medicine, University of Bern, 3012, Bern, Switzerland
| | - Peter Bütikofer
- Institute of Biochemistry and Molecular Medicine, University of Bern, 3012, Bern, Switzerland
| | - Katia Calp Gondim
- Instituto de Bioquímica Médica Leopoldo de Meis, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-590, Brazil.,Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, RJ, Brazil
| | - Norton Heise
- Instituto de Biofísica Carlos Chagas Filho, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-590, Brazil.
| | - José Roberto Meyer-Fernandes
- Instituto de Bioquímica Médica Leopoldo de Meis, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-590, Brazil. .,Instituto Nacional de Ciência e Tecnologia em Biologia Estrutural e Bioimagem, Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
8
|
Menezes CB, Durgante J, de Oliveira RR, Dos Santos VHJM, Rodrigues LF, Garcia SC, Dos Santos O, Tasca T. Trichomonas vaginalis NTPDase and ecto-5'-nucleotidase hydrolyze guanine nucleotides and increase extracellular guanosine levels under serum restriction. Mol Biochem Parasitol 2016; 207:10-8. [PMID: 27150347 DOI: 10.1016/j.molbiopara.2016.04.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Revised: 04/14/2016] [Accepted: 04/29/2016] [Indexed: 12/20/2022]
Abstract
Trichomonas vaginalis is the aethiologic agent of trichomoniasis, the most common non-viral sexually transmitted disease in the world. The purinergic signaling pathway is mediated by extracellular nucleotides and nucleosides that are involved in many biological effects as neurotransmission, immunomodulation and inflammation. Extracellular nucleotides can be hydrolyzed by a family of enzymes known as ectonucleotidases including the ecto-nucleoside triphosphate diphosphohydrolases (E-NTPDases) family which hydrolyses nucleosides triphosphate and diphosphate as preferential substrates and ecto-5'-nucleotidase which catalyzes the conversion of monophosphates into nucleosides. In T. vaginalis the E-NTPDase and ecto-5'-nucleotidase activities upon adenine nucleotides have already been characterized in intact trophozoites but little is known concerning guanine nucleotides and nucleoside. These enzymes may exert a crucial role on nucleoside generation, providing the purine sources for the synthesis de novo of these essential nutrients, sustaining parasite growth and survival. In this study, we investigated the hydrolysis profile of guanine-related nucleotides and nucleoside in intact trophozoites from long-term-grown and fresh clinical isolates of T. vaginalis. Knowing that guanine nucleotides are also substrates for T. vaginalis ectoenzymes, we evaluated the profile of nucleotides consumption and guanosine uptake in trophozoites submitted to a serum limitation condition. Results show that guanine nucleotides (GTP, GDP, GMP) were substrates for T. vaginalis ectonucleotidases, with expected kinetic parameters for this enzyme family. Different T. vaginalis isolates (two from the ATCC and nine fresh clinical isolates) presented a heterogeneous hydrolysis profile. The serum culture condition increased E-NTPDase and ecto-5'-nucleotidase activities with high consumption of extracellular GTP generating enhanced GDP, GMP and guanosine levels as demonstrated by HPLC, with final accumulation of the nucleoside. The transcript levels of the five TvNTPDases gene sequences were analyzed by qRT-PCR and the highest gene expressions were found for TvNTPDase 2 and 4. The extracellular guanosine uptake was observed as (13C)GTP nucleotide into parasite DNA and it was lower than that observed for adenosine, labeled as (13C)ATP. These findings indicate the T. vaginalis preference for adenosine uptake and the accumulation of guanosine in the extracellular milieu, corroborating with HPLC data. Our data demonstrate, for the first time, the cascade of guanine nucleotides in T. vaginalis and open possibilities on the study of guanine-related purines other than the classical intracellular activity of G proteins for signal transduction.
Collapse
Affiliation(s)
- Camila Braz Menezes
- Laboratório de Pesquisa em Parasitologia, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Av. Ipiranga 2752, 90610-000 Porto Alegre, RS, Brazil
| | - Juliano Durgante
- Laboratório de Toxicologia, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Av. Ipiranga 2752, 90610-000 Porto Alegre, RS, Brazil
| | - Rafael Rodrigues de Oliveira
- Instituto do Petróleo e dos Recursos Naturais, Pontifícia Universidade Católica do Rio Grande do Sul, Av. Ipiranga 6681, 90619-900 Porto Alegre, RS, Brazil
| | - Victor Hugo Jacks Mendes Dos Santos
- Instituto do Petróleo e dos Recursos Naturais, Pontifícia Universidade Católica do Rio Grande do Sul, Av. Ipiranga 6681, 90619-900 Porto Alegre, RS, Brazil
| | - Luiz Frederico Rodrigues
- Instituto do Petróleo e dos Recursos Naturais, Pontifícia Universidade Católica do Rio Grande do Sul, Av. Ipiranga 6681, 90619-900 Porto Alegre, RS, Brazil
| | - Solange Cristina Garcia
- Laboratório de Toxicologia, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Av. Ipiranga 2752, 90610-000 Porto Alegre, RS, Brazil
| | - Odelta Dos Santos
- Laboratório de Pesquisa em Parasitologia, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Av. Ipiranga 2752, 90610-000 Porto Alegre, RS, Brazil
| | - Tiana Tasca
- Laboratório de Pesquisa em Parasitologia, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Av. Ipiranga 2752, 90610-000 Porto Alegre, RS, Brazil.
| |
Collapse
|
9
|
Kinetic and biochemical characterization of Trypanosoma evansi nucleoside triphosphate diphosphohydrolase. Exp Parasitol 2015; 153:98-104. [DOI: 10.1016/j.exppara.2015.03.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Revised: 03/19/2015] [Accepted: 03/20/2015] [Indexed: 11/17/2022]
|
10
|
Identification and characterization of an ecto-pyrophosphatase activity in intact epimastigotes of Trypanosoma rangeli. PLoS One 2014; 9:e106852. [PMID: 25203926 PMCID: PMC4159237 DOI: 10.1371/journal.pone.0106852] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2014] [Accepted: 08/09/2014] [Indexed: 02/06/2023] Open
Abstract
In this study, we performed the molecular and biochemical characterization of an ecto-enzyme present in Trypanosoma rangeli that is involved with the hydrolysis of extracellular inorganic pyrophosphate. PCR analysis identified a putative proton-pyrophosphatase (H+-PPase) in the epimastigote forms of T. rangeli. This protein was recognized with Western blot and flow cytometry analysis using an antibody against the H+-PPase of Arabidopsis thaliana. Immunofluorescence microscopy confirmed that this protein is located in the plasma membrane of T. rangeli. Biochemical assays revealed that the optimum pH for the ecto-PPase activity was 7.5, as previously demonstrated for other organisms. Sodium fluoride (NaF) and aminomethylenediphosphonate (AMDP) were able to inhibit approximately 75% and 90% of the ecto-PPase activity, respectively. This ecto-PPase activity was stimulated in a dose-dependent manner by MgCl2. In the presence of MgCl2, this activity was inhibited by millimolar concentrations of CaCl2. The ecto-PPase activity of T. rangeli decreased with increasing cell proliferation in vitro, thereby suggesting a role for this enzyme in the acquisition of inorganic phosphate (Pi). Moreover, this activity was modulated by the extracellular concentration of Pi and increased approximately two-fold when the cells were maintained in culture medium depleted of Pi. All of these results confirmed the occurrence of an ecto-PPase located in the plasma membrane of T. rangeli that possibly plays an important role in phosphate metabolism of this protozoan.
