1
|
Ferreira AZL, de Araújo CN, Cardoso ICC, de Souza Mangabeira KS, Rocha AP, Charneau S, Santana JM, Motta FN, Bastos IMD. Metacyclogenesis as the Starting Point of Chagas Disease. Int J Mol Sci 2023; 25:117. [PMID: 38203289 PMCID: PMC10778605 DOI: 10.3390/ijms25010117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/23/2023] [Accepted: 11/26/2023] [Indexed: 01/12/2024] Open
Abstract
Chagas disease is a neglected infectious disease caused by the protozoan Trypanosoma cruzi, primarily transmitted by triatomine vectors, and it threatens approximately seventy-five million people worldwide. This parasite undergoes a complex life cycle, transitioning between hosts and shifting from extracellular to intracellular stages. To ensure its survival in these diverse environments, T. cruzi undergoes extreme morphological and molecular changes. The metacyclic trypomastigote (MT) form, which arises from the metacyclogenesis (MTG) process in the triatomine hindgut, serves as a crucial link between the insect and human hosts and can be considered the starting point of Chagas disease. This review provides an overview of the current knowledge regarding the parasite's life cycle, molecular pathways, and mechanisms involved in metabolic and morphological adaptations during MTG, enabling the MT to evade the immune system and successfully infect human cells.
Collapse
Affiliation(s)
| | - Carla Nunes de Araújo
- Pathogen-Host Interface Laboratory, Department of Cell Biology, University of Brasilia, Brasilia 70910-900, Brazil
- Faculty of Ceilândia, University of Brasilia, Brasilia 70910-900, Brazil
| | - Isabela Cunha Costa Cardoso
- Pathogen-Host Interface Laboratory, Department of Cell Biology, University of Brasilia, Brasilia 70910-900, Brazil
| | | | - Amanda Pereira Rocha
- Pathogen-Host Interface Laboratory, Department of Cell Biology, University of Brasilia, Brasilia 70910-900, Brazil
| | - Sébastien Charneau
- Laboratory of Protein Chemistry and Biochemistry, Department of Cell Biology, University of Brasilia, Brasilia 70910-900, Brazil
| | - Jaime Martins Santana
- Pathogen-Host Interface Laboratory, Department of Cell Biology, University of Brasilia, Brasilia 70910-900, Brazil
| | - Flávia Nader Motta
- Pathogen-Host Interface Laboratory, Department of Cell Biology, University of Brasilia, Brasilia 70910-900, Brazil
- Faculty of Ceilândia, University of Brasilia, Brasilia 70910-900, Brazil
| | | |
Collapse
|
2
|
De-Simone SG, Bourguignon SC, Gonçalves PS, Lechuga GC, Provance DW. Metabolic Alteration of Trypanosoma cruzi during Differentiation of Epimastigote to Trypomastigote Forms. Pathogens 2022; 11:pathogens11020268. [PMID: 35215210 PMCID: PMC8879499 DOI: 10.3390/pathogens11020268] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 02/11/2022] [Accepted: 02/14/2022] [Indexed: 12/10/2022] Open
Abstract
Intracellular parasites such as Trypanosoma cruzi need to acquire valuable carbon sources from the host cell to replicate. Here, we investigated the energetic metabolism of T. cruzi during metacyclogenesis through the determination of enzymatic activities and quantification by HPLC of glycolytic and Krebs cycle short-chain carboxylic acids. Altered concentrations in pyruvate, acetate, succinate, and glycerate were measured during the growth of epimastigote in the complex medium BHI and their differentiation to trypomastigotes in the chemically defined medium, TAU3AAG. These alterations should represent significant differential metabolic modifications utilized by either form to generate energy. This paper is the first work dealing with the intracellular organic acid concentration measurement in T. cruzi parasites. Although it confirms the previous assumption of the importance of carbohydrate metabolism, it yields an essential improvement in T. cruzi metabolism knowledge.
