1
|
Yan M, Liu H, Su Y, Bi X, Yang N, Lin R, Lü G. Inhibition of AMPK activation in Echinococcus granulosus sensu stricto limits the parasite's glucose metabolism and survival. Antimicrob Agents Chemother 2024; 68:e0120223. [PMID: 38349157 PMCID: PMC10916388 DOI: 10.1128/aac.01202-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 01/04/2024] [Indexed: 03/07/2024] Open
Abstract
Cystic echinococcosis (CE) is a zoonotic parasitic disease caused by larvae of the Echinococcus granulosus sensu lato (s.l.) cluster. There is an urgent need to develop new drug targets and drug molecules to treat CE. Adenosine monophosphate (AMP)-activated protein kinase (AMPK), a serine/threonine protein kinase consisting of α, β, and γ subunits, plays a key role in the regulation of energy metabolism. However, the role of AMPK in regulating glucose metabolism in E. granulosus s.l. and its effects on parasite viability is unknown. In this study, we found that targeted knockdown of EgAMPKα or a small-molecule AMPK inhibitor inhibited the viability of E. granulosus sensu stricto (s.s.) and disrupted the ultrastructure. The results of in vivo experiments showed that the AMPK inhibitor had a significant therapeutic effect on E. granulosus s.s.-infected mice and resulted in the loss of cellular structures of the germinal layer. In addition, the inhibition of the EgAMPK/EgGLUT1 pathway limited glucose uptake and glucose metabolism functions in E. granulosus s.s.. Overall, our results suggest that EgAMPK can be a potential drug target for CE and that inhibition of EgAMPK activation is an effective strategy for the treatment of disease.
Collapse
Affiliation(s)
- Mingzhi Yan
- State Key Laboratory of Pathogenesis, Prevention, and Treatment of Central Asian High Incidence Diseases, Clinical Medical Research Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Hui Liu
- State Key Laboratory of Pathogenesis, Prevention, and Treatment of Central Asian High Incidence Diseases, Clinical Medical Research Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Yansen Su
- Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei, China
- Anhui University, Hefei, China
| | - Xiaojuan Bi
- State Key Laboratory of Pathogenesis, Prevention, and Treatment of Central Asian High Incidence Diseases, Clinical Medical Research Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Ning Yang
- State Key Laboratory of Pathogenesis, Prevention, and Treatment of Central Asian High Incidence Diseases, Clinical Medical Research Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Renyong Lin
- State Key Laboratory of Pathogenesis, Prevention, and Treatment of Central Asian High Incidence Diseases, Clinical Medical Research Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
- Basic Medical College, Xinjiang Medical University, Urumqi, China
| | - Guodong Lü
- State Key Laboratory of Pathogenesis, Prevention, and Treatment of Central Asian High Incidence Diseases, Clinical Medical Research Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
- College of Pharmacy, Xinjiang Medical University, Urumqi, China
| |
Collapse
|
2
|
Habibi B, Gholami S, Bagheri A, Fakhar M, Moradi A, Khazeei Tabari MA. Cystic echinococcosis microRNAs as potential noninvasive biomarkers: current insights and upcoming perspective. Expert Rev Mol Diagn 2023; 23:885-894. [PMID: 37553726 DOI: 10.1080/14737159.2023.2246367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/18/2023] [Accepted: 08/07/2023] [Indexed: 08/10/2023]
Abstract
INTRODUCTION Echinococcosis, also known as hydatidosis, is a zoonotic foodborne disease occurred by infection with the larvae of Echinococcus spp. which can lead to the development of hydatid cysts in various organs of the host. The diagnosis of echinococcosis remains challenging due to limited diagnostic tools. AREAS COVERED In recent years, microRNAs (miRNAs) have emerged as a promising biomarker for various infectious diseases, including those caused by helminths. Recent studies have identified several novel miRNAs in Echinococcus spp. shedding light on their essential roles in hydatid cyst host-parasite interactions. In this regard, several studies have shown that Echinococcus-derived miRNAs are present in biofluids such as serum and plasma of infected hosts. The detection of these miRNAs in the early stages of infection can serve as an early prognostic and diagnostic biomarker for echinococcosis. EXPERT OPINION The miRNAs specific to Echinococcus spp. show great potential as early diagnostic biomarkers for echinococcosis and can also provide insights into the pathogenesis of this disease. This review attempts to provide a comprehensive overview of Echinococcus-specific miRNAs, their use as early diagnostic biomarkers, and their function in host-parasite interactions.
Collapse
Affiliation(s)
- Bentolhoda Habibi
- Department of Parasitology, Toxoplasmosis Research Center, Mazandaran Registry Center for Hydatid Cyst, Mazandaran University of Medical Sciences, Sari, Iran
| | - Shirzad Gholami
- Department of Parasitology, Toxoplasmosis Research Center, Mazandaran Registry Center for Hydatid Cyst, Mazandaran University of Medical Sciences, Sari, Iran
| | - Abouzar Bagheri
- Department of Clinical Biochemistry-Biophysics and Genetics, Immunogenetics Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mahdi Fakhar
- Department of Parasitology, Toxoplasmosis Research Center, Mazandaran Registry Center for Hydatid Cyst, Mazandaran University of Medical Sciences, Sari, Iran
- Iranian National Registry Center for Lophomoniasis and Toxoplasmosis, Imam Khomeini Hospital, Mazandaran University of Medical Sciences, Sari, Iran
| | - Alimohammad Moradi
- Department of General Surgery Division of HPB and Transplantation Surgery, Tehran University of Medical Sciences, Tehran, Iran
| | | |
Collapse
|
3
|
In vitro Scolicidal Efficacy of 5-Fluorouracil and Radiation Against Protoscoleces of Echinococcus granulosus Sensu Lato. Acta Parasitol 2022; 67:820-826. [PMID: 35113338 DOI: 10.1007/s11686-022-00518-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 01/03/2022] [Indexed: 11/01/2022]
Abstract
PURPOSE Cystic echinococcosis (CE) caused by Echinococcus granulosus sensu lato (s.l.) is a globally distributed zoonosis. CE treatment is difficult, but radiation and 5-fluorouracil (5-FU) can be effective. However, the combination of radiation and 5-FU has not been reported. This study evaluated the effect of combination of 5-FU and radiation on E. granulosus s.l. protoscoleces (PSCs). MATERIAL AND METHODS In this study, PSCs were collected from the liver of diseased sheep, and some were exposed to a single dose of 20 Gy 6-MV X-ray combined with (5 μg/mL or 10 μg/mL) 5-FU in vitro. Methylene blue staining was used to detect the viability of the PSCs. Transcription of EgHSP70 and Egp38 was measured by quantitative real-time PCR (qRT- PCR). RESULTS A single dose of radiation killed 18% of the PSCs, and 5-FU showed weak parasiticidal efficacy on the first day of treatment. After 14 d, 5 μg and 10 μg/mL of 5-FU killed 40.20% and 50.02% of the PSCs, whereas 20 Gy of radiation killed 31.44%. The combination of 5-FU (10 μg/mL) with 20 Gy of radiation showed 77.55% killing efficacy. qRT-PCR showed that 5-FU inhibited Egp38 expression, whereas radiation increased its expression. EgHSP70 was highly expressed 14 days after radiation treatment. The data indicate that 5-FU has parasiticidal efficacy against the PSCs of E. granulosus s.l. CONCLUSION The lethal efficacy of PSCs caused by a single dose of radiation exposure is related to the upregulated expression level of Egp38 and EgHSP70. The killing effect of 5-FU (10 μg/mL) with 20Gy of radiation was significantly better than that of single treatment group. This study provided a basis for the potential role of 5-FU combined with radiation in the treatment of CE.