Collapse
|
11
|
Giarola NLL, Silveira TS, Inacio JDF, Vieira LP, Almeida-Amaral EE, Meyer-Fernandes JR. Leishmania amazonensis: Increase in ecto-ATPase activity and parasite burden of vinblastine-resistant protozoa. Exp Parasitol 2014; 146:25-33. [PMID: 25176449 DOI: 10.1016/j.exppara.2014.08.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Revised: 07/21/2014] [Accepted: 08/22/2014] [Indexed: 01/04/2023]
Abstract
Leishmania amazonensis is a protozoan parasite that induces mucocutaneous and diffuse cutaneous lesions upon infection. An important component in treatment failure is the emergence of drug-resistant parasites. It is necessary to clarify the mechanism of resistance that occurs in these parasites to develop effective drugs for leishmaniasis treatment. Promastigote forms of L. amazonensis were selected by gradually increasing concentrations of vinblastine and were maintained under continuous drug pressure (resistant cells). Vinblastine-resistant L. amazonensis proliferated similarly to control parasites. However, resistant cells showed changes in the cell shape, irregular flagella and a decrease in rhodamine 123 accumulation, which are factors associated with the development of resistance, suggesting the MDR phenotype. The Mg-dependent-ecto-ATPase, an enzyme located on cell surface of Leishmania parasites, is involved in the acquisition of purine and participates in the adhesion and infectivity process. We compared control and resistant L. amazonensis ecto-enzymatic activities. The control and resistant Leishmania ecto-ATPase activities were 16.0 ± 1.5 nmol Pi × h(-1) × 10(-7) cells and 40.0 ± 4.4 nmol Pi × h(-1) × 10(-7)cells, respectively. Interestingly, the activity of other ecto-enzymes present on the L. amazonensis cell surface, the ecto-5' and 3'-nucleotidases and ecto-phosphatase, did not increase. The level of ecto-ATPase modulation is related to the degree of resistance of the cell. Cells resistant to 10 μM and 60 μM of vinblastine have ecto-ATPase activities of 22.7 ± 0.4 nmol Pi × h(-1) × 10(-7) cells and 33.8 ± 0.8 nmol Pi × h(-1) × 10(-7)cells, respectively. In vivo experiments showed that both lesion size and parasite burden in mice infected with resistant parasites are greater than those of L. amazonensis control cells. Furthermore, our data established a relationship between the increase in ecto-ATPase activity and greater infectivity and severity of the disease caused by vinblastine-resistant L. amazonensis promastigotes. Taken together, these data suggest that ecto-enzymes could be potential therapeutic targets in the struggle against the spread of leishmaniasis, a neglected world-wide public health problem.
Collapse
Affiliation(s)
- Naira Lígia Lima Giarola
- Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro - UFRJ, Brazil; Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, Universidade Federal do Rio de Janeiro - UFRJ, Brazil
| | - Thaís Souza Silveira
- Instituto de Microbiologia Professor Paulo de Góes, Universidade Federal do Rio de Janeiro - UFRJ, Brazil; Instituto Federal de Educação, Ciência e Tecnologia do Rio de Janeiro IFRJ, Brazil
| | | | - Lisvane Paes Vieira
- Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro - UFRJ, Brazil; Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, Universidade Federal do Rio de Janeiro - UFRJ, Brazil
| | | | - José Roberto Meyer-Fernandes
- Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro - UFRJ, Brazil; Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, Universidade Federal do Rio de Janeiro - UFRJ, Brazil.
| |
Collapse
|
12
|
Figliuolo VR, Chaves SP, Santoro GF, Coutinho CMLM, Meyer-Fernandes JR, Rossi-Bergmann B, Coutinho-Silva R. Periodate-oxidized ATP modulates macrophage functions during infection with Leishmania amazonensis. Cytometry A 2014; 85:588-600. [PMID: 24804957 DOI: 10.1002/cyto.a.22449] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Revised: 11/30/2013] [Accepted: 01/27/2014] [Indexed: 12/11/2022]
Abstract
Previously, we showed that treating macrophages with ATP impairs the intracellular growth of Leishmania amazonensis, and that the P2X7 purinergic receptor is overexpressed during leishmaniasis. In the present study, we directly evaluated the effect of periodate-oxidized ATP (oATP) on parasite control in Leishmania-infected macrophages. We found that oATP impaired the attachment/entrance of L. amazonensis promastigotes to C57BL/6 mouse macrophages in a P2X7 receptor-independent manner, as macrophages from P2X7(-/-) mice were similarly affected. Although oATP directly inhibited the growth of axenic promastigotes in culture, promoted rapid ultrastructural alterations, and impaired Leishmania internalization by macrophages, it did not affect intracellular parasite multiplication. Upon infection, phagosomal acidification was diminished in oATP-treated macrophages, accompanied by reduced endosomal proteolysis. Likewise, MHC class II molecules expression and ectoATPase activity was decreased by oATP added to macrophages at the time of parasite infection. These inhibitory effects were not due to a cytotoxic effect, as no additional release of lactate dehydrogenase was detected in culture supernatants. Moreover, the capacity of macrophages to produce nitric oxide and reactive oxygen species was not affected by the presence of oATP during infection. We conclude that oATP directly affects extracellular parasite integrity and macrophage functioning.
Collapse
Affiliation(s)
- V R Figliuolo
- Laboratório de Imunofisiologia, Instituto de Biofísica Carlos Chagas Filho-IBCCF, Universidade Federal do Rio de Janeiro, RJ, Brazil; Instituto Nacional para Pesquisa Translacional em Saúde e Ambiente na Região Amazônica, Conselho Nacional de Desenvolvimento Científico e Tecnológico/MCT, Brasil
| | | | | | | | | | | | | |
Collapse
|
13
|
Freitas-Mesquita AL, Meyer-Fernandes JR. Ecto-nucleotidases and Ecto-phosphatases from Leishmania and Trypanosoma parasites. Subcell Biochem 2014; 74:217-252. [PMID: 24264248 DOI: 10.1007/978-94-007-7305-9_10] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Ecto-enzymes can be defined as membrane-bound proteins that have their active site facing the extracellular millieu. In trypanosomatids, the physiological roles of these enzymes remain to be completed elucidated; however, many important events have already been related to them, such as the survival of parasites during their complex life cycle and the successful establishment of host infection. This chapter focuses on two remarkable classes of ecto-enzymes: ecto-nucleotidases and ecto-phosphatases, summarizing their occurrence and possible physiological roles in Leishmania and Trypanosoma genera. Ecto-nucleotidases are characterized by their ability to hydrolyze extracellular nucleotides, playing an important role in purinergic signaling. By the action of these ecto-enzymes, parasites are capable of modulating the host immune system, which leads to a successful parasite infection. Furthermore, ecto-nucleotidases are also involved in the purine salvage pathway, acting in the generation of nucleosides that are able to cross plasma membrane via specialized transporters. Another important ecto-enzyme present in a vast number of pathogenic organisms is the ecto-phosphatase. These enzymes are able to hydrolyze extracellular phosphorylated substrates, releasing free inorganic phosphate that can be internalized by the cell, crossing the plasma membrane through a Pi-transporter. Ecto-phosphatases are also involved in the invasion and survival of parasite in the host cells. Several alternative functions have been suggested for these enzymes in parasites, such as participation in their proliferation, differentiation, nutrition and protection. In this context, the present chapter provides an overview of recent discoveries related to the occurrence of ecto-nucleotidase and ecto-phosphatase activities in Leishmania and Trypanosoma parasites.
Collapse
|
14
|
Freitas-Mesquita AL, Fonseca-de-Souza AL, Meyer-Fernandes JR. Leishmania amazonensis: characterization of an ecto-pyrophosphatase activity. Exp Parasitol 2013; 137:8-13. [PMID: 24316462 DOI: 10.1016/j.exppara.2013.11.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Revised: 11/22/2013] [Accepted: 11/27/2013] [Indexed: 01/30/2023]
Abstract
Several ecto-enzymatic activities have been described in the plasma membrane of the protozoan Leishmania amazonensis, which is the major etiological agent of diffuse cutaneous leishmaniasis in South America. These enzymes, including ecto-phosphatases, contribute to the survival of the parasite by participating in phosphate metabolism. This work identifies and characterizes the extracellular hydrolysis of inorganic pyrophosphate related to an ecto-pyrophosphatase activity of the promastigote form of L. amazonensis. This ecto-pyrophosphatase activity is insensitive to MnCl2 but is strongly stimulated by MgCl2. This stimulation was not observed during the hydrolysis of p-nitrophenyl phosphate (p-NPP) or β-glycerophosphate, two substrates for different ecto-phosphatases present in the L. amazonensis plasma membrane. Furthermore, extracellular PPi hydrolysis is more efficient at alkaline pHs, while p-NPP hydrolysis occurs mainly at acidic pHs. These results led us to conclude that extracellular PPi is hydrolyzed not by non-specific ecto-phosphatases but rather by a genuine ecto-pyrophosphatase. In the presence of 5mM MgCl2, the ecto-pyrophosphatase activity from L. amazonensis is sensitive to micromolar concentrations of NaF and millimolar concentrations of CaCl2. Moreover, this activity is significantly higher during the first days of L. amazonensis culture, which suggests a possible role for this enzyme in parasite growth.
