1
|
Guan H, Zhang P, Park RF, Ding Y. Genomics Research on the Road of Studying Biology and Virulence of Cereal Rust Fungi. MOLECULAR PLANT PATHOLOGY 2025; 26:e70082. [PMID: 40181494 PMCID: PMC11968332 DOI: 10.1111/mpp.70082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 03/06/2025] [Accepted: 03/23/2025] [Indexed: 04/05/2025]
Abstract
Rust fungi are highly destructive pathogens that pose a significant threat to crop production worldwide, especially cereals. Obligate biotrophy and, in many cases, complex life cycles make rust fungi particularly challenging to study. However, recent rapid advances in sequencing technologies and genomic analysis tools have revolutionised rust fungal research. It is anticipated that the increasing availability and ongoing substantial improvements in genome assemblies will propel the field of rust biology into the post-genomic era, instigating a cascade of research endeavours encompassing multi-omics and gene discoveries. This is especially the case for many cereal rust pathogens, for which continental-scale studies of virulence have been conducted over many years and historical collections of viable isolates have been sequenced and assembled. Genomic analysis plays a crucial role in uncovering the underlying causes of the high variability of virulence and the complexity of population dynamics in rust fungi. Here, we provide an overview of progress in rust genomics, discuss the strategies employed in genomic analysis, and elucidate the strides that will drive cereal rust biology into the post-genomic era.
Collapse
Affiliation(s)
- Haixia Guan
- School of Life and Environment SciencesPlant Breeding Institute, The University of SydneyCobbittyNew South WalesAustralia
| | - Peng Zhang
- School of Life and Environment SciencesPlant Breeding Institute, The University of SydneyCobbittyNew South WalesAustralia
| | - Robert F. Park
- School of Life and Environment SciencesPlant Breeding Institute, The University of SydneyCobbittyNew South WalesAustralia
| | - Yi Ding
- School of Life and Environment SciencesPlant Breeding Institute, The University of SydneyCobbittyNew South WalesAustralia
| |
Collapse
|
2
|
Singh S, Singh AK, Pradhan B, Tripathi S, Kumar KS, Chand S, Rout PR, Shahid MK. Harnessing Trichoderma Mycoparasitism as a Tool in the Management of Soil Dwelling Plant Pathogens. MICROBIAL ECOLOGY 2024; 87:158. [PMID: 39708106 DOI: 10.1007/s00248-024-02472-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 11/30/2024] [Indexed: 12/23/2024]
Abstract
Maintaining and enhancing agricultural productivity for food security while preserving the ecology and environment from the harmful effects of toxicants is the main challenge in modern monoculture farming systems. Microbial biological agents can be a promising substitute for traditional synthetic pesticides to manage plant diseases. Trichoderma spp. are soil-dwelling ascomycete fungi and are common biocontrol agents against diverse phytopathogens. Trichoderma-based biocontrol techniques can regulate and control soil-borne plant diseases through mechanisms such as mycoparasitism, the production of antibiotics and hydrolytic enzymes, rhizo-sphere competence, the effective competition for available resources, induction of plant resistance and facilitation of plant growth. Numerous secondary metabolites produced by Trichoderma spp. are reported to prevent the development of soil-borne plant disease. Thus, Trichoderma spp. may have direct and indirect biological impacts on the targeted plant pathogens. Furthermore, this review discusses the convenient implications and challenges of applying Trichoderma-based strategies in agricultural settings. Overall, the assessment underscores the potential of Trichoderma as a sustainable and effective tool for mitigating soil-borne pathogens, highlighting avenues for future research and applications.
Collapse
Affiliation(s)
- Srishti Singh
- Department of Botany, CMP Degree College, University of Allahabad, Uttar Pradesh, Prayagraj, 211002, India
| | - Alok Kumar Singh
- Department of Botany, CMP Degree College, University of Allahabad, Uttar Pradesh, Prayagraj, 211002, India
| | - Bhubaneswar Pradhan
- Division of Agricultural Biotechnology, School of Agriculture and Rural Development, Ramakrishna Mission Vivekananda Educational and Research Institute, Narendrapur Campus, Kolkata, 700103, West Bengal, India
| | - Sudipta Tripathi
- School of Environment and Disaster Management, Ramakrishna Mission Vivekananda Educational and Research Institute, Narendrapur Campus Kolkata, Kolkata, 700103, West Bengal, India
| | - Kewat Sanjay Kumar
- Department of Botany, University of Allahabad, Uttar Pradesh, Prayagraj, 211002, India
| | - Sasmita Chand
- Manipal School of Architecture and Planning, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.
| | - Prangya Ranjan Rout
- Department of Biotechnology, Dr B Ambedkar National Institute of Technology Jalandhar, Punjab, 144011, India
| | - Muhammad Kashif Shahid
- Faculty of Civil and Architecture, National Polytechnic Institute of Cambodia (NPIC), Phnom Penh, 12409, Cambodia
| |
Collapse
|
3
|
Skiadas P, Riera Vidal S, Dommisse J, Mendel MN, Elberse J, Van den Ackerveken G, de Jonge R, Seidl MF. Pangenome graph analysis reveals extensive effector copy-number variation in spinach downy mildew. PLoS Genet 2024; 20:e1011452. [PMID: 39453979 PMCID: PMC11540230 DOI: 10.1371/journal.pgen.1011452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 11/06/2024] [Accepted: 10/07/2024] [Indexed: 10/27/2024] Open
Abstract
Plant pathogens adapt at speeds that challenge contemporary disease management strategies like the deployment of disease resistance genes. The strong evolutionary pressure to adapt, shapes pathogens' genomes, and comparative genomics has been instrumental in characterizing this process. With the aim to capture genomic variation at high resolution and study the processes contributing to adaptation, we here leverage an innovative, multi-genome method to construct and annotate the first pangenome graph of an oomycete plant pathogen. We expand on this approach by analysing the graph and creating synteny based single-copy orthogroups for all genes. We generated telomere-to-telomere genome assemblies of six genetically diverse isolates of the oomycete pathogen Peronospora effusa, the economically most important disease in cultivated spinach worldwide. The pangenome graph demonstrates that P. effusa genomes are highly conserved, both in chromosomal structure and gene content, and revealed the continued activity of transposable elements which are directly responsible for 80% of the observed variation between the isolates. While most genes are generally conserved, virulence related genes are highly variable between the isolates. Most of the variation is found in large gene clusters resulting from extensive copy-number expansion. Pangenome graph-based discovery can thus be effectively used to capture genomic variation at exceptional resolution, thereby providing a framework to study the biology and evolution of plant pathogens.
Collapse
Affiliation(s)
- Petros Skiadas
- Theoretical Biology and Bioinformatics, Utrecht University, Utrecht, The Netherlands
- Translational Plant Biology, Utrecht University, Utrecht, The Netherlands
| | - Sofía Riera Vidal
- Theoretical Biology and Bioinformatics, Utrecht University, Utrecht, The Netherlands
| | - Joris Dommisse
- Theoretical Biology and Bioinformatics, Utrecht University, Utrecht, The Netherlands
| | - Melanie N. Mendel
- Translational Plant Biology, Utrecht University, Utrecht, The Netherlands
- Plant-Microbe Interactions, Utrecht University, Utrecht, The Netherlands
| | - Joyce Elberse
- Translational Plant Biology, Utrecht University, Utrecht, The Netherlands
| | | | - Ronnie de Jonge
- Plant-Microbe Interactions, Utrecht University, Utrecht, The Netherlands
- AI Technology for Life, Department of Information and Computing Sciences, Department of Biology, Utrecht University, Utrecht, The Netherlands
| | - Michael F. Seidl
- Theoretical Biology and Bioinformatics, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
4
|
Wang C, Han M, Min Y, Hu J, Pan Y, Huang L, Nie J. Colletotrichum fructicola co-opts cytotoxic ribonucleases that antagonize host competitive microorganisms to promote infection. mBio 2024; 15:e0105324. [PMID: 38953357 PMCID: PMC11323725 DOI: 10.1128/mbio.01053-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 06/13/2024] [Indexed: 07/04/2024] Open
Abstract
Phytopathogens secrete numerous molecules into the environment to establish a microbial niche and facilitate host infection. The phytopathogenic fungus Colletotrichum fructicola, which causes pear anthracnose, can colonize different plant tissues like leaves and fruits, which are occupied by a diversity of microbes. We speculate that this fungus produces antimicrobial effectors to outcompete host-associated competitive microorganisms. Herein, we identified two secreted ribonucleases, CfRibo1 and CfRibo2, from the C. fructicola secretome. The two ribonucleases both possess ribonuclease activity and showed cytotoxicity in Nicotianan benthamiana without triggering immunity in an enzymatic activity-dependent manner. CfRibo1 and CfRibo2 recombinant proteins exhibited toxicity against Escherichia coli, Saccharomyces cerevisiae, and, importantly, the phyllosphere microorganisms isolated from the pear host. Among these isolated microbial strains, Bacillus altitudinis is a pathogenic bacterium causing pear soft rot. Strikingly, CfRibo1 and CfRibo2 were found to directly antagonize B. altitudinis to facilitate C. fructicola infection. More importantly, CfRibo1 and CfRibo2 functioned as essential virulence factors of C. fructicola in the presence of host-associated microorganisms. Further analysis revealed these two ribonucleases are widely distributed in fungi and are undergoing purifying selection. Our results provide the first evidence of antimicrobial effectors in Colletotrichum fungi and extend the functional diversity of fungal ribonucleases in plant-pest-environment interactions. IMPORTANCE Colletotrichum fructicola is emerging as a devastating pathogenic fungus causing anthracnose in various crops in agriculture, and understanding how this fungus establishes successful infection is of great significance for anthracnose disease management. Fungi are known to produce secreted effectors as weapons to promote virulence. Considerable progress has been made in elucidating how effectors manipulate plant immunity; however, their importance in modulating environmental microbes is frequently neglected. The present study identified two secreted ribonucleases, CfRibo1 and CfRibo2, as antimicrobial effectors of C. fructicola. These two proteins both possess toxicity to pear phyllosphere microorganisms, and they efficiently antagonize competitive microbes to facilitate the infection of pear hosts. This study represents the first evidence of antimicrobial effectors in Colletotrichum fungi, and we consider that CfRibo1 and CfRibo2 could be targeted for anthracnose disease management in diverse crops in the future.
Collapse
Affiliation(s)
- Chunhao Wang
- Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Agricultural University, Hefei, China
| | - Mengqing Han
- Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Agricultural University, Hefei, China
| | - Yanyan Min
- Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Agricultural University, Hefei, China
| | - Jiayi Hu
- Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Agricultural University, Hefei, China
| | - Yuemin Pan
- Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Agricultural University, Hefei, China
| | - Lili Huang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Northwest A&F University, Yangling, Shaanxi, China
| | - Jiajun Nie
- Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Agricultural University, Hefei, China
| |
Collapse
|
5
|
Sheng H, Ai C, Yang C, Zhu C, Meng Z, Wu F, Wang X, Dou D, Morris PF, Zhang X. A conserved oomycete effector RxLR23 triggers plant defense responses by targeting ERD15La to release NbNAC68. Nat Commun 2024; 15:6336. [PMID: 39068146 PMCID: PMC11283518 DOI: 10.1038/s41467-024-50782-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 07/19/2024] [Indexed: 07/30/2024] Open
Abstract
Oomycete pathogens deliver many effectors to enhance virulence or suppress plant immunity. Plant immune networks are interconnected, in which a few effectors can trigger a strong defense response when recognized by immunity-related proteins. How effectors activate plant defense response remains poorly understood. Here we report Phytophthora capsici effector RxLR23KM can induce plant cell death and plant immunity. RxLR23KM specifically binds to ERD15La, a regulator of abscisic acid and salicylic acid pathway, and the binding intensity depends on the amino acid residues (K93 and M320). NbNAC68, a downstream protein of ERD15La, can stimulate plant immunity that is compromised after binding with ERD15La. Silencing of NbNAC68 substantially prevents the activation of plant defense response. RxLR23KM binds to ERD15La, releasing NbNAC68 to activate plant immunity. These findings highlight a strategy of plant defense response that ERD15La as a central regulator coordinates RxLR23KM to regulate NbNAC68-triggered plant immunity.
