1
|
Vatta P, Cacciò SM. Detection of parasites in food and water matrices by shotgun metagenomics: A narrative review. Food Waterborne Parasitol 2025; 39:e00265. [PMID: 40416301 PMCID: PMC12098152 DOI: 10.1016/j.fawpar.2025.e00265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2025] [Revised: 04/17/2025] [Accepted: 04/18/2025] [Indexed: 05/27/2025] Open
Abstract
Many helminths and protozoa are transmitted to humans through the consumption of contaminated food or water, and this underlines the importance of methods for their detection in these matrices. Due to the difficulties in isolating parasites prior to their identification, indirect detection methods are used, mostly relying upon targeted amplification of nucleic acids via PCR and/or qPCR. With the development of high throughput sequencing technologies, an untargeted detection method, shotgun metagenomics, became available. By sequencing the total DNA extracted from a given source, and through bioinformatics analyses of the sequencing reads, shotgun metagenomics allows profiling the entire microbial community therein present, including eukaryotes and, therefore, parasites. In this article, we reviewed the studies that specifically addressed the detection of parasites in food (n = 2) and water matrices (n = 10) by shotgun metagenomics. Most studies focused on wastewater samples and reported the detection of many parasites of human and veterinary importance from various areas of the world, highlighting the potential of shotgun metagenomics to provide important data for parasitic pathogens surveillance. After examining the different analytical workflows employed in these studies, which were not developed for detection of eukaryotes (or parasites), we identified two aspects deserving attention. First, that assignment based on short reads matching ribosomal sequences may generate false positives due to high sequence conservation among eukaryotic organisms. Second, that reassessing the relatively small number of reads of eukaryotic origin by a BLAST search can confirm, or deny, identification of parasitic pathogens.
Collapse
Affiliation(s)
- Paolo Vatta
- Unit of Foodborne and Neglected Parasitic Diseases, Department of Infectious Diseases, Istituto Superiore di Sanità, Viale Regina Elena 299, Rome 00161, Italy
| | - Simone M. Cacciò
- Unit of Foodborne and Neglected Parasitic Diseases, Department of Infectious Diseases, Istituto Superiore di Sanità, Viale Regina Elena 299, Rome 00161, Italy
| |
Collapse
|
2
|
Naushad S, Gao R, Duceppe MO, Dupras AA, Reiling SJ, Merks H, Dixon B, Ogunremi D. Metagenomic detection of protozoan parasites on leafy greens aided by a rapid and efficient DNA extraction protocol. Front Microbiol 2025; 16:1566579. [PMID: 40160274 PMCID: PMC11949954 DOI: 10.3389/fmicb.2025.1566579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2025] [Accepted: 02/17/2025] [Indexed: 04/02/2025] Open
Abstract
Introduction Infections with protozoan parasites associated with the consumption of fresh produce is an on-going issue in developed countries but mitigating the risk is hampered by the lack of adequate methods for their detection and identification. Materials and methods We developed a metagenomic next-generation sequencing (mNGS) assay using a MinION sequencer for the identification of parasites in intentionally contaminated lettuce to achieve a more accurate and rapid method than the traditional molecular and microscopy methods commonly used for regulatory purposes. Lettuce (25 g) was spiked with varying numbers of Cryptosporidium parvum oocysts, and microbes washed from the surface of the lettuce were lysed using the OmniLyse device. DNA was then extracted by acetate precipitation, followed by whole genome amplification. The amplified DNA was sequenced by nanopore technology and validated with the Ion Gene Studio S5, and the generated fastq files raw reads were uploaded to the CosmosID webserver for the bioinformatic identification of microbes in the metagenome. To demonstrate the ability of the procedure to distinguish other common food and waterborne protozoan parasites, lettuce was also spiked with C. hominis, C. muris, Giardia duodenalis and Toxoplasma gondii individually or together. Results The efficient lysis of oocysts and cysts was a prerequisite for the sensitive detection of parasite DNA and was rapidly achieved within 3 min. Amplification of extracted DNA led to the generation of 0.16-8.25 μg of DNA (median = 4.10 μg), sufficient to perform mNGS. Nanopore sequencing followed by bioinformatic analysis led to the consistent identification of as few as 100 oocysts of C. parvum in 25 g of fresh lettuce. Similar results were obtained using the Ion S5 sequencing platform. The assay proved useful for the simultaneous detection of C. parvum, C. hominis, C. muris, G. duodenalis and T. gondii. Discussion Our metagenomic procedure led to the identification of C. parvum present on lettuce at low numbers and successfully identified and differentiated other protozoa either of the same genus or of different genera. This novel mNGS assay has the potential for application as a single universal test for the detection of foodborne parasites, and the subtyping of parasites for foodborne outbreak investigations and surveillance studies.