Collapse
Affiliation(s)
- Anita Leocadio Freitas-Mesquita
- Instituto de Bioquímica Médica, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, 21941-590 Rio de Janeiro, RJ, Brazil; Instituto Nacional de Ciência e Tecnologia em Biologia Estrutural e Bioimagem, 21941-590 Rio de Janeiro, RJ, Brazil
| | - André Luiz Fonseca-de-Souza
- Laboratório de Terapia e Fisiologia Celular e Molecular, Centro Universitário Estadual da Zona Oeste, 23070-200 Rio de Janeiro, RJ, Brazil
| | - José Roberto Meyer-Fernandes
- Instituto de Bioquímica Médica, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, 21941-590 Rio de Janeiro, RJ, Brazil; Instituto Nacional de Ciência e Tecnologia em Biologia Estrutural e Bioimagem, 21941-590 Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
15
|
Dick CF, Dos-Santos ALA, Majerowicz D, Paes LS, Giarola NL, Gondim KC, Vieyra A, Meyer-Fernandes JR. Inorganic phosphate uptake in Trypanosoma cruzi is coupled to K(+) cycling and to active Na(+) extrusion. Biochim Biophys Acta Gen Subj 2013; 1830:4265-73. [PMID: 23643965 DOI: 10.1016/j.bbagen.2013.04.034] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Revised: 03/30/2013] [Accepted: 04/26/2013] [Indexed: 02/07/2023]
Abstract
BACKGROUND Orthophosphate (Pi) is a central compound in the metabolism of all organisms, including parasites. There are no reports regarding the mechanisms of Pi acquisition by Trypanosoma cruzi. METHODS (32)Pi influx was measured in T. cruzi epimastigotes. The expression of Pi transporter genes and the coupling of the uptake to Na(+), H(+) and K(+) fluxes were also investigated. The transport capacities of different evolutive forms were compared. RESULTS Epimastigotes grew significantly more slowly in 2mM than in 50mM Pi. Influx of Pi into parasites grown under low Pi conditions took place in the absence and presence of Na(+). We found that the parasites express TcPho84, a H(+):Pi-symporter, and TcPho89, a Na(+):Pi-symporter. Both Pi influx mechanisms showed Michaelis-Menten kinetics, with a one-order of magnitude higher affinity for the Na(+)-dependent system. Collapsing the membrane potential with carbonylcyanide-p-trifluoromethoxyphenylhydrazone strongly impaired the influx of Pi. Valinomycin (K(+) ionophore) or SCH28028 (inhibitor of (H(+)+K(+))ATPase) significantly inhibited Pi uptake, indicating that an inwardly-directed H(+) gradient energizes uphill Pi entry and that K(+) recycling plays a key role in Pi influx. Furosemide, an inhibitor of the ouabain-insensitive Na(+)-ATPase, decreased only the Na(+)-dependent Pi uptake, indicating that this Na(+) pump generates the Na(+) gradient utilized by the symporter. Trypomastigote forms take up Pi inefficiently. CONCLUSIONS Pi starvation stimulates membrane potential-sensitive Pi uptake through different pathways coupled to Na(+) or H(+)/K(+) fluxes. GENERAL SIGNIFICANCE This study unravels the mechanisms of Pi acquisition by T. cruzi, a key process in epimastigote development and differentiation to trypomastigote forms.
Collapse
Affiliation(s)
- C F Dick
- Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Trypanosoma cruzi: effects of heat shock on ecto-ATPase activity. Exp Parasitol 2013; 133:434-41. [PMID: 23295384 DOI: 10.1016/j.exppara.2012.12.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Revised: 10/31/2012] [Accepted: 12/18/2012] [Indexed: 12/28/2022]
Abstract
In this work, we demonstrate that Trypanosoma cruzi Y strain epimastigotes exhibit Mg2+-dependent ecto-ATPase activity that is stimulated by heat shock. When the epimastigotes were incubated at 37°C for 2h, the ecto-ATPase activity of the cells was 43.95±0.97 nmol Pi/h×10(7) cells, whereas the ecto-ATPase activity of cells that were not exposed to heat shock stress was 16.97±0.30 nmol Pi/h×10(7) cells. The ecto-ATPase activities of cells, that were exposed or not exposed to heat shock stress had approximately the same Km values (2.25±0.26 mM ATP and 1.55±0.23 mM ATP, respectively) and different Vmax values. The heat-shocked cells had higher Vmax values (54.38±3.07 nmol Pi/h×10(7) cells) than the cells that were not exposed to heat shock (19.38±1.76 nmol Pi/h×10(7) cells). We also observed that the ecto-phosphatase and ecto-5'nucleotidase activities of cells that had been incubated at 28°C or 37°C were the same. Interestingly, cycloheximide, an inhibitor of protein synthesis, suppressed the heat shock effect of ecto-ATPase activity on T. cruzi. The Mg2+-dependent ecto-ATPase activity from the Y strain (high virulence) was approximately 2-fold higher than that of Dm28c (a clone with low virulence). In addition, these two strains presented different responses to heat shock with regard to their ecto-ATPase activities; Y strain epimastigotes had a stimulation of 2.52-fold while the Dm28c strain had a 1.71-fold stimulation. In this context, the virulent trypomastigote form of T. cruzi, Dm28c, had an ecto-ATPase activity that was more than 7-fold higher (66.67±5.98 nmol Pi/h×10(7) cells) than that of the insect epimastigote forms (8.91±0.76 nmol Pi/h×10(7) cells). This difference increased to approximately 10-fold when both forms were subjected to heat shock stress (181.14±16.48 nmol Pi/h×10(7) cells for trypomastigotes and 16.71±1.17 nmol Pi/h×10(7) cells for epimastigotes at 37°C). The ecto-ATPase activity of a plasma membrane-enriched fraction obtained from T. cruzi epimastigotes was not increased by heat treatment, which suggested that cytoplasmic components had an influence on enzyme activation by heat shock stress.
Collapse
|
17
|
Leite PM, Gomes RS, Figueiredo AB, Serafim TD, Tafuri WL, de Souza CC, Moura SAL, Fietto JLR, Melo MN, Ribeiro-Dias F, Oliveira MAP, Rabello A, Afonso LCC. Ecto-nucleotidase activities of promastigotes from Leishmania (Viannia) braziliensis relates to parasite infectivity and disease clinical outcome. PLoS Negl Trop Dis 2012; 6:e1850. [PMID: 23071853 PMCID: PMC3469556 DOI: 10.1371/journal.pntd.0001850] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Accepted: 08/22/2012] [Indexed: 12/22/2022] Open
Abstract
Background Leishmania (Viannia) braziliensis has been associated with a broad range of clinical manifestations ranging from a simple cutaneous ulcer to destructive mucosal lesions. Factors leading to this diversity of clinical presentations are not clear, but parasite factors have lately been recognized as important in determining disease progression. Given the fact that the activity of ecto-nucleotidases correlates with parasitism and the development of infection, we evaluated the activity of these enzymes in promastigotes from 23 L. braziliensis isolates as a possible parasite-related factor that could influence the clinical outcome of the disease. Methodology/Principal Findings Our results show that the isolates differ in their ability to hydrolyze adenine nucleotides. Furthermore, we observed a positive correlation between the time for peak of lesion development in C57BL/6J mice and enzymatic activity and clinical manifestation of the isolate. In addition, we found that L. (V.) braziliensis isolates obtained from mucosal lesions hydrolyze higher amounts of adenine nucleotides than isolates obtained from skin lesions. One isolate with high (PPS6m) and another with low (SSF) ecto-nucleotidase activity were chosen for further studies. Mice inoculated with PPS6m show delayed lesion development and present larger parasite loads than animals inoculated with the SSF isolate. In addition, PPS6m modulates the host immune response by inhibiting dendritic cell activation and NO production by activated J774 macrophages. Finally, we observed that the amastigote forms from PPS6m and SSF isolates present low enzymatic activity that does not interfere with NO production and parasite survival in macrophages. Conclusions/Significance Our data suggest that ecto-nucleotidases present on the promastigote forms of the parasite may interfere with the establishment of the immune response with consequent impaired ability to control parasite dissemination and this may be an important factor in determining the clinical outcome of leishmaniasis. Cutaneous leishmaniasis is a widespread tropical disease caused by different species of Leishmania protozoa that are transmitted by infected sandflies. Clinical presentations are extremely diverse and dependent on a variety of parasite and host factors that are poorly understood. Leishmania (V.) braziliensis infection may result in a devastating disease manifestation characterized by the development of destructive lesions in the oral, nasal, and pharyngeal mucosal. Ecto-nucleotidases are enzymes that are involved in the hydrolysis of extracellular nucleotides. These enzymes have been shown to correlate with virulence of Leishmania parasites. In this work, we evaluated the ecto-nucleotidase activity of promastigotes from the twenty three different L. braziliensis isolates. We demonstrated that isolates obtained from mucosal lesions present higher levels of ecto-nucleotidase activity than those from cutaneous lesions. In addition, we show that in the murine model of cutaneous leishmaniasis, promastigote forms of parasite with higher activity induce a delayed/decreased immune response that may correlate with spreading of the parasites throughout the body. Thus, we propose that the level of ecto-nucleotidase activity of promastigotes may be a marker for the development of severe clinical forms of cutaneous leishmaniasis and also a possible target for future therapeutic intervention.