Collapse
Affiliation(s)
- Hui Sheng
- Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Tai'an, 271018, China
| | - Congcong Ai
- Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Tai'an, 271018, China
| | - Cancan Yang
- Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Tai'an, 271018, China
| | - Chunyuan Zhu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| | - Zhe Meng
- College of Life Sciences, Shandong Normal University, Ji'nan, 250014, China
| | - Fengzhi Wu
- Department of Horticulture, Northeast Agricultural University, Harbin, 150030, China
| | - Xiaodan Wang
- College of Plant Protection, China Agricultural University, 100083, Beijing, China
| | - Daolong Dou
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Paul F Morris
- Department of Biological Sciences, Bowling Green State University, Bowling Green, OH, 43043, USA
| | - Xiuguo Zhang
- Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Tai'an, 271018, China.
| |
Collapse
|
6
|
Cohen AB, Cai G, Price DC, Molnar TJ, Zhang N, Hillman BI. The massive 340 megabase genome of Anisogramma anomala, a biotrophic ascomycete that causes eastern filbert blight of hazelnut. BMC Genomics 2024; 25:347. [PMID: 38580927 PMCID: PMC10998396 DOI: 10.1186/s12864-024-10198-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 03/07/2024] [Indexed: 04/07/2024] Open
Abstract
BACKGROUND The ascomycete fungus Anisogramma anomala causes Eastern Filbert Blight (EFB) on hazelnut (Corylus spp.) trees. It is a minor disease on its native host, the American hazelnut (C. americana), but is highly destructive on the commercially important European hazelnut (C. avellana). In North America, EFB has historically limited commercial production of hazelnut to west of the Rocky Mountains. A. anomala is an obligately biotrophic fungus that has not been grown in continuous culture, rendering its study challenging. There is a 15-month latency before symptoms appear on infected hazelnut trees, and only a sexual reproductive stage has been observed. Here we report the sequencing, annotation, and characterization of its genome. RESULTS The genome of A. anomala was assembled into 108 scaffolds totaling 342,498,352 nt with a GC content of 34.46%. Scaffold N50 was 33.3 Mb and L50 was 5. Nineteen scaffolds with lengths over 1 Mb constituted 99% of the assembly. Telomere sequences were identified on both ends of two scaffolds and on one end of another 10 scaffolds. Flow cytometry estimated the genome size of A. anomala at 370 Mb. The genome exhibits two-speed evolution, with 93% of the assembly as AT-rich regions (32.9% GC) and the other 7% as GC-rich (57.1% GC). The AT-rich regions consist predominantly of repeats with low gene content, while 90% of predicted protein coding genes were identified in GC-rich regions. Copia-like retrotransposons accounted for more than half of the genome. Evidence of repeat-induced point mutation (RIP) was identified throughout the AT-rich regions, and two copies of the rid gene and one of dim-2, the key genes in the RIP mutation pathway, were identified in the genome. Consistent with its homothallic sexual reproduction cycle, both MAT1-1 and MAT1-2 idiomorphs were found. We identified a large suite of genes likely involved in pathogenicity, including 614 carbohydrate active enzymes, 762 secreted proteins and 165 effectors. CONCLUSIONS This study reveals the genomic structure, composition, and putative gene function of the important pathogen A. anomala. It provides insight into the molecular basis of the pathogen's life cycle and a solid foundation for studying EFB.
Collapse
Affiliation(s)
- Alanna B Cohen
- Department of Plant Biology, Rutgers The State University of New Jersey, New Brunswick, NJ, 08901, USA
- Graduate Program in Microbial Biology, Rutgers The State University of New Jersey, New Brunswick, NJ, 08901, USA
| | - Guohong Cai
- Crop Production and Pest Control Research Unit, USDA-ARS, West Lafayette, IN, 47907, USA.
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, 47907, USA.
| | - Dana C Price
- Department of Entomology, Rutgers The State University of New Jersey, New Brunswick, NJ, 08901, USA
- Center for Vector Biology, Rutgers The State University of New Jersey, New Brunswick, NJ, 08901, USA
| | - Thomas J Molnar
- Department of Plant Biology, Rutgers The State University of New Jersey, New Brunswick, NJ, 08901, USA
| | - Ning Zhang
- Department of Plant Biology, Rutgers The State University of New Jersey, New Brunswick, NJ, 08901, USA
- Graduate Program in Microbial Biology, Rutgers The State University of New Jersey, New Brunswick, NJ, 08901, USA
- Department of Biochemistry and Microbiology, Rutgers The State University of New Jersey, New Brunswick, NJ, 08901, USA
| | - Bradley I Hillman
- Department of Plant Biology, Rutgers The State University of New Jersey, New Brunswick, NJ, 08901, USA.
- Graduate Program in Microbial Biology, Rutgers The State University of New Jersey, New Brunswick, NJ, 08901, USA.
| |
Collapse
|
7
|
Fu Q, Yang J, Zhang K, Yin K, Xiang G, Yin X, Liu G, Xu Y. Plasmopara viticola effector PvCRN11 induces disease resistance to downy mildew in grapevine. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 117:873-891. [PMID: 37950600 DOI: 10.1111/tpj.16534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 10/09/2023] [Accepted: 10/26/2023] [Indexed: 11/12/2023]
Abstract
The downy mildew of grapevine (Vitis vinifera L.) is caused by Plasmopara viticola and is a major production problem in most grape-growing regions. The vast majority of effectors act as virulence factors and sabotage plant immunity. Here, we describe in detail one of the putative P. viticola Crinkler (CRN) effector genes, PvCRN11, which is highly transcribed during the infection stages in the downy mildew-susceptible grapevine V. vinifera cv. 'Pinot Noir' and V. vinifera cv. 'Thompson Seedless'. Cell death-inducing activity analyses reveal that PvCRN11 was able to induce spot cell death in the leaves of Nicotiana benthamiana but did not induce cell death in the leaves of the downy mildew-resistant V. riparia accession 'Beaumont' or of the downy mildew-susceptible 'Thompson Seedless'. Unexpectedly, stable expression of PvCRN11 inhibited the colonization of P. viticola in grapevine and Phytophthora capsici in Arabidopsis. Both transgenic grapevine and Arabidopsis constitutively expressing PvCRN11 promoted plant immunity. PvCRN11 is localized in the nucleus and cytoplasm, whereas PvCRN11-induced plant immunity is nucleus-independent. The purified protein PvCRN11Opt initiated significant plant immunity extracellularly, leading to enhanced accumulations of reactive oxygen species, activation of MAPK and up-regulation of the defense-related genes PR1 and PR2. Furthermore, PvCRN11Opt induces BAK1-dependent immunity in the apoplast, whereas PvCRN11 overexpression in intracellular induces BAK1-independent immunity. In conclusion, the PvCRN11 protein triggers resistance against P. viticola in grapevine, suggesting a potential for the use of PvCRN11 in grape production as a protectant against downy mildew.
Collapse
Affiliation(s)
- Qingqing Fu
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, Shaanxi, P.R. China
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, P.R. China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, P.R. China
| | - Jing Yang
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, Shaanxi, P.R. China
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, P.R. China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, P.R. China
| | - Kangzhuang Zhang
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, Shaanxi, P.R. China
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, P.R. China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, P.R. China
| | - Kaixin Yin
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, Shaanxi, P.R. China
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, P.R. China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, P.R. China
| | - Gaoqing Xiang
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, Shaanxi, P.R. China
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, P.R. China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, P.R. China
| | - Xiao Yin
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, Shaanxi, P.R. China
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, P.R. China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, P.R. China
| | - Guotian Liu
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, Shaanxi, P.R. China
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, P.R. China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, P.R. China
| | - Yan Xu
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, Shaanxi, P.R. China
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, P.R. China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, P.R. China
| |
Collapse
|
8
|
Zheng H, You L, Meng S, Wang D, Fu Z. Unraveling the mysteries of (L)WY-domain oomycete effectors. Sci Bull (Beijing) 2023; 68:2898-2901. [PMID: 37973468 DOI: 10.1016/j.scib.2023.10.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Affiliation(s)
- Hongyuan Zheng
- State Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, and Center for Crop Genome Engineering, Henan Agricultural University, Zhengzhou 450002, China
| | - Liyuan You
- State Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, and Center for Crop Genome Engineering, Henan Agricultural University, Zhengzhou 450002, China
| | - Shuaijie Meng
- State Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, and Center for Crop Genome Engineering, Henan Agricultural University, Zhengzhou 450002, China
| | - Daowen Wang
- State Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, and Center for Crop Genome Engineering, Henan Agricultural University, Zhengzhou 450002, China.
| | - Zhengqing Fu
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA.
| |
Collapse
|
9
|
Zhao Y, Liu X, Wang J, Nie Y, Huang M, Zhang L, Xiao Y, Zhang Z, Zhou S. Fungal pathogens increase community temporal stability through species asynchrony regardless of nutrient fertilization. Ecology 2023; 104:e4166. [PMID: 37671835 DOI: 10.1002/ecy.4166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 06/13/2023] [Accepted: 07/28/2023] [Indexed: 09/07/2023]
Abstract
Natural enemies and their interaction with host nutrient availability influence plant population dynamics, community structure, and ecosystem functions. However, the way in which these factors influence patterns of community stability, as well as the direct and indirect processes underlying that stability, remains unclear. Here, we investigated the separate and interactive roles of fungal/oomycete pathogens and nutrient fertilization on the temporal stability of community biomass and the potential mechanisms using a factorial experiment in an alpine meadow. We found that fungal pathogen exclusion reduced community temporal stability mainly through decreasing species asynchrony, while fertilization tended to reduce community temporal stability by decreasing species stability. However, there was no interaction between pathogen exclusion and nutrient fertilization. These effects were largely due to the direct effects of the treatments on plant biomass and not due to indirect effects mediated through plant diversity. Our findings highlight the need for a multitrophic perspective in field studies examining ecosystem stability.
Collapse
Affiliation(s)
- Yimin Zhao
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, School of Ecology and Environment, Hainan University, Haikou, China
- Key Laboratory of Genetics and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plants, Ministry of Education, College of Forestry, Hainan University, Haikou, China
| | - Xiang Liu
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, China
| | - Jianbin Wang
- Key Laboratory of Genetics and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plants, Ministry of Education, College of Forestry, Hainan University, Haikou, China
| | - Yu Nie
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, School of Ecology and Environment, Hainan University, Haikou, China
- Key Laboratory of Genetics and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plants, Ministry of Education, College of Forestry, Hainan University, Haikou, China
| | - Mengjiao Huang
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Coastal Ecosystems Research Station of the Yangtze River Estuary, Institute of Biodiversity Science, School of Life Sciences, Fudan University, Shanghai, China
| | - Li Zhang
- Co-Innovation Center for Sustainable Forestry in Southern China, Bamboo Research Institute, Nanjing Forestry University, Nanjing, China
| | - Yao Xiao
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, China
| | - Zhenhua Zhang
- Qinghai Haibei National Field Research Station of Alpine Grassland Ecosystem, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
| | - Shurong Zhou
- Key Laboratory of Genetics and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plants, Ministry of Education, College of Forestry, Hainan University, Haikou, China
| |
Collapse
|
10
|
Xiong Y, Zhao D, Chen S, Yuan L, Zhang D, Wang H. Deciphering the underlying immune network of the potato defense response inhibition by Phytophthora infestans nuclear effector Pi07586 through transcriptome analysis. FRONTIERS IN PLANT SCIENCE 2023; 14:1269959. [PMID: 37810389 PMCID: PMC10556245 DOI: 10.3389/fpls.2023.1269959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 09/07/2023] [Indexed: 10/10/2023]
Abstract
Phytophthora infestans, a highly destructive plant oomycete pathogen, is responsible for causing late blight in potatoes worldwide. To successfully infect host cells and evade immunity, P. infestans secretes various effectors into host cells and exclusively targets the host nucleus. However, the precise mechanisms by which these effectors manipulate host gene expression and reprogram defenses remain poorly understood. In this study, we focused on a nuclear-targeted effector, Pi07586, which has been implicated in immune suppression. Quantitative real-time PCR (qRT-PCR) analysis showed Pi07586 was significant up-regulation during the early stages of infection. Agrobacterium-induced transient expression revealed that Pi07586 localized in the nucleus of leaf cells. Overexpression of Pi07586 resulted in increased leaf colonization by P. infestans. RNA-seq analysis revealed that Pi07586 effectively suppressed the expression of PR-1C-like and photosynthetic antenna protein genes. Furthermore, high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS) analysis indicated that Pi07586 overexpression led to a substantial decrease in abscisic acid (ABA), jasmonic acid (JA), and jasmonoyl-isoleucine (JA-Ile) levels, while not affecting salicylic acid (SA) and indole-3-acetic acid (IAA) production. These findings shed new light on the modulation of plant immunity by Pi07586 and enhance our understanding of the intricate relationship between P. infestans and host plants.
Collapse
Affiliation(s)
- Yumeng Xiong
- Yunnan Key Laboratory of Potato Biology, Yunnan Normal University, Kunming, China
- School of Life Science, Yunnan Normal University, Kunming, China
| | - Di Zhao
- Yunnan Key Laboratory of Potato Biology, Yunnan Normal University, Kunming, China
| | - Shengnan Chen
- Yunnan Key Laboratory of Potato Biology, Yunnan Normal University, Kunming, China
| | - Lan Yuan
- Yunnan Key Laboratory of Potato Biology, Yunnan Normal University, Kunming, China
| | - Die Zhang
- Yunnan Key Laboratory of Potato Biology, Yunnan Normal University, Kunming, China
| | - Hongyang Wang
- Yunnan Key Laboratory of Potato Biology, Yunnan Normal University, Kunming, China
| |
Collapse
|
11
|
Wang J, Wang D, Ji X, Wang J, Klosterman SJ, Dai X, Chen J, Subbarao KV, Hao X, Zhang D. The Verticillium dahliae Small Cysteine-Rich Protein VdSCP23 Manipulates Host Immunity. Int J Mol Sci 2023; 24:ijms24119403. [PMID: 37298354 DOI: 10.3390/ijms24119403] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/12/2023] [Accepted: 05/24/2023] [Indexed: 06/12/2023] Open
Abstract
Verticillium wilt caused by Verticillium dahliae is a notorious soil-borne fungal disease and seriously threatens the yield of economic crops worldwide. During host infection, V. dahliae secretes many effectors that manipulate host immunity, among which small cysteine-rich proteins (SCPs) play an important role. However, the exact roles of many SCPs from V. dahliae are unknown and varied. In this study, we show that the small cysteine-rich protein VdSCP23 inhibits cell necrosis in Nicotiana benthamiana leaves, as well as the reactive oxygen species (ROS) burst, electrolyte leakage and the expression of defense-related genes. VdSCP23 is mainly localized in the plant cell plasma membrane and nucleus, but its inhibition of immune responses was independent of its nuclear localization. Site-directed mutagenesis and peptide truncation showed that the inhibition function of VdSCP23 was independent of cysteine residues but was dependent on the N-glycosylation sites and the integrity of VdSCP23 protein structure. Deletion of VdSCP23 did not affect the growth and development of mycelia or conidial production in V. dahliae. Unexpectedly, VdSCP23 deletion strains still maintained their virulence for N. benthamiana, Gossypium hirsutum and Arabidopsis thaliana seedlings. This study demonstrates an important role for VdSCP23 in the inhibition of plant immune responses; however, it is not required for normal growth or virulence in V. dahliae.
