1
|
De Lira Silva NS, Schenkman S. Biogenesis of EVs in Trypanosomatids. CURRENT TOPICS IN MEMBRANES 2024; 94:49-83. [PMID: 39370213 DOI: 10.1016/bs.ctm.2024.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Trypanosomes are protozoan parasites responsible for human diseases such as Chagas disease, African trypanosomiasis, and leishmaniasis. These organisms' growth in various environments and exhibit multiple morphological stages, while adapting their surface components. They acquire and release materials extensively to get nutrients and manage interactions with the extracellular environment. They acquire and utilize proteins, lipids, and carbohydrates for growth via using membrane transport and endocytosis. Endocytosis takes place through distinct membrane areas known as the flagellar pocket and cytostome, depending on the parasite species and its developmental stage. Some forms establish a complex endocytic system to either store or break down the absorbed materials. In contrast, membrane transport facilitates the uptake of small molecules like amino acids, carbohydrates, and iron via particular receptors on the plasma membrane. Concurrently, these parasites secrete various molecules such as proteins, enzymes, nucleic acids, and glycoconjugates either in soluble form or enclosed in extracellular vesicles, which significantly contribute to their parasitic behavior. These activities require exocytosis through a secretory pathway in certain membrane domains such as the flagellum, flagellar pocket, and plasma membrane, which are controlled at various developmental stages. The main features of the endocytic and exocytic mechanisms, as well as the organelles involved, are discussed in this chapter along with their connection to the formation of exosomes and extracellular vesicles in the Tritryp species.
Collapse
Affiliation(s)
- Nadjania Saraiva De Lira Silva
- Department of Microbiology, Immunology and Parasitology, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Sergio Schenkman
- Department of Microbiology, Immunology and Parasitology, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brazil; Antimicrobial Resistance Institute of São Paulo (Aries), São Paulo, Brazil.
| |
Collapse
|
2
|
Etheridge RD. Protozoan phagotrophy from predators to parasites: An overview of the enigmatic cytostome-cytopharynx complex of Trypanosoma cruzi. J Eukaryot Microbiol 2022; 69:e12896. [PMID: 35175673 PMCID: PMC11110969 DOI: 10.1111/jeu.12896] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 02/14/2022] [Accepted: 02/14/2022] [Indexed: 11/28/2022]
Abstract
Eating is fundamental and from this basic principle, living organisms have evolved innumerable strategies to capture energy and nutrients from their environment. As part of the world's aquatic ecosystems, the expansive family of heterotrophic protozoans uses self-generated currents to funnel prokaryotic prey into an ancient, yet highly enigmatic, oral apparatus known as the cytostome-cytopharynx complex prior to digestion. Despite its near ubiquitous presence in protozoans, little is known mechanistically about how this feeding organelle functions. Intriguingly, one class of these flagellated phagotrophic predators known as the kinetoplastids gave rise to a lineage of obligate parasitic protozoa, the trypanosomatids, that can infect a wide variety of organisms ranging from plants to humans. One parasitic species of humans, Trypanosoma cruzi, has retained this ancestral organelle much like its free-living relatives and continues to use it as its primary mode of endocytosis. In this review, we will highlight foundational observations made regarding the cytostome-cytopharynx complex and examine some of the most pressing questions regarding the mechanistic basis for its function. We propose that T. cruzi has the potential to serve as an excellent model system to dissect the enigmatic process of protozoal phagotrophy and thus enhance our overall understanding of fundamental eukaryotic biology.
Collapse
Affiliation(s)
- Ronald Drew Etheridge
- Department of Cellular Biology, Center for Tropical and Emerging Global Diseases (CTEGD), University of Georgia, Athens, Georgia, USA
| |
Collapse
|
3
|
Zuma AA, Dos Santos Barrias E, de Souza W. Basic Biology of Trypanosoma cruzi. Curr Pharm Des 2021; 27:1671-1732. [PMID: 33272165 DOI: 10.2174/1381612826999201203213527] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 10/01/2020] [Accepted: 10/08/2020] [Indexed: 11/22/2022]
Abstract
The present review addresses basic aspects of the biology of the pathogenic protozoa Trypanosoma cruzi and some comparative information of Trypanosoma brucei. Like eukaryotic cells, their cellular organization is similar to that of mammalian hosts. However, these parasites present structural particularities. That is why the following topics are emphasized in this paper: developmental stages of the life cycle in the vertebrate and invertebrate hosts; the cytoskeleton of the protozoa, especially the sub-pellicular microtubules; the flagellum and its attachment to the protozoan body through specialized junctions; the kinetoplast-mitochondrion complex, including its structural organization and DNA replication; glycosome and its role in the metabolism of the cell; acidocalcisome, describing its morphology, biochemistry, and functional role; cytostome and the endocytic pathway; the organization of the endoplasmic reticulum and Golgi complex; the nucleus, describing its structural organization during interphase and division; and the process of interaction of the parasite with host cells. The unique characteristics of these structures also make them interesting chemotherapeutic targets. Therefore, further understanding of cell biology aspects contributes to the development of drugs for chemotherapy.
