1
|
El-Gazzar N, Said L, Al-Otibi FO, AbdelGawwad MR, Rabie G. Antimicrobial and cytotoxic activities of natural (Z)-13-docosenamide derived from Penicillium chrysogenum. Front Cell Infect Microbiol 2025; 15:1529104. [PMID: 40083907 PMCID: PMC11903434 DOI: 10.3389/fcimb.2025.1529104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Accepted: 01/27/2025] [Indexed: 03/16/2025] Open
Abstract
Introduction The synthesis of natural compounds with strong biological activity from affordable sources has proven challenging for scientists. As a natural resource rich in a variety of bioactive substances, fungal metabolites have the potential to be used in medical applications to serve a global purpose towards a sustainable future. Methods A total of 25 filamentous fungi were isolated, and their secondary metabolites were assessed for their antimicrobial efficiency. Results The extracellular extract of the strain Penicillium chrysogenum Pc was selected for its high bioactivity compared with the other whole isolates. The GC-MS analysis of the extracellular extract of P. chrysogenum Pc was found to contain approximately 16 variable compounds. After several separation and purification processes using flash chromatography, HPLC, TLC, NMR, and FTIR, the most bioactive compound was identified as (Z)-13-docosenamide or erucylamide with a molecular formula of C22H43NO and a molecular weight of 337.0. The purified (Z)-13-docosenamide possessed antimicrobial activity with an MIC of approximately 10 μg/mL for the tested pathogenic bacteria (Bacillus subtilis, Staphylococcus aureus, Klebsiella pneumoniae, and Escherichia coli), and 20 μg/mL against the tested fungi (Penicillium aurantiogriseum and Aspergillus fumigatus). Furthermore, MTT assay showed that (Z)-13-docosenamide inhibited cellviability and the proliferation of hepatocellular carcinoma, in vitro, with an IC {sb}{/sb}50 of 23.8 ± 0.8 μg/mL. Conclusion The remarkable bioactivity of (Z)-13- docosenamide makes it a potential candidate to assist the pipeline for the creation of antibacterial and anticancer drugs, which will help to reduce the incidence of antimicrobial resistance (AMR) and fatalities related to cancer.
Collapse
Affiliation(s)
- Nashwa El-Gazzar
- Department of Botany and Microbiology, Faculty of Science, Zagazig University, Zagazig, Egypt
| | - Lekaa Said
- Department of Botany and Microbiology, Faculty of Science, Zagazig University, Zagazig, Egypt
| | - Fatimah Olyan Al-Otibi
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Mohamed Ragab AbdelGawwad
- Genetics and Bioengineering Department, Faculty of Engineering and Natural Sciences, International University of Sarajevo, Sarajevo, Bosnia and Herzegovina
| | - Gamal Rabie
- Department of Botany and Microbiology, Faculty of Science, Zagazig University, Zagazig, Egypt
| |
Collapse
|
2
|
Ameen HM, Jayadev A, Prasad G, Nair DI. Seagrass Meadows: Prospective Candidates for Bioactive Molecules. Molecules 2024; 29:4596. [PMID: 39407526 PMCID: PMC11478234 DOI: 10.3390/molecules29194596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/16/2024] [Accepted: 09/26/2024] [Indexed: 10/20/2024] Open
Abstract
Seagrass meadows consist of angiosperms that thrive fully submerged in marine environments and form distinct ecosystems. They provide essential support for many organisms, acting as nursery grounds for species of economic importance. Beyond their ecological roles, seagrasses and their associated microbiomes are rich sources of bioactive compounds with the potential to address numerous human healthcare challenges. Seagrasses produce bioactive molecules responding to physical, chemical, and biological environmental changes. These activities can treat microbe-borne diseases, skin diseases, diabetes, muscle pain, helminthic diseases, and wounds. Seagrasses also offer potential secondary metabolites that can be used for societal benefits. Despite numerous results on their presence and bioactive derivatives, only a few studies have explored the functional and therapeutic properties of secondary metabolites from seagrass. With the increasing spread of epidemics and pandemics worldwide, the demand for alternative drug sources and drug discovery has become an indispensable area of research. Seagrasses present a reliable natural source, making this an opportune moment for further exploration of their pharmacological activities with minimal side effects. This review provides a comprehensive overview of the biochemical, phytochemical, and biomedical applications of seagrasses globally over the last two decades, highlighting the prospective areas of future research for identifying biomedical applications.
Collapse
Affiliation(s)
- Hazeena M. Ameen
- Postgraduate Department of Environmental Sciences, All Saints’ College (Affiliated to the University of Kerala), Thiruvananthapuram 695007, India;
| | - Ayona Jayadev
- Postgraduate Department of Environmental Sciences, All Saints’ College (Affiliated to the University of Kerala), Thiruvananthapuram 695007, India;
| | - Geena Prasad
- Department of Mechanical Engineering, Amrita Vishwa Vidyapeetham, Amritapuri 641112, India
| | - Deepa Indira Nair
- Department of Engineering Technologies, Swinburne University of Technology, Melbourne 3122, Australia;
| |
Collapse
|
3
|
Aleynova OA, Ananev AA, Nityagovsky NN, Suprun AR, Zhanbyrshina NZ, Beresh AA, Ogneva ZV, Tyunin AP, Kiselev KV. Endophytic Bacteria and Fungi Associated with Polygonum cuspidatum in the Russian Far East. PLANTS (BASEL, SWITZERLAND) 2024; 13:2618. [PMID: 39339593 PMCID: PMC11434733 DOI: 10.3390/plants13182618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/13/2024] [Accepted: 09/16/2024] [Indexed: 09/30/2024]
Abstract
Polygonum cuspidatum, alternatively known as Fallopia japonica or Reynoutria japonica, is a perennial herb belonging to the Polygonaceae family. Commonly called Japanese knotweed or Asian knotweed, this plant is native to East Asia, particularly in regions such as Korea, China, and Japan. It has successfully adapted to a wide range of habitats, resulting in it being listed as a pest and invasive species in several countries in North America and Europe. This study focuses on analysing the composition of the bacterial and fungal endophytic communities associated with Japanese knotweed growing in the Russian Far East, employing next-generation sequencing (NGS) and a cultivation-based method (microbiological sowing). The NGS analysis showed that the dominant classes of endophytic bacteria were Alphaproteobacteria (28%) and Gammaproteobacteria (28%), Actinobacteria (20%), Bacteroidia (15%), and Bacilli (4%), and fungal classes were Agaricomycetes (40%), Dothideomycetes (24%), Leotiomycetes (10%), Tremellomycetes (9%), Pezizomycetes (5%), Sordariomycetes (3%), and Exobasidiomycetes (3%). The most common genera of endophytic bacteria were Burkholderia-Caballeronia-Parabukholderia, Sphingomonas, Hydrotalea, Methylobacterium-Metylorubrum, Cutibacterium, and Comamonadaceae, and genera of fungal endophytes were Marasmius, Tuber, Microcyclosporella, Schizothyrium, Alternaria, Parastagonospora, Vishniacozyma, and Cladosporium. The present data showed that the roots, leaves, and stems of P. cuspidatum have a greater number and diversity of endophytic bacteria and fungi compared to the flowers and seeds. Thus, the biodiversity of endophytic bacteria and fungi of P. cuspidatum was described and analysed for the first time in this study.
Collapse
Affiliation(s)
- Olga A Aleynova
- Laboratory of Biotechnology, Federal Scientific Center of the East Asia Terrestrial Biodiversity, Far Eastern Branch of the Russian Academy of Sciences, 690022 Vladivostok, Russia
| | - Alexey A Ananev
- Laboratory of Biotechnology, Federal Scientific Center of the East Asia Terrestrial Biodiversity, Far Eastern Branch of the Russian Academy of Sciences, 690022 Vladivostok, Russia
| | - Nikolay N Nityagovsky
- Laboratory of Biotechnology, Federal Scientific Center of the East Asia Terrestrial Biodiversity, Far Eastern Branch of the Russian Academy of Sciences, 690022 Vladivostok, Russia
| | - Andrey R Suprun
- Laboratory of Biotechnology, Federal Scientific Center of the East Asia Terrestrial Biodiversity, Far Eastern Branch of the Russian Academy of Sciences, 690022 Vladivostok, Russia
| | - Nursaule Zh Zhanbyrshina
- The Department of Agriculture and Plant Growing, S. Seifullin Kazakh Agrotechnical Research University, Astana 010011, Kazakhstan
| | - Alina A Beresh
- Laboratory of Biotechnology, Federal Scientific Center of the East Asia Terrestrial Biodiversity, Far Eastern Branch of the Russian Academy of Sciences, 690022 Vladivostok, Russia
- Institute of the World Ocean, Far Eastern Federal University, 690090 Vladivostok, Russia
| | - Zlata V Ogneva
- Laboratory of Biotechnology, Federal Scientific Center of the East Asia Terrestrial Biodiversity, Far Eastern Branch of the Russian Academy of Sciences, 690022 Vladivostok, Russia
| | - Alexey P Tyunin
- Laboratory of Biotechnology, Federal Scientific Center of the East Asia Terrestrial Biodiversity, Far Eastern Branch of the Russian Academy of Sciences, 690022 Vladivostok, Russia
| | - Konstantin V Kiselev
- Laboratory of Biotechnology, Federal Scientific Center of the East Asia Terrestrial Biodiversity, Far Eastern Branch of the Russian Academy of Sciences, 690022 Vladivostok, Russia
| |
Collapse
|
4
|
Wacira TN, Makonde HM, Bosire CM, Kibiti CM. Molecular Characterization and Antibacterial Potential of Endophytic Fungal Isolates from Selected Mangroves along the Coastline of Kenya. Int J Microbiol 2024; 2024:1261721. [PMID: 39280854 PMCID: PMC11398959 DOI: 10.1155/2024/1261721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/03/2024] [Accepted: 08/08/2024] [Indexed: 09/18/2024] Open
Abstract
The increasing emergence and re-emergence of resistant pathogenic microbes causes a health threat to the human population. Scientists have been striving to find novel bioactive compounds and drugs to overcome these obstacles. This study aimed to characterize mangrove endophytic fungi and evaluate their antibacterial activity. Heritiera littoralis, Rhizophora mucronata, Bruguiera gymnorrhiza, Avicennia marina, and Xylocarpus granatum species were collected from Tudor Creek, Mida Creek, and Gazi Bay. A total of 30 fungal isolates were subjected to molecular identification based on analysis of their ITS gene region. The isolates in the inferred phylogenetic trees were affiliated with the genus Aspergillus. Ethyl acetate and butanol crude extracts of 38.2% of the 76 isolated fungal endophytes and eight mycelia samples were screened for antibacterial activity against Staphylococcus aureus (ATCC 27853), Escherichia coli (ATCC 25922), and Pseudomonas aeruginosa (ATCC 25923) using the disc diffusion method. A. marina and R. mucronata harbored the most fungal endophytes that showed the highest antibacterial activity. Seven fungal broth extracts exhibited higher antibacterial activities against the tested microorganisms than the positive control. The minimum inhibitory concentration (MIC) activity for the isolates demonstrated that the ethyl acetate extract of a root endophytic fungal isolate (RC6) (3.31 ± 0.01) of A. marina is a strong inhibitor since it showed significantly lower MIC activity compared to the positive control (3.84 ± 0.00) against Pseudomonas aeruginosa (P < 0.05). Therefore, this study confirms that mangrove species harbor fungal isolates that have antibacterial activity and hence could serve as a novel source of antibiotics. It is recommended that the pure compounds from these extracts be isolated for further bioactivity tests and structural elucidation for consideration as lead molecules in drug discovery. In addition, the genes responsible for the enhanced bioactivity in these isolates can be characterized and bioengineered for pharmaceutical application.
Collapse
Affiliation(s)
- Teresia Nyambura Wacira
- Department of Pure and Applied Sciences Technical University of Mombasa P.O. Box 90420-80100, Mombasa, Kenya
- Kenya Marine and Fisheries Research Institute P.O. Box 1881-40100, Kisumu, Kenya
| | - Huxley Mae Makonde
- Department of Pure and Applied Sciences Technical University of Mombasa P.O. Box 90420-80100, Mombasa, Kenya
| | - Carren Moraa Bosire
- Department of Pure and Applied Sciences Technical University of Mombasa P.O. Box 90420-80100, Mombasa, Kenya
| | - Cromwell Mwiti Kibiti
- Department of Pure and Applied Sciences Technical University of Mombasa P.O. Box 90420-80100, Mombasa, Kenya
| |
Collapse
|
5
|
Elnaggar MS, Fayez S, Anwar A, Ebada SS. Cytotoxic naphtho- and benzofurans from an endophytic fungus Epicoccum nigrum Ann-B-2 associated with Annona squamosa fruits. Sci Rep 2024; 14:4940. [PMID: 38418706 PMCID: PMC10901772 DOI: 10.1038/s41598-024-55168-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 02/21/2024] [Indexed: 03/02/2024] Open
Abstract
Chemical exploration of the total extract derived from Epicoccum nigrum Ann-B-2, an endophyte associated with Annona squamosa fruits, afforded two new metabolites, epicoccofuran A (1) and flavimycin C (2), along with four known compounds namely, epicocconigrone A (3), epicoccolide B (4), epicoccone (5) and 4,5,6-trihydroxy-7-methyl-1,3-dihydroisobenzofuran (6). Structures of the isolated compounds were elucidated using extensive 1D and 2D NMR along with HR-ESI-MS. Flavimycin C (2) was isolated as an epimeric mixture of its two diastereomers 2a and 2b. The new compounds 1 and 2 displayed moderate activity against B. subtilis, whereas compounds (2, 3, 5, and 6) showed significant antiproliferative effects against a panel of seven different cancer cell lines with IC50 values ranging from 1.3 to 12 µM.