Collapse
Affiliation(s)
- Salvatore G. De-Simone
- Center for Technological Development in Health (CDTS), FIOCRUZ, National Institute of Science and Technology for Innovation in Neglected Populations Diseases (INCT-IDPN), Rio de Janeiro 21040-900, RJ, Brazil; (P.S.G.); (G.C.L.); (D.W.P.J.)
- Epidemiology and Molecular Systematic Laboratory, Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro 21040-900, RJ, Brazil
- Cellular and Molecular Biology Department, Biology Institute, Federal Fluminense University, Niterói 24020-141, RJ, Brazil;
- Correspondence:
| | - Saulo C. Bourguignon
- Cellular and Molecular Biology Department, Biology Institute, Federal Fluminense University, Niterói 24020-141, RJ, Brazil;
| | - Priscila S. Gonçalves
- Center for Technological Development in Health (CDTS), FIOCRUZ, National Institute of Science and Technology for Innovation in Neglected Populations Diseases (INCT-IDPN), Rio de Janeiro 21040-900, RJ, Brazil; (P.S.G.); (G.C.L.); (D.W.P.J.)
- Cellular and Molecular Biology Department, Biology Institute, Federal Fluminense University, Niterói 24020-141, RJ, Brazil;
| | - Guilherme C. Lechuga
- Center for Technological Development in Health (CDTS), FIOCRUZ, National Institute of Science and Technology for Innovation in Neglected Populations Diseases (INCT-IDPN), Rio de Janeiro 21040-900, RJ, Brazil; (P.S.G.); (G.C.L.); (D.W.P.J.)
- Epidemiology and Molecular Systematic Laboratory, Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro 21040-900, RJ, Brazil
| | - David W. Provance
- Center for Technological Development in Health (CDTS), FIOCRUZ, National Institute of Science and Technology for Innovation in Neglected Populations Diseases (INCT-IDPN), Rio de Janeiro 21040-900, RJ, Brazil; (P.S.G.); (G.C.L.); (D.W.P.J.)
- Epidemiology and Molecular Systematic Laboratory, Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro 21040-900, RJ, Brazil
| |
Collapse
|
3
|
Moreira FF, Portes JDA, Barros Azeredo NF, Fernandes C, Horn A, Santiago CP, Segat BB, Caramori GF, Madureira LMP, Candela DRS, Marques MM, Lamounier Camargos Resende JA, de Souza W, DaMatta RA, Seabra SH. Development of new dinuclear Fe(III) coordination compounds with in vitro nanomolar antitrypanosomal activity. Dalton Trans 2021; 50:12242-12264. [PMID: 34519725 DOI: 10.1039/d1dt01048d] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Chagas disease is a neglected tropical disease caused by the protozoan pathogen Trypanosoma cruzi. The disease is a major public health problem affecting about 6 to 7 million people worldwide, mostly in Latin America. The available therapy for this disease is based on two drugs, nifurtimox and benznidazole, which exhibit severe side effects, including resistance, severe cytotoxicity, variable efficacy and inefficiency in the chronic phase. Therefore, new drugs are urgently needed. Coordination compounds may be an interesting alternative for antiparasite therapy against Leishmania spp., Toxoplasma gondii and T. cruzi. Herein, we tested the in vitro effect on T. cruzi epimastigotes (Y strain) of two new μ-oxo Fe(III) dinuclear complexes: [(HL1)(Cl)Fe(μ-O)Fe(Cl)(HL2)](Cl)2·(CH3CH2OH)2·H2O (1) and [(HL2)(Cl)Fe(μ-O)Fe(Cl)(HL2)](Cl)2·H2O (2) where HL1 and HL2 are ligands which contain two pyridines, amine and alcohol moieties with a naphthyl pendant unit yielding a N3O coordination environment. Complexes (1) and (2), which are isomers, were completely characterized, including X-ray diffraction studies for complex (1). Parasites were treated with the complexes and the outcome was analyzed. Complex (1) exhibited the lowest IC50 values, which were 99 ± 3, 97 ± 2 and 110 ± 39 nM, after 48, 72 and 120 h of treatment, respectively. Complex (2) showed IC50 values of 118 ± 5, 122 ± 6 and 104 ± 29 nM for the same treatment times. Low cytotoxicity to the host cell LLC-MK2 was found for both complexes, resulting in impressive selectivity indexes of 106 for complex (1) and 178 for (2), after 120 h of treatment. Treatment with both complexes reduced the mitochondrial membrane potential of the parasite. Ultrastructural analysis of the parasite after treatment with complexes showed that the mitochondria outer membrane presented swelling and abnormal disposition around the kinetoplast; in addition, reservosomes presented anomalous spicules and rupture. The complexes showed low nanomolar IC50 values affecting mitochondria and reservosomes, essential organelles for the survival of the parasite. The low IC50 and the high selectivity index show that both complexes act as a new prototype of drugs against T. cruzi and may be used for further development in drug discovery to treat Chagas disease.