Collapse
Affiliation(s)
- Aline A Zuma
- Laboratorio de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho - Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Emile Dos Santos Barrias
- Laboratorio de Metrologia Aplicada a Ciencias da Vida, Diretoria de Metrologia Aplicada a Ciencias da Vida - Instituto Nacional de Metrologia, Qualidade e Tecnologia (Inmetro), Rio de Janeiro, Brazil
| | - Wanderley de Souza
- Laboratorio de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho - Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
4
|
Gupta CM, Ambaru B, Bajaj R. Emerging Functions of Actins and Actin Binding Proteins in Trypanosomatids. Front Cell Dev Biol 2020; 8:587685. [PMID: 33163497 PMCID: PMC7581878 DOI: 10.3389/fcell.2020.587685] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 09/22/2020] [Indexed: 01/20/2023] Open
Abstract
Actin is the major protein constituent of the cytoskeleton that performs wide range of cellular functions. It exists in monomeric and filamentous forms, dynamics of which is regulated by a large repertoire of actin binding proteins. However, not much was known about existence of these proteins in trypanosomatids, till the genome sequence data of three important organisms of this class, viz. Trypanosoma brucei, Trypanosoma cruzi and Leishmania major, became available. Here, we have reviewed most of the findings reported to date on the intracellular distribution, structure and functions of these proteins and based on them, we have hypothesized some of their functions. The major findings are as follows: (1) All the three organisms encode at least a set of ten actin binding proteins (profilin, twinfilin, ADF/cofilin, CAP/srv2, CAPz, coronin, two myosins, two formins) and one isoform of actin, except that T. cruzi encodes for three formins and several myosins along with four actins. (2) Actin 1 and a few actin binding proteins (ADF/cofilin, profilin, twinfilin, coronin and myosin13 in L. donovani; ADF/cofilin, profilin and myosin1 in T. brucei; profilin and myosin-F in T.cruzi) have been identified and characterized. (3) In all the three organisms, actin cytoskeleton has been shown to regulate endocytosis and intracellular trafficking. (4) Leishmania actin1 has been the most characterized protein among trypanosomatid actins. (5) This protein is localized to the cytoplasm as well as in the flagellum, nucleus and kinetoplast, and in vitro, it binds to DNA and displays scDNA relaxing and kDNA nicking activities. (6) The pure protein prefers to form bundles instead of thin filaments, and does not bind DNase1 or phalloidin. (7) Myosin13, myosin1 and myosin-F regulate endocytosis and intracellular trafficking, respectively, in Leishmania, T. brucei and T. cruzi. (8) Actin-dependent myosin13 motor is involved in dynamics and assembly of Leishmania flagellum. (9) Leishmania twinfilin localizes mostly to the nucleolus and coordinates karyokinesis by effecting splindle elongation and DNA synthesis. (10) Leishmania coronin binds and promotes actin filament formation and exists in tetrameric form rather than trimeric form, like other coronins. (11) Trypanosomatid profilins are essential for survival of all the three parasites.
Collapse
Affiliation(s)
- Chhitar M Gupta
- Institute of Bioinformatics and Applied Biotechnology, Bengaluru, India
| | - Bindu Ambaru
- Institute of Bioinformatics and Applied Biotechnology, Bengaluru, India.,Manipal Academy of Higher Education, Manipal, India
| | - Rani Bajaj
- Institute of Bioinformatics and Applied Biotechnology, Bengaluru, India.,Manipal Academy of Higher Education, Manipal, India
| |
Collapse
|
5
|
The Functional Characterization of TcMyoF Implicates a Family of Cytostome-Cytopharynx Targeted Myosins as Integral to the Endocytic Machinery of Trypanosoma cruzi. mSphere 2020; 5:5/3/e00313-20. [PMID: 32554712 PMCID: PMC7300353 DOI: 10.1128/msphere.00313-20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The parasite Trypanosoma cruzi is the etiological agent of Chagas disease and chronically infects upwards of 7 million people in the Americas. Current diagnostics and treatments remain grossly inadequate due, in part, to our general lack of understanding of this parasite’s basic biology. One aspect that has resisted detailed scrutiny is the mechanism employed by this parasite to extract nutrient resources from the radically different environments that it encounters as it transitions between its invertebrate and mammalian hosts. These parasites engulf food via a tubular invagination of its membrane, a strategy used by many protozoan species, but how this structure is formed or functions mechanistically remains a complete mystery. The significance of our research is in the identification of the mechanistic underpinnings of this feeding organelle that may bring to light new potential therapeutic targets to impede parasite feeding and thus halt the spread of this deadly human pathogen. Of the pathogenic trypanosomatids, Trypanosoma cruzi alone retains an ancient feeding apparatus known as the cytostome-cytopharynx complex (SPC) that it uses as its primary mode of endocytosis in a manner akin to its free-living kinetoplastid relatives who capture and eat