Collapse
Affiliation(s)
- Mohamed S Elnaggar
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Cairo, 11566, Egypt.
| | - Shaimaa Fayez
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Cairo, 11566, Egypt.
| | - Alaa Anwar
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Cairo, 11566, Egypt
| | - Sherif S Ebada
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Cairo, 11566, Egypt.
| |
Collapse
|
6
|
Scott K, Konkel Z, Gluck-Thaler E, Valero David GE, Simmt CF, Grootmyers D, Chaverri P, Slot J. Endophyte genomes support greater metabolic gene cluster diversity compared with non-endophytes in Trichoderma. PLoS One 2023; 18:e0289280. [PMID: 38127903 PMCID: PMC10735191 DOI: 10.1371/journal.pone.0289280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 07/14/2023] [Indexed: 12/23/2023] Open
Abstract
Trichoderma is a cosmopolitan genus with diverse lifestyles and nutritional modes, including mycotrophy, saprophytism, and endophytism. Previous research has reported greater metabolic gene repertoires in endophytic fungal species compared to closely-related non-endophytes. However, the extent of this ecological trend and its underlying mechanisms are unclear. Some endophytic fungi may also be mycotrophs and have one or more mycoparasitism mechanisms. Mycotrophic endophytes are prominent in certain genera like Trichoderma, therefore, the mechanisms that enable these fungi to colonize both living plants and fungi may be the result of expanded metabolic gene repertoires. Our objective was to determine what, if any, genomic features are overrepresented in endophytic fungi genomes in order to undercover the genomic underpinning of the fungal endophytic lifestyle. Here we compared metabolic gene cluster and mycoparasitism gene diversity across a dataset of thirty-eight Trichoderma genomes representing the full breadth of environmental Trichoderma's diverse lifestyles and nutritional modes. We generated four new Trichoderma endophyticum genomes to improve the sampling of endophytic isolates from this genus. As predicted, endophytic Trichoderma genomes contained, on average, more total biosynthetic and degradative gene clusters than non-endophytic isolates, suggesting that the ability to create/modify a diversity of metabolites potential is beneficial or necessary to the endophytic fungi. Still, once the phylogenetic signal was taken in consideration, no particular class of metabolic gene cluster was independently associated with the Trichoderma endophytic lifestyle. Several mycoparasitism genes, but no chitinase genes, were associated with endophytic Trichoderma genomes. Most genomic differences between Trichoderma lifestyles and nutritional modes are difficult to disentangle from phylogenetic divergences among species, suggesting that Trichoderma genomes maybe particularly well-equipped for lifestyle plasticity. We also consider the role of endophytism in diversifying secondary metabolism after identifying the horizontal transfer of the ergot alkaloid gene cluster to Trichoderma.
Collapse
Affiliation(s)
- Kelsey Scott
- Department of Plant Pathology, The Ohio State University, Columbus, OH, United States of America
| | - Zachary Konkel
- Department of Plant Pathology, The Ohio State University, Columbus, OH, United States of America
- Center for Applied Plant Sciences, The Ohio State University, Columbus, OH, United States of America
| | - Emile Gluck-Thaler
- Laboratory of Evolutionary Genetics, University of Neuchâtel, Neuchâtel, Switzerland
| | | | - Coralie Farinas Simmt
- Department of Plant Pathology, The Ohio State University, Columbus, OH, United States of America
| | - Django Grootmyers
- Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, TN, United States of America
| | - Priscila Chaverri
- Department of Natural Sciences, Bowie State University, Bowie, MD, United States of America
- School of Biology and Natural Products Research Center (CIPRONA), University of Costa Rica, San José, Costa Rica
| | - Jason Slot
- Department of Plant Pathology, The Ohio State University, Columbus, OH, United States of America
- Center for Psychedelic Drug Research and Education, The Ohio State University, Columbus, OH, United States of America
| |
Collapse
|
7
|
Pandey P, Tripathi A, Dwivedi S, Lal K, Jhang T. Deciphering the mechanisms, hormonal signaling, and potential applications of endophytic microbes to mediate stress tolerance in medicinal plants. FRONTIERS IN PLANT SCIENCE 2023; 14:1250020. [PMID: 38034581 PMCID: PMC10684941 DOI: 10.3389/fpls.2023.1250020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 10/30/2023] [Indexed: 12/02/2023]
Abstract
The global healthcare market in the post-pandemic era emphasizes a constant pursuit of therapeutic, adaptogenic, and immune booster drugs. Medicinal plants are the only natural resource to meet this by supplying an array of bioactive secondary metabolites in an economic, greener and sustainable manner. Driven by the thrust in demand for natural immunity imparting nutraceutical and life-saving plant-derived drugs, the acreage for commercial cultivation of medicinal plants has dramatically increased in recent years. Limited resources of land and water, low productivity, poor soil fertility coupled with climate change, and biotic (bacteria, fungi, insects, viruses, nematodes) and abiotic (temperature, drought, salinity, waterlogging, and metal toxicity) stress necessitate medicinal plant productivity enhancement through sustainable strategies. Plants evolved intricate physiological (membrane integrity, organelle structural changes, osmotic adjustments, cell and tissue survival, reclamation, increased root-shoot ratio, antibiosis, hypersensitivity, etc.), biochemical (phytohormones synthesis, proline, protein levels, antioxidant enzymes accumulation, ion exclusion, generation of heat-shock proteins, synthesis of allelochemicals. etc.), and cellular (sensing of stress signals, signaling pathways, modulating expression of stress-responsive genes and proteins, etc.) mechanisms to combat stresses. Endophytes, colonizing in different plant tissues, synthesize novel bioactive compounds that medicinal plants can harness to mitigate environmental cues, thus making the agroecosystems self-sufficient toward green and sustainable approaches. Medicinal plants with a host set of metabolites and endophytes with another set of secondary metabolites interact in a highly complex manner involving adaptive mechanisms, including appropriate cellular responses triggered by stimuli received from the sensors situated on the cytoplasm and transmitting signals to the transcriptional machinery in the nucleus to withstand a stressful environment effectively. Signaling pathways serve as a crucial nexus for sensing stress and establishing plants' proper molecular and cellular responses. However, the underlying mechanisms and critical signaling pathways triggered by endophytic microbes are meager. This review comprehends the diversity of endophytes in medicinal plants and endophyte-mediated plant-microbe interactions for biotic and abiotic stress tolerance in medicinal plants by understanding complex adaptive physiological mechanisms and signaling cascades involving defined molecular and cellular responses. Leveraging this knowledge, researchers can design specific microbial formulations that optimize plant health, increase nutrient uptake, boost crop yields, and support a resilient, sustainable agricultural system.
Collapse
Affiliation(s)
- Praveen Pandey
- Microbial Technology Department, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
- Division of Plant Breeding and Genetic Resource Conservation, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
| | - Arpita Tripathi
- Microbial Technology Department, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
- Faculty of Education, Teerthanker Mahaveer University, Moradabad, India
| | - Shweta Dwivedi
- Division of Plant Breeding and Genetic Resource Conservation, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Kanhaiya Lal
- Division of Plant Breeding and Genetic Resource Conservation, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Tripta Jhang
- Division of Plant Breeding and Genetic Resource Conservation, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
| |
Collapse
|
8
|
Rani M, Jaglan S, Beniwal V, Chhokar V. Bioactive saponin profiling of endophytic fungi from Asparagus racemosus. Nat Prod Res 2023; 37:3889-3895. [PMID: 36525418 DOI: 10.1080/14786419.2022.2156997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 11/28/2022] [Accepted: 12/04/2022] [Indexed: 12/23/2022]
Abstract
Thirty-five distinct endophytic fungi were isolated from the roots of Asparagus racemosus. Five out of 35 isolates were found to be efficient saponins producers and they were identified as Aspergillus terreus (E.F-1), Aspergillus flavus (E.F-7), Penicillium sp. (E.F-12), Talaromyces pinophilus(S-26), and Aspergillus terreus (Y-2) based on 18 sr RNA sequencing. The crude extracts of endophytic fungi were screened using High-performance liquid chromatography (HPLC) for quantitative analysis of saponin. The crude extracts of endophytic fungi were also characterised using FT-IR spectroscopy and mass spectrometry. The IR spectra of all five endophytic fungi crude extracts revealed the presence of -OH,-CH Alkyl,-CH3,-C-O-C,-C=C,-C=O stretching, which indicated the presence of saponin. Eight types of saponins recognised by mass spectrometry were Cyclamine saponin, Aspoligonin A, Sarsapogenin, Asparacosin A, Schidigera saponinD5, Aspargoside A, Dioscin, and Protodioscin. Endophytic fungi extracts also exhibited antimicrobial activity and antioxidant activity.
Collapse
Affiliation(s)
- Monika Rani
- Department of Bio and Nano Technology, Guru Jambheshwar University of Science and Technology, Hisar, Haryana, India
| | - Sandeep Jaglan
- CSIR-Indian Institute of Integrative Medicine, Jammu, Jammu and Kashmir, India
| | - Vikas Beniwal
- Department of Microbiology, Central University of Haryana, Mahendergarh, Haryana, India
| | - Vinod Chhokar
- Department of Bio and Nano Technology, Guru Jambheshwar University of Science and Technology, Hisar, Haryana, India
| |
Collapse
|
9
|
Job N, Sarasan M, Philip R. Mangrove-associated endomycota: diversity and functional significance as a source of novel drug leads. Arch Microbiol 2023; 205:349. [PMID: 37789248 DOI: 10.1007/s00203-023-03679-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 09/04/2023] [Accepted: 09/07/2023] [Indexed: 10/05/2023]
Abstract
Endophytic fungi are known for their unprecedented ability to produce novel lead compounds of clinical and pharmaceutical importance. This review focuses on the unexplored fungal diversity associated with mangroves, emphasizing their biodiversity, distribution, and methodological approaches targeting isolation, and identification. Also highlights the bioactive compounds reported from the mangrove fungal endophytes. The compounds are categorized according to their reported biological activities including antimicrobial, antioxidant and cytotoxic property. In addition, protein kinase, α-glucosidase, acetylcholinesterase, tyrosinase inhibition, antiangiogenic, DNA-binding affinity, and calcium/potassium channel blocking activity are also reported. Exploration of these endophytes as a source of pharmacologically important compounds will be highly promising in the wake of emerging antibiotic resistance among pathogens. Thus, the aim of this review is to present a detailed report of mangrove derived endophytic fungi and to open an avenue for researchers to discover the possibilities of exploring these hidden mycota in developing novel drug leads.
Collapse
Affiliation(s)
- Neema Job
- Department of Marine Biology, Microbiology and Biochemistry, School of Marine Sciences, Cochin University of Science and Technology, Fine Arts Avenue, Kochi, 682016, Kerala, India
- Department of Marine Biosciences, Faculty of Ocean Science and Technology, Kerala University of Fisheries and Ocean Studies, Kochi, 682506, Kerala, India
| | - Manomi Sarasan
- Department of Marine Biology, Microbiology and Biochemistry, School of Marine Sciences, Cochin University of Science and Technology, Fine Arts Avenue, Kochi, 682016, Kerala, India
| | - Rosamma Philip
- Department of Marine Biology, Microbiology and Biochemistry, School of Marine Sciences, Cochin University of Science and Technology, Fine Arts Avenue, Kochi, 682016, Kerala, India.
| |
Collapse
|
10
|
Dembitsky VM. Bioactive Steroids Bearing Oxirane Ring. Biomedicines 2023; 11:2237. [PMID: 37626733 PMCID: PMC10452232 DOI: 10.3390/biomedicines11082237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 07/24/2023] [Accepted: 08/07/2023] [Indexed: 08/27/2023] Open
Abstract
This review explores the biological activity and structural diversity of steroids and related isoprenoid lipids, with a particular focus on compounds containing an oxirane ring. These natural compounds are derived from fungi, fungal endophytes, as well as extracts of plants, algae, and marine invertebrates. To evaluate their biological activity, an extensive examination of refereed literature sources was conducted, including in vivo and in vitro studies and the utilization of the QSAR method. Notable properties observed among these compounds include strong anti-inflammatory, antineoplastic, antiproliferative, anti-hypercholesterolemic, antiparkinsonian, diuretic, anti-eczematic, anti-psoriatic, and various other activities. Throughout this review, 3D graphs illustrating the activity of individual steroids are presented, accompanied by images of selected terrestrial or marine organisms. Furthermore, this review provides explanations for specific types of biological activity associated with these compounds. The data presented in this review are of scientific interest to the academic community and carry practical implications in the fields of pharmacology and medicine. By analyzing the biological activity and structural diversity of steroids and related isoprenoid lipids, this review offers valuable insights that contribute to both theoretical understanding and applied research. This review draws upon data from various authors to compile information on the biological activity of natural steroids containing an oxirane ring.
