1
|
Lachowicz JI, Alexander J, Aaseth JO. Cyanide and Cyanogenic Compounds-Toxicity, Molecular Targets, and Therapeutic Agents. Biomolecules 2024; 14:1420. [PMID: 39595596 PMCID: PMC11591714 DOI: 10.3390/biom14111420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 11/01/2024] [Accepted: 11/02/2024] [Indexed: 11/28/2024] Open
Abstract
Cyanide (CN) is a well-known mitochondrial poison. CN poisoning may result from acute or long-term exposure to a number of CN compounds. Recent insight into the chemical affinities of the CN anion has increased our understanding of its toxicity and the mechanisms of antidotal actions, which, together with information on various exposure sources, are reviewed in the present article. A literature search in Scopus, Embase, Web of Science, PubMed, and Google Scholar for the period 2001-2024 revealed that the CN anion after exposure or degradation of CN compounds is distributed to vulnerable copper and iron-containing targets, especially in mitochondria, thus blocking the electron transport chain. Intake of cyanogenic compounds may exert subacute or chronic toxic effects, also because of the interaction with cobalt in vitamin B12. Antidotal agents exert their effects through the affinity of CN for cobalt- or iron-containing compounds. Research on CN interactions with metalloproteins may increase our insight into CN toxicity and efficient antidotal regimens.
Collapse
Affiliation(s)
- Joanna Izabela Lachowicz
- Department of Population Health, Division of Environmental Health, Occupational Medicine and Epidemiology, Wroclaw Medical University, Mikulicza-Radeckiego 7, PL 50-368 Wroclaw, Poland;
| | - Jan Alexander
- Norwegian Institute of Public Health (NIPH), N-0213 Oslo, Norway;
| | - Jan O. Aaseth
- Department of Research, Innlandet Hospital Trust, N-2381 Brumunddal, Norway
- Faculty of Health and Social Sciences, Inland Norway University of Applied Sciences, N-2418 Elverum, Norway
| |
Collapse
|
2
|
Yegrem L, Fikre A, Alelign S. Scenario on Production, Processing, and Utilization of Grasspea ( Lathyrus sativus L.) in Agromarginal Geographies and Its Future Prospects. INTERNATIONAL JOURNAL OF FOOD SCIENCE 2024; 2024:8247993. [PMID: 39263236 PMCID: PMC11390239 DOI: 10.1155/2024/8247993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 07/29/2024] [Accepted: 08/07/2024] [Indexed: 09/13/2024]
Abstract
Grasspeas are environmentally successful and robust legumes with major traits of interest for food and nutrition security. It is a critical crop in areas prone to drought, overmoisture stress, and famine, hence, regarded as an "insurance crop" because of its inherent resilience of climatic calamities. The current status and prospects of grasspea, as well as various breeding and food processing approaches to improve this crop for integration in diverse and sustainable agrifood systems, are discussed in this review. Grasspeas are often the source of important micronutrients and proteins (18%-34%), saving peoples' lives during famine. Grasspea consumption is increasing in some countries; however, uninterrupted consumption of grasspea should be avoided, especially when they are green or unripe and when they are raw. Effective food processing techniques are essential to reduce the neurotoxic hazards associated with eating grasspea. Several effective processing steps can be used to reduce toxicity in addition to the development of toxin-free varieties for production and consumption. With advances in the scientific investigation of the grasspea, integration of genetics, processing, and behavioral components has been suggested.
Collapse
Affiliation(s)
- Lamesgen Yegrem
- Ethiopian Institute of Agricultural Research Deber Zeit Agricultural Research Center, Deber Zeit, Ethiopia
| | - Asnake Fikre
- Ethiopian Institute of Agricultural Research Deber Zeit Agricultural Research Center, Deber Zeit, Ethiopia
| | - Shashitu Alelign
- Ethiopian Institute of Agricultural Research Deber Zeit Agricultural Research Center, Deber Zeit, Ethiopia
| |
Collapse
|
3
|
Zakharova MN, Bakulin IS, Abramova AA. Toxic Damage to Motor Neurons. NEUROCHEM J+ 2021. [DOI: 10.1134/s1819712421040164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Abstract—Amyotrophic lateral sclerosis (ALS) is a multifactor disease in the development of which both genetic and environmental factors play a role. Specifically, the effects of organic and inorganic toxic substances can result in an increased risk of ALS development and the acceleration of disease progression. It was described that some toxins can induce potentially curable ALS-like syndromes. In this case, the specific treatment for the prevention of the effects of the toxic factor may result in positive clinical dynamics. In this article, we review the main types of toxins that can damage motor neurons in the brain and spinal cord leading to the development of the clinical manifestation of ALS, briefly present historical data on studies on the role of toxic substances, and describe the main mechanisms of the pathogenesis of motor neuron disease associated with their action.