bacterial prey via this endocytic organelle. In a recent report, we began the process of dissecting how this organelle functions by identifying the first SPC-specific proteins in T. cruzi. Here, we continued these studies and report on the identification of the first enzymatic component of the SPC, a previously identified orphan myosin motor (MyoF) specifically targeted to the SPC. We overexpressed MyoF as a dominant-negative mutant, resulting in parasites that, although viable, were completely deficient in measurable endocytosis in vitro. To our surprise, however, a full deletion of MyoF demonstrated only a decrease in the overall rate of endocytosis, potentially indicative of redundant myosin motors at work. Thereupon, we identified three additional orphan myosin motors, two of which (MyoB and MyoE) were targeted to the preoral ridge region adjacent to the cytostome entrance and another (MyoC) which was targeted to the cytopharynx tubular structure similar to that of MyoF. Additionally, we show that the C-terminal tails of each myosin are sufficient for targeting a fluorescent reporter to SPC subregions. This work highlights a potential mechanism used by the SPC to drive the inward flow of material for digestion and unveils a new level of overlapping complexity in this system with four distinct myosin isoforms targeted to this feeding structure. IMPORTANCE The parasite Trypanosoma cruzi is the etiological agent of Chagas disease and chronically infects upwards of 7 million people in the Americas. Current diagnostics and treatments remain grossly inadequate due, in part, to our general lack of understanding of this parasite’s basic biology. One aspect that has resisted detailed scrutiny is the mechanism employed by this parasite to extract nutrient resources from the radically different environments that it encounters as it transitions between its invertebrate and mammalian hosts. These parasites engulf food via a tubular invagination of its membrane, a strategy used by many protozoan species, but how this structure is formed or functions mechanistically remains a complete mystery. The significance of our research is in the identification of the mechanistic underpinnings of this feeding organelle that may bring to light new potential therapeutic targets to impede parasite feeding and thus halt the spread of this deadly human pathogen.
Collapse
|
6
|
Vizcaíno-Castillo A, Osorio-Méndez JF, Ambrosio JR, Hernández R, Cevallos AM. The complexity and diversity of the actin cytoskeleton of trypanosomatids. Mol Biochem Parasitol 2020; 237:111278. [PMID: 32353561 DOI: 10.1016/j.molbiopara.2020.111278] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 03/24/2020] [Accepted: 04/07/2020] [Indexed: 10/24/2022]
Abstract
Trypanosomatids are a monophyletic group of parasitic flagellated protists belonging to the order Kinetoplastida. Their cytoskeleton is primarily made up of microtubules in which no actin microfilaments have been detected. Although all these parasites contain actin, it is widely thought that their actin cytoskeleton is reduced when compared to most eukaryotic organisms. However, there is increasing evidence that it is more complex than previously thought. As in other eukaryotic organisms, trypanosomatids encode for a conventional actin that is expected to form microfilament-like structures, and for members of three conserved actin-related proteins probably involved in microfilament nucleation (ARP2, ARP3) and in gene expression regulation (ARP6). In addition to these canonical proteins, also encode for an expanded set of actins and actin-like proteins that seem to be restricted to kinetoplastids. Analysis of their amino acid sequences demonstrated that, although very diverse in primary sequence when compared to actins of model organisms, modelling of their tertiary structure predicted the presence of the actin fold in all of them. Experimental characterization has been done for only a few of the trypanosomatid actins and actin-binding proteins. The most studied is the conventional actin of Leishmania donovani (LdAct), which unusually requires both ATP and Mg2+ for polymerization, unlike other conventional actins that do not require ATP. Additionally, polymerized LdAct tends to assemble in bundles rather than in single filaments. Regulation of actin polymerization depends on their interaction with actin-binding proteins. In trypanosomatids, there is a reduced but sufficient core of actin-binding proteins to promote microfilament nucleation, turnover and stabilization. There are also genes encoding for members of two families of myosin motor proteins, including one lineage-specific. Homologues to all identified actin-family proteins and actin-binding proteins of trypanosomatids are also present in Paratrypanosoma confusum (an early branching trypanosomatid) and in Bodo saltans (a closely related free-living organism belonging to the trypanosomatid sister order of Bodonida) suggesting they were all present in their common ancestor. Secondary losses of these genes may have occurred during speciation within the trypanosomatids, with salivarian trypanosomes having lost many of them and stercorarian trypanosomes retaining most.