Collapse
Affiliation(s)
- Valery M Dembitsky
- Centre for Applied Research, Innovation and Entrepreneurship, Lethbridge College, 3000 College Drive South, Lethbridge, AB T1K 1L6, Canada
| |
Collapse
|
11
|
Verma A, Tiwari H, Singh S, Gupta P, Rai N, Kumar Singh S, Singh BP, Rao S, Gautam V. Epigenetic manipulation for secondary metabolite activation in endophytic fungi: current progress and future directions. Mycology 2023; 14:275-291. [PMID: 38187885 PMCID: PMC10769123 DOI: 10.1080/21501203.2023.2241486] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 07/21/2023] [Indexed: 01/09/2024] Open
Abstract
Fungal endophytes have emerged as a promising source of secondary metabolites with significant potential for various applications in the field of biomedicine. The biosynthetic gene clusters of endophytic fungi are responsible for encoding several enzymes and transcriptional factors that are involved in the biosynthesis of secondary metabolites. The investigation of fungal metabolic potential at genetic level faces certain challenges, including the synthesis of appropriate amounts of chemicals, and loss of the ability of fungal endophytes to produce secondary metabolites in an artificial culture medium. Therefore, there is a need to delve deeper into the field of fungal genomics and transcriptomics to explore the potential of fungal endophytes in generating secondary metabolites governed by biosynthetic gene clusters. The silent biosynthetic gene clusters can be activated by modulating the chromatin structure using chemical compounds. Epigenetic modification plays a significant role by inducing cryptic gene responsible for the production of secondary metabolites using DNA methyl transferase and histone deacetylase. CRISPR-Cas9-based genome editing emerges an effective tool to enhance the production of desired metabolites by modulating gene expression. This review primarily focuses on the significance of epigenetic elicitors and their capacity to boost the production of secondary metabolites from endophytes. This article holds the potential to rejuvenate the drug discovery pipeline by introducing new chemical compounds.
Collapse
Affiliation(s)
- Ashish Verma
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Harshita Tiwari
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
- Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Swati Singh
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Priyamvada Gupta
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Nilesh Rai
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Santosh Kumar Singh
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Bhim Pratap Singh
- Department of Agriculture & Environmental Sciences (AES), National Institute of Food Technology Entrepreneurship & Management (NIFTEM), Sonepat, India
| | - Sombir Rao
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, USA
| | - Vibhav Gautam
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| |
Collapse
|
12
|
Harikrishnan S, Mohamed Yacoob SA, Venkatraman A, Nagarajan Y, Kuppusam SG. In vivo studies on evaluation of endophytic fungi extract from Trichoderma viride against cervical cancer. BENI-SUEF UNIVERSITY JOURNAL OF BASIC AND APPLIED SCIENCES 2023. [DOI: 10.1186/s43088-023-00348-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023] Open
Abstract
Abstract
Background
The crude ethyl acetate Trichoderma viride extract obtained from Ziziphus mauritiana was initially analyzed by HPLC for identification of major bioactive compounds, and then, it was subjected for in vivo acute and sub-acute toxicity, cervical cancer studies using Wistar albino rats.
Result
During acute toxicity studies, animal groups treated with distinct dosage of 2000 mg/kg restrained toxicity signs in tested groups compared to controls for 14 days which established to be secure and non-toxic even at high dose. However, in terms of sub-acute toxicity studies, animals were given with repeated amount of (10 mg/kg, 20 mg/kg and 40 mg/kg) for a period of 28 days along with control group. Upon investigations of hematological, biochemical and histopathological studies repeated dose of 20 mg/kg and 40 mg/kg of T. viride extract found to be normal and no other major changes observed among treated groups. During in vivo studies, after treatment of T. viride extract (40 mg/kg) effectively inhibited the cervical cancer cell growth in DES-treated groups. Through HPLC analysis the major compound ursolic acid and 2,5-piperazinedione were mainly identified.
Conclusion
The secondary metabolites of endophytes have been used substantially for the sustainable production of therapeutically important compounds. The limited availability of bioactive principles in plant sources could be surpassed by exploiting the chemical entities in the endophytes. In the present investigation, it has been accomplished that ethyl acetate extract of T. viride was safe at higher and lower dosage could be considered for pharmacological studies from plant may provide an excellent avenue for the discovery of drug candidates against deadly cancer diseases.
Collapse
|
13
|
Rahman L, Mukhtar A, Ahmad S, Rahman L, Ali M, Saeed M, Shinwari ZK. Endophytic bacteria of Fagonia indica Burm. f revealed to harbour rich secondary antibacterial metabolites. PLoS One 2022; 17:e0277825. [PMID: 36520861 PMCID: PMC9754247 DOI: 10.1371/journal.pone.0277825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 11/04/2022] [Indexed: 12/23/2022] Open
Abstract
Endophytic bacteria are the source of novel bioactive compounds, used as therapeutic agent. Molecular docking is a computational technique use frequently, to find novel drugs targets and drugs-receptors interactions. The current study was designed to isolate and identify endophytic bacteria for the extraction of bioactive compounds. Further, to characterized extracts and to explore compounds interactions with bacterial cell wall and outer membrane synthesizing proteins. Endophytes were identified using 16s rRNA amplification technique. For bioactive compounds, solvent extraction method was followed and characterized further through GC-MS analysis. To find targets and drugs-receptors interactions, molecular docking studies and biological assays were performed. The isolated endophytes belong to five different genera namely Enterobacter, Bacillus, Erwinia, Stenotrophomonas and Pantoea. In case of antibacterial assay Stenotrophomonas maltophilia extract showed significant inhibitory zones (15.11±0.11mm and 11.3±0.16) against Staphylococcus caseolyticus and Acinetobacter baumanni, with MIC 33.3 and 50μg/mL respectively. Among the characterized fifty compounds, from endophytic bacteria "antibacterial compound" N-(5-benzyl-10b-hydroxy-2-methyl-3,6-dioxooctahydro-8H-oxazolo[3,2-α] pyrrolo[2,1c] pyrazin-2-yl)-7-methyl2,3,3a,3a1,6,6a,7,8,9,10,10a,10b-dodecahydro-1H-4λ2-indolo[4,3-fg]quinoline-9-carboxamide of bacteria Stenotrophomonas maltophilia were an excellent binder with MurF ligase active site, with binding energy of -10.2 kcal/mol. Extracts of endophytic bacteria composed of various pharmacologically active ingredients such as antibacterial compounds. Molecular docking studies provide important information regarding drug-receptor interaction, thus can be used in novel drug discovery.
Collapse
Affiliation(s)
- Lubna Rahman
- Department of Biotechnology, Quaid-i-Azam University, Islamabad, Pakistan
| | - Asma Mukhtar
- Department of Chemistry and Chemical Engineering, SBA, School of Science and Engineering LUMS, Lahore, Pakistan
| | - Sajjad Ahmad
- Department of Health and Biological Sciences, Abasyn University, Peshawar, Pakistan
| | - Lutfur Rahman
- National Institute for Biotechnology and Genetic Engineering (NIBGE), Constituent College Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad, Pakistan
| | - Muhammad Ali
- Department of Biotechnology, Quaid-i-Azam University, Islamabad, Pakistan
| | - Muhammad Saeed
- Department of Chemistry and Chemical Engineering, SBA, School of Science and Engineering LUMS, Lahore, Pakistan
| | | |
Collapse
|
14
|
Ma J, Lu C, Tang Y, Shen Y. Phytotoxic Metabolites Isolated from Aspergillus sp., an Endophytic Fungus of Crassula arborescens. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27227710. [PMID: 36431820 PMCID: PMC9699134 DOI: 10.3390/molecules27227710] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 10/31/2022] [Accepted: 11/07/2022] [Indexed: 11/11/2022]
Abstract
Aspergillus sp., an endophytic fungus isolated from Crassula arborescens, displayed potent inhibitory activity against the seed germination of Arabidopsis thaliana. The bioactivity-guided fractionation of the culture extract of Aspergillus sp. MJ01 led to the isolation of nine compounds, including one previously undescribed furanone, namely aspertamarinoic acid (1), and eight known compounds, (-)-dihydrocanadensolide (2), kojic acid (3), citreoisocoumarin (4), astellolide A (5), astellolide B (6), astellolide G (7), cyclo-N-methylphenylalanyltryptophenyl (8) and (-)-ditryptophenaline (9). In the evaluation of the phytotoxic activities of compounds 1-9, the results suggested that 1 and 5 showed significant inhibitory activity on the seed germination of A. thaliana. This is the first report to disclose the phytotoxic activity of these compounds.
Collapse
Affiliation(s)
- Jingjing Ma
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Chunhua Lu
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Yajie Tang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Yuemao Shen
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
- Correspondence:
| |
Collapse
|
15
|
Biodiversity and application prospects of fungal endophytes in the agarwood-producing genera, Aquilaria and Gyrinops (Thymelaeaceae): A review. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
16
|
Abo-Kadoum MA, Abouelela ME, Al Mousa AA, Abo-Dahab NF, Mosa MA, Helmy YA, Hassane AMA. Resveratrol biosynthesis, optimization, induction, bio-transformation and bio-degradation in mycoendophytes. Front Microbiol 2022; 13:1010332. [PMID: 36304949 PMCID: PMC9593044 DOI: 10.3389/fmicb.2022.1010332] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 08/23/2022] [Indexed: 11/13/2022] Open
Abstract
Resveratrol (3,4,5-trihydroxystilbene) is a naturally occurring polyphenolic stilbene compound produced by certain plant species in response to biotic and abiotic factors. Resveratrol has sparked a lot of interest due to its unique structure and approved therapeutic properties for the prevention and treatment of many diseases such as neurological disease, cardiovascular disease, diabetes, inflammation, cancer, and Alzheimer's disease. Over the last few decades, many studies have focused on the production of resveratrol from various natural sources and the optimization of large-scale production. Endophytic fungi isolated from various types of grapevines and Polygonum cuspidatum, the primary plant sources of resveratrol, demonstrated intriguing resveratrol-producing ability. Due to the increasing demand for resveratrol, one active area of research is the use of endophytic fungi and metabolic engineering techniques for resveratrol's large-scale production. The current review addresses an overview of endophytic fungi as a source for production, as well as biosynthesis pathways and relevant genes incorporated in resveratrol biosynthesis. Various approaches for optimizing resveratrol production from endophytic fungi, as well as their bio-transformation and bio-degradation, are explained in detail.
Collapse
Affiliation(s)
- M. A. Abo-Kadoum
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Assiut, Egypt
| | - Mohamed E. Abouelela
- Department of Pharmacognosy, Faculty of Pharmacy, Al-Azhar University, Assiut, Egypt
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY, United States
| | - Amal A. Al Mousa
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Nageh F. Abo-Dahab
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Assiut, Egypt
| | - Mohamed A. Mosa
- Nanotechnology and Advanced Nano-Materials Laboratory (NANML), Plant Pathology Research Institute, Agricultural Research Center, Giza, Egypt
| | - Yosra A. Helmy
- Department of Veterinary Science, College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY, United States
- Department of Animal Hygiene, Zoonoses and Animal Ethology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| | - Abdallah M. A. Hassane
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Assiut, Egypt
| |
Collapse
|
17
|
Tripathi A, Pandey P, Tripathi SN, Kalra A. Perspectives and potential applications of endophytic microorganisms in cultivation of medicinal and aromatic plants. FRONTIERS IN PLANT SCIENCE 2022; 13:985429. [PMID: 36247631 PMCID: PMC9560770 DOI: 10.3389/fpls.2022.985429] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 09/07/2022] [Indexed: 06/16/2023]
Abstract
Ensuring food and nutritional security, it is crucial to use chemicals in agriculture to boost yields and protect the crops against biotic and abiotic perturbations. Conversely, excessive use of chemicals has led to many deleterious effects on the environment like pollution of soil, water, and air; loss of soil fertility; and development of pest resistance, and is now posing serious threats to biodiversity. Therefore, farming systems need to be upgraded towards the use of biological agents to retain agricultural and environmental sustainability. Plants exhibit a huge and varied niche for endophytic microorganisms inside the planta, resulting in a closer association between them. Endophytic microorganisms play pivotal roles in plant physiological and morphological characteristics, including growth promotion, survival, and fitness. Their mechanism of action includes both direct and indirect, such as mineral phosphate solubilization, fixating nitrogen, synthesis of auxins, production of siderophore, and various phytohormones. Medicinal and aromatic plants (MAPs) hold a crucial position worldwide for their valued essential oils and several phytopharmaceutically important bioactive compounds since ancient times; conversely, owing to the high demand for natural products, commercial cultivation of MAPs is on the upswing. Furthermore, the vulnerability to various pests and diseases enforces noteworthy production restraints that affect both crop yield and quality. Efforts have been made towards enhancing yields of plant crude drugs by improving crop varieties, cell cultures, transgenic plants, etc., but these are highly cost-demanding and time-consuming measures. Thus, it is essential to evolve efficient, eco-friendly, cost-effective simpler approaches for improvement in the yield and health of the plants. Harnessing endophytic microorganisms as biostimulants can be an effective and alternative step. This review summarizes the concept of endophytes, their multidimensional interaction inside the host plant, and the salient benefits associated with endophytic microorganisms in MAPs.