Collapse
Affiliation(s)
- Pauline M. Leite
- Laboratório de Imunoparasitologia, DECBI/NUPEB, Universidade Federal de Ouro Preto, Minas Gerais, Brazil
| | - Rodrigo S. Gomes
- Laboratório de Imunoparasitologia, DECBI/NUPEB, Universidade Federal de Ouro Preto, Minas Gerais, Brazil
| | - Amanda B. Figueiredo
- Laboratório de Imunoparasitologia, DECBI/NUPEB, Universidade Federal de Ouro Preto, Minas Gerais, Brazil
| | - Tiago D. Serafim
- Laboratório de Imunoparasitologia, DECBI/NUPEB, Universidade Federal de Ouro Preto, Minas Gerais, Brazil
| | - Wagner L. Tafuri
- Departamento de Patologia Geral, ICB, UFMG, Belo Horizonte, Minas Gerais, Brazil
| | - Carolina C. de Souza
- Departamento de Patologia Geral, ICB, UFMG, Belo Horizonte, Minas Gerais, Brazil
| | - Sandra A. L. Moura
- Laboratório de Imunoparasitologia, DECBI/NUPEB, Universidade Federal de Ouro Preto, Minas Gerais, Brazil
| | - Juliana L. R. Fietto
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Viçosa, Minas Gerais, Brazil
| | - Maria N. Melo
- Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Fátima Ribeiro-Dias
- Instituto de Patologia Tropical e Saúde Publica, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| | - Milton A. P. Oliveira
- Instituto de Patologia Tropical e Saúde Publica, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| | - Ana Rabello
- Centro de Pesquisas René Rachou- FIOCRUZ, Belo Horizonte, Minas Gerais, Brazil
| | - Luís C. C. Afonso
- Laboratório de Imunoparasitologia, DECBI/NUPEB, Universidade Federal de Ouro Preto, Minas Gerais, Brazil
- * E-mail:
| |
Collapse
|
18
|
Na+-dependent and Na+-independent mechanisms for inorganic phosphate uptake in Trypanosoma rangeli. Biochim Biophys Acta Gen Subj 2012; 1820:1001-8. [DOI: 10.1016/j.bbagen.2012.02.019] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2011] [Revised: 01/30/2012] [Accepted: 02/18/2012] [Indexed: 01/26/2023]
|
19
|
The role of the NTPDase enzyme family in parasites: what do we know, and where to from here? Parasitology 2012; 139:963-80. [DOI: 10.1017/s003118201200025x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
SUMMARYNucleoside triphosphate diphosphohydrolases (NTPDases, GDA1_CD39 protein superfamily) play a diverse range of roles in a number of eukaryotic organisms. In humans NTPDases function in regulating the inflammatory and immune responses, control of vascular haemostasis and purine salvage. In yeast NTPDases are thought to function primarily in the Golgi, crucially involved in nucleotide sugar transport into the Golgi apparatus and subsequent protein glycosylation. Although rare in bacteria, in Legionella pneumophila secreted NTPDases function as virulence factors. In the last 2 decades it has become clear that a large number of parasites encode putative NTPDases, and the functions of a number of these have been investigated. In this review, the available evidence for NTPDases in parasites and the role of these NTPDases is summarized and discussed. Furthermore, the processes by which NTPDases could function in pathogenesis, purine salvage, thromboregulation, inflammation and glycoconjugate formation are considered, and the data supporting such putative roles reviewed. Potential future research directions to further clarify the role and importance of NTPDases in parasites are proposed. An attempt is also made to clarify the nomenclature used in the parasite field for the GDA1_CD39 protein superfamily, and a uniform system suggested.
Collapse
|
20
|
Manque PA, Woehlbier U, Lara AM, Tenjo F, Alves JM, Buck GA. Identification and characterization of a novel calcium-activated apyrase from Cryptosporidium parasites and its potential role in pathogenesis. PLoS One 2012; 7:e31030. [PMID: 22363541 PMCID: PMC3280346 DOI: 10.1371/journal.pone.0031030] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2011] [Accepted: 12/30/2011] [Indexed: 01/20/2023] Open
Abstract
Herein, we report the biochemical and functional characterization of a novel Ca2+-activated nucleoside diphosphatase (apyrase), CApy, of the intracellular gut pathogen Cryptosporidium. The purified recombinant CApy protein displayed activity, substrate specificity and calcium dependency strikingly similar to the previously described human apyrase, SCAN-1 (soluble calcium-activated nucleotidase 1). CApy was found to be expressed in both Cryptosporidium parvum oocysts and sporozoites, and displayed a polar localization in the latter, suggesting a possible co-localization with the apical complex of the parasite. In vitro binding experiments revealed that CApy interacts with the host cell in a dose-dependent fashion, implying the presence of an interacting partner on the surface of the host cell. Antibodies directed against CApy block Cryptosporidium parvum sporozoite invasion of HCT-8 cells, suggesting that CApy may play an active role during the early stages of parasite invasion. Sequence analyses revealed that the capy gene shares a high degree of homology with apyrases identified in other organisms, including parasites, insects and humans. Phylogenetic analysis argues that the capy gene is most likely an ancestral feature that has been lost from most apicomplexan genomes except Cryptosporidium, Neospora and Toxoplasma.
Collapse
Affiliation(s)
- Patricio A. Manque
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, Virginia, United States of America
- Center for the Study of Biological Complexity, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Ute Woehlbier
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, Virginia, United States of America
- Center for the Study of Biological Complexity, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Ana M. Lara
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, Virginia, United States of America
- Center for the Study of Biological Complexity, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Fernando Tenjo
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, Virginia, United States of America
- Center for the Study of Biological Complexity, Virginia Commonwealth University, Richmond, Virginia, United States of America
- Department of Biology, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - João M. Alves
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, Virginia, United States of America
- Center for the Study of Biological Complexity, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Gregory A. Buck
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, Virginia, United States of America
- Center for the Study of Biological Complexity, Virginia Commonwealth University, Richmond, Virginia, United States of America
- * E-mail:
| |
Collapse
|
21
|
Leishmania amazonensis: characterization of an ecto-3'-nucleotidase activity and its possible role in virulence. Exp Parasitol 2011; 129:277-83. [PMID: 21827749 DOI: 10.1016/j.exppara.2011.07.014] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2010] [Revised: 07/07/2011] [Accepted: 07/14/2011] [Indexed: 11/22/2022]
Abstract
Ecto-3'-nucleotidase/nuclease (3'NT/NU) is a membrane-bound enzyme that plays a key role in the nutrition of Leishmania sp. protozoan parasites. This enzyme generates nucleosides via hydrolyzes of 3'mononucleotides and nucleic acids, which enter the cell by specific transporters. In this work, we identify and characterize Leishmania amazonensis ecto-3'-nucleotidase activity (La3'-nucleotidase), report ammonium tetrathiomolybdate (TTM) as a novel La3'-nucleotidase inhibitor and approach the possible involvement of ecto-3'-nucleotidase in cellular adhesion. La3'-nucleotidase presented characteristics similar to those reported for the class I single-strand nuclease family; a molecular weight of approximately 40 kDa and optimum activity in an alkaline pH range were observed. Although it is conserved among the genus, La3'-nucleotidase displays different kinetic properties; it can be inhibited by vanadate, molybdate and Cu(2+) ions. Interestingly, ecto-3'-nucleotidase activity is 60-fold higher than that of ecto-5'-nucleotidase in L. amazonensis. Additionally, ecto-3'-nucleotidase activity is two-fold higher in virulent L. amazonensis cells than in avirulent ones. Notably, macrophage-parasite attachment/invasion was increased by 400% in the presence of adenosine 3'-monophosphate (3'AMP); however, this effect was reverted by TTM treatment. We believe that La3'-nucleotidase may play a significant role in the generation of adenosine, which may contribute to mammalian host immune response impairment and establishment of infection.