Collapse
Affiliation(s)
- Andrea Vizcaíno-Castillo
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Av. Universidad 3000, Ciudad Universitaria, Coyoacán, 04510, Ciudad de México, Mexico
| | - Juan Felipe Osorio-Méndez
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Av. Universidad 3000, Ciudad Universitaria, Coyoacán, 04510, Ciudad de México, Mexico; Laboratorio de Microbiología y Biología Molecular, Programa de Medicina, Corporación Universitaria Empresarial Alexander von Humboldt, Armenia, Colombia
| | - Javier R Ambrosio
- Departamento de Microbiología y Parasitología de la Facultad de Medicina, Universidad Nacional Autónoma de México, Apartado Postal, 4510, D.F., Mexico
| | - Roberto Hernández
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Av. Universidad 3000, Ciudad Universitaria, Coyoacán, 04510, Ciudad de México, Mexico
| | - Ana María Cevallos
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Av. Universidad 3000, Ciudad Universitaria, Coyoacán, 04510, Ciudad de México, Mexico.
| |
Collapse
|
7
|
Mach J, Sutak R. Iron in parasitic protists – from uptake to storage and where we can interfere. Metallomics 2020; 12:1335-1347. [DOI: 10.1039/d0mt00125b] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A comprehensive review of iron metabolism in parasitic protists and its potential use as a drug target.
Collapse
Affiliation(s)
- Jan Mach
- Department of Parasitology
- Faculty of Science - BIOCEV
- Charles University
- Vestec u Prahy
- Czech Republic
| | - Robert Sutak
- Department of Parasitology
- Faculty of Science - BIOCEV
- Charles University
- Vestec u Prahy
- Czech Republic
| |
Collapse
|
8
|
Chagas-Lima AC, Pereira MG, Fampa P, Lima MS, Kluck GEG, Atella GC. Bioactive lipids regulate Trypanosoma cruzi development. Parasitol Res 2019; 118:2609-2619. [DOI: 10.1007/s00436-019-06331-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 04/18/2019] [Indexed: 01/02/2023]
|
9
|
Alcantara CDL, de Souza W, da Cunha E Silva NL. Tridimensional Electron Microscopy Analysis of the Early Endosomes and Endocytic Traffic in Trypanosoma cruzi Epimastigotes. Protist 2018; 169:887-910. [PMID: 30447618 DOI: 10.1016/j.protis.2018.09.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 08/25/2018] [Accepted: 09/24/2018] [Indexed: 02/04/2023]
Abstract
Trypanosoma cruzi epimastigotes internalize macromolecules avidly by endocytosis. Previously, we identified a tubule-vesicular network likely to correspond to the early-endosomes. However, a detailed ultrastructural characterization of these endosomes was missing. Here, we combined endocytosis assays with ultrastructural data from high-resolution electron microscopy to produce a 3D analysis of epimastigote endosomes and their interactions with endocytic organelles. We showed that endocytic cargo was found in carrier vesicles budding from the cytopharynx. These vesicles appeared to fuse with a tubule-vesicular network of early endosomes identified by ultrastructural features including the presence of intermembrane invaginations and coated membrane sections. Within the posterior region of the cell, endosomes localized preferentially on the side nearest to the cytopharynx microtubules. At 4°C, cargo accumulated at a shortened cytopharynx, and subsequent temperature shift to 12°C led to slow cargo delivery to endosomes and, later, to reservosomes. Bridges between reservosomes and endosomes resemble heterotypic fusion. Reservosomes are excluded from the posterior end of the cell, with no preferential cargo delivery to reservosomes closer to the nucleus. Our 3D analysis indicates that epimastigotes accomplish high-speed endocytic traffic by cargo transfer to a bona fide early-endosome and then directly from endosomes to reservosomes, via multiple and simultaneous heterotypic fusion events.
Collapse
Affiliation(s)
- Carolina de Lima Alcantara
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil; Núcleo de Biologia Estrutural e Bioimagens (CENABIO) - Instituto Nacional de Ciência e Tecnologia em Biologia Estrutural e Biomagens (INBEB), Rio de Janeiro 21941-902, RJ, Brazil.