Collapse
|
4
|
Electrical potentials of protoscoleces of the cestode Echinococcus granulosus from bovine origin. Exp Parasitol 2022; 238:108282. [PMID: 35636496 DOI: 10.1016/j.exppara.2022.108282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 05/01/2022] [Accepted: 05/18/2022] [Indexed: 11/22/2022]
Abstract
Larval stages of taeniid Echinococcus granulosus are the infective forms of cystic echinococcosis or hydatidosis, a worldwide zoonosis. The protoscolex that develops into the adult form in the definitive host is enveloped by a complex cellular syncytial tegument, where all metabolic interchange takes place. Little information is available as to the electrical activity of the parasite in this developmental stage. To gain insight into the electrical activity of the parasite at the larval stage, we conducted microelectrode impalements of bovine lung protoscoleces (PSCs) of Echinococcus granulosus in standard saline solution. We observed two distinct intra-parasitic potentials, a transient peak potential, and a stable second potential, most likely representing tegumental and intra-parasitic extracellular space electrical potential differences. These values changed on the developmental status of the parasite, its anatomical regions, or time course after harvesting. Changes in electrical potential differences of the parasite provide an accessible and valuable parameter for the study of transport mechanisms and potential targets for developing novel antiparasitic therapeutics.
Collapse
|
5
|
Autoimmunity in human CE: Correlative with the fertility status of the CE cyst. Helminthologia 2022; 59:1-17. [PMID: 35601761 PMCID: PMC9075880 DOI: 10.2478/helm-2022-0011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 01/27/2022] [Indexed: 11/20/2022] Open
Abstract
Cystic echinococcosis is speculated to exert several immune-evasion strategies involving autoimmune-phenomena. We evaluated the hypothesizes that the prevalence of autoantibodies increases in the sera of CE patients that may evidence the association between the parasite and autoimmune diseases. Sera from 63 subjects at distinct types of CE cyst fertility were investigated for antinuclear antibodies (ANA), and anti-CCP antibodies. Plasma levels and cellular production of IL-17A cytokine were specifically defined as being assumed to prime for autoimmunity. Healthy-controls were age and gender-matched to test sera. ANA expressions inside the surgically removed metacestode and adventitial layer were also assayed. Out of 63 patients, 35 % had fertile highly viable cysts (group-1), 41 % had fertile low viable cysts (group-2) and 24 % had non-fertile cysts (group-3). A four-fold increase in ANA sera-levels was detected in group-1 compared with their controls (p-value 0.001) while anti-CCP levels were of insignificant differences. In group-2 and group-3, no significant differences were detected between ANA and anti-CCP sera-levels in CE patients and their controls. IL-17A sera-levels in group-1 and group- 2 were significantly higher than their healthy-controls while being of insignificant differences in group-3, p-value= 0.300. No association was detected between sera-levels of IL-17A and ANA as well as anti-CCP antibodies. Interestingly, relative IL-17A cellular expression associated positive ANA deposition in the parasite cells and adventitial layer. Collectively, based on the parasite fertility, IL-17A and ANA seemed to be involved in the host immune defenses against CE. There is no association between CE and anti-CCP antibodies.
Collapse
|
6
|
El Saftawy EA, Abdelmoktader A, Sabry MM, Alghandour SM. Histological and immunological insights to hydatid disease in camels. Vet Parasitol Reg Stud Reports 2021; 26:100635. [PMID: 34879946 DOI: 10.1016/j.vprsr.2021.100635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 08/31/2021] [Accepted: 09/06/2021] [Indexed: 11/15/2022]
Abstract
PURPOSE To investigate the immuno-histological evidences in viable and non-viable hydatid cysts obtained from naturally infected camels. METHODS A cohort study (February 2018-December 2019), a total of 15 hydatidosis-infected camels from slaughter houses in Cairo were involved. Specimens were investigated for parasite viability, liver histological changes, IL-17A cytokine immunohistochemical expressions in the adventitial layer, and the anti-nuclear antibodies (ANAs) immunofluorescent expression in the metacestode's structures. Real-Time Quantitative -Morphocytometry and SPSS were utilized. RESULTS Multi-focal lesions and high viability were found in 60% of the cases. Overall accumulation of collagen associated the parasite establishment that involved infiltrations of mononuclear cells with significantly increased IL-17A expression. Interestingly, the ANAs appeared to have a role in the immune-defense against the metacestode showing different patterns. ANAs production correlated with IL-17A expression and the viability of the parasite. CONCLUSION IL-17A responses in hydatidosis is associated with collagen deposition and ANA production as a sort of anti-parasite immunity in a viability dependent manner.
Collapse
Affiliation(s)
- Enas A El Saftawy
- Medical Parasitology Department, Faculty of Medicine, Cairo University, Cairo, Egypt; Medical Parasitology Department, Faculty of Medicine, Armed Forces College of Medicine, Cairo, Egypt.
| | - Abdelrahman Abdelmoktader
- Medical Microbiology and Immunology Department, Faculty of Medicine, Fayoum University, Fayoum, Egypt
| | - Marwa Mohamed Sabry
- Department of Histology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | | |
Collapse
|
7
|
Miles S, Magnone J, García-Luna J, Ancarola ME, Cucher M, Dematteis S, Frischknecht F, Cyrklaff M, Mourglia-Ettlin G. Ultrastructural characterization of the tegument in protoscoleces of Echinococcus ortleppi. Int J Parasitol 2021; 51:989-997. [PMID: 34216624 DOI: 10.1016/j.ijpara.2021.05.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 05/13/2021] [Accepted: 05/17/2021] [Indexed: 12/27/2022]
Abstract
Cystic echinococcosis is a globally distributed zoonosis caused by cestodes of the Echinococcus granulosus sensu lato (s.l.) complex, with Echinococcus ortleppi mainly involved in cattle infection. Protoscoleces show high developmental plasticity, being able to differentiate into either adult worms or metacestodes within definitive or intermediate hosts, respectively. Their outermost cellular layer is called the tegument, which is important in determining the infection outcome through its immunomodulating activities. Herein, we report an in-depth characterization of the tegument of E. ortleppi protoscoleces performed through a combination of scanning and transmission electron microscopy techniques. Using electron tomography, a three-dimensional reconstruction of the tegumental cellular territories was obtained, revealing a novel structure termed the 'tegumental vesicular body' (TVB). Vesicle-like structures, possibly involved in endocytic/exocytic routes, were found within the TVB as well as in the parasite glycocalyx, distal cytoplasm and close inner structures. Furthermore, parasite antigens (GST-1 and AgB) were unevenly localised within tegumental structures, with both being detected in vesicles found within the TBV. Finally, the presence of host (bovine) IgG was also assessed, suggesting a possible endocytic route in protoscoleces. Our data forms the basis for a better understanding of E. ortleppi and E. granulosus s.l. structural biology.