Collapse
Affiliation(s)
- Arpita Tripathi
- Microbial Technology Department, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
- Faculty of Education, Teerthanker Mahaveer University, Moradabad, India
| | - Praveen Pandey
- Microbial Technology Department, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
- Division of Plant Breeding and Genetic Resource Conservation, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
| | - Shakti Nath Tripathi
- Department of Botany, Nehru Gram Bharati Deemed to be University, Prayagraj, India
| | - Alok Kalra
- Microbial Technology Department, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
| |
Collapse
|
18
|
Tsivileva OM, Koftin OV, Evseeva NV. Coumarins as Fungal Metabolites with Potential Medicinal Properties. Antibiotics (Basel) 2022; 11:1156. [PMID: 36139936 PMCID: PMC9495007 DOI: 10.3390/antibiotics11091156] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 08/23/2022] [Accepted: 08/24/2022] [Indexed: 11/17/2022] Open
Abstract
Coumarins are a structurally varied set of 2H-chromen-2-one compounds categorized also as members of the benzopyrone group of secondary metabolites. Coumarin derivatives attract interest owing to their wide practical application and the unique reactivity of fused benzene and pyrone ring systems in molecular structure. Coumarins have their own specific fingerprints as antiviral, antimicrobial, antioxidant, anti-inflammatory, antiadipogenic, cytotoxic, apoptosis, antitumor, antitubercular, and cytotoxicity agents. Natural products have played an essential role in filling the pharmaceutical pipeline for thousands of years. Biological effects of natural coumarins have laid the basis of low-toxic and highly effective drugs. Presently, more than 1300 coumarins have been identified in plants, bacteria, and fungi. Fungi as cultivated microbes have provided many of the nature-inspired syntheses of chemically diverse drugs. Endophytic fungi bioactivities attract interest, with applications in fields as diverse as cancer and neuronal injury or degeneration, microbial and parasitic infections, and others. Fungal mycelia produce several classes of bioactive molecules, including a wide group of coumarins. Of promise are further studies of conditions and products of the natural and synthetic coumarins' biotransformation by the fungal cultures, aimed at solving the urgent problem of searching for materials for biomedical engineering. The present review evaluates the fungal coumarins, their structure-related peculiarities, and their future therapeutic potential. Special emphasis has been placed on the coumarins successfully bioprospected from fungi, whereas an industry demand for the same coumarins earlier found in plants has faced hurdles. Considerable attention has also been paid to some aspects of the molecular mechanisms underlying the coumarins' biological activity. The compounds are selected and grouped according to their cytotoxic, anticancer, antibacterial, antifungal, and miscellaneous effects.
Collapse
Affiliation(s)
- Olga M. Tsivileva
- Laboratory of Microbiology, Institute of Biochemistry and Physiology of Plants and Microorganisms, Saratov Scientific Centre of the Russian Academy of Sciences (IBPPM RAS), 13 Prospekt Entuziastov, Saratov 410049, Russia
| | - Oleg V. Koftin
- Department of Biochemistry, V.I. Razumovsky Saratov State Medical University, 112 ul. Bol’shaya Kazach’ya, Saratov 410012, Russia
| | - Nina V. Evseeva
- Laboratory of Immunochemistry, Institute of Biochemistry and Physiology of Plants and Microorganisms, Saratov Scientific Centre of the Russian Academy of Sciences (IBPPM RAS), 13 Prospekt Entuziastov, Saratov 410049, Russia
| |
Collapse
|
19
|
Production and Functionalities of Specialized Metabolites from Different Organic Sources. Metabolites 2022; 12:metabo12060534. [PMID: 35736468 PMCID: PMC9228302 DOI: 10.3390/metabo12060534] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/02/2022] [Accepted: 06/08/2022] [Indexed: 02/05/2023] Open
Abstract
Medicinal plants are rich sources of specialized metabolites that are of great importance to plants, animals, and humans. The usefulness of active biological compounds cuts across different fields, such as agriculture, forestry, food processing and packaging, biofuels, biocatalysts, and environmental remediation. In recent years, research has shifted toward the use of microbes, especially endophytes (bacteria, fungi, and viruses), and the combination of these organisms with other alternatives to optimize the production and regulation of these compounds. This review reinforces the production of specialized metabolites, especially by plants and microorganisms, and the effectiveness of microorganisms in increasing the production/concentration of these compounds in plants. The study also highlights the functions of these compounds in plants and their applications in various fields. New research areas that should be explored to produce and regulate these compounds, especially in plants and microbes, have been identified. Methods involving molecular studies are yet to be fully explored, and next-generation sequencing possesses an interesting and reliable approach.
Collapse
|
20
|
Protective Effects of Filtrates and Extracts from Fungal Endophytes on Phytophthora cinnamomi in Lupinus luteus. PLANTS 2022; 11:plants11111455. [PMID: 35684227 PMCID: PMC9182999 DOI: 10.3390/plants11111455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/24/2022] [Accepted: 05/26/2022] [Indexed: 11/17/2022]
Abstract
Fungal endophytes have been found to protect their hosts against multiple fungal pathogens. Frequently, the secondary metabolites produced by the endophyte are responsible for antifungal activity. To develop new bio-products that are more environmentally friendly than synthetic pesticides against Phytophthora cinnamomi, a serious pathogen of many plant species, the antifungal activity of filtrates or extracts from four endophytes was evaluated in different in vitro tests and in plants of Lupinus luteus. In the dual culture assays, the filtrate of one of the endophytes (Drechslera biseptata) completely inhibited the mycelial growth of the pathogen. Moreover, it showed a very low minimal inhibitory concentration (MIC). Epicoccum nigrum, an endophyte that also showed high inhibitory activity and a low MIC against P. cinnamomi in those two experiments, provided a clear growth promotion effect when the extracts were applied to L. luteus seedlings. The extract of Fusarium avenaceum also manifested such a promotion effect and was the most effective in reducing the disease severity caused by the pathogen in lupine plants (73% reduction). Results demonstrated the inhibitory activity of the filtrates or extracts of these endophytes against P. cinnamomi. A better insight into the mechanisms involved may be gained by isolating and identifying the metabolites conferring this inhibitory effect against this oomycete pathogen.
Collapse
|
21
|
Auddy SS, Saha S, Goswami RK. Total synthesis and stereochemical assignment of bipolamide A acetate. Org Biomol Chem 2022; 20:3348-3358. [PMID: 35352738 DOI: 10.1039/d2ob00230b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Asymmetric total synthesis of an acetate analogue of the endophytic unstable secondary metabolite bipolamide A has been achieved for the first time adopting a convergent approach. The key feature of this synthesis includes Evans's asymmetric ethylation, Wittig olefination, Takai olefination, stereoselective Grignard addition and intermolecular Heck coupling. This eventually developed a synthetic route of the rarely found branched amine bearing an acyloin moiety. Our synthesis finally established unambiguously the stereochemistry of the unassigned C-8 center of the naturally occurring unstable bipolamide A.
Collapse
Affiliation(s)
- Sourya Shankar Auddy
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata-700032, India.
| | - Sanu Saha
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata-700032, India.
| | - Rajib Kumar Goswami
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata-700032, India.
| |
Collapse
|
22
|
Raghav D, Jyoti A, Siddiqui AJ, Saxena J. Plant associated endophytic fungi as potential bio-factories for extracellular enzymes: Progress, Challenges and Strain improvement with precision approaches. J Appl Microbiol 2022; 133:287-310. [PMID: 35396804 DOI: 10.1111/jam.15574] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 03/04/2022] [Accepted: 04/04/2022] [Indexed: 11/29/2022]
Abstract
There is an intricate network of relations between endophytic fungi and their hosts that affects the production of various bioactive compounds. Plant-associated endophytic contain industrially important enzymes and have the potential to fulfill their rapid demand in the international market to boost business in technology. Being safe and metabolically active, they have replaced the usage of toxic and harmful chemicals and hold a credible application in biotransformation, bioremediation, and industrial processes. Despite these, there are limited reports on fungal endophytes that can directly cater to the demand and supply of industrially stable enzymes. The underlying reasons include low endogenous production and secretion of enzymes from fungal endophytes which have raised concern for widely accepted applications. Hence it is imperative to augment the biosynthetic and secretory potential of fungal endophytes. Modern state-of-the-art biotechnological technologies aiming at strain improvement using cell factory engineering as well as precise gene editing like Clustered Regularly Interspaced Palindromic Repeats (CRISPR) and its Associated proteins (Cas) systems which can provide a boost in fungal endophyte enzyme production. Additionally, it is vital to characterize optimum conditions to grow one strain with multiple enzymes (OSME). The present review encompasses various plants-derived endophytic fungal enzymes and their applications in various sectors. Further, we postulate the feasibility of new precision approaches with an aim for strain improvement and enhanced enzyme production.
Collapse
Affiliation(s)
- Divyangi Raghav
- Faculty of Applied Sciences and Biotechnology, Shoolini University of Biotechnology and Management Sciences, Solan, Himachal Pradesh, India
| | - Anupam Jyoti
- Faculty of Applied Sciences and Biotechnology, Shoolini University of Biotechnology and Management Sciences, Solan, Himachal Pradesh, India.,Department of Biotechnology, University Institute of Biotechnology, Chandigarh University, SAS, Nagar, Punjab
| | - Arif Jamal Siddiqui
- Department of Biology, College of Science, University of Ha'il, Ha'il, P O Box, Saudi Arabia
| | - Juhi Saxena
- Faculty of Applied Sciences and Biotechnology, Shoolini University of Biotechnology and Management Sciences, Solan, Himachal Pradesh, India.,Department of Biotechnology, University Institute of Biotechnology, Chandigarh University, SAS, Nagar, Punjab
| |
Collapse
|
23
|
Rai N, Gupta P, Keshri PK, Verma A, Mishra P, Kumar D, Kumar A, Singh SK, Gautam V. Fungal Endophytes: an Accessible Source of Bioactive Compounds with Potential Anticancer Activity. Appl Biochem Biotechnol 2022; 194:3296-3319. [PMID: 35349089 DOI: 10.1007/s12010-022-03872-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 02/24/2022] [Indexed: 11/02/2022]
Abstract
Endophytes either be bacteria, fungi, or actinomycetes colonize inside the tissue of host plants without showing any immediate negative effects on them. Among numerous natural alternative sources, fungal endophytes produce a wide range of structurally diverse bioactive metabolites including anticancer compounds. Considering the production of bioactive compounds in low quantity, genetic and physicochemical modification of the fungal endophytes is performed for the enhanced production of bioactive compounds. Presently, for the treatment of cancer, chemotherapy is majorly used, but the side effects of chemotherapy are of prime concern in clinical practices. Also, the drug-resistant properties of carcinoma cells, lack of cancer cells-specific medicine, and the side effects of drugs are the biggest obstacles in cancer treatment. The interminable requirement of potential drugs has encouraged researchers to seek alternatives to find novel bioactive compounds, and fungal endophytes seem to be a probable target for the discovery of anticancer drugs. The present review focuses a comprehensive literature on the major fungal endophyte-derived bioactive compounds which are presently been used for the management of cancer, biotic factors influencing the production of bioactive compounds and about the challenges in the field of fungal endophyte research.
Collapse
Affiliation(s)
- Nilesh Rai
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, 221005, Varanasi, India
| | - Priyamvada Gupta
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, 221005, Varanasi, India
| | - Priyanka Kumari Keshri
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, 221005, Varanasi, India
| | - Ashish Verma
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, 221005, Varanasi, India
| | - Pradeep Mishra
- Department of Medical Biochemistry and Biophysics Kemihuset (K), Umeå Universitet, Umeå Campus, 901 87, Umeå, Sweden
| | - Deepak Kumar
- Department of Botany, Institute of Science, Banaras Hindu University, 221005, Varanasi, India
| | - Ajay Kumar
- Department of Zoology, Institute of Science, Banaras Hindu University, 221005, Varanasi, India
| | - Santosh Kumar Singh
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, 221005, Varanasi, India
| | - Vibhav Gautam
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, 221005, Varanasi, India.
| |
Collapse
|
24
|
Screening of secondary metabolites and antioxidant potential of endophytic fungus Penicillium citrinum and host Digitaria bicornis by spectrophotometric and electrochemical methods. Arch Microbiol 2022; 204:206. [PMID: 35267103 DOI: 10.1007/s00203-022-02795-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 12/13/2021] [Accepted: 02/07/2022] [Indexed: 12/19/2022]
Abstract
Perennial grasses are hosts to an extremely diverse assemblage of endophytic fungi, but their significance is still underexplored. In the present study, an endophytic fungus was isolated from the aerial regions of Digitaria bicornis (Lam.) Roem. & Schult. and was characterized by morphological and molecular methods (ITS rDNA region), as Penicillium citrinum Thom. The crude extracts of endophytic fungus and host were recovered and evaluated for their antioxidant potential by spectrophotometric and electrochemical methods. The present study was also an attempt to compare the anti-radical power of extracts by spectrophotometric (2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2'-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid (ABTS), hydrogen peroxide and nitric oxide radical scavenging assay) and electrochemical (cyclic voltammetry) methods and suggested that cyclic voltammetry could be used routinely instead of assaying by more number of spectrophotometric methods. The results indicated that the ethyl acetate extract of P. citrinum and methanolic extract of D. bicornis has potential compounds with antioxidant and other pharmaceutical activities. Nine and 17 antioxidant biomolecules, respectively, in P. citrinum and D. bicornis extracts were detected by OHR-LC-MS and the presence of function group of the bioactive compounds was confirmed by FTIR spectroscopy. Finally, the study also reported that the extracts of P. citrinum and D. bicornis have several bioactive compounds with application in commercial pharmaceutical industries.