Collapse
Affiliation(s)
- Felipe Figueirôa Moreira
- Laboratório de Tecnologia em Bioquímica e Microscopia, Centro Universitário Estadual da Zona Oeste (UEZO), Rio de Janeiro, RJ, Brazil. .,Laboratório de Biologia Celular e Tecidual, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Campos dos Goytacazes, RJ, Brazil
| | - Juliana de Araujo Portes
- Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro (UFRJ), RJ, Brazil
| | - Nathália Florência Barros Azeredo
- Laboratório de Ciências Químicas, Centro de Ciência e Tecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Campos dos Goytacazes, RJ, Brazil.
| | - Christiane Fernandes
- Laboratório de Ciências Químicas, Centro de Ciência e Tecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Campos dos Goytacazes, RJ, Brazil.
| | - Adolfo Horn
- Laboratório de Ciências Químicas, Centro de Ciência e Tecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Campos dos Goytacazes, RJ, Brazil.
| | - Cristina Pinheiro Santiago
- Laboratório de Ciências Químicas, Centro de Ciência e Tecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Campos dos Goytacazes, RJ, Brazil.
| | - Bruna Barriquel Segat
- Departamento de Química, Universidade Federal de Santa Catarina (UFSC), Florianópolis, SC, Brazil
| | - Giovanni Finoto Caramori
- Departamento de Química, Universidade Federal de Santa Catarina (UFSC), Florianópolis, SC, Brazil
| | | | | | | | | | - Wanderley de Souza
- Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro (UFRJ), RJ, Brazil
| | - Renato Augusto DaMatta
- Laboratório de Biologia Celular e Tecidual, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Campos dos Goytacazes, RJ, Brazil
| | - Sergio Henrique Seabra
- Laboratório de Tecnologia em Bioquímica e Microscopia, Centro Universitário Estadual da Zona Oeste (UEZO), Rio de Janeiro, RJ, Brazil. .,Laboratório de Biologia Celular e Tecidual, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Campos dos Goytacazes, RJ, Brazil
| |
Collapse
|
4
|
A Trypanosoma cruzi zinc finger protein that is implicated in the control of epimastigote-specific gene expression and metacyclogenesis. Parasitology 2020; 148:1171-1185. [PMID: 33190649 PMCID: PMC8312218 DOI: 10.1017/s0031182020002176] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Trypanosoma cruzi has three biochemically and morphologically distinct developmental stages that are programmed to rapidly respond to environmental changes the parasite faces during its life cycle. Unlike other eukaryotes, Trypanosomatid genomes contain protein coding genes that are transcribed into polycistronic pre-mRNAs and have their expression controlled by post-transcriptional mechanisms. Transcriptome analyses comparing three stages of the T. cruzi life cycle revealed changes in gene expression that reflect the parasite adaptation to distinct environments. Several genes encoding RNA binding proteins (RBPs), known to act as key post-transcriptional regulatory factors, were also differentially expressed. We characterized one T. cruzi RBP, named TcZH3H12, which contains a zinc finger domain and is up-regulated in epimastigotes compared to trypomastigotes and amastigotes. TcZC3H12 knockout (KO) epimastigotes showed decreased growth rates and increased capacity to differentiate into metacyclic trypomastigotes. Transcriptome analyses comparing wild type and TcZC3H12 KOs revealed a TcZC3H12-dependent expression of epimastigote-specific genes such as genes encoding amino acid transporters and proteins associated with differentiation (PADs). RNA immunoprecipitation assays showed that transcripts from the PAD family interact with TcZC3H12. Taken together, these findings suggest that TcZC3H12 positively regulates the expression of genes involved in epimastigote proliferation and also acts as a negative regulator of metacyclogenesis.