Collapse
Affiliation(s)
- Sebastián Miles
- Área Inmunología, DEPBIO/IQB, Facultad de Química/Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay; Integrative Parasitology, Center for Infectious Diseases, Heidelberg University, Heidelberg, Germany
| | - Javier Magnone
- Área Inmunología, DEPBIO/IQB, Facultad de Química/Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Joaquín García-Luna
- Área Inmunología, DEPBIO/IQB, Facultad de Química/Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - María Eugenia Ancarola
- Instituto de Investigaciones en Microbiología y Parasitología Médica (IMPaM, UBA-CONICET), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina; Departamento de Microbiología, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Marcela Cucher
- Instituto de Investigaciones en Microbiología y Parasitología Médica (IMPaM, UBA-CONICET), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina; Departamento de Microbiología, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Sylvia Dematteis
- Área Inmunología, DEPBIO/IQB, Facultad de Química/Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Friedrich Frischknecht
- Integrative Parasitology, Center for Infectious Diseases, Heidelberg University, Heidelberg, Germany; German Center for Infection Research (DZIF), partner site Heidelberg, Heidelberg, Germany
| | - Marek Cyrklaff
- Integrative Parasitology, Center for Infectious Diseases, Heidelberg University, Heidelberg, Germany.
| | - Gustavo Mourglia-Ettlin
- Área Inmunología, DEPBIO/IQB, Facultad de Química/Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay.
| |
Collapse
|
8
|
Song H, He X, Du X, Hua R, Xu J, He R, Xie Y, Gu X, Peng X, Yang G. Molecular characterization and expression analysis of annexin B3 and B38 as secretory proteins in Echinococcus granulosus. Parasit Vectors 2021; 14:103. [PMID: 33557917 PMCID: PMC7869467 DOI: 10.1186/s13071-021-04596-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 01/13/2021] [Indexed: 11/18/2022] Open
Abstract
Background Cystic echinococcosis is a parasitic zoonotic disease, which poses a threat to public health and animal husbandry, and causes significant economic losses. Annexins are a family of phospholipid-binding proteins with calcium ion-binding activity, which have many functions. Methods Two annexin protein family genes [Echinococcus granulosus annexin B3 (EgAnxB3) and EgAnxB38] were cloned and molecularly characterized using bioinformatic analysis. The immunoreactivity of recombinant EgAnxB3 (rEgAnxB3) and rEgAnxB38 was investigated using western blotting. The distribution of EgAnxB3 and EgAnxB38 in protoscoleces (PSCs), the germinal layer, 18-day strobilated worms and 45-day adult worms was analyzed by immunofluorescence localization, and their secretory characteristics were analyzed preliminarily; in addition, quantitative real-time reverse transcription polymerase chain reaction was used to analyze their transcript levels in PSCs and 28-day strobilated worms stages. The phospholipid-binding activities of rEgAnxB3 and rEgAnxB38 were also analyzed. Results EgAnxB3 and EgAnxB38 are conserved and contain calcium-binding sites. Both rEgAnxB3 and rEgAnxB38 could be specifically recognized by the serum samples from E. granulosus-infected sheep, indicating that they had strong immunoreactivity. EgAnxB3 and EgAnxB38 were distributed in all stages of E. granulosus, and their transcript levels were high in the 28-day strobilated worms. They were found in liver tissues near the cysts. In addition, rEgAnxB3 has Ca2+-dependent phospholipid-binding properties. Conclusions EgAnxB3 and EgAnxB38 contain calcium-binding sites, and rEgAnxB3 has Ca2+-dependent phospholipid-binding properties. EgAnxB3 and EgAnxB38 were transcribed in PSCs and 28-day strobilated worms. They were expressed in all stages of E. granulosus, and distributed in the liver tissues near the hydatid cyst, indicating that they are secreted proteins that play a crucial role in the development of E. granulosus. ![]()
Collapse
Affiliation(s)
- Hongyu Song
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, 611130, China
| | - Xue He
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, 611130, China
| | - Xiaodi Du
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, 611130, China
| | - Ruiqi Hua
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, 611130, China
| | - Jing Xu
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, 611130, China
| | - Ran He
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, 611130, China
| | - Yue Xie
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, 611130, China
| | - Xiaobin Gu
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, 611130, China
| | - Xuerong Peng
- Department of Chemistry, College of Life and Basic Science, Sichuan Agricultural University, Wenjiang, 611130, China
| | - Guangyou Yang
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, 611130, China.
| |
Collapse
|
9
|
Zhou X, Wang W, Cui F, Shi C, Ma Y, Yu Y, Zhao W, Zhao J. Extracellular vesicles derived from Echinococcus granulosus hydatid cyst fluid from patients: isolation, characterization and evaluation of immunomodulatory functions on T cells. Int J Parasitol 2019; 49:1029-1037. [DOI: 10.1016/j.ijpara.2019.08.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 08/03/2019] [Accepted: 08/05/2019] [Indexed: 12/11/2022]
|
10
|
Echinococcus granulosus: Insights into the protoscolex F-actin cytoskeleton. Acta Trop 2019; 199:105122. [PMID: 31398313 DOI: 10.1016/j.actatropica.2019.105122] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 07/29/2019] [Accepted: 08/01/2019] [Indexed: 01/01/2023]
Abstract
Echinococcus granulosus is a cestode parasite whose cytoskeleton plasticity allows it to enter and develop inside its hosts, completing thus its life cycle. We focused our attention on F-actin organization and distribution in E. granulosus protoscoleces (PSC) in order to contribute to the knowledge of the parasite cytoskeleton. In particular, we addressed some aspects of F-actin rearrangements in PSC at different stages of the evagination/invagination process. The use of light microscopy allowed us to identify different PSC structures and phalloidin staining displayed a parasite's highly organized F-actin cytoskeleton. Suckers exhibit an important musculature composed of a set of radial fibers. At the rostellum, the F-actin filaments are arranged in a bulbar shape with perforations that appear to be the attachment places for the hooks. Also, "circular" structures of F-actin were identified, which remind the flame cells. Furthermore, parasite F-actin filaments, unevenly distributed, seem to have remained substantially unchanged during the evagination/invagination process. Finally, we showed that the scolex of an evaginated E. granulosus PSC reinvaginates in vitro without any treatment.