| | - Wanderley de Souza
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil; Núcleo de Biologia Estrutural e Bioimagens (CENABIO) - Instituto Nacional de Ciência e Tecnologia em Biologia Estrutural e Biomagens (INBEB), Rio de Janeiro 21941-902, RJ, Brazil
| | - Narcisa L da Cunha E Silva
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil; Núcleo de Biologia Estrutural e Bioimagens (CENABIO) - Instituto Nacional de Ciência e Tecnologia em Biologia Estrutural e Biomagens (INBEB), Rio de Janeiro 21941-902, RJ, Brazil
| |
Collapse
|
10
|
Dos Anjos DO, Sobral Alves ES, Gonçalves VT, Fontes SS, Nogueira ML, Suarez-Fontes AM, Neves da Costa JB, Rios-Santos F, Vannier-Santos MA. Effects of a novel β-lapachone derivative on Trypanosoma cruzi: Parasite death involving apoptosis, autophagy and necrosis. Int J Parasitol Drugs Drug Resist 2016; 6:207-219. [PMID: 27770751 PMCID: PMC5078628 DOI: 10.1016/j.ijpddr.2016.10.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Revised: 10/07/2016] [Accepted: 10/10/2016] [Indexed: 12/18/2022]
Abstract
Natural products comprise valuable sources for new antiparasitic drugs. Here we tested the effects of a novel β-lapachone derivative on Trypanosoma cruzi parasite survival and proliferation and used microscopy and cytometry techniques to approach the mechanism(s) underlying parasite death. The selectivity index determination indicate that the compound trypanocidal activity was over ten-fold more cytotoxic to epimastigotes than to macrophages or splenocytes. Scanning electron microscopy analysis revealed that the R72 β-lapachone derivative affected the T. cruzi morphology and surface topography. General plasma membrane waving and blebbing particularly on the cytostome region were observed in the R72-treated parasites. Transmission electron microscopy observations confirmed the surface damage at the cytostome opening vicinity. We also observed ultrastructural evidence of the autophagic mechanism termed macroautophagy. Some of the autophagosomes involved large portions of the parasite cytoplasm and their fusion/confluence may lead to necrotic parasite death. The remarkably enhanced frequency of autophagy triggering was confirmed by quantitating monodansylcadaverine labeling. Some cells displayed evidence of chromatin pycnosis and nuclear fragmentation were detected. This latter phenomenon was also indicated by DAPI staining of R72-treated cells. The apoptotis induction was suggested to take place in circa one-third of the parasites assessed by annexin V labeling measured by flow cytometry. TUNEL staining corroborated the apoptosis induction. Propidium iodide labeling indicate that at least 10% of the R72-treated parasites suffered necrosis within 24 h. The present data indicate that the β-lapachone derivative R72 selectively triggers T. cruzi cell death, involving both apoptosis and autophagy-induced necrosis.
Collapse
Affiliation(s)
- Danielle Oliveira Dos Anjos
- Lab. Biologia Parasitária, Instituto Gonçalo Moniz, Fundação Oswaldo Cruz - FIOCRUZ, Brazil; Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz UESC, Brazil
| | | | | | - Sheila Suarez Fontes
- Lab. Biologia Parasitária, Instituto Gonçalo Moniz, Fundação Oswaldo Cruz - FIOCRUZ, Brazil
| | - Mateus Lima Nogueira
- Lab. Biologia Parasitária, Instituto Gonçalo Moniz, Fundação Oswaldo Cruz - FIOCRUZ, Brazil
| | | | | | | | | |
Collapse
|
11
|
Pereira MG, Visbal G, Salgado LT, Vidal JC, Godinho JLP, De Cicco NNT, Atella GC, de Souza W, Cunha-e-Silva N. Trypanosoma cruzi Epimastigotes Are Able to Manage Internal Cholesterol Levels under Nutritional Lipid Stress Conditions. PLoS One 2015; 10:e0128949. [PMID: 26068009 PMCID: PMC4466137 DOI: 10.1371/journal.pone.0128949] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Accepted: 05/02/2015] [Indexed: 11/19/2022] Open
Abstract
Trypanosoma cruzi epimastigotes store high amounts of cholesterol and cholesteryl esters in reservosomes. These unique organelles are responsible for cellular digestion by providing substrates for homeostasis and parasite differentiation. Here we demonstrate that under nutritional lipid stress, epimastigotes preferentially mobilized reservosome lipid stocks, instead of lipid bodies, leading to the consumption of parasite cholesterol reservoirs and production of ergosterol. Starved epimastigotes acquired more LDL-NBD-cholesterol by endocytosis and distributed the exogenous cholesterol to their membranes faster than control parasites. Moreover, the parasites were able to manage internal cholesterol levels, alternating between consumption and accumulation. With normal lipid availability, parasites esterified cholesterol exhibiting an ACAT-like activity that was sensitive to Avasimibe in a dose-dependent manner. This result also implies that exogenous cholesterol has a role in lipid reservoirs in epimastigotes.