Collapse
Affiliation(s)
- Sohail Naushad
- Ottawa Laboratory Fallowfield, Canadian Food Inspection Agency, Ottawa, ON, Canada
| | - Ruimin Gao
- Ottawa Laboratory Fallowfield, Canadian Food Inspection Agency, Ottawa, ON, Canada
| | - Marc-Olivier Duceppe
- Ottawa Laboratory Fallowfield, Canadian Food Inspection Agency, Ottawa, ON, Canada
| | - Andree Ann Dupras
- Ottawa Laboratory Fallowfield, Canadian Food Inspection Agency, Ottawa, ON, Canada
| | - Sarah J. Reiling
- Bureau of Microbial Hazards, Food and Nutrition Directorate, Health Canada, Ottawa, ON, Canada
| | - Harriet Merks
- Bureau of Microbial Hazards, Food and Nutrition Directorate, Health Canada, Ottawa, ON, Canada
| | - Brent Dixon
- Bureau of Microbial Hazards, Food and Nutrition Directorate, Health Canada, Ottawa, ON, Canada
| | - Dele Ogunremi
- Ottawa Laboratory Fallowfield, Canadian Food Inspection Agency, Ottawa, ON, Canada
| |
Collapse
|
3
|
Ali M, Ji Y, Xu C, Hina Q, Javed U, Li K. Food and Waterborne Cryptosporidiosis from a One Health Perspective: A Comprehensive Review. Animals (Basel) 2024; 14:3287. [PMID: 39595339 PMCID: PMC11591251 DOI: 10.3390/ani14223287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 11/07/2024] [Accepted: 11/13/2024] [Indexed: 11/28/2024] Open
Abstract
A sharp rise in the global population and improved lifestyles has led to questions about the quality of both food and water. Among protozoan parasites, Cryptosporidium is of great importance in this regard. Hence, Cryptosporidium's associated risk factors, its unique characteristics compared to other protozoan parasites, its zoonotic transmission, and associated economic losses in the public health and livestock sectors need to be focused on from a One Health perspective, including collaboration by experts from all three sectors. Cryptosporidium, being the fifth largest food threat, and the second largest cause of mortality in children under five years of age, is of great significance. The contamination of vegetables, fresh fruits, juices, unpasteurized raw milk, uncooked meat, and fish by Cryptosporidium oocysts occurs through infected food handlers, sewage-based contamination, agricultural effluents, infected animal manure being used as biofertilizer, etc., leading to severe foodborne outbreaks. The only Food and Drug Administration (FDA)-approved drug, Nitazoxanide (NTZ), provides inconsistent results in all groups of patients, and currently, there is no vaccine against it. The prime concerns of this review are to provide a deep insight into the Cryptosporidium's global burden, associated water- and foodborne outbreaks, and some future perspectives in an attempt to effectively manage this protozoal disease. A thorough literature search was performed to organize the most relevant, latest, and quantified data, justifying the title. The estimation of its true burden, strategies to break the transmission pathways and life cycle of Cryptosporidium, and the search for vaccine targets through genome editing technology represent some future research perspectives.
Collapse
Affiliation(s)
- Munwar Ali
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (M.A.)
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Yaru Ji
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (M.A.)
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Chang Xu
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (M.A.)