Collapse
|
11
|
Shaheen HAAAS, El-Ahl SAHS, Raouf AMA, El-Dardiry MA, Badawi MA, Aal AAA. Ultrastructural changes in hydatid cyst walls obtained from human cases, exposed to different therapeutic approaches. Parasitol Res 2019; 118:3149-3157. [PMID: 31578608 DOI: 10.1007/s00436-019-06446-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 08/27/2019] [Indexed: 10/25/2022]
Abstract
Recurrence of cystic echinococcosis as a result of treatment failure is frequently reported to cause a major problem in management of such serious parasitic infection. The deeply seated innermost germinal layer of hydatid cysts is a relatively delicate layer, yet responsible for viability maintenance of this parasitic stage. In this study, a trial was done to explore the ultrastructural changes in germinal and laminated layer of the hydatid cyst for the first time in human cases exposed to different therapeutic approaches which were done earlier to the final open surgical intervention. Four groups were included: group 1 did not receive any earlier form of treatment; group 2 was previously treated with only medical therapy; group 3 was treated with a single course of medical treatment, plus a single PAIR technique; group 4 was treated with multiple courses of medical treatment plus multiple PAIR techniques. Complete alteration of ultrastructural features of germinal and laminated layers were observed only with samples from group 4, indicating a kind of failure of the therapeutic approaches used in group, 1, 2, and 3, unless repeated in group 4 to achieve a real change regarding the fitness of the parasitic cystic lesions. Searching for more effective, safe, therapeutic method is highly recommended which may end the suffering of the affected patients.
Collapse
Affiliation(s)
| | | | - Amr Mahmoud Abdel Raouf
- Surgery Department, National Hepatology and Tropical Medicine Research Institute, Cairo, Egypt
| | - Marwa Ahmed El-Dardiry
- Department of Medical Parasitology, Faculty of Medicine, Fayoum University, Fayoum, Egypt.
| | - Manal A Badawi
- Department of Pathology, National Research Institute, Giza, Egypt
| | - Amany Ahmed Abdel Aal
- Department of Medical Parasitology, Faculty of Medicine, Cairo University, Giza, Egypt.,Department of Medical Parasitology, Armed Forces College of Medicine (AFCM), Cairo, Egypt
| |
Collapse
|
12
|
Stoore C, Andrade C, Hidalgo C, Corrêa F, Jiménez M, Hernandez M, Paredes R. Echinococcus granulosus hydatid cyst location is modified by Fasciola hepatica infection in cattle. Parasit Vectors 2018; 11:542. [PMID: 30305164 PMCID: PMC6180525 DOI: 10.1186/s13071-018-3128-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 09/30/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Natural parasite infection occurs in wild and domestics animals with more than one parasite species at the same time, generating an infection called polyparasitism. Cystic echinococcosis reports are usually based only on infection with Echinoccocus granulosus leaving aside other internal parasitoses that could modulate both the immune response and pathogenesis of the natural infection. Fasciola hepatica is another cosmopolitan parasite in ruminants with a similar distribution to E. granulosus in different parts of the world, but no information of the effect of co-infection with E. granulosus has been described. The aims of this report were to establish E. granulosus prevalence and explore the association of F. hepatica co-infection and natural E. granulosus infections in cattle. RESULTS From 1725 animals, the prevalence of E. granulosus and F. hepatica was 21.16 and 51.3%, respectively. Considering both infections, older cattle (> 4 years) presented higher prevalence compared to younger animals. In E. granulosus-infected cattle, 5.21% had fertile cysts, 71.78% infertile cysts, and in 23.01% cysts were smaller than 1 cm in diameter. Considering cyst location, 39.72% had lungs cysts, 24.72% had liver cysts and 36.94% had cysts in both organs. Cyst location significantly differed between age groups: 44.68% of younger animals had cysts only in the lungs, while older animals presented hydatid cyst in the lungs and liver simultaneously (44.15%). With E. granulosus infection alone, 30.26% of cysts were found in the lungs, 31.79% in the liver and 37.95% in both organs. Regarding the co-infection of E. granulosus with F. hepatica, the proportion was significantly different (P < 0.05) with most animals having cysts only in the lungs (49.41%) and a lower level of liver infection (15.88%). Analyzing organ cyst distribution and F. hepatica absence/presence ratio within each cyst type, small cysts showed the highest difference in ratio. CONCLUSIONS To the best of our knowledge, this is the first report indicating that F. hepatica co-infection in cattle could be affecting the instate of hydatid cysts in the liver, displacing toward lung localization, suggesting an antagonistic relationship.
Collapse
Affiliation(s)
- Caroll Stoore
- Escuela de Medicina Veterinaria, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Constanza Andrade
- Escuela de Medicina Veterinaria, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Christian Hidalgo
- Escuela de Medicina Veterinaria, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Felipe Corrêa
- Escuela de Medicina Veterinaria, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Mauricio Jiménez
- Escuela de Medicina Veterinaria, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Marcela Hernandez
- Laboratorio de Biología Periodontal, Facultad de Odontología, Universidad de Chile, Santiago, Chile
- Facultad de Ciencias de la Salud, Universidad Autonoma de Chile, Santiago, Chile
| | - Rodolfo Paredes
- Escuela de Medicina Veterinaria, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| |
Collapse
|
13
|
Wu M, Yan M, Xu J, Yin X, Dong X, Wang N, Gu X, Xie Y, Lai W, Jing B, Peng X, Yang G. Molecular characterization of triosephosphate isomerase from Echinococcus granulosus. Parasitol Res 2018; 117:3169-3176. [PMID: 30027383 DOI: 10.1007/s00436-018-6015-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Accepted: 07/12/2018] [Indexed: 11/26/2022]
Abstract
Cystic echinococcosis (CE) is a zoonosis that can be caused by the larvae of Echinococcus granulosus; this disease occurs worldwide and is highly endemic in China. E. granulosus can produce energy by glycolysis as well as both aerobic and anaerobic respirations. Triosephosphate isomerase is a glycolytic enzyme present in a wide range of organisms and plays an important role in glycolysis. However, there has been little research on triosephosphate isomerase from E. granulosus (Eg-TIM). Here, we present a bioinformatic characterization and the experimentally determined tissue distribution characteristics of Eg-TIM. We also explored its potential value for diagnosing CE in sheep using indirect enzyme-linked immunosorbent assay (ELISA). Native Eg-TIM was located in the neck and hooks of protoscoleces (PSCs), as well as the tegument and parenchyma tissue of adult worms. The entire germinal layer was also Eg-TIM positive. Western blots showed that recombinant Eg-TIM (rEg-TIM) reacts with positive serum from sheep and had good immunogenicity. Indirect ELISA exhibited low specificity (53.6%) and low sensitivity (87.5%) and cross-reacted with both Taenia multiceps and Taenia hydatigena. Our results suggest that TIM may take part in the growth and development of E. granulosus. Furthermore, we determined that rEg-TIM is not a suitable serodiagnostic antigen for CE in sheep.