Collapse
Affiliation(s)
- Miria Gomes Pereira
- Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
- Laboratório de Bioquímica de Lipídios e Lipoproteínas, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
| | - Gonzalo Visbal
- Instituto Nacional de Metrologia, Qualidade e Tecnologia—INMETRO, Rio de Janeiro, Brasil
| | - Leonardo T. Salgado
- Instituto de Pesquisas Jardim Botânico do Rio de Janeiro, Rio de Janeiro, Brasil
| | - Juliana Cunha Vidal
- Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
| | - Joseane L. P. Godinho
- Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
| | - Nuccia N. T. De Cicco
- Laboratório de Bioquímica de Lipídios e Lipoproteínas, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
| | - Geórgia C. Atella
- Laboratório de Bioquímica de Lipídios e Lipoproteínas, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
| | - Wanderley de Souza
- Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
- Instituto Nacional de Metrologia, Qualidade e Tecnologia—INMETRO, Rio de Janeiro, Brasil
| | - Narcisa Cunha-e-Silva
- Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
- * E-mail:
| |
Collapse
|
12
|
Batista CM, Kessler RL, Eger I, Soares MJ. Trypanosoma cruzi Intracellular Amastigotes Isolated by Nitrogen Decompression Are Capable of Endocytosis and Cargo Storage in Reservosomes. PLoS One 2015; 10:e0130165. [PMID: 26057131 PMCID: PMC4461355 DOI: 10.1371/journal.pone.0130165] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 05/18/2015] [Indexed: 11/19/2022] Open
Abstract
Epimastigote forms of Trypanosoma cruzi (the etiologic agent of Chagas disease) internalize and store extracellular macromolecules in lysosome-related organelles (LROs) called reservosomes, which are positive for the cysteine protease cruzipain. Despite the importance of endocytosis for cell proliferation, macromolecule internalization remains poorly understood in the most clinically relevant proliferative form, the intracellular amastigotes found in mammalian hosts. The main obstacle was the lack of a simple method to isolate viable intracellular amastigotes from host cells. In this work we describe the fast and efficient isolation of viable intracellular amastigotes by nitrogen decompression (cavitation), which allowed the analysis of amastigote endocytosis, with direct visualization of internalized cargo inside the cells. The method routinely yielded 5x107 amastigotes—with typical shape and positive for the amastigote marker Ssp4—from 5x106 infected Vero cells (48h post-infection). We could visualize the endocytosis of fluorescently-labeled transferrin and albumin by isolated intracellular amastigotes using immunofluorescence microscopy; however, only transferrin endocytosis was detected by flow cytometry (and was also analyzed by western blotting), suggesting that amastigotes internalized relatively low levels of albumin. Transferrin binding to the surface of amastigotes (at 4°C) and its uptake (at 37°C) were confirmed by binding dissociation assays using acetic acid. Importantly, both transferrin and albumin co-localized with cruzipain in amastigote LROs. Our data show that isolated T. cruzi intracellular amastigotes actively ingest macromolecules from the environment and store them in cruzipain-positive LROs functionally related to epimastigote reservosomes.
Collapse
Affiliation(s)
- Cassiano Martin Batista
- Laboratório de Biologia Celular, Instituto Carlos Chagas/Fiocruz-PR, Curitiba, Paraná, Brazil
- * E-mail:
| | - Rafael Luis Kessler
- Laboratório de Genômica Funcional, Instituto Carlos Chagas/Fiocruz-PR, Curitiba, Paraná, Brazil
| | - Iriane Eger
- Laboratório de Biologia Celular, Instituto Carlos Chagas/Fiocruz-PR, Curitiba, Paraná, Brazil
- Departamento de Biologia Geral, Universidade Estadual de Ponta Grossa, Ponta Grossa, Paraná, Brazil
| | - Maurilio José Soares
- Laboratório de Biologia Celular, Instituto Carlos Chagas/Fiocruz-PR, Curitiba, Paraná, Brazil
| |
Collapse
|
13
|
Transferrin: Endocytosis and Cell Signaling in Parasitic Protozoa. BIOMED RESEARCH INTERNATIONAL 2015; 2015:641392. [PMID: 26090431 PMCID: PMC4450279 DOI: 10.1155/2015/641392] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Accepted: 12/18/2014] [Indexed: 12/31/2022]
Abstract
Iron is the fourth most abundant element on Earth and the most abundant metal in the human body. This element is crucial for life because almost all organisms need iron for several biological activities. This is the case with pathogenic organisms, which are at the vanguard in the battle with the human host for iron. The latest regulates Fe concentration through several iron-containing proteins, such as transferrin. The transferrin receptor transports iron to each cell that needs it and maintains it away from pathogens. Parasites have developed several strategies to obtain iron as the expression of specific transferrin receptors localized on plasma membrane, internalized through endocytosis. Signal transduction pathways related to the activation of the receptor have functional importance in proliferation. The study of transferrin receptors and other proteins with action in the signaling networks is important because these proteins could be used as therapeutic targets due to their specificity or to differences with the human counterpart. In this work, we describe proteins that participate in signal transduction processes, especially those that involve transferrin endocytosis, and we compare these processes with those found in T. brucei, T. cruzi, Leishmania spp., and E. histolytica parasites.
Collapse
|
14
|
Abstract
Background Clathrin-mediated vesicular trafficking, the mechanism by which proteins and lipids are transported between membrane-bound organelles, accounts for a large proportion of import from the plasma membrane (endocytosis) and transport from the trans-Golgi network towards the endosomal system. Clathrin-mediated events are still poorly understood in the protozoan Trypanosoma cruzi, the causative agent of Chagas disease in Latin America. In this study, clathrin heavy (TcCHC) and light (TcCLC) chain gene expression and protein localization were investigated in different developmental forms of T. cruzi (epimastigotes, trypomastigotes and amastigotes), using both polyclonal and monoclonal antibodies raised against T. cruzi recombinant proteins. Results Analysis by confocal microscopy revealed an accumulation of TcCHC and TcCLC at the cell anterior, where the flagellar pocket and Golgi complex are located. TcCLC partially colocalized with the Golgi marker TcRAB7-GFP and with ingested albumin, but did not colocalize with transferrin, a protein mostly ingested via uncoated vesicles at the cytostome/cytopharynx complex. Conclusion Clathrin heavy and light chains are expressed in T. cruzi. Both proteins typically localize anterior to the kinetoplast, at the flagellar pocket and Golgi complex region. Our data also indicate that in T. cruzi epimastigotes clathrin-mediated endocytosis of albumin occurs at the flagellar pocket, while clathrin-independent endocytosis of transferrin occurs at the cytostome/cytopharynx complex.