Collapse
|
25
|
ALMANAA TN, RABIE G, El-MEKKAWY RM, YASSIN MA, Saleh N, EL-Gazzar N. Antioxidant, antimicrobial and antiproliferative activities of fungal metabolite produced by Aspergillus flavus on in vitro study. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.01421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
26
|
Isolation of Taxol and Flavin-like fluorochrome from Endophytic Fungi of Mangifera indica. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2021. [DOI: 10.22207/jpam.15.4.43] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Scouting for novel and plant-derived biomolecules from endophytic microbial sources draws greater focus on the discovery of novel bioactive metabolites. With this rationale, we scouted the endophytic fungi for taxol, an anticancer diterpenoid and fluorescent biomolecules. In the present study, about 31 endophytic fungal isolates recovered from the Mangifera indica leaves were screened for taxol production in M1D medium. About five isolates were shortlisted based on the thin layer chromatographic analysis of the fungal extracts. Among them Colletotrichum sp. MIP-5 has been identified as a producer of fungal taxol based on UV, FTIR, TLC and HPLC analysis. The partially purified fungal taxol showed similar spectral and chromatographic features of commercially available paclitaxel. In addition to this, we also report the production of a fluorescent compound by Penicillium sp. MIP-3. The Flavin-like compound exhibited a bright greenish-yellow fluorescence with an emission maximum in the range of 505 – 545nm. GC-MS analysis showed the occurrence of Latia luciferin, primarily associated with the bioluminescence of freshwater limpet Latia neritoides. This is the first report of this compound from Penicillium sp. In addition, therapeutically active steroid (β-Sitosterol, Stigmasterol, Campesterol), quinones (Benzo[h]quinoline, 2,4-dimethyl-) and phloroglucinol (Aspidinol) derivatives were also identified from Penicillium sp. MIP-3 based on GC-MS analysis. These molecules could potentially be used in biological and pharmaceutical applications in future.
Collapse
|
27
|
Production of Extracellular Enzymes, Antimicrobial and other Agriculturally Important Metabolites by Fungal Endophytes of Litsea glutinosa (Lour.) C.B.Rob. a Medicinal Plant. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2021. [DOI: 10.22207/jpam.15.4.56] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The present paper deals with the endophytic fungi of Litsea glutinosa, a medicinal plant highly valued in Ayurvedic system. A total of 21 fungal endophytes were extracted from different parts of the plant. The following eight species viz, Aspergillus oryzae, A. terreus, Curvularia sp, Fusarium oxysporum, Gliocladium solani, Penicillium citrinum, Trichoderma viride and Verticillium dahliae were selected for testing the production of secondary metabolites including hydrolytic enzymes. All the eight endophytic fungal species produced amylase, cellulase, protease and lipase. Except for Curvularia species, others did not elaborate laccase. All the test fungi produced antibacterial and antifungal metabolites; however, the crude extracts exhibited poor antimicrobial activity. The present endophytic fungi also produced IAA, ammonia and phosphate solubilizing substances. They were also capable to produce IAA with or without adding the tryptophan. An affect was also made to assess the influence of crude extracts on the root growth of maize seedlings. These studies revealed the enhancement effect of extracts on root growth. Based on these observations, discussions and conclusions were made.
Collapse
|
28
|
Parvandi M, Rezadoost H, Farzaneh M. Introducing Alternaria tenuissima SBUp1, as an endophytic fungus of Ferula assa-foetida from Iran, which is a rich source of rosmarinic acid. Lett Appl Microbiol 2021; 73:569-578. [PMID: 34297439 DOI: 10.1111/lam.13542] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 07/20/2021] [Accepted: 07/21/2021] [Indexed: 11/30/2022]
Abstract
Endophytic fungi are the endogenous micro-organisms to interacting with the plant cells, which do not exhibit any symptoms on the host plant and may produce some of the main secondary metabolites of the host plant cells. Ferula assa-foetida is a perennial and endemic medicinal plant of Iran, which is a rich source of sesquiterpene, coumarins, polysulfides and phenolic acids. In this study, 28 endophytic fungi isolates including Fusarium (60·7%), Aspergillus (7·1%), Alternaria (17·9%) and Plectosphaerella (7·1%) were isolated from F. assa-foetida root (57·1%), stem (32·1%) and leaf (10·8%) collected from Parvand protected area. Subsequently, their ability to produce phenolic acids was evaluated. The high amounts of total phenol (326·09 mg g-1 of dry weight, DW), total flavonoid (901·11 mg g-1 DW) and antioxidant activity (247·96 mg l-1 ) were found in the supernatant fluid of SBUp1 isolate. The high-performance liquid chromatography analysis of 14 phenolic acids showed that rosmarinic acid (RA) is the main phenolic acid in the supernatant fluid of SBUp1 by 64·11 mg g-1 DW confirmed by the liquid chromatography coupled with mass spectrometric analysis. According to morphological identification followed by phylogenetic study based on internal transcribed spacer (ITS) sequencing (ITS1-5.8S-ITS2) analysis, the SBUp1 isolate was identified as Alternaria tenuissima. Eventually, to our knowledge, it is the first document confirming A. tenuissima as an endophytic fungus of F. assa-foetida, which is a rich source of RA.
Collapse
Affiliation(s)
- M Parvandi
- Department of Agriculture, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Tehran, Iran
| | - H Rezadoost
- Department of Phytochemistry, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Tehran, Iran
| | - M Farzaneh
- Department of Agriculture, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Tehran, Iran
| |
Collapse
|
29
|
Chanda K, Mozumder AB, Chorei R, Gogoi RK, Prasad HK. A Lignocellulolytic Colletotrichum sp. OH with Broad-Spectrum Tolerance to Lignocellulosic Pretreatment Compounds and Derivatives and the Efficiency to Produce Hydrogen Peroxide and 5-Hydroxymethylfurfural Tolerant Cellulases. J Fungi (Basel) 2021; 7:785. [PMID: 34682207 PMCID: PMC8540663 DOI: 10.3390/jof7100785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/04/2021] [Accepted: 09/07/2021] [Indexed: 10/25/2022] Open
Abstract
Fungal endophytes are an emerging source of novel traits and biomolecules suitable for lignocellulosic biomass treatment. This work documents the toxicity tolerance of Colletotrichum sp. OH toward various lignocellulosic pretreatment-derived inhibitors. The effects of aldehydes (vanillin, p-hydroxybenzaldehyde, furfural, 5-hydroxymethylfurfural; HMF), acids (gallic, formic, levulinic, and p-hydroxybenzoic acid), phenolics (hydroquinone, p-coumaric acid), and two pretreatment chemicals (hydrogen peroxide and ionic liquid), on the mycelium growth, biomass accumulation, and lignocellulolytic enzyme activities, were tested. The reported Colletotrichum sp. OH was naturally tolerant to high concentrations of single inhibitors like HMF (IC50; 17.5 mM), levulinic acid (IC50; 29.7 mM), hydroquinone (IC50; 10.76 mM), and H2O2 (IC50; 50 mM). The lignocellulolytic enzymes displayed a wide range of single and mixed inhibitor tolerance profiles. The enzymes β-glucosidase and endoglucanase showed H2O2- and HMF-dependent activity enhancements. The enzyme β-glucosidase activity was 34% higher in 75 mM and retained 20% activity in 125 mM H2O2. Further, β-glucosidase activity increased to 24 and 32% in the presence of 17.76 and 8.8 mM HMF. This research suggests that the Colletotrichum sp. OH, or its enzymes, can be used to pretreat plant biomass, hydrolyze it, and remove inhibitory by-products.
Collapse
Affiliation(s)
| | | | | | | | - Himanshu Kishore Prasad
- Department of Life Science and Bioinformatics, Assam University, Silchar 788011, India; (K.C.); (A.B.M.); (R.C.); (R.K.G.)
| |
Collapse
|
30
|
Endophytic Fungi from Alstonia boonei De Wild and Greenwayodendron suaveolens (Engl. and Diels) Verdc. subsp. Suaveolens Possess Inhibitory Activity against Pneumonia Causing Bacteria. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:9966323. [PMID: 34394399 PMCID: PMC8360735 DOI: 10.1155/2021/9966323] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 07/28/2021] [Indexed: 12/03/2022]
Abstract
This study evaluated the antibacterial efficacy of methanolic extracts of isolated endophytic fungi from stem barks and leaves of Alstonia boonei De Wild and Greenwayodendron suaveolens (Engl. and Diels) Verdc. subsp. Suaveolens against Klebsiella pneumoniae ATCC 43816, Haemophilus influenzae ATCC 49247, Pseudomonas aeruginosa ATCC 27853, and Escherichia coli ATCC 35218, responsible for causing pneumonia. The endophytic fungi were isolated and characterized in the Potato Dextrose Agar (PDA), Sabouraud Dextrose Agar (SDA), and Czapek Dox Agar (CDA) media. The fungi and their methanolic extracts were tested for in vitro antibacterial potential by antagonistic assay for endophytic fungi against bacterial pathogens and microdilution method. The phytochemical screening of extracts was carried out according to the colorimetric and precipitation methods to reveal the presence of secondary metabolites. The results showed that 24 macroscopically and microscopically distinct endophytic fungi were isolated, identified, and stored. These endophytic fungi possessed antibacterial activity against the selected bacterial strains with inhibition zones ranging from 7.00 to 25.00 mm. The endophytic fungi GS15 and AB24 have presented the inhibitions zones of 20.33 mm and 25.00 mm, respectively, and these were better than the ones obtained for Levofloxacin®. The endophytes with inhibition zones greater than 10 mm were used for extraction of their secondary metabolites. The endophytic fungi extracts showed antibacterial activity with the minimum inhibitory concentrations (MICs) ranging from 6.25 × 10−4 to 2 × 10−2 g/L and the minimum bactericidal concentrations (MBCs) ranging from 2.5 × 10−3 to 2 × 10−2 g/L. The endophytic fungi GS15 extract was the most effective extract; it showed bactericidal effects on the tested bacterial strains. The phytochemical screening of the extracts revealed the presence of secondary metabolites classes, responsible for causing the obtained antibacterial activity. Thus, the endophytic fungi methanolic extracts from A. boonei and G. suaveolens have the potential to inhibit the growth of bacteria responsible for nosocomial pneumonia.
Collapse
|
31
|
Dos Santos GD, Gomes RR, Gonçalves R, Fornari G, Maia BHLNS, Schmidt-Dannert C, Gaascht F, Glienke C, Schneider GX, Colombo IR, Degenhardt-Goldbach J, Pietsch JLM, Costa-Ribeiro MCV, Vicente VA. Molecular Identification and Antimicrobial Activity of Foliar Endophytic Fungi on the Brazilian Pepper Tree (Schinus terebinthifolius) Reveal New Species of Diaporthe. Curr Microbiol 2021; 78:3218-3229. [PMID: 34213615 DOI: 10.1007/s00284-021-02582-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 06/15/2021] [Indexed: 11/26/2022]
Abstract
The presence of endophytes promotes the biosynthesis of secondary plant metabolites. In this study, endophytic fungi were isolated from Schinus terebinthifolius to investigate their diversity and antimicrobial activity. A total of 272 endophytic fungi was obtained. These belonged to nine different genera: Alternaria, Colletotrichum, Diaporthe, Epicoccum, Fusarium, Pestalotiopsis, Phyllosticta, Xylaria, and Cryptococcus. Notably, Diaporthe foliorum was introduced as a new species, with accompanying morphological descriptions, illustrations, and a multigene phylogenetic analysis (using ITS, TEF1, TUB, HIS, and CAL). Among the 26 fungal morphotypes evaluated for antimicrobial activity, five strains had inhibitory effects against pathogenic microorganisms. Xylaria allantoidea CMRP1424 extracts showed antimicrobial activity against Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus. Diaporthe terebinthifolii CMRP1430 and CMRP1436 showed antimicrobial activity against E. coli, P. aeruginosa, S. aureus, and C. albicans. Meanwhile, D. foliorum CMRP1321 and D. malorum CMRP1438 extracts inhibited C. albicans alone. Three classes of chemical compounds were identified in D. foliorum CMRP1438 extracts: ferric chloride, potassium hydroxide, and vanillin-sulfuric acid. In conclusion, the endophytic isolates were able to produce bioactive agents with pharmaceutical potential as antibacterial and antifungal agents. As such, they may provide fresh leads in the search for new, biological sources of drug therapies.