Collapse
Affiliation(s)
- Maodi Wu
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Min Yan
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Jing Xu
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xiaoxiao Yin
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xiaowei Dong
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Ning Wang
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xiaobin Gu
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yue Xie
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Weimin Lai
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Bo Jing
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xuerong Peng
- Department of Chemistry, College of Life and Basic Science, Sichuan Agricultural University, Ya'an, China
| | - Guangyou Yang
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.
| |
Collapse
|
14
|
First description of Echinococcus ortleppi and cystic echinococcosis infection status in Chile. PLoS One 2018; 13:e0197620. [PMID: 29771992 PMCID: PMC5957416 DOI: 10.1371/journal.pone.0197620] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 05/05/2018] [Indexed: 11/24/2022] Open
Abstract
Cystic echinococcosis (CE), a parasitic disease caused by the cestode Echinococcus granulosus sensu lato (s.l.), is a worldwide zoonotic infection. Although endemic in Chile, information on the molecular characteristics of CE in livestock remains scarce. Therefore we aimed to describe the status of infection with E. granulosus s.l. in cattle from central Chile and also to contribute to the study of the molecular epidemiology of this parasite. According to our results, the prevalence of CE is 18.84% in cattle, similar to previous reports from Chile, suggesting that the prevalence in Santiago Metropolitan area has not changed in the last 30 years. Most of the cysts were found only in lungs (51%), followed by concurrent infection in liver and lungs (30%), and only liver (19%). Molecular characterization of the genetic diversity and population structure of E. granulosus s.l. from cattle in central Chile was performed using a section of the cytochrome c oxidase subunit 1 (cox1) mitochondrial gene. E. granulosus sensu stricto (s.s.) (G1-G3 genotypes) was confirmed by RFLP-PCR to be the dominant species affecting cattle (284 samples/290 samples); we also report for the first time in Chile the presence of E. ortleppi (G5 genotype) (2 samples/61 samples). The Chilean E. granulosus s.s. parsimony network displayed 1 main haplotype. Additional studies using isolates from many locations across Chile and different intermediate hosts will provide more data on the molecular structure of E. granulosus s.s. within this region. Likewise, investigations of the importance of E. ortleppi in human infection in Chile deserve future attention.
Collapse
|
15
|
Expression, Tissue Localization and Serodiagnostic Potential of Echinococcus granulosus Leucine Aminopeptidase. Int J Mol Sci 2018; 19:ijms19041063. [PMID: 29614002 PMCID: PMC5979522 DOI: 10.3390/ijms19041063] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Revised: 03/20/2018] [Accepted: 03/24/2018] [Indexed: 12/11/2022] Open
Abstract
Echinococcus granulosus is the causative agent of cystic echinococcosis (CE), a widespread parasitic zoonosis. Leucine aminopeptidases (LAPs) of the M17 peptidase family have important functions in regulating the balance of catabolism and anabolism, cell maintenance, growth and defense. In this study, we presented a bioinformatic characterization and experimentally determined the tissue distribution characteristics of E. granulosus LAP (Eg-LAP), and explored its potential value for diagnosis of CE in sheep based on indirect ELISA. Through fluorescence immunohistochemistry, we found that Eg-LAP was present in the tegument and hooks of PSCs, the whole germinal layer and adult worm parenchymatous tissue. Western blotting results revealed that the recombinant protein could be identified using E. granulosus-infected sheep serum. The diagnostic value of this recombinant protein was assessed by indirect ELISA, and compared with indirect ELISA based on hydatid fluid antigen. The sensitivity and specificity rEgLAP-ELISA were 95.8% (23/24) and 79.09% (87/110), respectively, while using hydatid fluid as antigen showed the values 41.7% (10/24) and 65.45% (72/110). This is the first report concerning leucine aminopeptidase from E. granulosus, and the results showed that Eg-LAP belong to M17 peptidase families, and that it is involved in important biological function of E. granulosus. Furthermore, rEg-LAP is appropriate for diagnosing and monitoring CE in sheep in field. Development of a rapid test using rEg-LAP to diagnose sheep CE deserves further study.
Collapse
|
16
|
Macchiaroli N, Cucher M, Zarowiecki M, Maldonado L, Kamenetzky L, Rosenzvit MC. microRNA profiling in the zoonotic parasite Echinococcus canadensis using a high-throughput approach. Parasit Vectors 2015; 8:83. [PMID: 25656283 PMCID: PMC4326209 DOI: 10.1186/s13071-015-0686-8] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Accepted: 01/21/2015] [Indexed: 01/08/2023] Open
Abstract
Background microRNAs (miRNAs), a class of small non-coding RNAs, are key regulators of gene expression at post-transcriptional level and play essential roles in fundamental biological processes such as development and metabolism. The particular developmental and metabolic characteristics of cestode parasites highlight the importance of studying miRNA gene regulation in these organisms. Here, we perform a comprehensive analysis of miRNAs in the parasitic cestode Echinococcus canadensis G7, one of the causative agents of the neglected zoonotic disease cystic echinococcosis. Methods Small RNA libraries from protoscoleces and cyst walls of E. canadensis G7 and protoscoleces of E. granulosus sensu stricto G1 were sequenced using Illumina technology. For miRNA prediction, miRDeep2 core algorithm was used. The output list of candidate precursors was manually curated to generate a high confidence set of miRNAs. Differential expression analysis of miRNAs between stages or species was estimated with DESeq. Expression levels of selected miRNAs were validated using poly-A RT-qPCR. Results In this study we used a high-throughput approach and found transcriptional evidence of 37 miRNAs thus expanding the miRNA repertoire of E. canadensis G7. Differential expression analysis showed highly regulated miRNAs between life cycle stages, suggesting a role in maintaining the features of each developmental stage or in the regulation of developmental timing. In this work we characterize conserved and novel Echinococcus miRNAs which represent 30 unique miRNA families. Here we confirmed the remarkable loss of conserved miRNA families in E. canadensis, reflecting their low morphological complexity and high adaptation to parasitism. Conclusions We performed the first in-depth study profiling of small RNAs in the zoonotic parasite E. canadensis G7. We found that miRNAs are the preponderant small RNA silencing molecules, suggesting that these small RNAs could be an essential mechanism of gene regulation in this species. We also identified both parasite specific and divergent miRNAs which are potential biomarkers of infection. This study will provide valuable information for better understanding of the complex biology of this parasite and could help to find new potential targets for therapy and/or diagnosis. Electronic supplementary material The online version of this article (doi:10.1186/s13071-015-0686-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Natalia Macchiaroli
- Instituto de Investigaciones en Microbiología y Parasitología Médica (IMPaM), Facultad de Medicina, Universidad de Buenos Aires (UBA)-Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Paraguay 2155, Piso 13, CP 1121, Buenos Aires, Argentina.