Collapse
|
5
|
Kalem MC, Gerasimov ES, Vu PK, Zimmer SL. Gene expression to mitochondrial metabolism: Variability among cultured Trypanosoma cruzi strains. PLoS One 2018; 13:e0197983. [PMID: 29847594 PMCID: PMC5976161 DOI: 10.1371/journal.pone.0197983] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 05/11/2018] [Indexed: 11/18/2022] Open
Abstract
The insect-transmitted protozoan parasite Trypanosoma cruzi experiences changes in nutrient availability and rate of flux through different metabolic pathways across its life cycle. The species encompasses much genetic diversity of both the nuclear and mitochondrial genomes among isolated strains. The genetic or expression variation of both genomes are likely to impact metabolic responses to environmental stimuli, and even steady state metabolic function, among strains. To begin formal characterization these differences, we compared aspects of metabolism between genetically similar strains CL Brener and Tulahuen with less similar Esmeraldo and Sylvio X10 strains in a culture environment. Epimastigotes of all strains took up glucose at similar rates. However, the degree of medium acidification that could be observed when glucose was absent from the medium varied by strain, indicating potential differences in excreted metabolic byproducts. Our main focus was differences related to electron transport chain function. We observed differences in ATP-coupled respiration and maximal respiratory capacity, mitochondrial membrane potential, and mitochondrial morphology between strains, despite the fact that abundances of two nuclear-encoded proteins of the electron transport chain are similar between strains. RNA sequencing reveals strain-specific differences in abundances of mRNAs encoding proteins of the respiratory chain but also other metabolic processes. From these differences in metabolism and mitochondrial phenotypes we have generated tentative models for the differential metabolic fluxes or differences in gene expression that may underlie these results.
Collapse
Affiliation(s)
- Murat C. Kalem
- Department of Biology, University of Minnesota Duluth, Duluth, Minnesota, United States of America
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth campus, Duluth, Minnesota, United States of America
| | | | - Pamela K. Vu
- Department of Biology, University of Minnesota Duluth, Duluth, Minnesota, United States of America
| | - Sara L. Zimmer
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth campus, Duluth, Minnesota, United States of America
| |
Collapse
|
6
|
3-pyridyl inhibitors with novel activity against Trypanosoma cruzi reveal in vitro profiles can aid prediction of putative cytochrome P450 inhibition. Sci Rep 2018; 8:4901. [PMID: 29559688 PMCID: PMC5861127 DOI: 10.1038/s41598-018-22043-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 02/09/2018] [Indexed: 01/04/2023] Open
Abstract
Using high throughput, high-content imaging, a proprietary library was screened against intracellular Trypanosoma cruzi amastigotes to identify compounds with novel activity against the parasite. Five inhibitors were discovered, which did not clear all of the parasites from 3T3 host cells following 48 hours exposure, and were identified as putative T. cruzi cytochrome P450 (TcCYP51) inhibitors. TcCYP51 inhibitors are not favourable for the drug discovery pipeline for treatment of Chagas Disease infection due to clinical and pre-clinical failures. To determine if there were in vitro inhibitory characteristics of these compounds that could aid the prediction of TcCYP51 inhibition further profiling using imaging and fluorescence based assays was undertaken. It was determined that in vitro profiles, coupled with analysis of chemical structure, could support the early prediction of putative TcCYP51 activity and thus enable early de-prioritisation of these compounds from progression through the drug discovery pipeline.