Collapse
|
22
|
Characterization of an ecto-5'-nucleotidase activity present on the cell surface of Tritrichomonas foetus. Vet Parasitol 2011; 179:50-6. [PMID: 21367528 DOI: 10.1016/j.vetpar.2011.01.061] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2010] [Revised: 01/24/2011] [Accepted: 01/30/2011] [Indexed: 12/20/2022]
Abstract
Tritrichomonas foetus is the causative agent of sexually transmitted trichomoniasis in cattle. In females, the infection can be associated with infertility, vaginitis, endometritis, abortion or pyometra, leading to significant economic losses in cattle raising. T. foetus is devoid of the ability to synthesize purine nucleotides de novo, depending instead on salvaging purines from the host environment. Ecto-5'-nucleotidase catalyzes the final step of extracellular nucleotide degradation, the hydrolysis of nucleoside 5'-monophosphates to the corresponding nucleosides and Pi. In this work we show that living, intact cells of T. foetus were able to hydrolyze 5'AMP at a rate of 12.57 ± 1.23 nmol Pi × h(-1) × 10(-7) cells at pH 7.2 and the 5'AMP hydrolysis is due to a plasma membrane-bound ecto-enzyme activity. The apparent K(m) for 5'AMP was 0.49 ± 0.06 mM. In addition to 5'AMP, the enzyme hydrolyzed all substrate monophosphates tested except 3'AMP. No divalent metals or metal chelators were able to modulate enzyme activity. Phosphatase inhibitors did not have an effect on ecto-5'-nucleotidase activity while ammonium molybdate did inhibit the activity in a dose dependent manner. The presence of adenosine in the culture medium negatively modulated the enzyme. These results indicate the existence of an ecto-5'-nucleotidase that may play a role in the salvage of purines.
Collapse
|
23
|
Vieira DP, Paletta-Silva R, Saraiva EM, Lopes AH, Meyer-Fernandes JR. Leishmania chagasi: An ecto-3′-nucleotidase activity modulated by inorganic phosphate and its possible involvement in parasite–macrophage interaction. Exp Parasitol 2011; 127:702-7. [DOI: 10.1016/j.exppara.2010.11.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2010] [Revised: 09/03/2010] [Accepted: 11/10/2010] [Indexed: 01/22/2023]
|
24
|
de Souza MC, de Assis EA, Gomes RS, Marques da Silva EDA, Melo MN, Fietto JLR, Afonso LCC. The influence of ecto-nucleotidases on Leishmania amazonensis infection and immune response in C57B/6 mice. Acta Trop 2010; 115:262-9. [PMID: 20399737 DOI: 10.1016/j.actatropica.2010.04.007] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2009] [Revised: 03/30/2010] [Accepted: 04/12/2010] [Indexed: 12/20/2022]
Abstract
Previous results from our laboratory and from the literature have implicated the expression of ecto-nucleotidases in the establishment of Leishmania infection. In the present study we evaluated the correlation between ecto-nucleotidasic activity and the infectivity of L. amazonensis promastigotes that were kept in culture for short or extended numbers of passages, a condition that is known to decrease parasite infectivity. We also analyzed the immune response associated with the infection by these parasites. As expected, we found that long-term cultured parasites induce the development of smaller lesions than the short-term cultured counterparts. Interestingly, long-term cultured parasites presented reduced ecto-nucleotidasic activity. In addition, cells recovered from animals infected with long-term cultured parasites produced higher amounts of IFN-gamma and have smaller parasite load, after 8weeks of infection. Furthermore, after 1week of infection, there is increased expression of the chemokine CCL2 mRNA in animals infected with short-term cultured parasites. Finally, infection of peritoneal macrophages by these parasites also shows marked differences. Thus, while short-term cultured parasites are able to infect a greater proportion of macrophages, cells infected by long-term cultured parasites express higher amounts of CXCL10 mRNA, which may activate these cells to kill the parasites. We suggest that the enzymes involved in metabolism of extracellular nucleotides may have an important role in infection by L. amazonensis, by acting directly in its adhesion to target cells and by modulating host cell chemokine production.
Collapse
|
25
|
Russo-Abrahão T, Cosentino-Gomes D, Daflon-Yunes N, Meyer-Fernandes JR. Giardia duodenalis: biochemical characterization of an ecto-5'-nucleotidase activity. Exp Parasitol 2010; 127:66-71. [PMID: 20599434 DOI: 10.1016/j.exppara.2010.06.028] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2010] [Revised: 06/24/2010] [Accepted: 06/28/2010] [Indexed: 12/01/2022]
Abstract
In this work, we biochemically characterized the ecto-5'-nucleotidase activity present on the surface of the living trophozoites of Giardia duodenalis. Two sequences of the 5'-nucleotidase family protein were identified in the Giardia genome. Anti-mouse CD73 showed a high reaction with the cell surface of parasites. At pH 7.2, intact cells were able to hydrolyze 5'-AMP at a rate of 10.66 ± 0.92 nmol Pi/h/10(7) cells. AMP is the best substrate for this enzyme, and the optimum pH lies in the acidic range. No divalent cations had an effect on the ecto-5'-nucleotidase activity, and the same was seen for NaF, an acid phosphatase inhibitor. Ammonium molybdate, a potent inhibitor of nucleotidases, inhibited the enzyme activity in a dose-dependent manner. The presence of adenosine in the culture medium negatively modulated the enzyme. The results indicate the existence of an ecto-5'-nucleotidase that could play a role in the salvage of purines.
Collapse
Affiliation(s)
- Thais Russo-Abrahão
- Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, CCS, Bloco H, Cidade Universitária, Ilha do Fundão, 21941-590 Rio de Janeiro, RJ, Brazil
| | | | | | | |
Collapse
|
26
|
Trypanosoma rangeli: Differential expression of ecto-phosphatase activities in response to inorganic phosphate starvation. Exp Parasitol 2010; 124:386-93. [DOI: 10.1016/j.exppara.2009.12.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2009] [Revised: 11/16/2009] [Accepted: 12/12/2009] [Indexed: 01/25/2023]
|
27
|
Giordani RB, Weizenmann M, Rosemberg DB, De Carli GA, Bogo MR, Zuanazzi JAS, Tasca T. Trichomonas vaginalis nucleoside triphosphate diphosphohydrolase and ecto-5'-nucleotidase activities are inhibited by lycorine and candimine. Parasitol Int 2010; 59:226-31. [PMID: 20176129 DOI: 10.1016/j.parint.2010.02.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2009] [Revised: 02/03/2010] [Accepted: 02/08/2010] [Indexed: 12/19/2022]
Abstract
Drug discovery from plants plays an important role in the pharmaceutical therapy field and the alkaloids lycorine and candimine are candidates for this purpose. Trichomonas vaginalis is a parasite that infects the human urogenital tract and causes trichomonosis, the most prevalent non-viral sexually transmitted disease. Ecto-nucleotidases including nucleoside triphosphate diphosphohydrolase (NTPDase) members, which hydrolyses extracellular ATP (adenosine triphosphate) and ADP (adenosine diphosphate), and ecto-5'-nucleotidase, which hydrolyses AMP (adenosine monophosphate), have been characterized in T. vaginalis. Because purine nucleotides are released from cells under physiological and stress conditions, the goal of this study was to evaluate the effect of lycorine and candimine on T. vaginalis NTPDase and ecto-5'-nculeotidase activities. The alkaloids (50 to 250microM) were tested against both long-term-grown and clinical isolates. Specific enzymatic activities were expressed as nmolPi released/min/mg protein. The effect of both alkaloids at NTPDase A and B expression levels was investigated. When the alkaloids were added directly to the reaction mixture, no effect on ATP, ADP or AMP hydrolysis was observed. NTPDase and ecto-5'-nucleotidase activities were strongly inhibited by candimine and lycorine on 24h-treated parasites. This effect was abolished when 24-treated parasites were innoculated in a culture medium without alkaloid. Transcript levels of NTPDase A or B were not altered by the alkaloids. Considering the cytotoxic and proinflammatory roles of ATP besides the anti-inflammatory effects of adenosine, the regulation of extracellular nucleotide levels could be relevant in increasing susceptibility of T. vaginalis to host immune response in the presence of lycorine and candimine.