| | - Marcela Cucher
- Instituto de Investigaciones en Microbiología y Parasitología Médica (IMPaM), Facultad de Medicina, Universidad de Buenos Aires (UBA)-Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Paraguay 2155, Piso 13, CP 1121, Buenos Aires, Argentina.
| | - Magdalena Zarowiecki
- Parasite Genomics, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA, UK.
| | - Lucas Maldonado
- Instituto de Investigaciones en Microbiología y Parasitología Médica (IMPaM), Facultad de Medicina, Universidad de Buenos Aires (UBA)-Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Paraguay 2155, Piso 13, CP 1121, Buenos Aires, Argentina.
| | - Laura Kamenetzky
- Instituto de Investigaciones en Microbiología y Parasitología Médica (IMPaM), Facultad de Medicina, Universidad de Buenos Aires (UBA)-Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Paraguay 2155, Piso 13, CP 1121, Buenos Aires, Argentina.
| | - Mara Cecilia Rosenzvit
- Instituto de Investigaciones en Microbiología y Parasitología Médica (IMPaM), Facultad de Medicina, Universidad de Buenos Aires (UBA)-Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Paraguay 2155, Piso 13, CP 1121, Buenos Aires, Argentina.
| |
Collapse
|
17
|
Pensel PE, Albani C, Gamboa GU, Benoit JP, Elissondo MC. In vitro effect of 5-fluorouracil and paclitaxel on Echinococcus granulosus larvae and cells. Acta Trop 2014; 140:1-9. [PMID: 25088684 DOI: 10.1016/j.actatropica.2014.07.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Revised: 06/27/2014] [Accepted: 07/23/2014] [Indexed: 11/15/2022]
Abstract
Human cystic echinococcosis is a zoonosis caused by the metacestode stage of the tapeworm Echinococcus granulosus. Although benzimidazole compounds such as albendazole and mebendazole have been the cornerstone of chemotherapy for the disease, there is often no complete recovery after treatment. Hence, in searching for novel treatment options, we examined the in vitro efficacies of 5-fluorouracil (5-FU) and paclitaxel (PTX) against E. granulosus germinal cells, protoscoleces and cysts. 5-FU or PTX inhibited the growth of E. granulosus cells in a time dependent manner. Although both treatments had a protoscolicidal effect, 5-FU had a considerably stronger effect than PTX. 5-FU produced a dose- and time-dependent effect, provoking the complete loss of viability after 24 days of incubation. Moreover, cysts did not develop following the inoculation of treated protoscoleces into mice. The loss of viability was slower in PTX treated protoscoleces, reaching to approximately 60% after 30 days. The results of the in vitro treatment with 5-FU and PTX were similar in secondary murine cysts. The employment of SEM and TEM allowed us to examine, at an ultrastructural level, the effects induced by 5-FU and PTX on E. granulosus germinal cells, protoscoleces and murine cysts. In conclusion, the data obtained clearly demonstrated that 5-FU and PTX at clinically achievable concentrations inhibit the survival of larval cells, protoscoleces and metacestodes. In vivo studies to test the antiparasitic activities of 5-FU and PTX are currently being undertaken on the murine model of cystic echinococcosis.
Collapse
Affiliation(s)
- P E Pensel
- Laboratorio de Zoonosis Parasitarias, Fac. Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, CONICET, Mar del Plata, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - C Albani
- Laboratorio de Zoonosis Parasitarias, Fac. Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, CONICET, Mar del Plata, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - G Ullio Gamboa
- Laboratorio de Farmacotecnia, Fac. Ciencias Químicas, Universidad Nacional de Córdoba, UNITEFA, Córdoba, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - J P Benoit
- INSERM U1066, MINT-Micro et Nanomédecines Biomimétiques, IBS-CHU Angers, 49933 Angers Cedex 9, France
| | - M C Elissondo
- Laboratorio de Zoonosis Parasitarias, Fac. Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, CONICET, Mar del Plata, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina.
| |
Collapse
|
18
|
Riesle S, García MP, Hidalgo C, Galanti N, Saenz L, Paredes R. Bovine IgG subclasses and fertility of Echinococcus granulosus hydatid cysts. Vet Parasitol 2014; 205:125-133. [PMID: 24962125 DOI: 10.1016/j.vetpar.2014.06.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Revised: 06/02/2014] [Accepted: 06/03/2014] [Indexed: 02/08/2023]
Abstract
Hydatidosis is an important zoonotic disease of worldwide distribution, causing important health problems to humans and major economical losses in infected livestock. Echinococcus granulosus, the etiological agent of hydatid disease, induces a humoral immune response in the intermediate host (human and herbivorous) against hydatid cyst antigens. Specifically, IgGs are found in the laminar and germinal layers and inside the lumen of fertile and infertile hydatid cysts. In the germinal layer of infertile cysts IgGs are found in an order of magnitude greater than in the germinal layer of fertile cysts; a fraction of those IgGs are associated with high affinity to germinal layer proteins, suggesting their binding to specific parasite antigens. We have previously shown that those immunoglobulins, bound with high affinity to the germinal layer of hydatid cysts, induce apoptosis leading to cyst infertility. In the present work the presence of IgG1 and IgG2 subclasses in the germinal layer of both fertile and infertile hydatid cysts is reported. IgG1 is the most relevant immunoglobulin subclass present in the germinal layer of infertile cysts and bound with high affinity to that parasite structure. Contrarily, though the IgG2 subclass was also found in the germinal and adventitial layers, those immunoglobulins show low affinity to parasite antigens. We propose that the binding of an IgG1 subclass to parasite antigens present in the germinal layer is involved in the mechanism of cyst infertility.