Collapse
|
7
|
Pascuale CA, Burgos JM, Postan M, Lantos AB, Bertelli A, Campetella O, Leguizamón MS. Inactive trans-Sialidase Expression in iTS-null Trypanosoma cruzi Generates Virulent Trypomastigotes. Front Cell Infect Microbiol 2017; 7:430. [PMID: 29046868 PMCID: PMC5632715 DOI: 10.3389/fcimb.2017.00430] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 09/19/2017] [Indexed: 11/30/2022] Open
Abstract
Disclosing virulence factors from pathogens is required to better understand the pathogenic mechanisms involved in their interaction with the host. In the case of Trypanosoma cruzi several molecules are associated with virulence. Among them, the trans-sialidase (TS) has arisen as one of particular relevance due to its effect on the immune system and involvement in the interaction/invasion of the host cells. The presence of conserved genes encoding for an inactive TS (iTS) isoform is puzzlingly restricted to the genome of parasites from the Discrete Typing Units TcII, TcV, and TcVI, which include highly virulent strains. Previous in vitro results using recombinant iTS support that this isoform could play a different or complementary pathogenic role to that of the enzymatically active protein. However, direct evidence involving iTS in in vivo pathogenesis and invasion is still lacking. Here we faced this challenge by transfecting iTS-null parasites with a recombinant gene that allowed us to follow its expression and association with pathological events. We found that iTS expression improves parasite invasion of host cells and increases their in vivo virulence for mice as shown by histopathologic findings in heart and skeletal muscle.
Collapse
Affiliation(s)
- Carla A. Pascuale
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Juan M. Burgos
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Miriam Postan
- Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
- Instituto Nacional de Parasitología “Dr. Mario Fatala Chabén”, Administración Nacional de Laboratorio e Institutos de Salud, “Dr. Carlos G. Malbrán”, Buenos Aires, Argentina
| | - Andrés B. Lantos
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Adriano Bertelli
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Oscar Campetella
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - M. Susana Leguizamón
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| |
Collapse
|
8
|
De Lima AR, Noris-Suárez K, Bretaña A, Contreras VT, Navarro MC, Pérez-Ybarra L, Bubis J. Growth arrest and morphological changes triggered by emodin on Trypanosoma cruzi epimastigotes cultivated in axenic medium. Biochimie 2017; 142:31-40. [PMID: 28803999 DOI: 10.1016/j.biochi.2017.08.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Accepted: 08/08/2017] [Indexed: 12/13/2022]
Abstract
Emodin is an anthraquinone obtained from Rheum palmatum rootstocks. Here we tested the cytotoxic effects of emodin on Trypanosoma cruzi epimastigotes, as well as the morphological changes that were induced by this compound in the parasite. Emodin was permeable and blocked in vitro cell division of T. cruzi epimastigotes in axenic medium, causing growth arrest in a dose-dependent but reversible manner. Emodin-exposed epimastigotes underwent duplication of organelles, such as the nucleus, kinetoplast and flagellum, but were incapable of completing cytokinesis. Neither elongation of the parasite body nor appearance of the regular longitudinal cleavage furrow was displayed, suggesting that emodin is most likely affecting components of the parasite cytoskeleton. Moreover, drug-treated parasites acquired alterations such as protuberances, folds and indentations on their membrane surface. Since emodin has been shown to be a potent protein kinase CK2 inhibitor, and we have previously described an association between tubulin and CK2 in T. cruzi epimastigotes (De Lima et al. Parasitology132, 511-523, 2006), we also measured the indirect effect of the drug on tubulin. Incubation of epimastigotes with axenic medium containing emodin hindered the endogenous phosphorylation of tubulin in whole-cell parasite extracts. All our results suggested that the parasite CK2 may be important for the maintenance of the morphology and for the regulation of mitosis-cytokinesis transition in T. cruzi epimastigotes.