Collapse
Affiliation(s)
- Jie Wang
- College of Plant Protection, Shanxi Agricultural University, Taigu, Jinzhong 030801, China
| | - Dan Wang
- The State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xiaobin Ji
- The State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Jun Wang
- The State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Steven J Klosterman
- Crop Improvement and Protection Research Unit, United States Department of Agriculture, Agricultural Research Service, Salinas, CA 93905, USA
| | - Xiaofeng Dai
- The State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji 831100, China
| | - Jieyin Chen
- The State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji 831100, China
| | - Krishna V Subbarao
- Crop Improvement and Protection Research Unit, United States Department of Agriculture, Agricultural Research Service, Salinas, CA 93905, USA
- Department of Plant Pathology, University of California, Davis, c/o U.S. Agricultural Research Station, Salinas, CA 93905, USA
| | - Xiaojuan Hao
- College of Plant Protection, Shanxi Agricultural University, Taigu, Jinzhong 030801, China
| | - Dandan Zhang
- The State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji 831100, China
| |
Collapse
|
12
|
Wang C, Zheng Y, Liu Z, Qian Y, Li Y, Yang L, Liu S, Liang W, Li J. The secreted FolAsp aspartic protease facilitates the virulence of Fusarium oxysporum f. sp. lycopersici. Front Microbiol 2023; 14:1103418. [PMID: 36760509 PMCID: PMC9905682 DOI: 10.3389/fmicb.2023.1103418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 01/03/2023] [Indexed: 01/26/2023] Open
Abstract
Pathogens utilize secretory effectors to manipulate plant defense. Fusarium oxysporum f. sp. lycopersici (Fol) is the causal agent of Fusarium wilt disease in tomatoes. We previously identified 32 secreted effector candidates by LC-MS analysis. In this study, we functionally identified one of the secreted proteins, FolAsp, which belongs to the aspartic proteases (Asp) family. The FolAsp was upregulated with host root specifically induction. Its N-terminal 1-19 amino acids performed the secretion activity in the yeast system, which supported its secretion in Fol. Phenotypically, the growth and conidia production of the FolAsp deletion mutants were not changed; however, the mutants displayed significantly reduced virulence to the host tomato. Further study revealed the FolAsp was localized at the apoplast and inhibited INF1-induced cell death in planta. Meanwhile, FolAsp could inhibit flg22-mediated ROS burst. Furthermore, FolAsp displayed protease activity on host protein, and overexpression of FolAsp in Fol enhanced pathogen virulence. These results considerably extend our understanding of pathogens utilizing secreted protease to inhibit plant defense and promote its virulence, which provides potential applications for tomato improvement against disease as the new drug target.
Collapse
Affiliation(s)
- Chenyang Wang
- College of Plant Health and Medicine, Engineering Research Center for Precision Pest Management for Fruits and Vegetables of Qingdao, Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, Shandong Province Key Laboratory of Applied Mycology, Qingdao Agricultural University, Qingdao, China
| | - Yaning Zheng
- College of Plant Health and Medicine, Engineering Research Center for Precision Pest Management for Fruits and Vegetables of Qingdao, Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, Shandong Province Key Laboratory of Applied Mycology, Qingdao Agricultural University, Qingdao, China
| | - Zhishan Liu
- College of Plant Health and Medicine, Engineering Research Center for Precision Pest Management for Fruits and Vegetables of Qingdao, Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, Shandong Province Key Laboratory of Applied Mycology, Qingdao Agricultural University, Qingdao, China
| | - Yongpan Qian
- College of Plant Health and Medicine, Engineering Research Center for Precision Pest Management for Fruits and Vegetables of Qingdao, Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, Shandong Province Key Laboratory of Applied Mycology, Qingdao Agricultural University, Qingdao, China
| | - Yue Li
- College of Plant Health and Medicine, Engineering Research Center for Precision Pest Management for Fruits and Vegetables of Qingdao, Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, Shandong Province Key Laboratory of Applied Mycology, Qingdao Agricultural University, Qingdao, China
| | - Limei Yang
- College of Plant Health and Medicine, Engineering Research Center for Precision Pest Management for Fruits and Vegetables of Qingdao, Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, Shandong Province Key Laboratory of Applied Mycology, Qingdao Agricultural University, Qingdao, China
| | - Sihui Liu
- College of Science and Information, Qingdao Agricultural University, Qingdao, China
| | - Wenxing Liang
- College of Plant Health and Medicine, Engineering Research Center for Precision Pest Management for Fruits and Vegetables of Qingdao, Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, Shandong Province Key Laboratory of Applied Mycology, Qingdao Agricultural University, Qingdao, China,*Correspondence: Wenxing Liang,
| | - Jingtao Li
- College of Plant Health and Medicine, Engineering Research Center for Precision Pest Management for Fruits and Vegetables of Qingdao, Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, Shandong Province Key Laboratory of Applied Mycology, Qingdao Agricultural University, Qingdao, China,Jingtao Li,
| |
Collapse
|
13
|
Fei W, Liu Y. Biotrophic Fungal Pathogens: a Critical Overview. Appl Biochem Biotechnol 2023; 195:1-16. [PMID: 35951248 DOI: 10.1007/s12010-022-04087-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/15/2022] [Indexed: 01/13/2023]
Abstract
Biotrophic fungi are one group of heterogeneous organisms and these fungi differ in their traits like mode of nutrition, types of reproduction, and dispersal systems. Generally, based on the nutritional mode, fungi are classified into three broad categories, viz. biotrophs, necrotrophs, and hemi-biotrophs. Biotrophs derive their nutrients and energy from living plant cells and survive within the interstitial space of the cells. Biotrophic fungi cause serious crop diseases but are highly challenging to investigate and develop a treatment strategy. Blumeria (Erysiphe) graminis, Uromyces fabae, Ustilago maydis, Cladosporium fulvum, Puccinia graminis, and Phytophthora infestans are some of the significant biotrophic fungi that affect mainly plants. One among the biotrophic fungus, Pneumocystis jirovecii (Taphrinomycotina subphylum of the Ascomycota) exclusively a human pathogen, can cause lung diseases such as "pneumocystis." Biotrophic fungus widely parasitizing Solanaceae family crops (Tomato and potato) has done massive damage to the crops and has led to economic impact worldwide. During infection and for nutrient absorption, biotrophs develops external appendages such as appressoria or haustoria. The hyphae or appressorium adheres to the plant cell wall and collapses the layers for their nutrient absorption. The pathogen also secretes effector molecules to escape from the plant defense mechanism. Later, plants activate their primary and secondary defense mechanisms; however, the pathogen induces virulence genes to escape the host immune responses. Obligate biotrophic fungi pathogenicity has not been fully understood at the molecular level because of the complex interaction, recognition, and signaling with the host. This review summarizes the mechanism of infection in the host, and immune response to emphasize the understanding of the biotrophic fungal biology and pathogenesis in crops. Thus, the detailed review will pave the way to design methods to overcome the resistance of biotrophic fungi and develop disease-free crops.
Collapse
Affiliation(s)
- Wang Fei
- Zhengzhou Yongfeng Bio-Fertilizer Co., Ltd, high-tech district, 6 Tsui Zhu Street, 863 Software Park, Building 9 1102, Henan Province, 450001, Zhengzhou City, China.
| | - Ye Liu
- Xiangtan Institute for Food and Drug Control, Xiangtan, China
| |
Collapse
|
14
|
Qian H, Wang L, Wang B, Liang W. The secreted ribonuclease T2 protein FoRnt2 contributes to Fusarium oxysporum virulence. MOLECULAR PLANT PATHOLOGY 2022; 23:1346-1360. [PMID: 35696123 PMCID: PMC9366063 DOI: 10.1111/mpp.13237] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/28/2022] [Accepted: 05/24/2022] [Indexed: 05/03/2023]
Abstract
Secreted RNase proteins have been reported from only a few pathogens, and relatively little is known about their biological functions. Fusarium oxysporum is a soilborne fungal pathogen that causes Fusarium wilt, one of the most important diseases on tomato. During the infection of F. oxysporum, some proteins are secreted that modulate host plant immunity and promote pathogen invasion. In this study, we identify an RNase, FoRnt2, from the F. oxysporum secretome that belongs to the ribonuclease T2 family. FoRnt2 possesses an N-terminal signal peptide and can be secreted from F. oxysporum. FoRnt2 exhibited ribonuclease activity and was able to degrade the host plant total RNA in vitro dependent on the active site residues H80 and H142. Deletion of the FoRnt2 gene reduced fungal virulence but had no obvious effect on mycelial growth and conidial production. The expression of FoRnt2 in tomato significantly enhanced plant susceptibility to pathogens. These data indicate that FoRnt2 is an important contributor to the virulence of F. oxysporum, possibly through the degradation of plant RNA.
Collapse
Affiliation(s)
- Hengwei Qian
- College of Life SciencesShandong Normal UniversityJinanChina
| | - Lulu Wang
- Key Lab of Integrated Crop Pest Management of Shandong ProvinceCollege of Plant Health and Medicine, Qingdao Agricultural UniversityQingdaoChina
| | - Baoshan Wang
- College of Life SciencesShandong Normal UniversityJinanChina
| | - Wenxing Liang
- Key Lab of Integrated Crop Pest Management of Shandong ProvinceCollege of Plant Health and Medicine, Qingdao Agricultural UniversityQingdaoChina
| |
Collapse
|
15
|
Xia C, Qiu A, Wang M, Liu T, Chen W, Chen X. Current Status and Future Perspectives of Genomics Research in the Rust Fungi. Int J Mol Sci 2022; 23:9629. [PMID: 36077025 PMCID: PMC9456177 DOI: 10.3390/ijms23179629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/22/2022] [Accepted: 08/22/2022] [Indexed: 11/16/2022] Open
Abstract
Rust fungi in Pucciniales have caused destructive plant epidemics, have become more aggressive with new virulence, rapidly adapt to new environments, and continually threaten global agriculture. With the rapid advancement of genome sequencing technologies and data analysis tools, genomics research on many of the devastating rust fungi has generated unprecedented insights into various aspects of rust biology. In this review, we first present a summary of the main findings in the genomics of rust fungi related to variations in genome size and gene composition between and within species. Then we show how the genomics of rust fungi has promoted our understanding of the pathogen virulence and population dynamics. Even with great progress, many questions still need to be answered. Therefore, we introduce important perspectives with emphasis on the genome evolution and host adaptation of rust fungi. We believe that the comparative genomics and population genomics of rust fungi will provide a further understanding of the rapid evolution of virulence and will contribute to monitoring the population dynamics for disease management.
Collapse
Affiliation(s)
- Chongjing Xia
- Wheat Research Institute, School of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Age Qiu
- Wheat Research Institute, School of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| | - Meinan Wang
- Department of Plant Pathology, Washington State University, Pullman, WA 99164-6430, USA
| | - Taiguo Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Wanquan Chen
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xianming Chen
- Department of Plant Pathology, Washington State University, Pullman, WA 99164-6430, USA
- Wheat Health, Genetics, and Quality Research Unit, Agricultural Research Service, U.S. Department of Agriculture, Pullman, WA 99164-6430, USA
| |
Collapse
|
16
|
van de Vossenberg BTLH, Prodhomme C, Vossen JH, van der Lee TAJ. Synchytrium endobioticum, the potato wart disease pathogen. MOLECULAR PLANT PATHOLOGY 2022; 23:461-474. [PMID: 35029012 PMCID: PMC8916214 DOI: 10.1111/mpp.13183] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 12/20/2021] [Accepted: 12/20/2021] [Indexed: 06/14/2023]
Abstract
UNLABELLED Potato wart disease is considered one of the most important quarantine pests for cultivated potato and is caused by the obligate biotrophic chytrid fungus Synchytrium endobioticum. This review integrates observations from early potato wart research and recent molecular, genetic, and genomic studies of the pathogen and its host potato. Taxonomy, epidemiology, pathology, and formation of new pathotypes are discussed, and a model for molecular S. endobioticum-potato interaction is proposed. TAXONOMY Currently classified as kingdom: Fungi, phylum: Chytridiomycota, class: Chytridiomycetes, order: Chytridiales, family: Synchytriaceae, genus: Synchytrium, species: Synchytrium endobioticum, there is strong molecular support for Synchytriaceae to be transferred to the order Synchytriales. HOSTS AND DISEASE SYMPTOMS Solanum tuberosum is the main host for S. endobioticum but other solanaceous species have been reported as alternative hosts. It is not known if these alternative hosts play a role in the survival of the pathogen in (borders of) infested fields. Disease symptoms on potato tubers are characterized by the warty cauliflower-like malformations that are the result of cell enlargement and cell multiplication induced by the pathogen. Meristematic tissue on tubers, stolons, eyes, sprouts, and inflorescences can be infected while the potato root system seems to be immune. PATHOTYPES For S. endobioticum over 40 pathotypes, which are defined as groups of isolates with a similar response to a set of differential potato varieties, are described. Pathotypes 1(D1), 2(G1), 6(O1), and 18(T1) are currently regarded to be most widespread. However, with the current differential set other pathogen diversity largely remains undetected. PATHOGEN-HOST INTERACTION A single effector has been described for S. endobioticum (AvrSen1), which is recognized by the potato Sen1 resistance gene product. This is also the first effector that has been described in Chytridiomycota, showing that in this fungal division resistance also fits the gene-for-gene concept. Although significant progress was made in the last decade in mapping wart disease resistance loci, not all resistances present in potato breeding germplasm could be identified. The use of resistant varieties plays an essential role in disease management.