Collapse
Affiliation(s)
- Germana D Dos Santos
- Microbiology, Parasitology and Pathology Post-Graduation Program, Basic Pathology Department, Federal University of Paraná State, Curitiba, 81531-980, Brazil
| | - Renata R Gomes
- Microbiology, Parasitology and Pathology Post-Graduation Program, Basic Pathology Department, Federal University of Paraná State, Curitiba, 81531-980, Brazil.
| | - Rosana Gonçalves
- Undergraduate Student in Biomedicine, Federal University of Paraná, Curitiba, PR, Brazil
| | - Gheniffer Fornari
- Microbiology, Parasitology and Pathology Post-Graduation Program, Basic Pathology Department, Federal University of Paraná State, Curitiba, 81531-980, Brazil
| | - Beatriz H L N S Maia
- Department of Chemistry, Federal University of Paraná State, Curitiba, PR, Brazil
| | - Claudia Schmidt-Dannert
- Department of Biochemistry, Molecular Biology & Biophysics, University of Minnesota, 140 Gortner Laboratory, 1479 Gortner Avenue, Saint Paul, MN, 55108, USA
| | - Francois Gaascht
- Department of Biochemistry, Molecular Biology & Biophysics, University of Minnesota, 140 Gortner Laboratory, 1479 Gortner Avenue, Saint Paul, MN, 55108, USA
| | - Chirlei Glienke
- Microbiology, Parasitology and Pathology Post-Graduation Program, Basic Pathology Department, Federal University of Paraná State, Curitiba, 81531-980, Brazil
| | - Gabriela X Schneider
- Microbiology, Parasitology and Pathology Post-Graduation Program, Basic Pathology Department, Federal University of Paraná State, Curitiba, 81531-980, Brazil
| | - Israella R Colombo
- Undergraduate Student in Biomedicine, Federal University of Paraná, Curitiba, PR, Brazil
| | | | - João L M Pietsch
- Microbiology, Parasitology and Pathology Post-Graduation Program, Basic Pathology Department, Federal University of Paraná State, Curitiba, 81531-980, Brazil
| | - Magda C V Costa-Ribeiro
- Microbiology, Parasitology and Pathology Post-Graduation Program, Basic Pathology Department, Federal University of Paraná State, Curitiba, 81531-980, Brazil
| | - Vania A Vicente
- Microbiology, Parasitology and Pathology Post-Graduation Program, Basic Pathology Department, Federal University of Paraná State, Curitiba, 81531-980, Brazil.
| |
Collapse
|
32
|
Porras G, Chassagne F, Lyles JT, Marquez L, Dettweiler M, Salam AM, Samarakoon T, Shabih S, Farrokhi DR, Quave CL. Ethnobotany and the Role of Plant Natural Products in Antibiotic Drug Discovery. Chem Rev 2021; 121:3495-3560. [PMID: 33164487 PMCID: PMC8183567 DOI: 10.1021/acs.chemrev.0c00922] [Citation(s) in RCA: 179] [Impact Index Per Article: 44.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The crisis of antibiotic resistance necessitates creative and innovative approaches, from chemical identification and analysis to the assessment of bioactivity. Plant natural products (NPs) represent a promising source of antibacterial lead compounds that could help fill the drug discovery pipeline in response to the growing antibiotic resistance crisis. The major strength of plant NPs lies in their rich and unique chemodiversity, their worldwide distribution and ease of access, their various antibacterial modes of action, and the proven clinical effectiveness of plant extracts from which they are isolated. While many studies have tried to summarize NPs with antibacterial activities, a comprehensive review with rigorous selection criteria has never been performed. In this work, the literature from 2012 to 2019 was systematically reviewed to highlight plant-derived compounds with antibacterial activity by focusing on their growth inhibitory activity. A total of 459 compounds are included in this Review, of which 50.8% are phenolic derivatives, 26.6% are terpenoids, 5.7% are alkaloids, and 17% are classified as other metabolites. A selection of 183 compounds is further discussed regarding their antibacterial activity, biosynthesis, structure-activity relationship, mechanism of action, and potential as antibiotics. Emerging trends in the field of antibacterial drug discovery from plants are also discussed. This Review brings to the forefront key findings on the antibacterial potential of plant NPs for consideration in future antibiotic discovery and development efforts.
Collapse
Affiliation(s)
- Gina Porras
- Center for the Study of Human Health, Emory University, 1557 Dickey Dr., Atlanta, Georgia 30322
| | - François Chassagne
- Center for the Study of Human Health, Emory University, 1557 Dickey Dr., Atlanta, Georgia 30322
| | - James T. Lyles
- Center for the Study of Human Health, Emory University, 1557 Dickey Dr., Atlanta, Georgia 30322
| | - Lewis Marquez
- Molecular and Systems Pharmacology Program, Laney Graduate School, Emory University, 615 Michael St., Whitehead 115, Atlanta, Georgia 30322
| | - Micah Dettweiler
- Department of Dermatology, Emory University, 615 Michael St., Whitehead 105L, Atlanta, Georgia 30322
| | - Akram M. Salam
- Molecular and Systems Pharmacology Program, Laney Graduate School, Emory University, 615 Michael St., Whitehead 115, Atlanta, Georgia 30322
| | - Tharanga Samarakoon
- Emory University Herbarium, Emory University, 1462 Clifton Rd NE, Room 102, Atlanta, Georgia 30322
| | - Sarah Shabih
- Center for the Study of Human Health, Emory University, 1557 Dickey Dr., Atlanta, Georgia 30322
| | - Darya Raschid Farrokhi
- Center for the Study of Human Health, Emory University, 1557 Dickey Dr., Atlanta, Georgia 30322
| | - Cassandra L. Quave
- Center for the Study of Human Health, Emory University, 1557 Dickey Dr., Atlanta, Georgia 30322
- Emory University Herbarium, Emory University, 1462 Clifton Rd NE, Room 102, Atlanta, Georgia 30322
- Department of Dermatology, Emory University, 615 Michael St., Whitehead 105L, Atlanta, Georgia 30322
- Molecular and Systems Pharmacology Program, Laney Graduate School, Emory University, 615 Michael St., Whitehead 115, Atlanta, Georgia 30322
| |
Collapse
|
33
|
Aghdam SA, Brown AMV. Deep learning approaches for natural product discovery from plant endophytic microbiomes. ENVIRONMENTAL MICROBIOME 2021; 16:6. [PMID: 33758794 PMCID: PMC7972023 DOI: 10.1186/s40793-021-00375-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 02/21/2021] [Indexed: 05/10/2023]
Abstract
Plant microbiomes are not only diverse, but also appear to host a vast pool of secondary metabolites holding great promise for bioactive natural products and drug discovery. Yet, most microbes within plants appear to be uncultivable, and for those that can be cultivated, their metabolic potential lies largely hidden through regulatory silencing of biosynthetic genes. The recent explosion of powerful interdisciplinary approaches, including multi-omics methods to address multi-trophic interactions and artificial intelligence-based computational approaches to infer distribution of function, together present a paradigm shift in high-throughput approaches to natural product discovery from plant-associated microbes. Arguably, the key to characterizing and harnessing this biochemical capacity depends on a novel, systematic approach to characterize the triggers that turn on secondary metabolite biosynthesis through molecular or genetic signals from the host plant, members of the rich 'in planta' community, or from the environment. This review explores breakthrough approaches for natural product discovery from plant microbiomes, emphasizing the promise of deep learning as a tool for endophyte bioprospecting, endophyte biochemical novelty prediction, and endophyte regulatory control. It concludes with a proposed pipeline to harness global databases (genomic, metabolomic, regulomic, and chemical) to uncover and unsilence desirable natural products. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1186/s40793-021-00375-0.
Collapse
Affiliation(s)
- Shiva Abdollahi Aghdam
- Department of Biological Sciences, Texas Tech University, 2901 Main St, Lubbock, TX 79409 USA
| | - Amanda May Vivian Brown
- Department of Biological Sciences, Texas Tech University, 2901 Main St, Lubbock, TX 79409 USA
| |
Collapse
|
34
|
Xiao JL, Sun JG, Pang B, Zhou X, Gong Y, Jiang L, Zhang L, Ding X, Yin J. Isolation and screening of stress-resistant endophytic fungus strains from wild and cultivated soybeans in cold region of China. Appl Microbiol Biotechnol 2021; 105:755-768. [PMID: 33409608 DOI: 10.1007/s00253-020-11048-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 11/12/2020] [Accepted: 12/09/2020] [Indexed: 10/22/2022]
Abstract
In this study, we firstly reported the large-scale screening and isolation of endophytic fungi from nine wild and six cultivated soybeans in the cold regions of China. We totally isolated 302 endophytic fungal strains, of which 215 strains are isolated from the wild soybeans and 87 are identified from cultivated soybeans. Among these endophytic fungal strains, in the roots, stems, and leaves, 24.17% were isolated from roots, 28.8% were isolated from stems, and 47.01% were isolated from leaves, respectively. Most endophytic fungal strains isolated from the wild soybean roots were the species of Fusarium genus, and the fungal strains in the stems were the species of ascomycetes and Fusarium fungi, whereas most strains in the leaves were Alternaria fungi. To analyze the taxonomy of the obtained samples, we sequenced and compared their rDNA internal transcribed spacer (ITS) sequences. The data showed that 6 strains are putatively novel strains exhibiting ≤ 97% homology with the known strains. We next measured the secondary metabolites produced by the different strains and we found 11 strains exhibited high-performance synthesis of triterpenoids, phenols, and polysaccharides. Furthermore, we characterized their tolerance to abiotic stresses. The results indicated that 4 strains exhibited high tolerance to cadmium, and some strains exhibited resistance to acid, and alkali. The results of the study could facilitate the further exploration of the diversity of plant endophytic fungi and the potential applications of the fungi to practical agriculture and medicine industries. KEY POINTS: • 302 endophytic fungal strains isolated from wild soybean and cultivated soybean • 11 strains had high contents of triterpenoids, phenols, and polysaccharides • 4 strains exhibited high Cd tolerance, and a few strains with strong tolerance to acid and alkali solution.
Collapse
Affiliation(s)
- Jia-Lei Xiao
- College of Life Science, Northeast Agriculture University, Harbin, 150030, China
| | - Jian-Guang Sun
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education (Northeast Forestry University), Harbin, 150040, China
| | - Bo Pang
- College of Life Science, Northeast Agriculture University, Harbin, 150030, China
| | - Xin Zhou
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education (Northeast Forestry University), Harbin, 150040, China
| | - Yuan Gong
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education (Northeast Forestry University), Harbin, 150040, China
| | - Lichao Jiang
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education (Northeast Forestry University), Harbin, 150040, China
| | - Luan Zhang
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education (Northeast Forestry University), Harbin, 150040, China
| | - Xiaodong Ding
- College of Life Science, Northeast Agriculture University, Harbin, 150030, China.
| | - Jing Yin
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education (Northeast Forestry University), Harbin, 150040, China.
- College of Life Science, Northeast Forestry University, Harbin, 150040, China.
| |
Collapse
|
35
|
Deepika VB, Vohra M, Mishra S, Dorai K, Rai P, Satyamoorthy K, Murali TS. DNA demethylation overcomes attenuation of colchicine biosynthesis in an endophytic fungus Diaporthe. J Biotechnol 2020; 323:33-41. [PMID: 32745507 DOI: 10.1016/j.jbiotec.2020.07.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 06/27/2020] [Accepted: 07/27/2020] [Indexed: 10/23/2022]
Abstract
Fungal endophytes, a major component of the plant host microbiome, are known to synthesize plant-derived metabolites in vitro. However, attenuation of metabolite production upon repeated sub-culturing is a major drawback towards utilizing them as an alternative for plant-derived metabolites. In this study, we isolated Diaporthe perseae, a fungal endophyte from Gloriosa superba tubers, which showed the production of colchicine in axenic cultures. Mass spectrometry, Nuclear Magnetic Resonance spectroscopy, and tubulin polymerization assays confirmed the compound to be colchicine. Repeated sub-culturing of the endophyte for 10 generations led to a reduction in the yield of the metabolite from 55.25 μg/g to 2.32 μg/g of mycelial dry weight. Treatment of attenuated cultures with DNA methylation inhibitor 5-azacytidine resulted in increased metabolite concentration (39.68 μg/g mycelial dry weight) in treated samples compared to control (2.61 μg/g mycelial dry weight) suggesting that 5-azacytidine can induce demethylation of the fungal genome to overcome the phenomenon of attenuation of metabolite synthesis. Reduced levels of global methylation were observed upon 5-azacytidine treatment in attenuated cultures (0.41 % of total cytosines methylated) as compared to untreated control (0.78 % of total cytosines methylated). The results provide a significant breakthrough in utilizing fungal endophytes as a veritable source of plant-derived metabolites from critically endangered plants.