Collapse
Affiliation(s)
- Ana R De Lima
- Departamento de Biología Celular, Universidad Simón Bolívar, Caracas, Venezuela; Laboratorio de Protozoología, Instituto BioMolP, Facultad de Ciencias de la Salud, Universidad de Carabobo, Valencia, Venezuela.
| | - Karem Noris-Suárez
- Departamento de Biología Celular, Universidad Simón Bolívar, Caracas, Venezuela.
| | - Antonio Bretaña
- Laboratorio de Microscopía Electrónica, Centro de Estudios Biomédicos y Veterinarios, Instituto de Estudios Científicos y Tecnológicos IDECYT, Universidad Nacional Experimental Simón Rodríguez, Caracas, Venezuela.
| | - Victor T Contreras
- Laboratorio de Protozoología, Instituto BioMolP, Facultad de Ciencias de la Salud, Universidad de Carabobo, Valencia, Venezuela.
| | - Maria C Navarro
- Laboratorio de Protozoología, Instituto BioMolP, Facultad de Ciencias de la Salud, Universidad de Carabobo, Valencia, Venezuela.
| | - Luis Pérez-Ybarra
- Departamento de Ciencias Básicas, Escuela de Bioanálisis, Universidad de Carabobo, Sede Aragua, Maracay, Venezuela.
| | - José Bubis
- Departamento de Biología Celular, Universidad Simón Bolívar, Caracas, Venezuela.
| |
Collapse
|
9
|
Kessler RL, Contreras VT, Marliére NP, Aparecida Guarneri A, Villamizar Silva LH, Mazzarotto GACA, Batista M, Soccol VT, Krieger MA, Probst CM. Recently differentiated epimastigotes fromTrypanosoma cruziare infective to the mammalian host. Mol Microbiol 2017; 104:712-736. [DOI: 10.1111/mmi.13653] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/18/2017] [Indexed: 12/31/2022]
Affiliation(s)
| | - Víctor Tulio Contreras
- Laboratorio de Protozoología, Centro de Biología Molecular de Parásitos, Facultad Ciencias de la Salud; Universidad de Carabobo; Valencia Venezuela
| | - Newmar Pinto Marliére
- Vector Behavior and Pathogen Interaction Group; Centro de Pesquisas René Rachou, Fiocruz; Belo Horizonte Minas Gerais Brazil
| | - Alessandra Aparecida Guarneri
- Vector Behavior and Pathogen Interaction Group; Centro de Pesquisas René Rachou, Fiocruz; Belo Horizonte Minas Gerais Brazil
| | | | | | | | - Vanete Thomaz Soccol
- Programa de Pós-Graduação em Processos Biotecnológicos e Biotecnologia, Centro Politécnico; Universidade Federal do Paraná; Curitiba PR Brazil
| | | | | |
Collapse
|
10
|
Costa J, Araújo CAC, Freitas CAV, Borges-Pereira J. Are Members of the Triatoma brasiliensis (Hemiptera, Reduviidae) Species Complex Able to Alter the Biology and Virulence of a Trypanosoma cruzi Strain? NEOTROPICAL ENTOMOLOGY 2015; 44:186-193. [PMID: 26013138 DOI: 10.1007/s13744-015-0271-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2014] [Accepted: 12/29/2014] [Indexed: 06/04/2023]
Abstract
Trypanosoma cruzi is the causative agent of Chagas disease, transmitted to humans and mammals by blood-sucking hemipteran insects belonging to the Triatominae subfamily. The two main genotypes of T. cruzi (TcI and TcII) differ in many characteristics concerning their genetic profile. Despite the extensive literature on vectors and the etiologic agent, several interactive aspects between these two elements of Chagas disease are still waiting to be further clarified. Here, biological and histological features resulting from the interaction between Albino Swiss mice and T. cruzi isolate PB913 after passages through vectors of the Triatoma brasiliensis species complex were evaluated. Comparing the four members of the T. brasiliensis species complex-Triatoma brasiliensis brasiliensis Neiva, Triatoma brasiliensis macromelasoma Galvão, Triatoma melanica Neiva & Lent, and Triatoma juazeirensis Costa & Felix-no significant differences in parasitemia of the infected mice were observed. At 20 days post-infection, the highest number of parasites was observed in the group of mice that were infected with parasites obtained from T. b. macromelasoma. Tropism of the parasites to different organs such as heart, bladder, and skeletal muscles followed by inflammatory cell infiltrates was observed with quantitative and qualitative differences. Even though the four members of the T. brasiliensis species complex differ in their geographical distribution, morphology, biology, ecology, and genetics, no significant influence on the parasitemia of the T. cruzi PB913 isolate was detected. After evaluation of the tissue samples, a higher pathogenicity of parasites obtained from T. b. brasiliensis was noticeable.