Collapse
Affiliation(s)
| | | | - Jack H. Vossen
- Plant BreedingWageningen University & ResearchWageningenNetherlands
| | | |
Collapse
|
17
|
Zhang W, Li H, Wang L, Xie S, Zhang Y, Kang R, Zhang M, Zhang P, Li Y, Hu Y, Wang M, Chen L, Yuan H, Ding S, Li H. A novel effector, CsSp1, from Bipolaris sorokiniana, is essential for colonization in wheat and is also involved in triggering host immunity. MOLECULAR PLANT PATHOLOGY 2022; 23:218-236. [PMID: 34741560 PMCID: PMC8743017 DOI: 10.1111/mpp.13155] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 09/17/2021] [Accepted: 10/15/2021] [Indexed: 05/10/2023]
Abstract
The hemibiotrophic pathogen Bipolaris sorokiniana causes root rot, leaf blotching, and black embryos in wheat and barley worldwide, resulting in significant yield and quality reductions. However, the mechanism underlying the host-pathogen interactions between B. sorokiniana and wheat or barley remains unknown. The B. sorokiniana genome encodes a large number of uncharacterized putative effector proteins. In this study, we identified a putative secreted protein, CsSp1, with a classic N-terminal signal peptide, that is induced during early infection. A split-marker approach was used to knock out CsSP1 in the Lankao 9-3 strain. Compared with the wild type, the deletion mutant ∆Cssp1 displayed less radial growth on potato dextrose agar plates and produced fewer spores, and complementary transformation completely restored the phenotype of the deletion mutant to that of the wild type. The pathogenicity of the deletion mutant in wheat was attenuated even though appressoria still penetrated the host. Additionally, the infectious hyphae in the deletion mutant became swollen and exhibited reduced growth in plant cells. The signal peptide of CsSp1 was functionally verified through a yeast YTK12 secretion system. Transient expression of CsSp1 in Nicotiana benthamiana inhibited lesion formation caused by Phytophthora capsici. Moreover, CsSp1 localized in the nucleus and cytoplasm of plant cells. In B. sorokiniana-infected wheat leaves, the salicylic acid-regulated genes TaPAL, TaPR1, and TaPR2 were down-regulated in the ∆Cssp1 strain compared with the wild-type strain under the same conditions. Therefore, CsSp1 is a virulence effector and is involved in triggering host immunity.
Collapse
Affiliation(s)
- Wanying Zhang
- Department of Plant Pathology, College of Plant ProtectionHenan Agricultural University/Collaborative Innovation Center of Henan Grain Crops/National Key Laboratory of Wheat and Maize Crop ScienceZhengzhouChina
| | - Haiyang Li
- Department of Plant Pathology, College of Plant ProtectionHenan Agricultural University/Collaborative Innovation Center of Henan Grain Crops/National Key Laboratory of Wheat and Maize Crop ScienceZhengzhouChina
| | - Limin Wang
- Department of Plant Pathology, College of Plant ProtectionHenan Agricultural University/Collaborative Innovation Center of Henan Grain Crops/National Key Laboratory of Wheat and Maize Crop ScienceZhengzhouChina
| | - Shunpei Xie
- Department of Plant Pathology, College of Plant ProtectionHenan Agricultural University/Collaborative Innovation Center of Henan Grain Crops/National Key Laboratory of Wheat and Maize Crop ScienceZhengzhouChina
| | - Yuan Zhang
- Department of Plant Pathology, College of Plant ProtectionHenan Agricultural University/Collaborative Innovation Center of Henan Grain Crops/National Key Laboratory of Wheat and Maize Crop ScienceZhengzhouChina
| | - Ruijiao Kang
- Department of Landscape Architecture and Food EngineeringXuchang Vocational Technical CollegeXuchangChina
| | - Mengjuan Zhang
- Department of Plant Pathology, College of Plant ProtectionHenan Agricultural University/Collaborative Innovation Center of Henan Grain Crops/National Key Laboratory of Wheat and Maize Crop ScienceZhengzhouChina
| | - Panpan Zhang
- Agriculture and Rural Affairs BureauXuchangChina
| | - Yonghui Li
- Department of Plant Pathology, College of Plant ProtectionHenan Agricultural University/Collaborative Innovation Center of Henan Grain Crops/National Key Laboratory of Wheat and Maize Crop ScienceZhengzhouChina
| | - Yanfeng Hu
- Department of Plant Pathology, College of Plant ProtectionHenan Agricultural University/Collaborative Innovation Center of Henan Grain Crops/National Key Laboratory of Wheat and Maize Crop ScienceZhengzhouChina
| | - Min Wang
- Department of Plant Pathology, College of Plant ProtectionHenan Agricultural University/Collaborative Innovation Center of Henan Grain Crops/National Key Laboratory of Wheat and Maize Crop ScienceZhengzhouChina
| | - Linlin Chen
- Department of Plant Pathology, College of Plant ProtectionHenan Agricultural University/Collaborative Innovation Center of Henan Grain Crops/National Key Laboratory of Wheat and Maize Crop ScienceZhengzhouChina
| | - Hongxia Yuan
- Department of Plant Pathology, College of Plant ProtectionHenan Agricultural University/Collaborative Innovation Center of Henan Grain Crops/National Key Laboratory of Wheat and Maize Crop ScienceZhengzhouChina
| | - Shengli Ding
- Department of Plant Pathology, College of Plant ProtectionHenan Agricultural University/Collaborative Innovation Center of Henan Grain Crops/National Key Laboratory of Wheat and Maize Crop ScienceZhengzhouChina
| | - Honglian Li
- Department of Plant Pathology, College of Plant ProtectionHenan Agricultural University/Collaborative Innovation Center of Henan Grain Crops/National Key Laboratory of Wheat and Maize Crop ScienceZhengzhouChina
| |
Collapse
|
18
|
Petre B, Contreras MP, Bozkurt TO, Schattat MH, Sklenar J, Schornack S, Abd-El-Haliem A, Castells-Graells R, Lozano-Durán R, Dagdas YF, Menke FLH, Jones AME, Vossen JH, Robatzek S, Kamoun S, Win J. Host-interactor screens of Phytophthora infestans RXLR proteins reveal vesicle trafficking as a major effector-targeted process. THE PLANT CELL 2021. [PMID: 33677602 DOI: 10.1101/2020.09.24.308585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Pathogens modulate plant cell structure and function by secreting effectors into host tissues. Effectors typically function by associating with host molecules and modulating their activities. This study aimed to identify the host processes targeted by the RXLR class of host-translocated effectors of the potato blight pathogen Phytophthora infestans. To this end, we performed an in planta protein-protein interaction screen by transiently expressing P. infestans RXLR effectors in Nicotiana benthamiana leaves followed by coimmunoprecipitation and liquid chromatography-tandem mass spectrometry. This screen generated an effector-host protein interactome matrix of 59 P. infestans RXLR effectors x 586 N. benthamiana proteins. Classification of the host interactors into putative functional categories revealed over 35 biological processes possibly targeted by P. infestans. We further characterized the PexRD12/31 family of RXLR-WY effectors, which associate and colocalize with components of the vesicle trafficking machinery. One member of this family, PexRD31, increased the number of FYVE positive vesicles in N. benthamiana cells. FYVE positive vesicles also accumulated in leaf cells near P. infestans hyphae, indicating that the pathogen may enhance endosomal trafficking during infection. This interactome dataset will serve as a useful resource for functional studies of P. infestans effectors and of effector-targeted host processes.
Collapse
Affiliation(s)
- Benjamin Petre
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, UK
- Université de Lorraine, INRAE, IAM, Nancy, France
| | - Mauricio P Contreras
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Tolga O Bozkurt
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, UK
- Department of Life Sciences, Imperial College London, London, UK
| | - Martin H Schattat
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, UK
- Department of Plant Physiology, Institute for Biology, Martin-Luther University Halle-Wittenberg, Halle, Germany
| | - Jan Sklenar
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Sebastian Schornack
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, UK
- Sainsbury Laboratory, University of Cambridge, Cambridge, UK
| | | | - Roger Castells-Graells
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, UK
- Molecular Biology Institute, University of California Los Angeles, Los Angeles, California, USA
| | - Rosa Lozano-Durán
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, UK
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yasin F Dagdas
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, UK
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna BioCenter, Vienna, Austria
| | - Frank L H Menke
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Alexandra M E Jones
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, UK
- School of Life Sciences, University of Warwick, Coventry, UK
| | - Jack H Vossen
- Plant Breeding, Wageningen University and Research, Wageningen, The Netherlands
| | - Silke Robatzek
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, UK
- Ludwig-Maximilian-University of Munich, Munich, Germany
| | - Sophien Kamoun
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Joe Win
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, UK
| |
Collapse
|
19
|
Petre B, Contreras MP, Bozkurt TO, Schattat MH, Sklenar J, Schornack S, Abd-El-Haliem A, Castells-Graells R, Lozano-Durán R, Dagdas YF, Menke FLH, Jones AME, Vossen JH, Robatzek S, Kamoun S, Win J. Host-interactor screens of Phytophthora infestans RXLR proteins reveal vesicle trafficking as a major effector-targeted process. THE PLANT CELL 2021; 33:1447-1471. [PMID: 33677602 PMCID: PMC8254500 DOI: 10.1093/plcell/koab069] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 02/19/2021] [Indexed: 05/20/2023]
Abstract
Pathogens modulate plant cell structure and function by secreting effectors into host tissues. Effectors typically function by associating with host molecules and modulating their activities. This study aimed to identify the host processes targeted by the RXLR class of host-translocated effectors of the potato blight pathogen Phytophthora infestans. To this end, we performed an in planta protein-protein interaction screen by transiently expressing P. infestans RXLR effectors in Nicotiana benthamiana leaves followed by coimmunoprecipitation and liquid chromatography-tandem mass spectrometry. This screen generated an effector-host protein interactome matrix of 59 P. infestans RXLR effectors x 586 N. benthamiana proteins. Classification of the host interactors into putative functional categories revealed over 35 biological processes possibly targeted by P. infestans. We further characterized the PexRD12/31 family of RXLR-WY effectors, which associate and colocalize with components of the vesicle trafficking machinery. One member of this family, PexRD31, increased the number of FYVE positive vesicles in N. benthamiana cells. FYVE positive vesicles also accumulated in leaf cells near P. infestans hyphae, indicating that the pathogen may enhance endosomal trafficking during infection. This interactome dataset will serve as a useful resource for functional studies of P. infestans effectors and of effector-targeted host processes.
Collapse
Affiliation(s)
- Benjamin Petre
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, UK
- Université de Lorraine, INRAE, IAM, Nancy, France
| | - Mauricio P Contreras
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Tolga O Bozkurt
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, UK
- Department of Life Sciences, Imperial College London, London, UK
| | - Martin H Schattat
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, UK
- Department of Plant Physiology, Institute for Biology, Martin-Luther University Halle-Wittenberg, Halle, Germany
| | - Jan Sklenar
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Sebastian Schornack
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, UK
- Sainsbury Laboratory, University of Cambridge, Cambridge, UK
| | | | - Roger Castells-Graells
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, UK
- Molecular Biology Institute, University of California Los Angeles, Los Angeles, California, USA
| | - Rosa Lozano-Durán
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, UK
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yasin F Dagdas
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, UK
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna BioCenter, Vienna, Austria
| | - Frank L H Menke
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Alexandra M E Jones
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, UK
- School of Life Sciences, University of Warwick, Coventry, UK
| | - Jack H Vossen
- Plant Breeding, Wageningen University and Research, Wageningen, The Netherlands
| | - Silke Robatzek
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, UK
- Ludwig-Maximilian-University of Munich, Munich, Germany
| | - Sophien Kamoun
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Joe Win
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, UK
| |
Collapse
|
20
|
Mazumdar P, Singh P, Kethiravan D, Ramathani I, Ramakrishnan N. Late blight in tomato: insights into the pathogenesis of the aggressive pathogen Phytophthora infestans and future research priorities. PLANTA 2021; 253:119. [PMID: 33963935 DOI: 10.1007/s00425-021-03636-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 05/01/2021] [Indexed: 06/12/2023]
Abstract
This review provides insights into the molecular interactions between Phytophthora infestans and tomato and highlights research gaps that need further attention. Late blight in tomato is caused by the oomycota hemibiotroph Phytophthora infestans, and this disease represents a global threat to tomato farming. The pathogen is cumbersome to control because of its fast-evolving nature, ability to overcome host resistance and inefficient natural resistance obtained from the available tomato germplasm. To achieve successful control over this pathogen, the molecular pathogenicity of P. infestans and key points of vulnerability in the host plant immune system must be understood. This review primarily focuses on efforts to better understand the molecular interaction between host pathogens from both perspectives, as well as the resistance genes, metabolomic changes, quantitative trait loci with potential for improvement in disease resistance and host genome manipulation via transgenic approaches, and it further identifies research gaps and provides suggestions for future research priorities.