Collapse
Affiliation(s)
- Raquel B Giordani
- Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Av. Ipiranga 2752, Porto Alegre, RS, Brazil
| | | | | | | | | | | | | |
Collapse
|
28
|
Expression profile of rat hippocampal neurons treated with the neuroprotective compound 2,4-dinitrophenol: up-regulation of cAMP signaling genes. Neurotox Res 2009; 18:112-23. [PMID: 19949915 DOI: 10.1007/s12640-009-9133-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2009] [Revised: 10/22/2009] [Accepted: 11/03/2009] [Indexed: 12/29/2022]
Abstract
2,4-Dinitrophenol (DNP) is classically known as a mitochondrial uncoupler and, at high concentrations, is toxic to a variety of cells. However, it has recently been shown that, at subtoxic concentrations, DNP protects neurons against a variety of insults and promotes neuronal differentiation and neuritogenesis. The molecular and cellular mechanisms underlying the beneficial neuroactive properties of DNP are still largely unknown. We have now used DNA microarray analysis to investigate changes in gene expression in rat hippocampal neurons in culture treated with low micromolar concentrations of DNP. Under conditions that did not affect neuronal viability, high-energy phosphate levels or mitochondrial oxygen consumption, DNP induced up-regulation of 275 genes and down-regulation of 231 genes. Significantly, several up-regulated genes were linked to intracellular cAMP signaling, known to be involved in neurite outgrowth, synaptic plasticity, and neuronal survival. Differential expression of specific genes was validated by quantitative RT-PCR using independent samples. Results shed light on molecular mechanisms underlying neuroprotection by DNP and point to possible targets for development of novel therapeutics for neurodegenerative disorders.
Collapse
|
29
|
Trypanosoma rangeli: A possible role for ecto-phosphatase activity on cell proliferation. Exp Parasitol 2009; 122:242-6. [DOI: 10.1016/j.exppara.2009.03.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2008] [Revised: 01/06/2009] [Accepted: 03/06/2009] [Indexed: 12/16/2022]
|
30
|
|
31
|
Abstract
Purines appear to be the most primitive and widespread chemical messengers in the animal and plant kingdoms. The evidence for purinergic signalling in plants, invertebrates and lower vertebrates is reviewed. Much is based on pharmacological studies, but important recent studies have utilized the techniques of molecular biology and receptors have been cloned and characterized in primitive invertebrates, including the social amoeba Dictyostelium and the platyhelminth Schistosoma, as well as the green algae Ostreococcus, which resemble P2X receptors identified in mammals. This suggests that contrary to earlier speculations, P2X ion channel receptors appeared early in evolution, while G protein-coupled P1 and P2Y receptors were introduced either at the same time or perhaps even later. The absence of gene coding for P2X receptors in some animal groups [e.g. in some insects, roundworms (Caenorhabditis elegans) and the plant Arabidopsis] in contrast to the potent pharmacological actions of nucleotides in the same species, suggests that novel receptors are still to be discovered.
Collapse
Affiliation(s)
- G Burnstock
- Autonomic Neuroscience Centre, Royal Free and University College Medical School, London, UK.
| | | |
Collapse
|
32
|
Santos RF, Pôssa MAS, Bastos MS, Guedes PMM, Almeida MR, DeMarco R, Verjovski-Almeida S, Bahia MT, Fietto JLR. Influence of Ecto-nucleoside triphosphate diphosphohydrolase activity on Trypanosoma cruzi infectivity and virulence. PLoS Negl Trop Dis 2009; 3:e387. [PMID: 19255624 PMCID: PMC2644763 DOI: 10.1371/journal.pntd.0000387] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2008] [Accepted: 02/04/2009] [Indexed: 01/09/2023] Open
Abstract
Background The protozoan Trypanosoma cruzi is the causative agent of Chagas disease. There are no vaccines or effective treatment, especially in the chronic phase when most patients are diagnosed. There is a clear necessity to develop new drugs and strategies for the control and treatment of Chagas disease. Recent papers have suggested the ecto-nucleotidases (from CD39 family) from pathogenic agents as important virulence factors. In this study we evaluated the influence of Ecto-Nucleoside-Triphosphate-Diphosphohydrolase (Ecto-NTPDase) activity on infectivity and virulence of T. cruzi using both in vivo and in vitro models. Methodology/Principal Findings We followed Ecto-NTPDase activities of Y strain infective forms (trypomastigotes) obtained during sequential sub-cultivation in mammalian cells. ATPase/ADPase activity ratios of cell-derived trypomastigotes decreased 3- to 6-fold and infectivity was substantially reduced during sequential sub-cultivation. Surprisingly, at third to fourth passages most of the cell-derived trypomastigotes could not penetrate mammalian cells and had differentiated into amastigote-like parasites that exhibited 3- to 4-fold lower levels of Ecto-NTPDase activities. To evidence the participation of T. cruzi Ecto-NTPDase1 in the infective process, we evaluated the effect of known Ecto-ATPDase inhibitors (ARL 67156, Gadolinium and Suramin), or anti-NTPDase-1 polyclonal antiserum on ATPase and ADPase hydrolytic activities in recombinant T. cruzi NTPDase-1 and in live trypomastigotes. All tests showed a partial inhibition of Ecto-ATPDase activities and a marked inhibition of trypomastigotes infectivity. Mice infections with Ecto-NTPDase-inhibited trypomastigotes produced lower levels of parasitemia and higher host survival than with non-inhibited control parasites. Conclusions/Significance Our results suggest that Ecto-ATPDases act as facilitators of infection and virulence in vitro and in vivo and emerge as target candidates in chemotherapy of Chagas disease. The protozoan Trypanosoma cruzi is the causative agent of Chagas disease, an endemic zoonosis present in some countries of South and Central Americas. The World Health Organization estimates that 100 million people are at risk of acquiring this disease. The infection affects mainly muscle tissues in the heart and digestive tract. There are no vaccines or effective treatment, especially in the chronic phase when most patients are diagnosed, which makes a strong case for the development of new drugs to treat the disease. In this work we evaluate a family of proteins called Ecto-Nucleoside-Triphosphate-Diphosphohydrolase (Ecto-NTPDase) as new chemotherapy target to block T. cruzi infection in mammalian cells and in mice. We have used inhibitors and antibodies against this protein and demonstrated that T. cruzi Ecto-NTPDases act as facilitators of infection in mammalian cells and virulence factors in mice model. Two of the drugs used in this study (Suramin and Gadolinium) are currently used for other diseases in humans, supporting the possibility of their use in the treatment of Chagas disease.
Collapse
Affiliation(s)
- Ramon F. Santos
- Núcleo de Pesquisa em Ciências Biológicas Universidade Federal de Ouro Preto, Minas Gerais, Brazil
| | - Marcela A. S. Pôssa
- Núcleo de Pesquisa em Ciências Biológicas Universidade Federal de Ouro Preto, Minas Gerais, Brazil
| | - Matheus S. Bastos
- Núcleo de Pesquisa em Ciências Biológicas Universidade Federal de Ouro Preto, Minas Gerais, Brazil
| | - Paulo M. M. Guedes
- Núcleo de Pesquisa em Ciências Biológicas Universidade Federal de Ouro Preto, Minas Gerais, Brazil
| | - Márcia R. Almeida
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Viçosa, Minas Gerais, Brazil
| | - Ricardo DeMarco
- Departamento de Física e Informática, Instituto de Física de São Carlos, Universidade de São Paulo, São Paulo, Brazil
| | | | - Maria T. Bahia
- Núcleo de Pesquisa em Ciências Biológicas Universidade Federal de Ouro Preto, Minas Gerais, Brazil
| | - Juliana L. R. Fietto
- Núcleo de Pesquisa em Ciências Biológicas Universidade Federal de Ouro Preto, Minas Gerais, Brazil
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Viçosa, Minas Gerais, Brazil
- * E-mail:
| |
Collapse
|
33
|
Coutinho-Silva R, Corrêa G, Sater AA, Ojcius DM. The P2X(7) receptor and intracellular pathogens: a continuing struggle. Purinergic Signal 2009; 5:197-204. [PMID: 19214779 DOI: 10.1007/s11302-009-9130-x] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2008] [Accepted: 09/16/2008] [Indexed: 02/07/2023] Open
Abstract
The purinergic receptor, P2X(7), has recently emerged as an important component of the innate immune response against microbial infections. Ligation of P2X(7) by ATP can stimulate inflammasome activation and secretion of proinflammatory cytokines, but it can also lead directly to killing of intracellular pathogens in infected macrophages and epithelial cells. Thus, while some intracellular pathogens evade host defense responses by modulating with membrane trafficking or cell signaling in the infected cells, the host cells have also developed mechanisms for inhibiting infection. This review will focus on the effects of P2X(7) on control of infection by intracellular pathogens, microbial virulence factors that interfere with P2X(7) activity, and recent evidence linking polymorphisms in human P2X(7) with susceptibility to infection.