Collapse
Affiliation(s)
- Vishwanath Bhat Deepika
- Department of Biotechnology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, India.
| | - Manik Vohra
- Department of Biotechnology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, India.
| | - Sumit Mishra
- Department of Physical Sciences, Indian Institute of Science Education & Research (IISER) Mohali, Sector 81, SAS Nagar, Manauli PO, 140306 Punjab, India.
| | - Kavita Dorai
- Department of Physical Sciences, Indian Institute of Science Education & Research (IISER) Mohali, Sector 81, SAS Nagar, Manauli PO, 140306 Punjab, India.
| | - Padmalatha Rai
- Department of Biotechnology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, India.
| | - Kapaettu Satyamoorthy
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, India.
| | - Thokur Sreepathy Murali
- Department of Biotechnology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, India.
| |
Collapse
|
36
|
Ramesha KP, Mohana NC, Nuthan BR, Rakshith D, Satish S. Antimicrobial metabolite profiling of Nigrospora sphaerica from Adiantum philippense L. J Genet Eng Biotechnol 2020; 18:66. [PMID: 33094373 PMCID: PMC7581665 DOI: 10.1186/s43141-020-00080-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 09/24/2020] [Indexed: 11/10/2022]
Abstract
Background Endophyte bestows beneficial aspects to its inhabiting host, along with a contribution to diverse structural attributes with biological potential. In this regard, antimicrobial profiling of fungal endophytes from medicinal plant Adiantum philippense revealed bioactive Nigrospora sphaerica from the leaf segment. Chemical and biological profiling through TLC–bioautography and hyphenated spectroscopic techniques confirmed the presence of phomalactone as an antimicrobial metabolite. Results The chemical investigation of the broth extract by bioassay-guided fractionation confirmed phomalactone as a bioactive antimicrobial secondary metabolite. The antimicrobial activity of phomalactone was found to be highest against Escherichia coli by disc diffusion assay. The MIC was found to be significant against both Escherichia coli and Xanthomonas campestris in the case of bacteria and dermatophyte Candida albicans at 150 μg/ml, respectively. Conclusions Overall, the results highlighted the antimicrobial potential of phomalactone from the endophyte Nigrospora sphaerica exhibiting a broad spectrum of antimicrobial activity against human and phytopathogenic bacteria and fungi. This work is the first report regarding the antibacterial activity of phomalactone.
Collapse
Affiliation(s)
- Kolathuru Puttamadaiah Ramesha
- Microbial Drug Technological Laboratory, Department of Studies in Microbiology, University of Mysore, Manasagangotri, Mysore, Karnataka, 570006, India
| | - Nagabhushana Chandra Mohana
- Microbial Drug Technological Laboratory, Department of Studies in Microbiology, University of Mysore, Manasagangotri, Mysore, Karnataka, 570006, India
| | - Bettadapura Rameshgowda Nuthan
- Microbial Drug Technological Laboratory, Department of Studies in Microbiology, University of Mysore, Manasagangotri, Mysore, Karnataka, 570006, India
| | - Devaraju Rakshith
- Microbial Drug Technological Laboratory, Department of Studies in Microbiology, University of Mysore, Manasagangotri, Mysore, Karnataka, 570006, India
| | - Sreedharamurthy Satish
- Microbial Drug Technological Laboratory, Department of Studies in Microbiology, University of Mysore, Manasagangotri, Mysore, Karnataka, 570006, India.
| |
Collapse
|
37
|
Mc Cargo PD, Iannone LJ, Soria M, Novas MV. Diversity of foliar endophytes in a dioecious wild grass and their interaction with the systemic Epichloë. FUNGAL ECOL 2020. [DOI: 10.1016/j.funeco.2020.100945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
38
|
Pan XX, Yuan MQ, Xiang SY, Ma YM, Zhou M, Zhu YY, Yang MZ. The symbioses of endophytic fungi shaped the metabolic profiles in grape leaves of different varieties. PLoS One 2020; 15:e0238734. [PMID: 32915849 PMCID: PMC7485881 DOI: 10.1371/journal.pone.0238734] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Accepted: 08/21/2020] [Indexed: 12/30/2022] Open
Abstract
Endophytic fungi produce many novel bioactive metabolites that are directly used as drugs or that function as the precursor structures of other chemicals. The metabolic shaping of endophytes on grape cells was reported previously. However, there are no reports on the interactions and metabolic impact of endophyte symbiosis on in vitro vine leaves, which may be examined under well-controlled conditions that are more representative of the natural situation of endophytes within grapevines. The present study used an in vitro leaf method to establish endophyte symbiosis of grapevines and analyze the effects on the metabolic profiles of grape leaves from two different cultivars, 'Rose honey' (RH) and 'Cabernet sauvignon' (CS). The effects of endophytic fungi on the metabolic profiles of grape leaves exhibited host selectivity and fungal strain specificity. Most of the endophytic fungal strains introduced novel metabolites into the two varieties of grape leaves according to the contents of the detected metabolites and composition of metabolites. Strains RH49 and MDR36, with high or moderate symbiosis rates, triggered an increased response in terms of the detected metabolites, and the strains MDR1 and MDR33 suppressed the detected metabolites in CS and RH leaves despite having strong or moderate symbiosis ability. However, the strain RH12 significantly induced the production of novel metabolites in RH leaves due to its high symbiosis ability and suppression of metabolites in CS leaves.
Collapse
Affiliation(s)
- Xiao-Xia Pan
- School of Agriculture, Yunnan University, Kunming, China
- School of Chemistry and Environment, Yunnan MinZu University, Kunming, China
| | - Ming-Quan Yuan
- School of Chemistry and Chemical Engineering, Yunnan University, Kunming, China
| | - Si-Yu Xiang
- School of Life Science, Yunnan University, Kunming, China
| | - Yin-Min Ma
- School of Life Science, Yunnan University, Kunming, China
| | - Ming Zhou
- School of Life Science, Yunnan University, Kunming, China
| | - You-Yong Zhu
- School of Agriculture, Yunnan University, Kunming, China
- School of Agronomy, Yunnan Agricultural University, Kunming, China
| | - Ming-Zhi Yang
- School of Ecology and Environmental Science, Yunnan University, Kunming, China
| |
Collapse
|
39
|
Gogineni V, Chen X, Hanna G, Mayasari D, Hamann MT. Role of symbiosis in the discovery of novel antibiotics. J Antibiot (Tokyo) 2020; 73:490-503. [PMID: 32499556 DOI: 10.1038/s41429-020-0321-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 04/18/2020] [Accepted: 04/26/2020] [Indexed: 12/16/2022]
Abstract
Antibiotic resistance has been an ongoing challenge that has emerged almost immediately after the initial discovery of antibiotics and requires the development of innovative new antibiotics and antibiotic combinations that can effectively mitigate the development of resistance. More than 35,000 people die each year from antibiotic resistant infections in just the United States. This signifies the importance of identifying other alternatives to antibiotics for which resistance has developed. Virtually, all currently used antibiotics can trace their genesis to soil derived bacteria and fungi. The bacteria and fungi involved in symbiosis is an area that still remains widely unexplored for the discovery and development of new antibiotics. This brief review focuses on the challenges and opportunities in the application of symbiotic microbes and also provides an interesting platform that links natural product chemistry with evolutionary biology and ecology.
Collapse
Affiliation(s)
- Vedanjali Gogineni
- Analytical Development Department, Cambrex Pharmaceuticals, Charles City, IA, USA
- Department of Drug Discovery, Biomedical Sciences and Public Health, College of Pharmacy and Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - Xiaoyan Chen
- Department of Drug Discovery, Biomedical Sciences and Public Health, College of Pharmacy and Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - George Hanna
- Department of Drug Discovery, Biomedical Sciences and Public Health, College of Pharmacy and Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - Dian Mayasari
- Department of Pharmaceutical Biology, Faculty of Pharmacy, University of Gadjah Mada, Yogyakarta, Indonesia
| | - Mark T Hamann
- Department of Drug Discovery, Biomedical Sciences and Public Health, College of Pharmacy and Medicine, Medical University of South Carolina, Charleston, SC, USA.
| |
Collapse
|
40
|
Noumeur SR, Teponno RB, Helaly SE, Wang XW, Harzallah D, Houbraken J, Crous PW, Stadler M. Diketopiperazines from Batnamyces globulariicola, gen. & sp. nov. (Chaetomiaceae), a fungus associated with roots of the medicinal plant Globularia alypum in Algeria. Mycol Prog 2020. [DOI: 10.1007/s11557-020-01581-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
AbstractEight diketopiperazines including five previously unreported derivatives were isolated from an endophytic fungus cultured from the medicinal plant Globularia alypum collected in Algeria. The strain was characterised by means of morphological studies and molecular phylogenetic methods and was found to represent a species of a new genus in the Chaetomiaceae, for which we propose the name Batnamyces globulariicola. The taxonomic position of the new genus, which appears phylogenetically related to Stolonocarpus and Madurella, was evaluated by a multi-locus genealogy and by morphological studies in comparison to DNA sequence data reported in the recent monographs of the family. The culture remained sterile on several culture media despite repeated attempts to induce sporulation, and only some chlamydospores were formed. After fermentation in submerged culture and extraction of the cultures with organic solvents, the major secondary metabolites of B. globulariicola were isolated and their chemical structures were elucidated by extensive spectral analysis including nuclear magnetic resonance (NMR) spectroscopy, high-resolution electrospray ionisation mass spectrometry (HRESIMS), and electronic circular dichroism (ECD) measurements. The isolated compounds were tested for their biological activities against various bacteria, fungi, and two mammalian cell lines, but only three of them exhibited weak cytotoxicity against KB3.1 cells, but no antimicrobial effects were observed.
Collapse
|
41
|
Fadiji AE, Babalola OO. Elucidating Mechanisms of Endophytes Used in Plant Protection and Other Bioactivities With Multifunctional Prospects. Front Bioeng Biotechnol 2020; 8:467. [PMID: 32500068 PMCID: PMC7242734 DOI: 10.3389/fbioe.2020.00467] [Citation(s) in RCA: 170] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 04/22/2020] [Indexed: 01/06/2023] Open
Abstract
Endophytes are abundant in plants and studies are continuously emanating on their ability to protect plants from pathogens that cause diseases especially in the field of agriculture. The advantage that endophytes have over other biocontrol agents is the ability to colonize plant's internal tissues. Despite this attributes, a deep understanding of the mechanism employed by endophytes in protecting the plant from diseases is still required for both effectiveness and commercialization. Also, there are increasing cases of antibiotics resistance among most causative agents of diseases in human beings, which calls for an alternative drug discovery using natural sources. Endophytes present themselves as a storehouse of many bioactive metabolites such as phenolic acids, alkaloids, quinones, steroids, saponins, tannins, and terpenoids which makes them a promising candidate for anticancer, antimalarial, antituberculosis, antiviral, antidiabetic, anti-inflammatory, antiarthritis, and immunosuppressive properties among many others, even though the primary function of bioactive compounds from endophytes is to make the host plants resistant to both abiotic and biotic stresses. Endophytes still present themselves as a peculiar source of possible drugs. This study elucidates the mechanisms employed by endophytes in protecting the plant from diseases and different bioactivities of importance to humans with a focus on endophytic bacteria and fungi.
Collapse
Affiliation(s)
| | - Olubukola Oluranti Babalola
- Food Security and Safety Niche, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho, South Africa
| |
Collapse
|
42
|
Xu Z, Tian J, Gan L, Tian Y. Discovery of the Endophytic Fungi from Polygonum cuspidatum and Biotransformation of Resveratrol to Pterostillbene by the Endophyte Penicillium sp. F5. APPL BIOCHEM MICRO+ 2020. [DOI: 10.1134/s0003683820030163] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
43
|
Sarsaiya S, Jain A, Fan X, Jia Q, Xu Q, Shu F, Zhou Q, Shi J, Chen J. New Insights into Detection of a Dendrobine Compound From a Novel Endophytic Trichoderma longibrachiatum Strain and Its Toxicity Against Phytopathogenic Bacteria. Front Microbiol 2020; 11:337. [PMID: 32226418 PMCID: PMC7080861 DOI: 10.3389/fmicb.2020.00337] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 02/17/2020] [Indexed: 01/10/2023] Open
Abstract
Dendrobium nobile is the only plant that could produce the natural bioactive dendrobine. No other source of dendrobine has been found to date except from D. nobile and via chemical synthesis. In this study, we aimed to examine the potential fungal endophyte isolated from D. nobile stem segments using the molecular method and to detect dendrobine compound through high-performance liquid chromatography (HPLC), gas chromatography-mass spectrometry (GC-MS), and liquid chromatography with tandem mass spectrometry (LC-MS/MS) and their metabolite for their antibacterial activity. The potential dendrobine producer strain was recognized as Trichoderma longibrachiatum based on molecular DNA sequencing and GenBank databases. The T. longibrachiatum MD33 produced dendrobine and other compounds in a potato dextrose medium (PDM), as confirmed by HPLC retention time peak analysis. The HPLC results revealed that T. longibrachiatum MD33 biomass showed a peak retention time of 5.28 ± 0.2 min, similar to wild D. nobile stem dendrobine (5.32 ± 0.2 min) and standard chemical reference dendrobine (5.30 ± 0.2 min), indicating the presence of dendrobine in the fungal biomass. Results of GC-MS and LC-MS analysis revealed that T. longibrachiatum MD33 produced the same molecular weight (263 in GC-MS and 264.195 in LC-MS) of dendrobine as compared with standard chemical reference dendrobine and D. nobile dendrobine. Antibacterial activity data revealed that T. longibrachiatum MD33 produced the strongest bactericidal activity against Bacillus subtilis, Bacillus mycoides, and Staphylococcus species, and the diameter of the bacterial growth inhibition zone was 12 ± 0.2, 9 ± 0.2, and 8 ± 0.2 mm, respectively. To the best of our knowledge, this was the first study to investigate T. longibrachiatum as a dendrobine producer, and the results revealed that T. longibrachiatum was directly involved in the potential production of a similar bioactive compound to D. nobile (dendrobine). In addition, the T. longibrachiatum metabolite exhibited potent antibacterial activity and can be a potential strain for medical and industrial purposes.