Collapse
Affiliation(s)
- Silke Riesle
- Escuela de Medicina Veterinaria, Facultad de Ecología y Recursos Naturales, Universidad Andres Bello, Santiago, Chile; Cambridge Infectious Diseases, Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge CB3 0ES, UK
| | - María Pía García
- Escuela de Medicina Veterinaria, Facultad de Ecología y Recursos Naturales, Universidad Andres Bello, Santiago, Chile
| | - Christian Hidalgo
- Escuela de Medicina Veterinaria, Facultad de Ecología y Recursos Naturales, Universidad Andres Bello, Santiago, Chile
| | - Norbel Galanti
- Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Leonardo Saenz
- Laboratorio de Vacunas Veterinarias, Departamento Ciencias Biológicas Animales, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Chile
| | - Rodolfo Paredes
- Escuela de Medicina Veterinaria, Facultad de Ecología y Recursos Naturales, Universidad Andres Bello, Santiago, Chile.
| |
Collapse
|
19
|
Koziol U, Krohne G, Brehm K. Anatomy and development of the larval nervous system in Echinococcus multilocularis. Front Zool 2013; 10:24. [PMID: 23642192 PMCID: PMC3658878 DOI: 10.1186/1742-9994-10-24] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Accepted: 04/30/2013] [Indexed: 01/06/2023] Open
Abstract
Background The metacestode larva of Echinococcus multilocularis (Cestoda: Taeniidae) develops in the liver of intermediate hosts (typically rodents, or accidentally in humans) as a labyrinth of interconnected cysts that infiltrate the host tissue, causing the disease alveolar echinococcosis. Within the cysts, protoscoleces (the infective stage for the definitive canid host) arise by asexual multiplication. These consist of a scolex similar to that of the adult, invaginated within a small posterior body. Despite the importance of alveolar echinococcosis for human health, relatively little is known about the basic biology, anatomy and development of E. multilocularis larvae, particularly with regard to their nervous system. Results We describe the existence of a subtegumental nerve net in the metacestode cysts, which is immunoreactive for acetylated tubulin-α and contains small populations of nerve cells that are labeled by antibodies raised against several invertebrate neuropeptides. However, no evidence was found for the existence of cholinergic or serotoninergic elements in the cyst wall. Muscle fibers occur without any specific arrangement in the subtegumental layer, and accumulate during the invaginations of the cyst wall that form brood capsules, where protoscoleces develop. The nervous system of the protoscolex develops independently of that of the metacestode cyst, with an antero-posterior developmental gradient. The combination of antibodies against several nervous system markers resulted in a detailed description of the protoscolex nervous system, which is remarkably complex and already similar to that of the adult worm. Conclusions We provide evidence for the first time of the existence of a nervous system in the metacestode cyst wall, which is remarkable given the lack of motility of this larval stage, and the lack of serotoninergic and cholinergic elements. We propose that it could function as a neuroendocrine system, derived from the nervous system present in the bladder tissue of other taeniids. The detailed description of the development and anatomy of the protoscolex neuromuscular system is a necessary first step toward the understanding of the developmental mechanisms operating in these peculiar larval stages.
Collapse
Affiliation(s)
- Uriel Koziol
- University of Würzburg, Institute of Hygiene and Microbiology, Josef-Schneider-Strasse 2, Würzburg, D-97080, Germany.
| | | | | |
Collapse
|
20
|
Parkinson J, Wasmuth JD, Salinas G, Bizarro CV, Sanford C, Berriman M, Ferreira HB, Zaha A, Blaxter ML, Maizels RM, Fernández C. A transcriptomic analysis of Echinococcus granulosus larval stages: implications for parasite biology and host adaptation. PLoS Negl Trop Dis 2012; 6:e1897. [PMID: 23209850 PMCID: PMC3510090 DOI: 10.1371/journal.pntd.0001897] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2012] [Accepted: 09/25/2012] [Indexed: 01/14/2023] Open
Abstract
Background The cestode Echinococcus granulosus - the agent of cystic echinococcosis, a zoonosis affecting humans and domestic animals worldwide - is an excellent model for the study of host-parasite cross-talk that interfaces with two mammalian hosts. To develop the molecular analysis of these interactions, we carried out an EST survey of E. granulosus larval stages. We report the salient features of this study with a focus on genes reflecting physiological adaptations of different parasite stages. Methodology/Principal Findings We generated ∼10,000 ESTs from two sets of full-length enriched libraries (derived from oligo-capped and trans-spliced cDNAs) prepared with three parasite materials: hydatid cyst wall, larval worms (protoscoleces), and pepsin/H+-activated protoscoleces. The ESTs were clustered into 2700 distinct gene products. In the context of the biology of E. granulosus, our analyses reveal: (i) a diverse group of abundant long non-protein coding transcripts showing homology to a middle repetitive element (EgBRep) that could either be active molecular species or represent precursors of small RNAs (like piRNAs); (ii) an up-regulation of fermentative pathways in the tissue of the cyst wall; (iii) highly expressed thiol- and selenol-dependent antioxidant enzyme targets of thioredoxin glutathione reductase, the functional hub of redox metabolism in parasitic flatworms; (iv) candidate apomucins for the external layer of the tissue-dwelling hydatid cyst, a mucin-rich structure that is critical for survival in the intermediate host; (v) a set of tetraspanins, a protein family that appears to have expanded in the cestode lineage; and (vi) a set of platyhelminth-specific gene products that may offer targets for novel pan-platyhelminth drug development. Conclusions/Significance This survey has greatly increased the quality and the quantity of the molecular information on E. granulosus and constitutes a valuable resource for gene prediction on the parasite genome and for further genomic and proteomic analyses focused on cestodes and platyhelminths. Cestodes are a neglected group of platyhelminth parasites, despite causing chronic infections to humans and domestic animals worldwide. We used Echinococcus granulosus as a model to study the molecular basis of the host-parasite cross-talk during cestode infections. For this purpose, we carried out a survey of the genes expressed by parasite larval stages interfacing with definitive and intermediate hosts. Sequencing from several high quality cDNA libraries provided numerous insights into the expression of genes involved in important aspects of E. granulosus biology, e.g. its metabolism (energy production and antioxidant defences) and the synthesis of key parasite structures (notably, the one exposed to humans and livestock intermediate hosts). Our results also uncovered the existence of an intriguing set of abundant repeat-associated non-protein coding transcripts that may participate in the regulation of gene expression in all surveyed stages. The dataset now generated constitutes a valuable resource for gene prediction on the parasite genome and for further genomic and proteomic studies focused on cestodes and platyhelminths. In particular, the detailed characterization of a range of newly discovered genes will contribute to a better understanding of the biology of cestode infections and, therefore, to the development of products allowing their efficient control.