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Qazal Hina
- Department of Animal Nutrition, University of Veterinary and Animal Sciences, Lahore 54000, Pakistan
| | - Usama Javed
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (M.A.)
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Kun Li
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (M.A.)
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
4
|
Vesga FJ, Venegas C, Flórez Martinez V, Sánchez-Alfonso AC, Trespalacios AA. Origin of fecal contamination in lettuce and strawberries: From microbial indicators, molecular markers, and H. pylori. Heliyon 2024; 10:e36526. [PMID: 39263095 PMCID: PMC11387255 DOI: 10.1016/j.heliyon.2024.e36526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 07/09/2024] [Accepted: 08/18/2024] [Indexed: 09/13/2024] Open
Abstract
Around 2 billion people utilize a water source contaminated with fecal-origin microorganisms, used for both human consumption and irrigation of crops. In Colombia, the water from the Bogotá River is employed for irrigating agricultural products, including raw-consumption foods like strawberries and lettuce. This poses a risk to the end consumer, as these foods are marketed as fresh products ready for direct consumption without undergoing any disinfection or cooking treatment. The aim of this study was to determine the origin of fecal contamination in strawberries and lettuce irrigated with surface waters from Cundinamarca, Colombia, using non-human and human molecular markers, along with Helicobacter pylori (H. pylori). A total of 50 samples were collected, 25 of strawberries and 25 of lettuce, taken from crops, markets, and supermarkets. Microbiological indicators (bacterial and viral) were detected through cultivation techniques, and Microbial Source Tracking (MST) markers and H. pylori were detected through PCR. The results of our study demonstrate the presence of Escherichia coli (E. coli) (12.5 %), Enterococcus (≥25 %), spores and vegetative forms of Spores of sulphite-reducing Clostridia (SRC) (≥37.5 %), coliphages (≥12.5 %), and Salmonella sp. (≥12.5 %), in both strawberries and lettuce. In the different samples analyzed, molecular markers were detected to differentiate the source of fecal contamination above 12.5 % (HF187, CF128, ADO and DEN) and H. pylori between 0 % and 25 %, highlighting deficiencies in the production chain. of food, and the risks they pose to food security. Highlighting deficiencies in the food production chain and the risks they pose to food safety.
Collapse
Affiliation(s)
- Fidson-Juarismy Vesga
- Microbiology Department, Grupo de Biotecnología ambiental e industrial (GBAI), Laboratorio Calidad Microbiológica de Aguas y Lodos (CMAL), Science Faculty, Pontificia Universidad Javeriana, Bogotá, Colombia. Carrera 7 No. 43 - 82, Bogotá, 110231, Colombia
- Microbiology Department, Infectious Diseases Research Group, Science Faculty, Pontificia Universidad Javeriana, Bogotá, Colombia, Carrera 7 No. 43-82, Bogotá, 110231, Colombia, Bogotá, Colombia
| | - Camilo Venegas
- Microbiology Department, Grupo de Biotecnología ambiental e industrial (GBAI), Laboratorio Calidad Microbiológica de Aguas y Lodos (CMAL), Science Faculty, Pontificia Universidad Javeriana, Bogotá, Colombia. Carrera 7 No. 43 - 82, Bogotá, 110231, Colombia
| | - Valentina Flórez Martinez
- Microbiology Department, Grupo de Biotecnología ambiental e industrial (GBAI), Laboratorio Calidad Microbiológica de Aguas y Lodos (CMAL), Science Faculty, Pontificia Universidad Javeriana, Bogotá, Colombia. Carrera 7 No. 43 - 82, Bogotá, 110231, Colombia
- Microbiology Department, Infectious Diseases Research Group, Science Faculty, Pontificia Universidad Javeriana, Bogotá, Colombia, Carrera 7 No. 43-82, Bogotá, 110231, Colombia, Bogotá, Colombia
| | - Andrea C Sánchez-Alfonso
- Corporación Autónoma Regional de Cundinamarca, Avenida Calle 24 (Esperanza) # 60 - 50, Centro Empresarial Gran Estación, Costado Esfera Pisos 6-7, Bogotá, 111321, Colombia
| | - Alba Alicia Trespalacios
- Microbiology Department, Infectious Diseases Research Group, Science Faculty, Pontificia Universidad Javeriana, Bogotá, Colombia, Carrera 7 No. 43-82, Bogotá, 110231, Colombia, Bogotá, Colombia
| |
Collapse
|
5
|
Rossi F, Santonicola S, Amadoro C, Marino L, Colavita G. Food and Drinking Water as Sources of Pathogenic Protozoans: An Update. APPLIED SCIENCES 2024; 14:5339. [DOI: 10.3390/app14125339] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
Abstract