Collapse
Affiliation(s)
- Robson Coutinho-Silva
- Immunobiology Program, Biophysics Institute Carlos Chagas Filho, Federal University of Rio de Janeiro, 21941-902, RJ, Brazil,
| | | | | | | |
Collapse
|
34
|
Possible effects of microbial ecto-nucleoside triphosphate diphosphohydrolases on host-pathogen interactions. Microbiol Mol Biol Rev 2009; 72:765-81, Table of Contents. [PMID: 19052327 DOI: 10.1128/mmbr.00013-08] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
In humans, purinergic signaling plays an important role in the modulation of immune responses through specific receptors that recognize nucleoside tri- and diphosphates as signaling molecules. Ecto-nucleoside triphosphate diphosphohydrolases (ecto-NTPDases) have important roles in the regulation of purinergic signaling by controlling levels of extracellular nucleotides. This process is key to pathophysiological protective responses such as hemostasis and inflammation. Ecto-NTPDases are found in all higher eukaryotes, and recently it has become apparent that a number of important parasitic pathogens of humans express surface-located NTPDases that have been linked to virulence. For those parasites that are purine auxotrophs, these enzymes may play an important role in purine scavenging, although they may also influence the host response to infection. Although ecto-NTPDases are rare in bacteria, expression of a secreted NTPDase in Legionella pneumophila was recently described. This ecto-enzyme enhances intracellular growth of the bacterium and potentially affects virulence. This discovery represents an important advance in the understanding of the contribution of other microbial NTPDases to host-pathogen interactions. Here we review other progress made to date in the characterization of ecto-NTPDases from microbial pathogens, how they differ from mammalian enzymes, and their association with organism viability and virulence. In addition, we postulate how ecto-NTPDases may contribute to the host-pathogen interaction by reviewing the effect of selected microbial pathogens on purinergic signaling. Finally, we raise the possibility of targeting ecto-NTPDases in the development of novel anti-infective agents based on potential structural and clear enzymatic differences from the mammalian ecto-NTPDases.
Collapse
|
35
|
Leite MS, Thomaz R, Oliveira JHM, Oliveira PL, Meyer-Fernandes JR. Trypanosoma brucei brucei: effects of ferrous iron and heme on ecto-nucleoside triphosphate diphosphohydrolase activity. Exp Parasitol 2008; 121:137-43. [PMID: 19027737 DOI: 10.1016/j.exppara.2008.10.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2008] [Revised: 10/09/2008] [Accepted: 10/24/2008] [Indexed: 01/17/2023]
Abstract
Trypanosoma brucei brucei is the causative agent of animal African trypanosomiasis, also called nagana. Procyclic vector form resides in the midgut of the tsetse fly, which feeds exclusively on blood. Hemoglobin digestion occurs in the midgut resulting in an intense release of free heme. In the present study we show that the magnesium-dependent ecto-nucleoside triphosphate diphosphohydrolase (E-NTPDase) activity of procyclic T. brucei brucei is inhibited by ferrous iron and heme. The inhibition of E-NTPDase activity by ferrous iron, but not by heme, was prevented by pre-incubation of cells with catalase. However, antioxidants that permeate cells, such as PEG-catalase and N-acetyl-cysteine prevented the inhibition of E-NTPDase by heme. Ferrous iron was able to induce an increase in lipid peroxidation, while heme did not. Therefore, both ferrous iron and heme can inhibit E-NTPDase activity of T. brucei brucei by means of formation of reactive oxygen species, but apparently acting through distinct mechanisms.
Collapse
Affiliation(s)
- Milane S Leite
- Laboratório de Bioquímica Celular, Instituto de Bioquímica Médica, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, UFRJ, Cidade Universitária, Ilha do Fundão, Rio de Janeiro, Brazil
| | | | | | | | | |
Collapse
|
36
|
Fonseca-de-Souza AL, Dick CF, Dos Santos ALA, Meyer-Fernandes JR. A Mg(2+)-dependent ecto-phosphatase activity on the external surface of Trypanosoma rangeli modulated by exogenous inorganic phosphate. Acta Trop 2008; 107:153-8. [PMID: 18599005 DOI: 10.1016/j.actatropica.2008.05.017] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2008] [Revised: 05/16/2008] [Accepted: 05/22/2008] [Indexed: 11/30/2022]
Abstract
In this work, we characterized a Mg(2+)-dependent ecto-phosphatase activity present in live Trypanosoma rangeli epimastigotes. This enzyme showed capacity to hydrolyze the artificial substrate for phosphatases, p-nitrophenylphosphate (p-NPP). At saturating concentration of p-NPP, half-maximal p-NPP hydrolysis was obtained with 0.23mM Mg(2+). Ca(2+) had no effect on the basal phosphatase activity, could not substitute Mg(2+) as an activator and in contrast inhibited the p-NPP hydrolysis stimulated by Mg(2+). The dependence on p-NPP concentration showed a normal Michaelis-Menten kinetics for this phosphatase activity with values of V(max) of 8.94+/-0.36 nmol p-NP x h(-1) x 10(-7) cells and apparent K(m) of 1.04+/-0.16 mM p-NPP. Mg(2+)-dependent ecto-phosphatase activity was stimulated by the alkaline pH range. Experiments using inhibitors, such as, sodium fluoride, sodium orthovanadate and ammonium molybdate, inhibited the Mg(2+)-dependent ecto-phosphatase activity. Inorganic phosphate (Pi), a product of phosphatases, inhibited reversibly in 50% this activity. Okadaic acid and microcystin-LR, specific phosphoserine/threonine phosphatase inhibitors, inhibited significantly the Mg(2+)-dependent ecto-phosphatase activity. In addition, this phosphatase activity was able to recognize as substrates only o-phosphoserine and o-phosphothreonine, while o-phosphotyrosine was not a good substrate for this phosphatase. Epimastigote forms of T. rangeli exhibit a typical growth curve, achieving the stationary phase around fifth or sixth day and the Mg(2+)-dependent ecto-phosphatase activity decreased around 10-fold with the cell growth progression. Cells maintained at Pi-deprived medium (2 mM Pi) present Mg(2+)-dependent ecto-phosphatase activity approximately threefold higher than that maintained at Pi-supplemented medium (50 mM Pi).
Collapse
Affiliation(s)
- André L Fonseca-de-Souza
- Laboratório de Bioquímica Celular, Instituto de Bioquímica Medica, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, UFRJ, Cidade Universitária, Ilha do Fundão, Rio de Janeiro, RJ, Brazil
| | | | | | | |
Collapse
|
37
|
Hopfe M, Henrich B. OppA, the ecto-ATPase of Mycoplasma hominis induces ATP release and cell death in HeLa cells. BMC Microbiol 2008; 8:55. [PMID: 18394151 PMCID: PMC2323007 DOI: 10.1186/1471-2180-8-55] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2007] [Accepted: 04/04/2008] [Indexed: 12/21/2022] Open
Abstract
Background In the facultative human pathogen Mycoplasma hominis, which belongs to the cell wall-less Mollicutes, the surface-localised substrate-binding domain OppA of the oligopeptide permease was characterised as the main ecto-ATPase. Results With the idea that extra-cellular ATP could only be provided by the infected host cells we analysed the ATP release of HeLa cells after incubation with different preparations of Mycoplasma hominis: intact bacterial cells, the membrane fraction with or without OppA, recombinant OppA as well as an ATPase-deficient OppA mutant. Release of ATP into the supernatant of the HeLa cells was primarily determined in all samples lacking ecto-ATPase activity of OppA. In the presence of the ATPase inhibitor DIDS the amount of ATP in the OppA-containing samples increased. This increase was maximal after incubation with fractions containing OppA protein indicating that OppA is involved in ATP release and subsequent hydrolysis. Real-time PCR analyses revealed that the proliferation of HeLa cells is reduced after infection with M. hominis and flow cytometry experiments established that OppA induces greater apoptosis than necrosis of HeLa cells whereas the preservation of ecto-ATPase activity of OppA induces apoptosis. Conclusion The OppA induced ATP-release and -hydrolysis induced cell death of M. hominis infected HeLa cells was predominantly due to apoptosis rather than necrosis. Future work will elucidate whether the induction of apoptosis is indispensable for survival of these non-invasive pathogen.