Collapse
Affiliation(s)
- John Parkinson
- Program in Molecular Structure and Function, Hospital for Sick Children, University of Toronto, Toronto, Canada
| | - James D. Wasmuth
- Program in Molecular Structure and Function, Hospital for Sick Children, University of Toronto, Toronto, Canada
| | - Gustavo Salinas
- Cátedra de Inmunología, Facultad de Química, Universidad de la República, Montevideo, Uruguay
| | - Cristiano V. Bizarro
- Laboratório de Biologia Molecular de Cestódeos and Laboratorio de Genômica Estrutural e Funcional, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Chris Sanford
- Program in Molecular Structure and Function, Hospital for Sick Children, University of Toronto, Toronto, Canada
| | - Matthew Berriman
- Parasite Genomics, The Wellcome Trust Sanger Institute, Hinxton, United Kingdom
| | - Henrique B. Ferreira
- Laboratório de Biologia Molecular de Cestódeos and Laboratorio de Genômica Estrutural e Funcional, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Arnaldo Zaha
- Laboratório de Biologia Molecular de Cestódeos and Laboratorio de Genômica Estrutural e Funcional, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Mark L. Blaxter
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Rick M. Maizels
- Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
- * E-mail: (RMM); (CF)
| | - Cecilia Fernández
- Cátedra de Inmunología, Facultad de Química, Universidad de la República, Montevideo, Uruguay
- * E-mail: (RMM); (CF)
| |
Collapse
|
21
|
Virginio VG, Monteiro KM, Drumond F, de Carvalho MO, Vargas DM, Zaha A, Ferreira HB. Excretory/secretory products from in vitro-cultured Echinococcus granulosus protoscoleces. Mol Biochem Parasitol 2012; 183:15-22. [PMID: 22261090 DOI: 10.1016/j.molbiopara.2012.01.001] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2011] [Revised: 12/22/2011] [Accepted: 01/04/2012] [Indexed: 01/07/2023]
Abstract
Cystic hydatid disease (CHD) is caused by infection with Echinococcus granulosus metacestodes and affects humans and livestock. Proteins secreted or excreted by protoscoleces, pre-adult worms found in the metacestode, are thought to play fundamental roles in the host-parasite relationship. In this work, we performed an LC-MS/MS proteomic analysis of the excretory-secretory products obtained from the first 48 h of an in vitro culture of the protoscoleces. We identified 32 proteins, including 18 that were never detected previously in metacestode proteomic studies. Among the novel identified excretory-secretory products are antigenic proteins, such as EG19 and P-29 and a calpain protease. We also identified other important protoscolex excretory-secretory products, such as thioredoxin peroxidase and 14-3-3 proteins, which are potentially involved in evasion mechanisms adopted by parasites to establish infection. Several intracellular proteins were found in the excretory-secretory products, revealing a set of identified proteins not previously thought to be exposed at the host-parasite interface. Additionally, immunological analyses established the antigenic profiles of the newly identified excretory-secretory products and revealed, for the first time, the in vitro secretion of the B antigen by protoscoleces. Considering that the excretory-secretory products obtained in vitro might reflect the products released and exposed to the host in vivo, our results provide valuable information on parasite survival strategies in adverse host environments and on the molecular mechanisms underpinning CHD immunopathology.
Collapse
Affiliation(s)
- Veridiana G Virginio
- Laboratório de Biologia Molecular de Cestódeos e Laboratório de Genômica Estrutural e Funcional, Centro de Biotecnologia, UFRGS, Porto Alegre, RS, Brazil
| | | | | | | | | | | | | |
Collapse
|
22
|
Paredes R, Godoy P, Rodríguez B, García MP, Cabezón C, Cabrera G, Jiménez V, Hellman U, Sáenz L, Ferreira A, Galanti N. Bovine (Bos taurus) humoral immune response against Echinococcus granulosus and hydatid cyst infertility. J Cell Biochem 2011; 112:189-99. [PMID: 21117064 DOI: 10.1002/jcb.22916] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Echinococcus granulosus, the agent of hydatid disease, presents an indirect life cycle, with canines (mainly dogs) as definitive hosts, and herbivores and human as intermediary ones. In intermediary hosts fertile and infertile cysts develop, but only the first ones develop protoscoleces, the parasite form infective to definitive hosts. We report the presence of bovine IgGs in the germinal layer from infertile cysts (GLIC), in an order of magnitude greater than in the germinal layer from fertile cysts (GLFC). When extracted with salt solutions, bovine IgGs from GLIC are associated with low or with high affinity (most likely corresponding to non specific and antigen specific antibodies, respectively). Specific IgGs penetrate both the cells of the germinal layer and HeLa cultured cells and recognize parasitic proteins. These results, taken together with previous ones from our laboratory, showing induction of apoptosis in the germinal layer of infertile hydatid cysts, provide the first coherent explanation of the infertility process. They also offer the possibility of identifying the parasite antigens recognized, as possible targets for immune modulation.
Collapse
Affiliation(s)
- Rodolfo Paredes
- Escuela de Medicina Veterinaria, Universidad Andres Bello, Santiago, Chile.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Morphological and biological characterization of cell line developed from bovine Echinococcus granulosus. In Vitro Cell Dev Biol Anim 2010; 46:781-92. [PMID: 20844980 DOI: 10.1007/s11626-010-9345-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2010] [Accepted: 08/19/2010] [Indexed: 10/19/2022]
Abstract
The taeniid tapeworm Echinococcus granulosus is the causative agent of echinococcal disease, a major zoonosis with worldwide distribution. Several efforts to establish an in vitro model of E. granulosus have been undertaken; however, many of them have been designed for Echinococcus multilocularis. In the present study, we have described and characterized a stable cell line obtained from E. granulosus bovine protoscoleces maintained 3 yr in vitro. Growth characterization, morphology by light, fluorescent and electronic microscopy, and karyotyping were carried out. Cell culture origin was confirmed by immunofluorescent detection of AgB4 antigen and by PCR for the mitochondrial cytochrome c-oxidase subunit 1 (DCO1) gene. Cells seeded in agarose biphasic culture resembled a cystic structure, similar to the one formed in secondary hosts. This cell line could be a useful tool to research equinococcal behavior, allowing additional physiological and pharmacological studies, such as the effect of growth factors, nutrients, and antiparasitic drugs on cell viability and growth and on cyst formation.
Collapse
|
24
|
Mesocestoides corti: morphological features and glycogen mobilization during in vitro differentiation from larva to adult worm. Parasitology 2009; 137:373-84. [PMID: 19814846 DOI: 10.1017/s0031182009991454] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Mesocestodes corti has the capacity to develop from the tetrathyridium (larva) stage to adult worm in vitro by trypsin and serum stimulation. Consequently, it has been used as an experimental model system for studying cestode development, host-parasite relationships and anthelmintic drugs. We describe morphological features in 5 different developmental stages of M. corti obtained in vitro, including larvae from the peritoneal cavity of infected mice, trypsin- and serum-stimulated larvae, elongated parasites as well as segmented and mature worms. It is unambiguously confirmed that sexually mature worms are obtained as a result of this in vitro process of differentiation. Defined cellular regions are present in all stages of development studied, some of them surrounded by a basal lamina. Glycogen is present in the larvae obtained from the mouse peritoneal cavity and in parasites encapsulated in the mouse host liver. Glycogen distribution in the parasite changes on trypsin and serum stimulation to differentiate. We propose that changes in the distribution of neutral polysaccharides in the parenchyma of the parasite at different stages of development and degradation of polysaccharides in the transition from segmented to adult worm are related to energy needs necessary for the cellular processes leading to the mature specimen.
Collapse
|