Collapse
Affiliation(s)
- Purabi Mazumdar
- Centre for Research in Biotechnology for Agriculture, University of Malaya, 50603, Kuala Lumpur, Malaysia.
| | - Pooja Singh
- Centre for Research in Biotechnology for Agriculture, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Dharane Kethiravan
- Centre for Research in Biotechnology for Agriculture, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Idd Ramathani
- National Crops Resources Research Institute, Gayaza Road Namulonge, 7084, Kampala, Uganda
| | - N Ramakrishnan
- ECSE, School of Engineering, Monash University Malaysia, 47500, Bandar Sunway, Malaysia
| |
Collapse
|
21
|
Leaping into the Unknown World of Sporisorium scitamineum Candidate Effectors. J Fungi (Basel) 2020; 6:jof6040339. [PMID: 33291820 PMCID: PMC7762069 DOI: 10.3390/jof6040339] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/28/2020] [Accepted: 11/30/2020] [Indexed: 11/17/2022] Open
Abstract
Sporisorium scitamineum is a biotrophic fungus causing sugarcane smut disease. In this study, we set up a pipeline and used genomic and dual transcriptomic data previously obtained by our group to identify candidate effectors of S. scitamineum and their expression profiles in infected smut-resistant and susceptible sugarcane plants. The expression profile of different genes after infection in contrasting sugarcane genotypes assessed by RT-qPCR depended on the plant genotypes and disease progression. Three candidate effector genes expressed earlier only in resistant plants, four expressed in both genotypes, and three later in susceptible plants. Ten genes were cloned and transiently expressed in N. benthamiana leaves to determine their subcellular location, while four localized in more than one compartment. Two candidates, g3890 having a nucleoplasmic and mitochondrial location and g5159 targeting the plant cell wall, were selected to obtain their possible corresponding host targets using co-immunoprecipitation (CoIP) experiments and mass spectrometry. Various potential interactors were identified, including subunits of the protein phosphatase 2A and an endochitinase. We investigated the presence of orthologs in sugarcane and using transcriptome data present their expression profiles. Orthologs of sugarcane shared around 70% similarity. Identifying a set of putative fungal effectors and their plant targets provides a valuable resource for functional characterization of the molecular events leading to smut resistance in sugarcane plants and uncovers further opportunities for investigation.
Collapse
|
22
|
González‐Fuente M, Carrère S, Monachello D, Marsella BG, Cazalé A, Zischek C, Mitra RM, Rezé N, Cottret L, Mukhtar MS, Lurin C, Noël LD, Peeters N. EffectorK, a comprehensive resource to mine for Ralstonia, Xanthomonas, and other published effector interactors in the Arabidopsis proteome. MOLECULAR PLANT PATHOLOGY 2020; 21:1257-1270. [PMID: 33245626 PMCID: PMC7488465 DOI: 10.1111/mpp.12965] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 05/25/2020] [Accepted: 05/26/2020] [Indexed: 05/16/2023]
Abstract
Pathogens deploy effector proteins that interact with host proteins to manipulate the host physiology to the pathogen's own benefit. However, effectors can also be recognized by host immune proteins, leading to the activation of defence responses. Effectors are thus essential components in determining the outcome of plant-pathogen interactions. Despite major efforts to decipher effector functions, our current knowledge on effector biology is scattered and often limited. In this study, we conducted two systematic large-scale yeast two-hybrid screenings to detect interactions between Arabidopsis thaliana proteins and effectors from two vascular bacterial pathogens: Ralstonia pseudosolanacearum and Xanthomonas campestris. We then constructed an interactomic network focused on Arabidopsis and effector proteins from a wide variety of bacterial, oomycete, fungal, and invertebrate pathogens. This network contains our experimental data and protein-protein interactions from 2,035 peer-reviewed publications (48,200 Arabidopsis-Arabidopsis and 1,300 Arabidopsis-effector protein interactions). Our results show that effectors from different species interact with both common and specific Arabidopsis interactors, suggesting dual roles as modulators of generic and adaptive host processes. Network analyses revealed that effector interactors, particularly "effector hubs" and bacterial core effector interactors, occupy important positions for network organization, as shown by their larger number of protein interactions and centrality. These interactomic data were incorporated in EffectorK, a new graph-oriented knowledge database that allows users to navigate the network, search for homology, or find possible paths between host and/or effector proteins. EffectorK is available at www.effectork.org and allows users to submit their own interactomic data.
Collapse
Affiliation(s)
- Manuel González‐Fuente
- Laboratoire des Interactions Plantes Micro‐organismes, INRAECNRSUniversité de ToulouseCastanet‐TolosanFrance
| | - Sébastien Carrère
- Laboratoire des Interactions Plantes Micro‐organismes, INRAECNRSUniversité de ToulouseCastanet‐TolosanFrance
| | - Dario Monachello
- Institut des Sciences des Plantes de Paris SaclayUEVEINRAECNRSUniversité Paris SudUniversité Paris‐SaclayGif‐sur‐YvetteFrance
- Université de ParisGif‐sur‐YvetteFrance
| | | | - Anne‐Claire Cazalé
- Laboratoire des Interactions Plantes Micro‐organismes, INRAECNRSUniversité de ToulouseCastanet‐TolosanFrance
| | - Claudine Zischek
- Laboratoire des Interactions Plantes Micro‐organismes, INRAECNRSUniversité de ToulouseCastanet‐TolosanFrance
| | - Raka M. Mitra
- Department of BiologyCarleton CollegeNorthfieldMNUSA
| | - Nathalie Rezé
- Institut des Sciences des Plantes de Paris SaclayUEVEINRAECNRSUniversité Paris SudUniversité Paris‐SaclayGif‐sur‐YvetteFrance
- Université de ParisGif‐sur‐YvetteFrance
| | - Ludovic Cottret
- Laboratoire des Interactions Plantes Micro‐organismes, INRAECNRSUniversité de ToulouseCastanet‐TolosanFrance
| | - M. Shahid Mukhtar
- Department of BiologyUniversity of Alabama at BirminghamBirminghamALUSA
| | - Claire Lurin
- Institut des Sciences des Plantes de Paris SaclayUEVEINRAECNRSUniversité Paris SudUniversité Paris‐SaclayGif‐sur‐YvetteFrance
- Université de ParisGif‐sur‐YvetteFrance
| | - Laurent D. Noël
- Laboratoire des Interactions Plantes Micro‐organismes, INRAECNRSUniversité de ToulouseCastanet‐TolosanFrance
| | - Nemo Peeters
- Laboratoire des Interactions Plantes Micro‐organismes, INRAECNRSUniversité de ToulouseCastanet‐TolosanFrance
| |
Collapse
|
23
|
Li J, Gao M, Gabriel DW, Liang W, Song L. Secretome-Wide Analysis of Lysine Acetylation in Fusarium oxysporum f. sp. lycopersici Provides Novel Insights Into Infection-Related Proteins. Front Microbiol 2020; 11:559440. [PMID: 33013791 PMCID: PMC7506082 DOI: 10.3389/fmicb.2020.559440] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 08/18/2020] [Indexed: 01/13/2023] Open
Abstract
Fusarium oxysporum f. sp. lycopersici (Fol) is the causal agent of Fusarium wilt disease in tomato. Proteins secreted by this pathogen during initial host colonization largely determine the outcome of pathogen-host interactions. Lysine acetylation (Kac) plays a vital role in the functions of many proteins, but little is known about Kac in Fol secreted proteins. In this study, we analyzed lysine acetylation of the entire Fol secretome. Using high affinity enrichment of Kac peptides and LC-MS/MS analysis, 50 potentially secreted Fol proteins were identified and acetylation sites determined. Bioinformatics analysis revealed 32 proteins with canonical N-terminal signal peptide leaders, and most of them were predicted to be enzymes involved in a variety of biological processes and metabolic pathways. Remarkably, all 32 predicted secreted proteins were novel and encoded on the core chromosomes rather than on the previously identified LS pathogenicity chromosomes. Homolog scanning of the secreted proteins among 40 different species revealed 4 proteins that were species specific, 3 proteins that were class-specific in the Ascomycota phylum, and 25 proteins that were more widely conserved genes. These secreted proteins provide a starting resource for investigating putative novel pathogenic genes, with 26 up-regulated genes encoding Kac proteins that may play an important role during initial symptomless infection stages.
Collapse
Affiliation(s)
- Jingtao Li
- Key Lab of Integrated Crop Pest Management of Shandong Province, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China
| | - Mingming Gao
- Key Lab of Integrated Crop Pest Management of Shandong Province, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China
| | - Dean W Gabriel
- Department of Plant Pathology, University of Florida, Gainesville, FL, United States
| | - Wenxing Liang
- Key Lab of Integrated Crop Pest Management of Shandong Province, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China.,Shandong Province Key Laboratory of Applied Mycology, Qingdao Agricultural University, Qingdao, China
| | - Limin Song
- Key Lab of Integrated Crop Pest Management of Shandong Province, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China
| |
Collapse
|
24
|
Jaswal R, Kiran K, Rajarammohan S, Dubey H, Singh PK, Sharma Y, Deshmukh R, Sonah H, Gupta N, Sharma TR. Effector Biology of Biotrophic Plant Fungal Pathogens: Current Advances and Future Prospects. Microbiol Res 2020; 241:126567. [PMID: 33080488 DOI: 10.1016/j.micres.2020.126567] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 07/21/2020] [Accepted: 07/25/2020] [Indexed: 12/13/2022]
Abstract
The interaction of fungal pathogens with their host requires a novel invading mechanism and the presence of various virulence-associated components responsible for promoting the infection. The small secretory proteins, explicitly known as effector proteins, are one of the prime mechanisms of host manipulation utilized by the pathogen to disarm the host. Several effector proteins are known to translocate from fungus to the plant cell for host manipulation. Many fungal effectors have been identified using genomic, transcriptomic, and bioinformatics approaches. Most of the effector proteins are devoid of any conserved signatures, and their prediction based on sequence homology is very challenging, therefore by combining the sequence consensus based upon machine learning features, multiple tools have also been developed for predicting apoplastic and cytoplasmic effectors. Various post-genomics approaches like transcriptomics of virulent isolates have also been utilized for identifying active consortia of effectors. Significant progress has been made in understanding biotrophic effectors; however, most of it is underway due to their complex interaction with host and complicated recognition and signaling networks. This review discusses advances, and challenges in effector identification and highlighted various features of the potential effector proteins and approaches for understanding their genetics and strategies for regulation.
Collapse
Affiliation(s)
- Rajdeep Jaswal
- National Agri-Food Biotechnology Institute (NABI), Mohali, Punjab, 140306, India; Department of Microbiology, Panjab University, Chandigarh, Punjab, 160014, India
| | - Kanti Kiran
- ICAR-National Institute for Plant Biotechnology, Pusa Campus New Delhi, 110012, India
| | | | - Himanshu Dubey
- ICAR-National Institute for Plant Biotechnology, Pusa Campus New Delhi, 110012, India
| | - Pankaj Kumar Singh
- National Agri-Food Biotechnology Institute (NABI), Mohali, Punjab, 140306, India
| | - Yogesh Sharma
- National Agri-Food Biotechnology Institute (NABI), Mohali, Punjab, 140306, India
| | - Rupesh Deshmukh
- National Agri-Food Biotechnology Institute (NABI), Mohali, Punjab, 140306, India
| | - Humira Sonah
- National Agri-Food Biotechnology Institute (NABI), Mohali, Punjab, 140306, India
| | - Naveen Gupta
- Department of Microbiology, Panjab University, Chandigarh, Punjab, 160014, India.
| | - T R Sharma
- National Agri-Food Biotechnology Institute (NABI), Mohali, Punjab, 140306, India.
| |
Collapse
|
25
|
Wang D, Tian L, Zhang D, Song J, Song S, Yin C, Zhou L, Liu Y, Wang B, Kong Z, Klosterman SJ, Li J, Wang J, Li T, Adamu S, Subbarao KV, Chen J, Dai X. Functional analyses of small secreted cysteine-rich proteins identified candidate effectors in Verticillium dahliae. MOLECULAR PLANT PATHOLOGY 2020; 21:667-685. [PMID: 32314529 PMCID: PMC7170778 DOI: 10.1111/mpp.12921] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 01/15/2020] [Accepted: 01/17/2020] [Indexed: 05/09/2023]
Abstract
Secreted small cysteine-rich proteins (SCPs) play a critical role in modulating host immunity in plant-pathogen interactions. Bioinformatic analyses showed that the fungal pathogen Verticillium dahliae encodes more than 100 VdSCPs, but their roles in host-pathogen interactions have not been fully characterized. Transient expression of 123 VdSCP-encoding genes in Nicotiana benthamiana identified three candidate genes involved in host-pathogen interactions. The expression of these three proteins, VdSCP27, VdSCP113, and VdSCP126, in N. benthamiana resulted in cell death accompanied by a reactive oxygen species burst, callose deposition, and induction of defence genes. The three VdSCPs mainly localized to the periphery of the cell. BAK1 and SOBIR1 (associated with receptor-like protein) were required for the immunity triggered by these three VdSCPs in N. benthamiana. Site-directed mutagenesis showed that cysteine residues that form disulphide bonds are essential for the functioning of VdSCP126, but not VdSCP27 and VdSCP113. VdSCP27, VdSCP113, and VdSCP126 individually are not essential for V. dahliae infection of N. benthamiana and Gossypium hirsutum, although there was a significant reduction of virulence on N. benthamiana and G. hirsutum when inoculated with the VdSCP27/VdSCP126 double deletion strain. These results illustrate that the SCPs play a critical role in the V. dahliae-plant interaction via an intrinsic virulence function and suppress immunity following infection.