This narrative review was aimed at collecting updated knowledge on the risk factors, illnesses caused, and measures for the prevention of protozoan infections transmitted by food and drinking water. Reports screened dated from 2019 to the present and regarded global prevalence in food handlers, occurrence in food and drinking water, impact on human health, and recently reported outbreaks and cases of severe infections attributable to the dietary route. Cryptosporidium spp., Cyclospora cayetanensis, Entamoeba histolytica, and Cystoisospora belli were the protozoans most frequently involved in recently reported waterborne and foodborne outbreaks and cases. Blastocystis hominis was reported to be the most widespread intestinal protozoan in humans, and two case reports indicated its pathogenic potential. Dientamoeba fragilis, Endolimax nana, and Pentatrichomonas hominis are also frequent but still require further investigation on their ability to cause illness. A progressive improvement in surveillance of protozoan infections and infection sources took place in developed countries where the implementation of reporting systems and the application of molecular diagnostic methods led to an enhanced capacity to identify epidemiological links and improve the prevention of foodborne and waterborne protozoan infections.
Collapse
Affiliation(s)
- Franca Rossi
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e Molise (IZSAM), 86100 Campobasso, Italy
| | - Serena Santonicola
- Dipartimento di Medicina e Scienze della Salute “V. Tiberio”, Università degli Studi del Molise, 86100 Campobasso, Italy
| | - Carmela Amadoro
- Dipartimento di Medicina e Scienze della Salute “V. Tiberio”, Università degli Studi del Molise, 86100 Campobasso, Italy
| | - Lucio Marino
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e Molise (IZSAM), 86100 Campobasso, Italy
| | - Giampaolo Colavita
- Dipartimento di Medicina e Scienze della Salute “V. Tiberio”, Università degli Studi del Molise, 86100 Campobasso, Italy
| |
Collapse
|
6
|
Bujila I, Troell K, Ögren J, Hansen A, Killander G, Agudelo L, Lebbad M, Beser J. Cryptosporidium species and subtypes identified in human domestic cases through the national microbiological surveillance programme in Sweden from 2018 to 2022. BMC Infect Dis 2024; 24:146. [PMID: 38291399 PMCID: PMC10826111 DOI: 10.1186/s12879-024-09049-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 01/23/2024] [Indexed: 02/01/2024] Open
Abstract
BACKGROUND The intestinal protozoan parasite Cryptosporidium is an important cause of diarrheal disease worldwide. A national microbiological surveillance programme was implemented in Sweden in 2018 in order to increase knowledge of the molecular epidemiology of human cryptosporidiosis to better understand transmission patterns and potential zoonotic sources. This article summarises the results of the first five years of the surveillance programme. METHODS Cryptosporidium-positive faecal and DNA samples from domestically acquired infections were collected from clinical microbiological laboratories in Sweden. Species and subtype determination was performed using 60 kDa glycoprotein and/or small subunit ribosomal RNA gene analysis. RESULTS Between 2018 and 2022, 1654 samples were analysed and 11 different species were identified: C. parvum (n = 1412), C. mortiferum (n = 59), C. hominis (n = 56), C. erinacei (n = 11), C. cuniculus (n = 5), C. meleagridis (n = 3), C. equi (n = 2), C. ubiquitum (n = 2), and one each of C. canis, C. ditrichi and C. felis. Subtyping revealed seven subtype families of C. parvum (new subtype families IIy and IIz) and 69 different subtypes (11 new subtypes). The most common C. parvum subtypes were IIdA22G1c, IIdA24G1, IIdA15G2R1 and IIaA16G1R1b. For C. hominis, four different subtype families and nine different subtypes (two new subtypes) were identified. For additional species, two new subtype families (IIIk and VId) and nine new subtypes were identified. All successfully subtyped C. mortiferum cases were subtype XIVaA20G2T1, confirming previous findings in Sweden. Several outbreaks were identified of which the majority were foodborne and a few were due to direct contact with infected animals. CONCLUSION Infection with C. parvum is the leading cause of human cryptosporidiosis acquired in Sweden, where more than 90% of domestic cases are caused by this zoonotic species and only a small proportion of cases are due to infection with other species. The rodent-associated C. mortiferum is considered an emerging zoonotic species in Sweden and the number of domestically acquired human cases has surpassed that of infection with C. hominis. A high diversity of species and subtypes, as well as diversity within the same subtype, was detected. Also, cryptosporidiosis appears to affect adults to a great extent in Sweden.