Collapse
Affiliation(s)
- J Costa
- Lab de Biodiversidade Entomológica, Instituto Oswaldo Cruz-IOC/FIOCRUZ, Av. Brasil 4365, Rio de Janeiro, RJ, Brasil
| | | | | | | |
Collapse
|
11
|
Flórez-Vargas O, Bramhall M, Noyes H, Cruickshank S, Stevens R, Brass A. The quality of methods reporting in parasitology experiments. PLoS One 2014; 9:e101131. [PMID: 25076044 PMCID: PMC4116335 DOI: 10.1371/journal.pone.0101131] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Accepted: 06/03/2014] [Indexed: 12/23/2022] Open
Abstract
There is a growing concern both inside and outside the scientific community over the lack of reproducibility of experiments. The depth and detail of reported methods are critical to the reproducibility of findings, but also for making it possible to compare and integrate data from different studies. In this study, we evaluated in detail the methods reporting in a comprehensive set of trypanosomiasis experiments that should enable valid reproduction, integration and comparison of research findings. We evaluated a subset of other parasitic (Leishmania, Toxoplasma, Plasmodium, Trichuris and Schistosoma) and non-parasitic (Mycobacterium) experimental infections in order to compare the quality of method reporting more generally. A systematic review using PubMed (2000-2012) of all publications describing gene expression in cells and animals infected with Trypanosoma spp was undertaken based on PRISMA guidelines; 23 papers were identified and included. We defined a checklist of essential parameters that should be reported and have scored the number of those parameters that are reported for each publication. Bibliometric parameters (impact factor, citations and h-index) were used to look for association between Journal and Author status and the quality of method reporting. Trichuriasis experiments achieved the highest scores and included the only paper to score 100% in all criteria. The mean of scores achieved by Trypanosoma articles through the checklist was 65.5% (range 32-90%). Bibliometric parameters were not correlated with the quality of method reporting (Spearman's rank correlation coefficient <-0.5; p>0.05). Our results indicate that the quality of methods reporting in experimental parasitology is a cause for concern and it has not improved over time, despite there being evidence that most of the assessed parameters do influence the results. We propose that our set of parameters be used as guidelines to improve the quality of the reporting of experimental infection models as a pre-requisite for integrating and comparing sets of data.
Collapse
Affiliation(s)
- Oscar Flórez-Vargas
- Bio-health Informatics Group, School of Computer Science, University of Manchester, Manchester, United Kingdom
| | - Michael Bramhall
- Bio-health Informatics Group, School of Computer Science, University of Manchester, Manchester, United Kingdom
| | - Harry Noyes
- School of Biological Science, University of Liverpool, Liverpool, United Kingdom
| | - Sheena Cruickshank
- Manchester Immunology Group, Faculty of Life Science, University of Manchester, Manchester, United Kingdom
| | - Robert Stevens
- Bio-health Informatics Group, School of Computer Science, University of Manchester, Manchester, United Kingdom
| | - Andy Brass
- Bio-health Informatics Group, School of Computer Science, University of Manchester, Manchester, United Kingdom
- Manchester Immunology Group, Faculty of Life Science, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
12
|
de los Milagros Cámara M, Bouvier LA, Miranda MR, Reigada C, A. Pereira C. Laboratory techniques to obtain different forms of Trypanosoma cruzi: applications to wild-type and genetically modified parasites. Folia Parasitol (Praha) 2013; 60:406-10. [DOI: 10.14411/fp.2013.042] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|