Collapse
Affiliation(s)
- Dan Wang
- Laboratory of Cotton DiseaseInstitute of Food Science and TechnologyChinese Academy of Agricultural SciencesBeijingChina
- Institute of Plant ProtectionChinese Academy of Agricultural SciencesBeijingChina
| | - Li Tian
- College of Life ScienceQufu Normal UniversityQufuChina
| | - Dan‐Dan Zhang
- Laboratory of Cotton DiseaseInstitute of Food Science and TechnologyChinese Academy of Agricultural SciencesBeijingChina
- Institute of Plant ProtectionChinese Academy of Agricultural SciencesBeijingChina
- Key Laboratory of Agro‐products Quality and Safety Control in Storage and Transport ProcessMinistry of AgricultureBeijingChina
| | - Jian Song
- Laboratory of Cotton DiseaseInstitute of Food Science and TechnologyChinese Academy of Agricultural SciencesBeijingChina
- Institute of Plant ProtectionChinese Academy of Agricultural SciencesBeijingChina
| | | | - Chun‐Mei Yin
- Laboratory of Cotton DiseaseInstitute of Food Science and TechnologyChinese Academy of Agricultural SciencesBeijingChina
| | - Lei Zhou
- Laboratory of Cotton DiseaseInstitute of Food Science and TechnologyChinese Academy of Agricultural SciencesBeijingChina
- Institute of Plant ProtectionChinese Academy of Agricultural SciencesBeijingChina
- Key Laboratory of Agro‐products Quality and Safety Control in Storage and Transport ProcessMinistry of AgricultureBeijingChina
| | - Yan Liu
- College of Life ScienceQufu Normal UniversityQufuChina
| | - Bao‐Li Wang
- Laboratory of Cotton DiseaseInstitute of Food Science and TechnologyChinese Academy of Agricultural SciencesBeijingChina
| | - Zhi‐Qiang Kong
- Laboratory of Cotton DiseaseInstitute of Food Science and TechnologyChinese Academy of Agricultural SciencesBeijingChina
- Institute of Plant ProtectionChinese Academy of Agricultural SciencesBeijingChina
| | - Steven J. Klosterman
- United States Department of AgricultureAgricultural Research ServiceSalinasCAUSA
| | - Jun‐Jiao Li
- Laboratory of Cotton DiseaseInstitute of Food Science and TechnologyChinese Academy of Agricultural SciencesBeijingChina
- Institute of Plant ProtectionChinese Academy of Agricultural SciencesBeijingChina
| | - Jie Wang
- Laboratory of Cotton DiseaseInstitute of Food Science and TechnologyChinese Academy of Agricultural SciencesBeijingChina
| | - Ting‐Gang Li
- Laboratory of Cotton DiseaseInstitute of Food Science and TechnologyChinese Academy of Agricultural SciencesBeijingChina
| | - Sabiu Adamu
- Laboratory of Cotton DiseaseInstitute of Food Science and TechnologyChinese Academy of Agricultural SciencesBeijingChina
- Institute of Plant ProtectionChinese Academy of Agricultural SciencesBeijingChina
| | - Krishna V. Subbarao
- Department of Plant PathologyUniversity of CaliforniaDavis, c/o United States Agricultural Research StationSalinasCAUSA
| | - Jie‐Yin Chen
- Laboratory of Cotton DiseaseInstitute of Food Science and TechnologyChinese Academy of Agricultural SciencesBeijingChina
- Institute of Plant ProtectionChinese Academy of Agricultural SciencesBeijingChina
- Key Laboratory of Agro‐products Quality and Safety Control in Storage and Transport ProcessMinistry of AgricultureBeijingChina
| | - Xiao‐Feng Dai
- Laboratory of Cotton DiseaseInstitute of Food Science and TechnologyChinese Academy of Agricultural SciencesBeijingChina
- Institute of Plant ProtectionChinese Academy of Agricultural SciencesBeijingChina
- Key Laboratory of Agro‐products Quality and Safety Control in Storage and Transport ProcessMinistry of AgricultureBeijingChina
| |
Collapse
|
26
|
Jaroszuk-Ściseł J, Tyśkiewicz R, Nowak A, Ozimek E, Majewska M, Hanaka A, Tyśkiewicz K, Pawlik A, Janusz G. Phytohormones (Auxin, Gibberellin) and ACC Deaminase In Vitro Synthesized by the Mycoparasitic Trichoderma DEMTkZ3A0 Strain and Changes in the Level of Auxin and Plant Resistance Markers in Wheat Seedlings Inoculated with this Strain Conidia. Int J Mol Sci 2019; 20:E4923. [PMID: 31590281 PMCID: PMC6801869 DOI: 10.3390/ijms20194923] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 09/25/2019] [Accepted: 10/01/2019] [Indexed: 11/17/2022] Open
Abstract
Both hormonal balance and plant growth may be shaped by microorganisms synthesizing phytohormones, regulating its synthesis in the plant and inducing plant resistance by releasing elicitors from cell walls (CW) by degrading enzymes (CWDE). It was shown that the Trichoderma DEMTkZ3A0 strain, isolated from a healthy rye rhizosphere, colonized the rhizoplane of wheat seedlings and root border cells (RBC) and caused approximately 40% increase of stem weight. The strain inhibited (in over 90%) the growth of polyphagous Fusarium spp. (F. culmorum, F. oxysporum, F. graminearum) phytopathogens through a mechanism of mycoparasitism. Chitinolytic and glucanolytic activity, strongly stimulated by CW of F. culmorum in the DEMTkZ3A0 liquid culture, is most likely responsible for the lysis of hyphae and macroconidia of phytopathogenic Fusarium spp. as well as the release of plant resistance elicitors. In DEMTkZ3A0 inoculated plants, an increase in the activity of the six tested plant resistance markers and a decrease in the concentration of indoleacetic acid (IAA) auxin were noted. IAA and gibberellic acid (GA) but also the 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase (ACCD) enzyme regulating ethylene production by plant were synthesized by DEMTkZ3A0 in the liquid culture. IAA synthesis was dependent on tryptophan and negatively correlated with temperature, whereas GA synthesis was positively correlated with the biomass and temperature.
Collapse
Affiliation(s)
- Jolanta Jaroszuk-Ściseł
- Department of Environmental Microbiology, Maria Curie-Sklodowska University, Akademicka St. 19, 20-033 Lublin, Poland.
| | - Renata Tyśkiewicz
- Department of Environmental Microbiology, Maria Curie-Sklodowska University, Akademicka St. 19, 20-033 Lublin, Poland.
- Military Institute of Hygiene and Epidemiology, Lubelska St. 2, 24-100 Puławy, Poland.
| | - Artur Nowak
- Department of Environmental Microbiology, Maria Curie-Sklodowska University, Akademicka St. 19, 20-033 Lublin, Poland.
| | - Ewa Ozimek
- Department of Environmental Microbiology, Maria Curie-Sklodowska University, Akademicka St. 19, 20-033 Lublin, Poland.
| | - Małgorzata Majewska
- Department of Environmental Microbiology, Maria Curie-Sklodowska University, Akademicka St. 19, 20-033 Lublin, Poland.
| | - Agnieszka Hanaka
- Department of Plant Physiology, Maria Curie-Sklodowska University, Akademicka St. 19, 20-033 Lublin, Poland.
| | - Katarzyna Tyśkiewicz
- ŁUKASIEWICZ Research Network-New Chemical Syntheses Institute, Tysiąclecia Państwa Polskiego Ave. 13a, 24-110 Puławy, Poland.
| | - Anna Pawlik
- Department of Biochemistry, Maria Curie-Sklodowska University, Akademicka St. 19, 20-033 Lublin, Poland.
| | - Grzegorz Janusz
- Department of Biochemistry, Maria Curie-Sklodowska University, Akademicka St. 19, 20-033 Lublin, Poland.
| |
Collapse
|
27
|
Avila-Mendez K, Rodrigo Á, Araque L, Romero HM. Simultaneous transcriptome analysis of oil palm clones and Phytophthora palmivora reveals oil palm defense strategies. PLoS One 2019; 14:e0222774. [PMID: 31553759 PMCID: PMC6760804 DOI: 10.1371/journal.pone.0222774] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 09/06/2019] [Indexed: 11/29/2022] Open
Abstract
Phytophthora palmivora is an oomycete that causes oil palm bud rot disease. To understand the molecular mechanisms of this disease, palm clones with contrasting responses (Ortet 34, resistant and Ortet 57, susceptible) were inoculated with P. palmivora, and RNAseq gene expression analysis was performed. The transcriptome was obtained by sequencing using Illumina HiSeq2500 technology during the asymptomatic phase (24, 72 and 120 hours postinfection, hpi). A simultaneous analysis of differentially expressed gene (DEG) profiles in palm and P. palmivora was carried out. Additionally, Gene Ontology (GO) and gene network analysis revealed differences in the transcriptional profile of the two ortets, where a high specificity of the pathogen to colonize the susceptible ortet was found. The transcriptional analysis provided an overview of the genes involved in the recognition and signaling of this pathosystem, where different transcription factors, phytohormones, proteins associated with cell wall hardening and nitrogen metabolism contribute to the resistance of oil palm to P. palmivora. This research provides a description of the molecular response of oil palm to P. palmivora, thus becoming an important source of molecular markers for the study of genotypes resistant to bud rot disease.
Collapse
Affiliation(s)
- Kelly Avila-Mendez
- Biology and Breeding Program, OiI Palm Research Center, Cenipalma, Bogotá, Colombia
| | - Ávila Rodrigo
- Biology and Breeding Program, OiI Palm Research Center, Cenipalma, Bogotá, Colombia
| | - Leonardo Araque
- Biology and Breeding Program, OiI Palm Research Center, Cenipalma, Bogotá, Colombia
| | - Hernán Mauricio Romero
- Biology and Breeding Program, OiI Palm Research Center, Cenipalma, Bogotá, Colombia
- Department of Biology, Universidad Nacional de Colombia, Bogotá, Colombia
| |
Collapse
|
28
|
Romero-Contreras YJ, Ramírez-Valdespino CA, Guzmán-Guzmán P, Macías-Segoviano JI, Villagómez-Castro JC, Olmedo-Monfil V. Tal6 From Trichoderma atroviride Is a LysM Effector Involved in Mycoparasitism and Plant Association. Front Microbiol 2019; 10:2231. [PMID: 31608044 PMCID: PMC6773873 DOI: 10.3389/fmicb.2019.02231] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 09/11/2019] [Indexed: 12/19/2022] Open
Abstract
LysM effectors play a relevant role during the plant colonization by successful phytopathogenic fungi, since they enable them to avoid either the triggering of plant defense mechanisms or their attack effects. Tal6, a LysM protein from Trichoderma atroviride, is capable of binding to complex chitin. However, until now its biological function is not completely known, particularly its participation in plant–Trichoderma interactions. We obtained T. atroviride Tal6 null mutant and Tal6 overexpressing strains and determined the role played by this protein during Trichoderma-plant interaction and mycoparasitism. LysM effector Tal6 from T. atroviride protects the hyphae from chitinases by binding to chitin of the fungal cell wall, increases the fungus mycoparasitic capacity, and modulates the activation of the plant defense system. These results show that beneficial fungi also employ LysM effectors to improve their association with plants.