Collapse
Affiliation(s)
- Miriam Hopfe
- Institute of Medical Microbiology and Center for Biological Medical Research, Heinrich-Heine-University, Moorenstrasse 5, 40225 Duesseldorf, Germany.
| | | |
Collapse
|
38
|
Sansom FM, Riedmaier P, Newton HJ, Dunstone MA, Müller CE, Stephan H, Byres E, Beddoe T, Rossjohn J, Cowan PJ, d'Apice AJF, Robson SC, Hartland EL. Enzymatic properties of an ecto-nucleoside triphosphate diphosphohydrolase from Legionella pneumophila: substrate specificity and requirement for virulence. J Biol Chem 2008; 283:12909-18. [PMID: 18337253 DOI: 10.1074/jbc.m801006200] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Legionella pneumophila is the predominant cause of Legionnaires disease, a severe and potentially fatal form of pneumonia. Recently, we identified an ecto-nucleoside triphosphate diphosphohydrolase (NTPDase) from L. pneumophila, termed Lpg1905, which enhances intracellular replication of L. pneumophila in eukaryotic cells. Lpg1905 is the first prokaryotic member of the CD39/NTPDase1 family of enzymes, which are characterized by the presence of five apyrase conserved regions and the ability to hydrolyze nucleoside tri- and diphosphates. Here we examined the substrate specificity of Lpg1905 and showed that apart from ATP and ADP, the enzyme catalyzed the hydrolysis of GTP and GDP but had limited activity against CTP, CDP, UTP, and UDP. Based on amino acid residues conserved in the apyrase conserved regions of eukaryotic NTPDases, we generated five site-directed mutants, Lpg1905E159A, R122A, N168A, Q193A, and W384A. Although the mutations E159A, R122A, Q193A, and W384A abrogated activity completely, N168A resulted in decreased activity caused by reduced affinity for nucleotides. When introduced into the lpg1905 mutant strain of L. pneumophila, only N168A partially restored the ability of L. pneumophila to replicate in THP-1 macrophages. Following intratracheal inoculation of A/J mice, none of the Lpg1905 mutants was able to restore virulence to an lpg1905 mutant during lung infection, thereby demonstrating the importance of NTPDase activity to L. pneumophila infection. Overall, the kinetic studies undertaken here demonstrated important differences to mammalian NTPDases and different sensitivities to NTPDase inhibitors that may reflect underlying structural variations.
Collapse
Affiliation(s)
- Fiona M Sansom
- Department of Microbiology and Immunology and Medicine, University of Melbourne, Parkville, Victoria 3010, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
de Sá Pinheiro AA, Cosentino-Gomes D, Lanfredi-Rangel A, Ferraro RB, De Souza W, Meyer-Fernandes JR. Giardia lamblia: biochemical characterization of an ecto-ATPase activity. Exp Parasitol 2008; 119:279-84. [PMID: 18413274 DOI: 10.1016/j.exppara.2008.02.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2007] [Revised: 02/19/2008] [Accepted: 02/27/2008] [Indexed: 10/22/2022]
Abstract
In this work, we describe the ability of living trophozoites of Giardia lamblia to hydrolyze extracellular ATP. In the absence of any divalent cations, a low level of ATP hydrolysis was observed (0.78+/-0.08 nmol Pi x h(-1)x10(-6) cells). The ATP hydrolysis was stimulated by MgCl(2) in a dose-dependent manner. Half maximum stimulation of ATP hydrolysis was obtained with 0.53+/-0.07 mM. ATP was the best substrate for this enzyme. The apparent K(m) for ATP was 0.21+/-0.04 mM. In the pH range from 5.6 to 8.4, in which cells were viable, this activity was not modified. The Mg(2+)-stimulated ATPase activity was insensitive to inhibitors of intracellular ATPases such as vanadate (P-ATPases), bafilomycin A(1) (V-ATPases), and oligomycin (F-ATPases). Inhibitors of acid phosphatases (molybdate, vanadate and fluoride) or alkaline phosphatases (levamizole) had no effect on the ecto-ATPase activity. The impermeant agent DIDS and suramin, an antagonist of P2 purinoreceptors and inhibitor of some ecto-ATPases, decreased the enzymatic activity in a dose-dependent manner, confirming the external localization of this enzyme. Besides ATP, trophozoites were also able to hydrolyse ADP and 5 AMP, but the hydrolysis of these nucleotides was not stimulated by MgCl(2). Our results are indicative of the occurrence of a G. lamblia ecto-ATPase activity that may have a role in parasite physiology.
Collapse
Affiliation(s)
- Ana Acacia de Sá Pinheiro
- Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, Cidade Universitária, Ilha do Fundão, 21941-590, Rio de Janeiro, RJ, Brazil
| | | | | | | | | | | |
Collapse
|
40
|
Líbano-Soares JD, Gomes-Quintana E, Melo HK, Queiroz-Madeira EP, Roubach RG, Lopes AG, Caruso-Neves C. B2 receptor-mediated dual effect of bradykinin on proximal tubule Na+ -ATPase: sequential activation of the phosphoinositide-specific phospholipase Cbeta/protein kinase C and Ca2+ -independent phospholipase A2 pathways. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2008; 1778:1316-23. [PMID: 18291093 DOI: 10.1016/j.bbamem.2008.01.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2007] [Revised: 01/10/2008] [Accepted: 01/24/2008] [Indexed: 11/16/2022]
Abstract
In a previous paper we showed that bradykinin (BK), interacting with its B2 receptor, inhibits proximal tubule Na+ -ATPase activity but does not change (Na+ +K+)ATPase activity. The aim of this paper was to investigate the molecular mechanisms involved in B2-mediated modulation of proximal tubule Na+ -ATPase by BK. To abolish B1 receptor-mediated effects, all experiments were carried out in the presence of (Arg-Pro-Pro-Gly-Phe-Ser-Pro-Leu), des-Arg9-[Leu8]-BK (DALBK), a specific antagonist of B1 receptor. A dual effect on the Na+ -ATPase activity through the B2 receptor was found: short incubation times (1-10 min) stimulate the enzyme activity; long incubation times (10-60 min) inhibit it. The stimulatory effect of BK is mediated by activation of phosphoinositide-specific phospholipase C beta (PI-PLCbeta)/protein kinase C (PKC); its inhibitory action is mediated by Ca2+ -independent phospholipase A2 (iPLA2). Prior activation of the PI-PLCbeta/PKC pathway is required to activate the iPLA2-mediated inhibitory phase. These results reveal a new mechanism by which BK can modulate renal sodium excretion: coupling between B2 receptor and activation of membrane-associated iPLA2.
Collapse
Affiliation(s)
- J D Líbano-Soares
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | | | | | | | | | | | | |
Collapse
|
41
|
Peres-Sampaio CE, de Almeida-Amaral EE, Giarola NLL, Meyer-Fernandes JR. Leishmania amazonensis: effects of heat shock on ecto-ATPase activity. Exp Parasitol 2008; 119:135-43. [PMID: 18295760 DOI: 10.1016/j.exppara.2008.01.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2007] [Revised: 11/30/2007] [Accepted: 01/11/2008] [Indexed: 10/22/2022]
Abstract
In this work we demonstrated that promastigotes of Leishmania amazonensis exhibit an Mg-dependent ecto-ATPase activity, which is stimulated by heat shock. The Mg-dependent ATPase activity of cells grown at 22 and 28 degrees C was 41.0+/-5.2 nmol Pi/h x 10(7)cells and 184.2+/-21.0 nmol Pi/h x 10(7)cells, respectively. When both promastigotes were pre-incubated at 37 degrees C for 2h, the ATPase activity of cells grown at 22 degrees C was increased to 136.4+/-10.6 nmol Pi/h x 10(7) whereas that the ATPase activity of cells grown at 28 degrees C was not modified by the heat shock (189.8+/-10.3 nmol Pi/h x 10(7)cells). It was observed that Km of the enzyme from cells grown at 22 degrees C (Km=980.2+/-88.6 microM) was the same to the enzyme from cells grown at 28 degrees C (Km=901.4+/-91.9 microM). In addition, DIDS (4,4'-diisothiocyanatostilbene 2,2'-disulfonic acid) and suramin, two inhibitors of ecto-ATPases, also inhibited similarly the ATPase activities from promastigotes grown at 22 and 28 degrees C. We also observed that cells grown at 22 degrees C exhibit the same ecto-phosphatase and ecto 3'- and 5'-nucleotidase activities than cells grown at 28 degrees C. Interestingly, cycloheximide, an inhibitor of protein synthesis, suppressed the heat-shock effect on ecto-ATPase activity of cells grown at 22 degrees C were exposed at 37 degrees C for 2h. A comparison between the stimulation of the Mg-dependent ecto-ATPase activity of virulent and avirulent promastigotes by the heat shock showed that avirulent promastigotes had a higher stimulation than virulent promastigotes after heat stress.
Collapse
Affiliation(s)
- Carlos Eduardo Peres-Sampaio
- Faculdade de Enfermagem-FENF, Centro Biomédico, Universidade do Estado do Rio de Janeiro-UERJ, Av. 28 de setembro 87, Vila Isabel, 20551-030, Rio de Janeiro, RJ, Brazil
| | | | | | | |
Collapse
|