Collapse
Affiliation(s)
- Surendra Sarsaiya
- Key Laboratory of Basic Pharmacology of Ministry of Education, Zunyi Medical University, Zunyi, China
- Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
- Bioresource Institute for Healthy Utilization, Zunyi Medical University, Zunyi, China
| | - Archana Jain
- Key Laboratory of Basic Pharmacology of Ministry of Education, Zunyi Medical University, Zunyi, China
- Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
| | - Xiaokuan Fan
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | - Qi Jia
- Bioresource Institute for Healthy Utilization, Zunyi Medical University, Zunyi, China
| | - Quan Xu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | - Fuxing Shu
- Bioresource Institute for Healthy Utilization, Zunyi Medical University, Zunyi, China
| | - Qinian Zhou
- Bioresource Institute for Healthy Utilization, Zunyi Medical University, Zunyi, China
| | - Jingshan Shi
- Key Laboratory of Basic Pharmacology of Ministry of Education, Zunyi Medical University, Zunyi, China
| | - Jishuang Chen
- Key Laboratory of Basic Pharmacology of Ministry of Education, Zunyi Medical University, Zunyi, China
- Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
- Bioresource Institute for Healthy Utilization, Zunyi Medical University, Zunyi, China
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| |
Collapse
|
44
|
Strom N, Hu W, Haarith D, Chen S, Bushley K. Corn and Soybean Host Root Endophytic Fungi with Toxicity Toward the Soybean Cyst Nematode. PHYTOPATHOLOGY 2020; 110:603-614. [PMID: 31631807 DOI: 10.1094/phyto-07-19-0243-r] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Although fungal endophytes are commonly investigated for their ability to deter microbial plant pathogens, few studies have examined the activity of fungal root endophytes against nematodes. The soybean cyst nematode (SCN; Heterodera glycines), the most severe yield-limiting pathogen of soybean (Glycine max), is commonly managed through rotation of soybean with corn (Zea mays), a nonhost of the SCN. A total of 626 fungal endophytes were isolated from surface-sterilized corn and soybean roots from experimental plots in which soybean and corn had been grown under annual rotation and under 1, 3, 5, and 35 years of continuous monoculture. Fungal isolates were grouped into 401 morphotypes, which were clustered into 108 operational taxonomic units (OTUs) based on 99% sequence similarity of the full internal transcribed spacer region. Morphotype representatives within each OTU were grown in malt extract broth and in a secondary metabolite-inducing medium buffered with ammonium tartrate, and their culture filtrates were tested for nematicidal activity against SCN juveniles. A majority of OTUs containing isolates with nematicidal culture filtrates were in the order Hypocreales, with the genus Fusarium being the most commonly isolated nematicidal genus from corn and soybean roots. Less commonly isolated taxa from soybean roots included the nematophagous fungi Hirsutella rhossiliensis, Metacordyceps chlamydosporia, and Arthrobotrys iridis. Root endophytic fungal diversity in soybean was positively correlated with SCN density, suggesting that the SCN plays a role in shaping the soybean root endophytic community.
Collapse
Affiliation(s)
- Noah Strom
- Department of Plant and Microbial Biology, University of Minnesota, Saint Paul, MN
| | - Weiming Hu
- Entomology and Nematology Department, University of Florida, Gainesville, FL
| | - Deepak Haarith
- Department of Plant Pathology, University of Minnesota, Saint Paul, MN
| | - Senyu Chen
- Southern Research and Outreach Center, University of Minnesota, Waseca, MN
| | - Kathryn Bushley
- Department of Plant and Microbial Biology, University of Minnesota, Saint Paul, MN
| |
Collapse
|
45
|
Farias GC, Nunes KG, Soares MA, de Siqueira KA, Lima WC, Neves ALR, de Lacerda CF, Filho EG. Dark septate endophytic fungi mitigate the effects of salt stress on cowpea plants. Braz J Microbiol 2020; 51:243-253. [PMID: 31656023 PMCID: PMC7058810 DOI: 10.1007/s42770-019-00173-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 10/03/2019] [Indexed: 02/07/2023] Open
Abstract
The association of plant with microorganisms, such as dark septate endophytic fungi, has mitigated the harmful effects of chemical, physical, and biological agents on the host. The objective of this work was to evaluate the interaction of the dark septate endophytic fungi with cowpea plants under salt stress. Endophytic fungi were isolated from Vochysia divergens root system, and molecular identification of fungi was performed by sequencing the ITS region. We selected and identified Sordariomycetes sp1-B'2 and Melanconiella elegans-21W2 for their ability to infect V. divergens root in vitro with development of typical dark septate fungi structures. Cowpea plants-inoculated or not inoculated with Sordariomycetes sp1-B'2 and M. elegans 21W2-were cultivated in 5-L pots under greenhouse conditions and submitted to four different electrical conductivities of irrigation water (1.2, 2.2, 3.6, and 5.0 dS m-1). The salinity caused decrease in leaf concentration of K and increased leaf concentration of calcium, sodium, and chlorine; and no influence of dark septate endophytic fungi was observed in these responses. On the other hand, root colonization with Sordariomycetes sp1-B'2 and M. elegans 21W2 resulted in improved nutrition with N and P in cowpea under salt stress, favoring the growth and rate of liquid photosynthesis. However, such positive responses were evident only at moderate levels of salinity.
Collapse
Affiliation(s)
- Gabriel Castro Farias
- Laboratory Soil-Water-Plant Relations, Department of Agricultural Engineering, Federal University of Ceará, Fortaleza, Brazil
| | - Kenya Gonçalves Nunes
- Laboratory Soil-Water-Plant Relations, Department of Agricultural Engineering, Federal University of Ceará, Fortaleza, Brazil.
| | - Marcos Antônio Soares
- Laboratory of Biotechnology and Microbial Ecology, Department of Botany and Ecology, Institute of Biosciences, Federal University of Mato Grosso, Cuiabá, Brazil
| | - Kátia Aparecida de Siqueira
- Laboratory of Biotechnology and Microbial Ecology, Department of Botany and Ecology, Institute of Biosciences, Federal University of Mato Grosso, Cuiabá, Brazil
| | - William Cardoso Lima
- Federal Institute of Education, Science and Technology of Mato Grosso, Cuiabá, Brazil
| | - Antônia Leila Rocha Neves
- Laboratory Soil-Water-Plant Relations, Department of Agricultural Engineering, Federal University of Ceará, Fortaleza, Brazil
| | - Claudivan Feitosa de Lacerda
- Laboratory Soil-Water-Plant Relations, Department of Agricultural Engineering, Federal University of Ceará, Fortaleza, Brazil
| | - Enéas Gomes Filho
- Laboratory of Plant Physiology, Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza, Brazil
| |
Collapse
|
46
|
Abstract
The ability of endophytes to colonize every plant tissue has led to the opportunity of using the microorganism in a lot of biological applications. Endophytes are beneficial to their host cells as such its application is observed in every aspects of life. This study therefore endeavored to give an analysis of endophytes, what they were and what they had been used for till the present time. Sampling of several literature studies in endophytes was done in this study to enable a complete understanding of the mechanism of application of the actions of endophytes, so as to be able to do a thorough assessment of the current state in the knowledge of the microbes. From the complete analysis of the literature on the application and use of endophytes, in nutrient asquition and increase the stress tolerance in plants. This study provided a platform for further research gaps through the presentation of what endophytes were, what they had been used for till date, the mechanism of operation of the micro-organism and the type of interaction between them and their hosts. There are still ways to improve on the methods of application of endophytes as a type of biological organism. This will be done by adjusting to the current trends in biological studies using molecular mechanization, following an intensive further study on endophyte mechanisms.
Collapse
|
47
|
Three novel chromanones with biological activities from the endophytic fungus Phomopsis CGMCC No. 5416. J Antibiot (Tokyo) 2019; 73:194-199. [PMID: 31873196 DOI: 10.1038/s41429-019-0270-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Revised: 11/14/2019] [Accepted: 12/05/2019] [Indexed: 12/22/2022]
Abstract
Three undescribed chromanones (1-3) and two known chromanones (4 and 5) were isolated from the culture of endophytic fungus Phomopsis CGMCC No. 5416 from the stems of Achyranthes bidentata. Their structures were determined by spectroscopic analysis. Compounds 1 and 2 showed inhibitory activities against HIV-1 with IC50 values of 20.4 and 32.5 μg ml-1, respectively. Compounds 1-3 displayed moderate cytotoxicity with CC50 values of 36.5-79.3 μg ml-1 against A549, MDA-MB-231, and PANC-1 cell lines. Moreover, compound 3 can induce the early apoptosis of PANC-1 cancer cells with the apoptosis rate of 10.52%.
Collapse
|
48
|
Pacifico D, Squartini A, Crucitti D, Barizza E, Lo Schiavo F, Muresu R, Carimi F, Zottini M. The Role of the Endophytic Microbiome in the Grapevine Response to Environmental Triggers. FRONTIERS IN PLANT SCIENCE 2019; 10:1256. [PMID: 31649712 PMCID: PMC6794716 DOI: 10.3389/fpls.2019.01256] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Accepted: 09/09/2019] [Indexed: 05/25/2023]
Abstract
Endophytism within Vitis represents a topic of critical relevance due to the multiple standpoints from which it can be approached and considered. From the biological and botanical perspectives, the interaction between microorganisms and perennial woody plants falls within the category of stable relationships from which the plants can benefit in multiple ways. The life cycle of the host ensures persistence in all seasons, repeated chances of contact, and consequent microbiota accumulation over time, leading to potentially high diversity compared with that of herbaceous short-lived plants. Furthermore, grapevines are agriculturally exploited, highly selected germplasms where a profound man-driven footprint has indirectly and unconsciously shaped the inner microbiota through centuries of cultivation and breeding. Moreover, since endophyte metabolism can contribute to that of the plant host and its fruits' biochemical composition, the nature of grapevine endophytic taxa identities, ecological attitudes, potential toxicity, and clinical relevance are aspects worthy of a thorough investigation. Can endophytic taxa efficiently defend grapevines by acting against pests or confer enough fitness to the plants to endure attacks? What are the underlying mechanisms that translate into this or other advantages in the hosting plant? Can endophytes partially redirect plant metabolism, and to what extent do they act by releasing active products? Is the inner microbial colonization necessary priming for a cascade of actions? Are there defined environmental conditions that can trigger the unleashing of key microbial phenotypes? What is the environmental role in providing the ground biodiversity by which the plant can recruit microsymbionts? How much and by what practices and strategies can these symbioses be managed, applied, and directed to achieve the goal of a better sustainable viticulture? By thoroughly reviewing the available literature in the field and critically examining the data and perspectives, the above issues are discussed.
Collapse
Affiliation(s)
- Davide Pacifico
- Institute of Biosciences and BioResources (IBBR), National Research Council of Italy (CNR), Corso Calatafimi, Palermo, Italy
| | - Andrea Squartini
- Department of Agronomy, Food, Natural Resources, Animals and the Environment, University of Padua, Legnaro, Italy
| | - Dalila Crucitti
- Institute of Biosciences and BioResources (IBBR), National Research Council of Italy (CNR), Corso Calatafimi, Palermo, Italy
| | | | | | - Rosella Muresu
- Institute for the Animal Production System in Mediterranean Environment (ISPAAM), National Research Council (CNR), Sassari, Italy
| | - Francesco Carimi
- Institute of Biosciences and BioResources (IBBR), National Research Council of Italy (CNR), Corso Calatafimi, Palermo, Italy
| | | |
Collapse
|
49
|
Diversity, Ecology, and Significance of Fungal Endophytes. REFERENCE SERIES IN PHYTOCHEMISTRY 2019. [DOI: 10.1007/978-3-319-90484-9_5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
50
|
Distribution and diversity of foliar endophytic fungi in the mangroves of Andaman Islands, India. FUNGAL ECOL 2018. [DOI: 10.1016/j.funeco.2018.09.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|