Collapse
Affiliation(s)
- Yordan J Romero-Contreras
- Departamento de Biología, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Guanajuato, Mexico
| | - Claudia A Ramírez-Valdespino
- Departamento de Biología, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Guanajuato, Mexico
| | - Paulina Guzmán-Guzmán
- Departamento de Biología, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Guanajuato, Mexico
| | | | | | - Vianey Olmedo-Monfil
- Departamento de Biología, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Guanajuato, Mexico
| |
Collapse
|
29
|
Wang W, Jiao F. Effectors of Phytophthora pathogens are powerful weapons for manipulating host immunity. PLANTA 2019; 250:413-425. [PMID: 31243548 DOI: 10.1007/s00425-019-03219-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Accepted: 06/18/2019] [Indexed: 05/11/2023]
Abstract
This article provides an overview of the interactions between Phytophthora effectors and plant immune system components, which form a cross-linked complex network that regulates plant pathogen resistance. Pathogens secrete numerous effector proteins into plants to promote infections. Several Phytophthora species (e.g., P. infestans, P. ramorum, P. sojae, P. capsici, P. cinnamomi, and P. parasitica) are notorious pathogens that are extremely damaging to susceptible plants. Analyses of genomic data revealed that Phytophthora species produce a large group of effector proteins, which are critical for pathogenesis. And, the targets and functions of many identified Phytophthora effectors have been investigated. Phytophthora effectors can affect various aspects of plant immune systems, including plant cell proteases, phytohormones, RNAs, the MAPK pathway, catalase, the ubiquitin proteasome pathway, the endoplasmic reticulum, NB-LRR proteins, and the cell membrane. Clarifying the effector-plant interactions is important for unravelling the functions of Phytophthora effectors during pathogenesis. In this article, we review the effectors identified in recent decades and provide an overview of the effector-directed regulatory network in plants following infections by Phytophthora species.
Collapse
Affiliation(s)
- Wenjing Wang
- Key Laboratory of Tobacco Pest Monitoring, Controlling and Integrated Management, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, No. 11 Forth Longitudinal Keyuan Rd, Laoshan District, Qingdao, 266101, People's Republic of China.
| | - Fangchan Jiao
- Yunnan Academy of Tobacco Agricultural Sciences, Kunming, 650021, People's Republic of China
| |
Collapse
|
30
|
Nie HZ, Zhang L, Zhuang HQ, Shi WJ, Yang XF, Qiu DW, Zeng HM. The Secreted Protein MoHrip1 Is Necessary for the Virulence of Magnaporthe oryzae. Int J Mol Sci 2019; 20:E1643. [PMID: 30987045 PMCID: PMC6480625 DOI: 10.3390/ijms20071643] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 03/27/2019] [Accepted: 03/28/2019] [Indexed: 12/15/2022] Open
Abstract
Secreted effectors from Magnaporthe oryzae play critical roles in the interaction with rice to facilitate fungal infection and disease development. M. oryzae-secreted protein MoHrip1 can improve plant defense as an elicitor in vitro, however, its biological function in fungal infection is not clear. In this study, we found that the expression of mohrip1 was significantly induced in the stages of fungal penetration and colonization. Although dispensable for the growth and conidiation, MoHrip1 was necessary for the full virulence of M. oryzae. Deletion of mohrip1 remarkably compromised fungal virulence on rice seedlings and even on rice leaves with wounds. Rice sheath inoculation assay further demonstrated the defects of mohrip1-deleted mutants on penetration and proliferation in rice cells. Additionally, compared with WT and complementation strain, the inoculation of mohrip1-deleted mutants induced a higher expression of specific defense related genes and a higher production of specific defensive compounds in rice leaves. These data collectively indicated that MoHrip1 is necessary for fungal penetration and invasive expansion, and further full virulence of rice blast fungus.
Collapse
Affiliation(s)
- Hai-Zhen Nie
- The State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Lin Zhang
- The State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Hui-Qian Zhuang
- The State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Wen-Jiong Shi
- The State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Xiu-Fen Yang
- The State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - De-Wen Qiu
- The State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Hong-Mei Zeng
- The State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
31
|
Huang G, Liu Z, Gu B, Zhao H, Jia J, Fan G, Meng Y, Du Y, Shan W. An RXLR effector secreted by Phytophthora parasitica is a virulence factor and triggers cell death in various plants. MOLECULAR PLANT PATHOLOGY 2019; 20:356-371. [PMID: 30320960 PMCID: PMC6637884 DOI: 10.1111/mpp.12760] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
RXLR effectors encoded by Phytophthora species play a central role in pathogen-plant interactions. An understanding of the biological functions of RXLR effectors is conducive to the illumination of the pathogenic mechanisms and the development of disease control strategies. However, the virulence function of Phytophthora parasitica RXLR effectors is poorly understood. Here, we describe the identification of a P. parasitica RXLR effector gene, PPTG00121 (PpE4), which is highly transcribed during the early stages of infection. Live cell imaging of P. parasitica transformants expressing a full-length PpE4 (E4FL)-mCherry protein indicated that PpE4 is secreted and accumulates around haustoria during plant infection. Silencing of PpE4 in P. parasitica resulted in significantly reduced virulence on Nicotiana benthamiana. Transient expression of PpE4 in N. benthamiana in turn restored the pathogenicity of the PpE4-silenced lines. Furthermore, the expression of PpE4 in both N. benthamiana and Arabidopsis thaliana consistently enhanced plant susceptibility to P. parasitica. These results indicate that PpE4 contributes to pathogen infection. Finally, heterologous expression experiments showed that PpE4 triggers non-specific cell death in a variety of plants, including tobacco, tomato, potato and A. thaliana. Virus-induced gene silencing assays revealed that PpE4-induced cell death is dependent on HSP90, NPK and SGT1, suggesting that PpE4 is recognized by the plant immune system. In conclusion, PpE4 is an important virulence RXLR effector of P. parasitica and recognized by a wide range of host plants.
Collapse
Affiliation(s)
- Guiyan Huang
- State Key Laboratory of Crop Stress Biology for Arid AreasNorthwest A&F UniversityYanglingShaanxi712100China
- College of Life SciencesNorthwest A&F UniversityYanglingShaanxi712100China
| | - Zhirou Liu
- State Key Laboratory of Crop Stress Biology for Arid AreasNorthwest A&F UniversityYanglingShaanxi712100China
- College of Plant ProtectionNorthwest A&F UniversityYanglingShaanxi712100China
| | - Biao Gu
- State Key Laboratory of Crop Stress Biology for Arid AreasNorthwest A&F UniversityYanglingShaanxi712100China
- College of Plant ProtectionNorthwest A&F UniversityYanglingShaanxi712100China
| | - Hong Zhao
- State Key Laboratory of Crop Stress Biology for Arid AreasNorthwest A&F UniversityYanglingShaanxi712100China
- College of Plant ProtectionNorthwest A&F UniversityYanglingShaanxi712100China
| | - Jinbu Jia
- State Key Laboratory of Crop Stress Biology for Arid AreasNorthwest A&F UniversityYanglingShaanxi712100China
- College of Plant ProtectionNorthwest A&F UniversityYanglingShaanxi712100China
- Institute of Plant and Food Science, Department of BiologySouthern University of Science and TechnologyShenzhen518055China
| | - Guangjin Fan
- State Key Laboratory of Crop Stress Biology for Arid AreasNorthwest A&F UniversityYanglingShaanxi712100China
- College of Plant ProtectionNorthwest A&F UniversityYanglingShaanxi712100China
| | - Yuling Meng
- State Key Laboratory of Crop Stress Biology for Arid AreasNorthwest A&F UniversityYanglingShaanxi712100China
- College of AgronomyNorthwest A&F UniversityYanglingShaanxi712100China
| | - Yu Du
- State Key Laboratory of Crop Stress Biology for Arid AreasNorthwest A&F UniversityYanglingShaanxi712100China
- College of HorticultureNorthwest A&F UniversityYanglingShaanxi712100China
| | - Weixing Shan
- State Key Laboratory of Crop Stress Biology for Arid AreasNorthwest A&F UniversityYanglingShaanxi712100China
- College of AgronomyNorthwest A&F UniversityYanglingShaanxi712100China
| |
Collapse
|
32
|
Zhou JY, Sun K, Chen F, Yuan J, Li X, Dai CC. Endophytic Pseudomonas induces metabolic flux changes that enhance medicinal sesquiterpenoid accumulation in Atractylodes lancea. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2018; 130:473-481. [PMID: 30081324 DOI: 10.1016/j.plaphy.2018.07.016] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 07/16/2018] [Accepted: 07/16/2018] [Indexed: 05/20/2023]
Abstract
The bacterial endophyte Pseudomonas fluorescens ALEB7B significantly enhances photosynthate accumulations in Atractylodes lancea. These carbohydrates are preferentially used by the host plant to synthesize secondary metabolites, rather than to increase plant biomass accumulation. Mechanisms underlying the allocation of endophyte-increased carbohydrate in different plant metabolic processes are largely unknown. We have studied how P. fluorescens ALEB7B enhances photosynthate accumulation and how bacterial elicitors regulate metabolic flux and increase medicinal sesquiterpenoid formation in A. lancea using the sterile tissue culture plantlets. P. fluorescens ALEB7B enhances plant photosynthate accumulation by synthesizing and secreting indole-3-acetic acid, which has been demonstrated using high-performance liquid chromatography analysis. The increased endogenous indole-3-acetic acid promotes plant root development and then assimilation. Increased carbohydrates provide the material basis for the formations of terpenoid hydrocarbon scaffolds, which has been proved using gas chromatography analysis. Further, protein and polysaccharide elicitors secreted by P. fluorescens ALEB7B have been separated and purified from the bacterial fermentation broth, which have been applied to A. lancea plantlets. Both elicitors can stimulate the conversions of terpenoid hydrocarbon scaffolds to oxygenous sesquiterpenoids, the active medicinal ingredients in A. lancea, by triggering the oxidative burst in planta. Moreover, this study separates an ABC transporter substrate-binding protein from protein elicitors secreted by P. fluorescens ALEB7B with an ÄKTA Prime Plus Purifier System and firstly shows that this protein is essential to induce oxygenous sesquiterpenoid accumulation in A. lancea. This study provides new perspectives for mechanisms of medicinal oxygenous terpenoid synthesis, which has important reference values to the cultivation of medicinal plants that have terpenoids as their active ingredients, such as Artemisia annua and Taxus chinensis.
Collapse
Affiliation(s)
- Jia-Yu Zhou
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, Jiangsu, China; Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, 210014, Jiangsu, China
| | - Kai Sun
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, Jiangsu, China
| | - Fei Chen
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, Jiangsu, China
| | - Jie Yuan
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, Jiangsu, China
| | - Xia Li
- Institute of Food Crops, Jiangsu High Quality Rice R & D Center, Jiangsu Academy of Agricultural Science, Nanjing, 210014, Jiangsu, China
| | - Chuan-Chao Dai
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, Jiangsu, China.
| |
Collapse
|
33
|
Toffolatti SL, De Lorenzis G, Costa A, Maddalena G, Passera A, Bonza MC, Pindo M, Stefani E, Cestaro A, Casati P, Failla O, Bianco PA, Maghradze D, Quaglino F. Unique resistance traits against downy mildew from the center of origin of grapevine (Vitis vinifera). Sci Rep 2018; 8:12523. [PMID: 30131589 PMCID: PMC6104083 DOI: 10.1038/s41598-018-30413-w] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 07/30/2018] [Indexed: 11/17/2022] Open
Abstract
The Eurasian grapevine (Vitis vinifera), an Old World species now cultivated worldwide for high-quality wine production, is extremely susceptible to the agent of downy mildew, Plasmopara viticola. The cultivation of resistant V. vinifera varieties would be a sustainable way to reduce the damage caused by the pathogen and the impact of disease management, which involves the economic, health and environmental costs of frequent fungicide application. We report the finding of unique downy mildew resistance traits in a winemaking cultivar from the domestication center of V. vinifera, and characterize the expression of a range of genes associated with the resistance mechanism. Based on comparative experimental inoculations, confocal microscopy and transcriptomics analyses, our study shows that V. vinifera cv. Mgaloblishvili, native to Georgia (South Caucasus), exhibits unique resistance traits against P. viticola. Its defense response, leading to a limitation of P. viticola growth and sporulation, is determined by the overexpression of genes related to pathogen recognition, the ethylene signaling pathway, synthesis of antimicrobial compounds and enzymes, and the development of structural barriers. The unique resistant traits found in Mgaloblishvili highlight the presence of a rare defense system in V. vinifera against P. viticola which promises fresh opportunities for grapevine genetic improvement.