Collapse
Affiliation(s)
- Ioana Bujila
- Department of Microbiology, Unit of Parasitology, Public Health Agency of Sweden, Solna, Sweden.
| | - Karin Troell
- Department of Microbiology, National Veterinary Agency, Uppsala, Sweden
- Norwegian Veterinary Institute, Ås, Norway
| | - Jessica Ögren
- Division of Clinical Microbiology, Laboratory Medicine, Jönköping County, Jönköping, Sweden
- Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Anette Hansen
- Department of Communicable Disease Control and Health Protection, Unit of Zoonoses and Antibiotic Resistance, Public Health Agency of Sweden, Solna, Sweden
| | - Gustav Killander
- Department of Microbiology, Unit of Parasitology, Public Health Agency of Sweden, Solna, Sweden
| | - Lady Agudelo
- Department of Microbiology, Unit of Parasitology, Public Health Agency of Sweden, Solna, Sweden
| | - Marianne Lebbad
- Department of Microbiology, Unit of Parasitology, Public Health Agency of Sweden, Solna, Sweden
| | - Jessica Beser
- Department of Microbiology, Unit of Parasitology, Public Health Agency of Sweden, Solna, Sweden
| |
Collapse
|
7
|
Bourli P, Eslahi AV, Tzoraki O, Karanis P. Waterborne transmission of protozoan parasites: a review of worldwide outbreaks - an update 2017-2022. JOURNAL OF WATER AND HEALTH 2023; 21:1421-1447. [PMID: 37902200 PMCID: wh_2023_094 DOI: 10.2166/wh.2023.094] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/31/2023]
Abstract
The current study presents a comprehensive review of worldwide waterborne parasitic protozoan outbreaks reported between 2017 and 2022. In total, 416 outbreaks were attributed to the waterborne transmission of parasitic protozoa. Cryptosporidium accounted for 77.4% (322) of outbreaks, while Giardia was identified as the etiological agent in 17.1% (71). Toxoplasma gondii and Naegleria fowleri were the primary causes in 1.4% (6) and 1% (4) of outbreaks, respectively. Blastocystis hominis, Cyclospora cayetanensis, and Dientamoeba fragilis were independently identified in 0.72% (3) of outbreaks. Moreover, Acanthamoeba spp., Entamoeba histolytica, Vittaforma corneae, and Enterocytozoon bieneusi were independently the causal agents in 0.24% (1) of the total outbreaks. The majority of the outbreaks (195, 47%) were reported in North America. The suspected sources for 313 (75.2%) waterborne parasitic outbreaks were recreational water and/or swimming pools, accounting for 92% of the total Cryptosporidium outbreaks. Furthermore, 25.3% of the outbreaks caused by Giardia were associated with recreational water and/or swimming pools. Developing countries are most likely to be impacted by such outbreaks due to the lack of reliable monitoring strategies and water treatment processes. There is still a need for international surveillance and reporting systems concerning both waterborne diseases and water contamination with parasitic protozoa.