Collapse
|
15
|
Rosa IDA, Atella G, Benchimol M. Tritrichomonas foetus displays classical detergent-resistant membrane microdomains on its cell surface. Protist 2014; 165:293-304. [PMID: 24742927 DOI: 10.1016/j.protis.2014.03.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Revised: 03/18/2014] [Accepted: 03/19/2014] [Indexed: 11/27/2022]
Abstract
Tritrichomonas foetus is a serious veterinary parasite that causes bovine trichomoniasis, a sexually transmitted disease that results in reproductive failure and considerable economic losses in areas that practice natural breeding. T. foetus is an extracellular parasite, which initially adheres to and infects the urogenital tract using a diverse array of surface glycoconjugates, including adhesins and extracellular matrix-binding molecules. However, the cellular mechanisms by which T. foetus colonizes mucosal surfaces and causes tissue damage are not well defined. Several studies have demonstrated the involvement of pathogen or host lipid rafts in cellular events that occur during pathogenesis, including adhesion, invasion and evasion of the immune response. In this study, we demonstrate that detergent-resistant membranes are present in the plasma membrane of T. foetus. We further demonstrate that microdomains are cholesterol-enriched and contain ganglioside GM1-like molecules. In addition, we demonstrate that lipid microdomains do not participate in T. foetus adhesion to host cells. However, the use of agents that disrupt and disorganize the plasma membrane indicated the involvement of the T. foetus lipid microdomains, in cell division and in the formation of endoflagellar forms. Our results suggest that trophozoites and endoflagellar forms present a different plasma membrane organization.
Collapse
Affiliation(s)
- Ivone de Andrade Rosa
- Universidade Santa Úrsula, Rua Jornalista Orlando Dantas 59, Botafogo, CEP 22231-010 Rio de Janeiro, RJ, Brazil; Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Brazil
| | - Georgia Atella
- Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, Brazil
| | - Marlene Benchimol
- Universidade Santa Úrsula, Rua Jornalista Orlando Dantas 59, Botafogo, CEP 22231-010 Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
16
|
Goldston AM, Powell RR, Temesvari LA. Sink or swim: lipid rafts in parasite pathogenesis. Trends Parasitol 2012; 28:417-26. [PMID: 22906512 DOI: 10.1016/j.pt.2012.07.002] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2012] [Revised: 07/16/2012] [Accepted: 07/17/2012] [Indexed: 12/26/2022]
Abstract
Lipid rafts, sterol- and sphingolipid-rich membrane microdomains, have been extensively studied in mammalian cells. Recently, lipid rafts have been shown to control virulence in a variety of parasites including Entamoeba histolytica, Giardia intestinalis, Leishmania spp., Plasmodium spp., Toxoplasma gondii, and Trypanosoma spp. Parasite rafts regulate adhesion to host and invasion, and parasite adhesion molecules often localize to rafts. Parasite rafts also control vesicle trafficking, motility, and cell signaling. Parasites disrupt host cell rafts; the dysregulation of host membrane function facilitates the establishment of infection and evasion of the host immune system. Discerning the mechanism by which lipid rafts regulate parasite pathogenesis is essential to our understanding of virulence. Such insight may guide the development of new drugs for disease management.
Collapse
Affiliation(s)
- Amanda M Goldston
- Department of Genetics and Biochemistry, Clemson University, Clemson, SC 29634, USA
| | | | | |
Collapse
|
17
|
Eger I, Soares MJ. Endocytosis in Trypanosoma cruzi (Euglenozoa: Kinetoplastea) epimastigotes: visualization of ingested transferrin-gold nanoparticle complexes by confocal laser microscopy. J Microbiol Methods 2012; 91:101-5. [PMID: 22820201 DOI: 10.1016/j.mimet.2012.07.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2012] [Revised: 07/03/2012] [Accepted: 07/09/2012] [Indexed: 10/28/2022]
Abstract
Here we describe the visualization by confocal microscopy of ingested gold (15 nm)-labeled transferrin in epimastigote forms of the protozoan Trypanosoma cruzi. Intracellular gold labeling was evident at two sites, which represent the bottom of the cytopharynx and the reservosomes. The gold tracer was best observed by confocal microscopy by using the 633 nm excitation wavelength. Intracellular gold clusters larger than 60 nm could be visualized by either gold reflection (light scattering) or photoluminescence modes. The gold reflection mode, the gold photoluminescence mode and the anti-transferrin immunofluorescence image of gold-labeled transferrin showed co-localization, thus demonstrating that the gold visualization modes did not represent artifacts or mislocalization of the biomarker. Visualization of protein-gold nanoparticle complexes by confocal microscopy thus emerges as a promising imaging tool to explore the endocytic pathway in trypanosomes and other cell types, as well as to perform immunolocalization studies using gold-labeled secondary antibodies.