Collapse
Affiliation(s)
- Silvia Laura Toffolatti
- Università degli Studi di Milano, Dipartimento di Scienze Agrarie e Ambientali - Produzione, Territorio e Agroenergia (DiSAA), via Celoria 2, 20133, Milano, Italy.
| | - Gabriella De Lorenzis
- Università degli Studi di Milano, Dipartimento di Scienze Agrarie e Ambientali - Produzione, Territorio e Agroenergia (DiSAA), via Celoria 2, 20133, Milano, Italy.
| | - Alex Costa
- Università degli Studi di Milano, Dipartimento di Bioscienze (DBS), via Celoria 26, 20133, Milano, Italy
| | - Giuliana Maddalena
- Università degli Studi di Milano, Dipartimento di Scienze Agrarie e Ambientali - Produzione, Territorio e Agroenergia (DiSAA), via Celoria 2, 20133, Milano, Italy
| | - Alessandro Passera
- Università degli Studi di Milano, Dipartimento di Scienze Agrarie e Ambientali - Produzione, Territorio e Agroenergia (DiSAA), via Celoria 2, 20133, Milano, Italy
| | - Maria Cristina Bonza
- Università degli Studi di Milano, Dipartimento di Bioscienze (DBS), via Celoria 26, 20133, Milano, Italy
| | - Massimo Pindo
- Fondazione E. Mach, Centro Ricerca e Innovazione, Via E. Mach 1, 38010, San Michele all'Adige, (TN), Italy
| | - Erika Stefani
- Fondazione E. Mach, Centro Ricerca e Innovazione, Via E. Mach 1, 38010, San Michele all'Adige, (TN), Italy
| | - Alessandro Cestaro
- Fondazione E. Mach, Centro Ricerca e Innovazione, Via E. Mach 1, 38010, San Michele all'Adige, (TN), Italy
| | - Paola Casati
- Università degli Studi di Milano, Dipartimento di Scienze Agrarie e Ambientali - Produzione, Territorio e Agroenergia (DiSAA), via Celoria 2, 20133, Milano, Italy
| | - Osvaldo Failla
- Università degli Studi di Milano, Dipartimento di Scienze Agrarie e Ambientali - Produzione, Territorio e Agroenergia (DiSAA), via Celoria 2, 20133, Milano, Italy
| | - Piero Attilio Bianco
- Università degli Studi di Milano, Dipartimento di Scienze Agrarie e Ambientali - Produzione, Territorio e Agroenergia (DiSAA), via Celoria 2, 20133, Milano, Italy
| | - David Maghradze
- Scientific - Research Center of Agriculture, Marshal Gelovani Avenue 6, 0159, Tbilisi, Georgia
- Faculty of Agricultural Sciences and Biosystems Engineering, Georgian Technical University, David Guramishvili Avenue 17, 0175, Tbilisi, Georgia
| | - Fabio Quaglino
- Università degli Studi di Milano, Dipartimento di Scienze Agrarie e Ambientali - Produzione, Territorio e Agroenergia (DiSAA), via Celoria 2, 20133, Milano, Italy
| |
Collapse
|
34
|
Leesutthiphonchai W, Vu AL, Ah-Fong AMV, Judelson HS. How Does Phytophthora infestans Evade Control Efforts? Modern Insight Into the Late Blight Disease. PHYTOPATHOLOGY 2018; 108:916-924. [PMID: 29979126 DOI: 10.1094/phyto-04-18-0130-ia] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The infamous oomycete Phytophthora infestans has been a persistent threat to potato and tomato production worldwide, causing the diseases known as late blight. This pathogen has proved to be remarkably adept at overcoming control strategies including host-based resistance and fungicides. This review describes the features of P. infestans that make it such a daunting challenge to agriculture. These include a stealthy lifestyle that helps P. infestans evade plant defenses, effectors that suppress host defenses and promote susceptibility, profuse sporulation with a short latent period that enables rapid dissemination, and a genome structure that promotes the adaptive evolution of P. infestans by fostering genetic diversity. Nevertheless, there is reason to be optimistic that accumulated knowledge about the biology of P. infestans and its hosts will lead to improved management of late blight.
Collapse
Affiliation(s)
| | - Andrea L Vu
- Department of Microbiology and Plant Pathology, University of California, Riverside 92521
| | - Audrey M V Ah-Fong
- Department of Microbiology and Plant Pathology, University of California, Riverside 92521
| | - Howard S Judelson
- Department of Microbiology and Plant Pathology, University of California, Riverside 92521
| |
Collapse
|
35
|
Lorrain C, Marchal C, Hacquard S, Delaruelle C, Pétrowski J, Petre B, Hecker A, Frey P, Duplessis S. The Rust Fungus Melampsora larici-populina Expresses a Conserved Genetic Program and Distinct Sets of Secreted Protein Genes During Infection of Its Two Host Plants, Larch and Poplar. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2018; 31:695-706. [PMID: 29336199 DOI: 10.1094/mpmi-12-17-0319-r] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Mechanisms required for broad-spectrum or specific host colonization of plant parasites are poorly understood. As a perfect illustration, heteroecious rust fungi require two alternate host plants to complete their life cycles. Melampsora larici-populina infects two taxonomically unrelated plants, larch, on which sexual reproduction is achieved, and poplar, on which clonal multiplication occurs, leading to severe epidemics in plantations. We applied deep RNA sequencing to three key developmental stages of M. larici-populina infection on larch: basidia, pycnia, and aecia, and we performed comparative transcriptomics of infection on poplar and larch hosts, using available expression data. Secreted protein was the only significantly overrepresented category among differentially expressed M. larici-populina genes between the basidial, the pycnial, and the aecial stages, highlighting their probable involvement in the infection process. Comparison of fungal transcriptomes in larch and poplar revealed a majority of rust genes were commonly expressed on the two hosts and a fraction exhibited host-specific expression. More particularly, gene families encoding small secreted proteins presented striking expression profiles that highlight probable candidate effectors specialized on each host. Our results bring valuable new information about the biological cycle of rust fungi and identify genes that may contribute to host specificity.
Collapse
Affiliation(s)
- Cécile Lorrain
- 1 INRA/Université de Lorraine, UMR 1136 Interactions Arbres/Microorganismes, INRA Centre Grand Est-Nancy, F-54280 Champenoux, France; and
| | - Clémence Marchal
- 1 INRA/Université de Lorraine, UMR 1136 Interactions Arbres/Microorganismes, INRA Centre Grand Est-Nancy, F-54280 Champenoux, France; and
| | - Stéphane Hacquard
- 1 INRA/Université de Lorraine, UMR 1136 Interactions Arbres/Microorganismes, INRA Centre Grand Est-Nancy, F-54280 Champenoux, France; and
| | - Christine Delaruelle
- 1 INRA/Université de Lorraine, UMR 1136 Interactions Arbres/Microorganismes, INRA Centre Grand Est-Nancy, F-54280 Champenoux, France; and
| | - Jérémy Pétrowski
- 1 INRA/Université de Lorraine, UMR 1136 Interactions Arbres/Microorganismes, INRA Centre Grand Est-Nancy, F-54280 Champenoux, France; and
| | - Benjamin Petre
- 1 INRA/Université de Lorraine, UMR 1136 Interactions Arbres/Microorganismes, INRA Centre Grand Est-Nancy, F-54280 Champenoux, France; and
- 2 The Sainsbury Laboratory, Norwich Research Park, NR4 7UH, Norwich, U.K
| | - Arnaud Hecker
- 1 INRA/Université de Lorraine, UMR 1136 Interactions Arbres/Microorganismes, INRA Centre Grand Est-Nancy, F-54280 Champenoux, France; and
| | - Pascal Frey
- 1 INRA/Université de Lorraine, UMR 1136 Interactions Arbres/Microorganismes, INRA Centre Grand Est-Nancy, F-54280 Champenoux, France; and
| | - Sébastien Duplessis
- 1 INRA/Université de Lorraine, UMR 1136 Interactions Arbres/Microorganismes, INRA Centre Grand Est-Nancy, F-54280 Champenoux, France; and
| |
Collapse
|
36
|
Xia C, Wang M, Cornejo OE, Jiwan DA, See DR, Chen X. Secretome Characterization and Correlation Analysis Reveal Putative Pathogenicity Mechanisms and Identify Candidate Avirulence Genes in the Wheat Stripe Rust Fungus Puccinia striiformis f. sp. tritici. Front Microbiol 2017; 8:2394. [PMID: 29312156 PMCID: PMC5732408 DOI: 10.3389/fmicb.2017.02394] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2017] [Accepted: 11/20/2017] [Indexed: 12/30/2022] Open
Abstract
Stripe (yellow) rust, caused by Puccinia striiformis f. sp. tritici (Pst), is one of the most destructive diseases of wheat worldwide. Planting resistant cultivars is an effective way to control this disease, but race-specific resistance can be overcome quickly due to the rapid evolving Pst population. Studying the pathogenicity mechanisms is critical for understanding how Pst virulence changes and how to develop wheat cultivars with durable resistance to stripe rust. We re-sequenced 7 Pst isolates and included additional 7 previously sequenced isolates to represent balanced virulence/avirulence profiles for several avirulence loci in seretome analyses. We observed an uneven distribution of heterozygosity among the isolates. Secretome comparison of Pst with other rust fungi identified a large portion of species-specific secreted proteins, suggesting that they may have specific roles when interacting with the wheat host. Thirty-two effectors of Pst were identified from its secretome. We identified candidates for Avr genes corresponding to six Yr genes by correlating polymorphisms for effector genes to the virulence/avirulence profiles of the 14 Pst isolates. The putative AvYr76 was present in the avirulent isolates, but absent in the virulent isolates, suggesting that deleting the coding region of the candidate avirulence gene has produced races virulent to resistance gene Yr76. We conclude that incorporating avirulence/virulence phenotypes into correlation analysis with variations in genomic structure and secretome, particularly presence/absence polymorphisms of effectors, is an efficient way to identify candidate Avr genes in Pst. The candidate effector genes provide a rich resource for further studies to determine the evolutionary history of Pst populations and the co-evolutionary arms race between Pst and wheat. The Avr candidates identified in this study will lead to cloning avirulence genes in Pst, which will enable us to understand molecular mechanisms underlying Pst-wheat interactions, to determine the effectiveness of resistance genes and further to develop durable resistance to stripe rust.
Collapse
Affiliation(s)
- Chongjing Xia
- Department of Plant Pathology, Washington State University, Pullman, WA, United States
| | - Meinan Wang
- Department of Plant Pathology, Washington State University, Pullman, WA, United States
| | - Omar E. Cornejo
- School of Biological Sciences, Washington State University, Pullman, WA, United States
| | - Derick A. Jiwan
- Wheat Health, Genetics, and Quality Research Unit, Agricultural Research Service, U.S. Department of Agriculture, Pullman, WA, United States
| | - Deven R. See
- Department of Plant Pathology, Washington State University, Pullman, WA, United States
- Wheat Health, Genetics, and Quality Research Unit, Agricultural Research Service, U.S. Department of Agriculture, Pullman, WA, United States
| | - Xianming Chen
- Department of Plant Pathology, Washington State University, Pullman, WA, United States
- Wheat Health, Genetics, and Quality Research Unit, Agricultural Research Service, U.S. Department of Agriculture, Pullman, WA, United States
| |
Collapse
|
37
|
Abstract
The polysaccharide-rich wall, which envelopes the fungal cell, is pivotal to the maintenance of cellular integrity and for the protection of the cell from external aggressors - such as environmental fluxes and during host infection. This review considers the commonalities in the composition of the wall across the fungal kingdom, addresses how little is known about the assembly of the polysaccharide matrix, and considers changes in the wall of plant-pathogenic fungi during on and in planta growth, following the elucidation of infection structures requiring cell wall alterations. It highlights what is known about the phytopathogenic fungal wall and what needs to be discovered.
Collapse
Affiliation(s)
- Ivey Geoghegan
- Department of Plant Sciences, University of Oxford, Oxford, OX1 3RB, UK; School of Life Sciences, University of Nottingham, Nottingham, NG7 2RD, UK.
| | - Gero Steinberg
- School of Biosciences, University of Exeter, Exeter, EX4 4QD, UK
| | - Sarah Gurr
- Department of Plant Sciences, University of Oxford, Oxford, OX1 3RB, UK; School of Biosciences, University of Exeter, Exeter, EX4 4QD, UK.
| |
Collapse
|
38
|
Rouxel T, Balesdent MH. Life, death and rebirth of avirulence effectors in a fungal pathogen of Brassica crops, Leptosphaeria maculans. THE NEW PHYTOLOGIST 2017; 214:526-532. [PMID: 28084619 DOI: 10.1111/nph.14411] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2016] [Accepted: 11/21/2016] [Indexed: 05/18/2023]
Abstract
Contents 526 I. 526 II. 527 III. 527 IV. 529 V. 529 VI. 530 VII. 530 531 References 531 SUMMARY: In agricultural systems, major (R) genes for resistance in plants exert strong selection pressure on cognate/corresponding avirulence effector genes of phytopathogens. However, a complex interplay often exists between trade-offs linked to effector function and the need to escape R gene recognition. Here, using the Leptosphaeria maculans-oilseed rape pathosystem we review evolution of effectors submitted to multiple resistance gene selection. Characteristics of this pathosystem include a crop in which resistance genes have been deployed intensively resulting in 'boom and bust' cycles; a fungal pathogen with a high adaptive potential in which seven avirulence genes are cloned and for which population surveys have been coupled with molecular analysis of events responsible for virulence. The mode of evolution of avirulence genes, all located in dispensable parts of the 'two-speed' genome, is a highly dynamic gene-specific process. In some instances, avirulence genes are readily deleted under selection. However, others, even when located in the most plastic genome regions, undergo only limited point mutations or their avirulence phenotype is 'camouflaged' by another avirulence gene. Thus, while hundreds of effector genes are present, some effectors are likely to have an important and nonredundant function, suggesting functional redundancy and dispensability of effectors might not be the rule.
Collapse
Affiliation(s)
- Thierry Rouxel
- UMR Bioger, INRA, AgroParisTech, Université Paris-Saclay, Avenue Lucien Brétignières, BP 01, Thiverval-Grignon, F-78850, France
| | - Marie-Hélène Balesdent
- UMR Bioger, INRA, AgroParisTech, Université Paris-Saclay, Avenue Lucien Brétignières, BP 01, Thiverval-Grignon, F-78850, France
| |
Collapse
|