Collapse
Affiliation(s)
- Pavlina Bourli
- School of the Environment, Department of Marine Sciences, University of the Aegean, University Hill, Mytilene, Lesvos 81100, Greece E-mail:
| | - Aida Vafae Eslahi
- Medical Microbiology Research Center, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Ourania Tzoraki
- School of the Environment, Department of Marine Sciences, University of the Aegean, University Hill, Mytilene, Lesvos 81100, Greece
| | - Panagiotis Karanis
- Medical Faculty and University Hospital, University of Cologne, Cologne, Germany; Medical School, Department of Basic and Clinical Sciences, Anatomy Centre, University of Nicosia, Nicosia, Cyprus
| |
Collapse
|
8
|
Abstract
PURPOSE OF REVIEW Although Cryptosporidium detection and typing techniques have improved dramatically in recent years, relatively little research has been conducted on point of care (POC) detection and typing tools. Therefore, the main purpose of the present review is to summarize and evaluate recent and emerging POC diagnostic methods for Cryptosporidium spp. RECENT FINDINGS Microscopy techniques such as light-emitting diode fluorescence microscopy with auramine-phenol staining (LED-AP), still have utility for (POC) diagnostics but require fluorescent microscopes and along with immunological-based techniques, suffer from lack of specificity and sensitivity. Molecular detection and typing tools offer higher sensitivity, specificity and speciation, but are currently too expensive for routine POC diagnostics. Isothermal amplification methods such as loop-mediated isothermal amplification (LAMP) or recombinase polymerase amplification (RPA) including a commercially available LAMP kit have been developed for Cryptosporidium but are prone to false positives. Clustered regularly interspaced short palindromic repeats (CRISPR)-Cas diagnostic technologies (CRISPRDx) have recently been combined with isothermal amplification to increase its specificity and sensitivity for detection and typing. Other emerging technologies including amplification-free CRISPR detection methods are currently being developed for Cryptosporidium using a smartphone to read the results. SUMMARY Many challenges are still exist in the development of POC diagnostics for Cryptosporidium. The ideal POC tool would be able to concentrate the pathogen prior to detection and typing, which is complicated and research in this area is still very limited. In the short-term, CRISPR-powered isothermal amplification lateral flow tools offer the best opportunity for POC Cryptosporidium species and subtype detection, with a fully integrated autonomous biosensor for the long-term goal.
Collapse
|
9
|
Protozoa as the “Underdogs” for Microbiological Quality Evaluation of Fresh Vegetables. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12147145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The monitoring of the microbial quality of fresh products in the industrial environment has mainly focused on bacterial indicators. Protozoa, such as Giardia duodenalis, Cryptosporidium spp., Toxoplasma gondii, and Cyclospora cayetanensis, are routinely excluded from detection and surveillance systems, despite guidelines and regulations that support the need for tracking and monitoring these pathogens in fresh food products. Previous studies performed by our laboratory, within the scope of the SafeConsume project, clearly indicated that consumption of fresh produce may be a source of T. gondii, thus posing a risk for the contraction of toxoplasmosis for susceptible consumers. Therefore, preliminary work was performed in order to assess the microbiological quality of vegetables, highlighting not only bacteria (Escherichia. coli, Listeria monocytogenes, and Salmonella spp.), but also the zoonotic protozoa G. duodenalis and Cryptosporidium spp. Although all samples were found to be acceptable based on bacteriological parameters, cysts of G. duodenalis and oocysts of Cryptosporidium spp. were observed in vegetables. Moreover, it was possible to genetically characterize G. duodenalis positive samples as assemblage A, a genotype that poses risks to human health. Although these are preliminary results, they highlight the need to include protozoa in the microbiological criteria for foodstuffs, as required by EU Law No. 1441/2007, and to improve inactivation and removal procedures of (oo)cysts in fresh produce and water.
Collapse
|
10
|
Loop mediated isothermal amplification for detection of foodborne parasites: A journey from lab to lab-on-a-chip. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.109251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|