Collapse
Affiliation(s)
- Iriane Eger
- Laboratório de Biologia Celular, Instituto Carlos Chagas/Fiocruz, 81.350-010 Curitiba, PR, Brazil.
| | | |
Collapse
|
18
|
Reyes-López M, Bermúdez-Cruz RM, Avila EE, de la Garza M. Acetaldehyde/alcohol dehydrogenase-2 (EhADH2) and clathrin are involved in internalization of human transferrin by Entamoeba histolytica. Microbiology (Reading) 2011; 157:209-219. [DOI: 10.1099/mic.0.040063-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Transferrin (Tf) is a host glycoprotein capable of binding two ferric-iron ions to become holotransferrin (holoTf), which transports iron in to all cells. Entamoeba histolytica is a parasitic protozoan able to use holoTf as a sole iron source in vitro. The mechanism by which this parasite scavenges iron from holoTf is unknown. An E. histolytica holoTf-binding protein (EhTfbp) was purified by using an anti-human transferrin receptor (TfR) monoclonal antibody. EhTfbp was identified by MS/MS analysis and database searches as E. histolytica acetaldehyde/alcohol dehydrogenase-2 (EhADH2), an iron-dependent enzyme. Both EhTfbp and EhADH2 bound holoTf and were recognized by the anti-human TfR antibody, indicating that they correspond to the same protein. It was found that the amoebae internalized holoTf through clathrin-coated pits, suggesting that holoTf endocytosis could be important for the parasite during colonization and invasion of the intestinal mucosa and liver.
Collapse
Affiliation(s)
- Magda Reyes-López
- Programa de Doctorado en Ciencias Biológicas de la Universidad Autónoma Metropolitana, Apdo Postal 23-181, México, DF 04960, Mexico
| | - Rosa María Bermúdez-Cruz
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del IPN, Apdo 14-740, México DF 07000, Mexico
| | - Eva E. Avila
- Departamento de Biología, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Colonia Noria Alta, Guanajuato, Gto, 36000, Mexico
| | - Mireya de la Garza
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del IPN, Apdo 14-740, México DF 07000, Mexico
| |
Collapse
|
19
|
|
20
|
Affiliation(s)
- Wanderley de Souza
- Universidade Federal do Rio de Janeiro, Brasil; Instituto Nacional de Metrologia, Normalização e Qualidade Industrial, Brasil
| |
Collapse
|
21
|
de Souza W, Sant'Anna C, Cunha-e-Silva NL. Electron microscopy and cytochemistry analysis of the endocytic pathway of pathogenic protozoa. ACTA ACUST UNITED AC 2009; 44:67-124. [PMID: 19410686 DOI: 10.1016/j.proghi.2009.01.001] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Endocytosis is essential for eukaryotic cell survival and has been well characterized in mammal and yeast cells. Among protozoa it is also important for evading from host immune defenses and to support intense proliferation characteristic of some life cycle stages. Here we focused on the contribution of morphological and cytochemical studies to the understanding of endocytosis in Trichomonas, Giardia, Entamoeba, Plasmodium, and trypanosomatids, mainly Trypanosoma cruzi, and also Trypanosoma brucei and Leishmania.
Collapse
Affiliation(s)
- Wanderley de Souza
- Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Cidade Universitária, Ilha do Fundão, Rio de Janeiro 21941-902, Brazil.
| | | | | |
Collapse
|
22
|
Evolutionary conservation of actin-binding proteins in Trypanosoma cruzi and unusual subcellular localization of the actin homologue. Parasitology 2008; 135:955-65. [PMID: 18477418 DOI: 10.1017/s0031182008004496] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The actin cytoskeleton controls pivotal cellular processes such as motility and cytokinesis, as well as cell-cell and cell-substrate interactions. Assembly and spatial organization of actin filaments are dynamic events regulated by a large repertoire of actin-binding proteins. This report presents the first detailed characterization of the Trypanosoma cruzi actin (TcActin). Protein sequence analysis and homology modelling revealed that the overall structure of T. cruzi actin is conserved and that the majority of amino-acid changes are concentrated on the monomer surface. Immunofluorescence assays using specific polyclonal antibody against TcActin revealed numerous rounded and punctated structures spread all over the parasitic body. No pattern differences could be found between epimastigotes and trypomastigotes or amastigotes. Moreover, in detergent extracts, TcActin was localized only in the soluble fraction, indicating its presence in the G-actin form or in short filaments dissociated from the microtubule cytoskeleton. The trypanosomatid genome was prospected to identify actin-binding and actin-related conserved proteins. The main proteins responsible for actin nucleation and treadmilling in higher eukaryotes are conserved in T. cruzi.
Collapse
|