Collapse
|
4
|
Two fatal cases of acetone cyanohydrin poisoning: case report and literature review. Forensic Sci Med Pathol 2021; 17:700-705. [PMID: 34665394 DOI: 10.1007/s12024-021-00425-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/14/2021] [Indexed: 10/20/2022]
Abstract
Acetone cyanohydrin (ACH), an organic cyanide, is mainly used in the production of methyl methacrylate (MMA), and it also exists in cassava roots, the main calorie source in some tropical countries. ACH can decompose spontaneously or enzymatically into acetone and highly toxic hydrogen cyanide (HCN) and be potentially toxic to its contacts. Given that limited forensic studies and case reports on fatal ACH poisoning are available, herein, we present a report of two fatal cases of ACH poisoning in which the two victims, with postmortem cyanide blood concentrations of 4.22 μg/ml and 4.07 μg/ml, suffered from acute poisoning of ACH due to a traffic accident. Furthermore, a literature review of cyanide poisoning case reports from 2000 to 2020 was carried out, and 28 subjects with cyanide poisoning were presented, including the age, sex, cause of poisoning, autopsy findings and the cyanide concentration in the blood. ACH poisoning lacks specific and reliable autopsy findings for diagnosis, and relevant toxicological studies are necessary. Due to the chemical properties of ACH that allow it to easily decompose, the toxicological analysis of acetone and cyanide in biological samples is essential for the diagnosis of ACH poisoning.
Collapse
|
5
|
Wooding SP, Ramirez VA, Behrens M. Bitter taste receptors: Genes, evolution and health. Evol Med Public Health 2021; 9:431-447. [PMID: 35154779 PMCID: PMC8830313 DOI: 10.1093/emph/eoab031] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 10/05/2021] [Indexed: 02/01/2023] Open
Abstract
Bitter taste perception plays vital roles in animal behavior and fitness. By signaling the presence of toxins in foods, particularly noxious defense compounds found in plants, it enables animals to avoid exposure. In vertebrates, bitter perception is initiated by TAS2Rs, a family of G protein-coupled receptors expressed on the surface of taste buds. There, oriented toward the interior of the mouth, they monitor the contents of foods, drinks and other substances as they are ingested. When bitter compounds are encountered, TAS2Rs respond by triggering neural pathways leading to sensation. The importance of this role placed TAS2Rs under selective pressures in the course of their evolution, leaving signatures in patterns of gene gain and loss, sequence polymorphism, and population structure consistent with vertebrates' diverse feeding ecologies. The protective value of bitter taste is reduced in modern humans because contemporary food supplies are safe and abundant. However, this is not always the case. Some crops, particularly in the developing world, retain surprisingly high toxicity and bitterness remains an important measure of safety. Bitter perception also shapes health through its influence on preference driven behaviors such as diet choice, alcohol intake and tobacco use. Further, allelic variation in TAS2Rs is extensive, leading to individual differences in taste sensitivity that drive these behaviors, shaping susceptibility to disease. Thus, bitter taste perception occupies a critical intersection between ancient evolutionary processes and modern human health.
Collapse
Affiliation(s)
- Stephen P Wooding
- Department of Anthropology and Health Sciences Research Institute, University of California, Merced, CA, USA
| | - Vicente A Ramirez
- Department of Public Health, University of California, Merced, CA, USA
| | - Maik Behrens
- Maik Behrens, Leibniz-Institute for Food Systems Biology at the Technical University of Munich, Freising, Germany
| |
Collapse
|
6
|
Guta DD, Damene S, Assen M, Satyal P. Factors influencing household grass pea consumption and implication for lathyrism in Wollo Zone, Ethiopia. SCIENTIFIC AFRICAN 2021. [DOI: 10.1016/j.sciaf.2021.e00853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
7
|
Sayyid ZN, Wang T, Chen L, Jones SM, Cheng AG. Atoh1 Directs Regeneration and Functional Recovery of the Mature Mouse Vestibular System. Cell Rep 2020; 28:312-324.e4. [PMID: 31291569 PMCID: PMC6659123 DOI: 10.1016/j.celrep.2019.06.028] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 02/13/2019] [Accepted: 06/06/2019] [Indexed: 12/02/2022] Open
Abstract
Utricular hair cells (HCs) are mechanoreceptors required for vestibular function. After damage, regeneration of mammalian utricular HCs is limited and regenerated HCs appear immature. Thus, loss of vestibular function is presumed irreversible. Here, we found partial HC replacement and functional recovery in the mature mouse utricle, both enhanced by overexpressing the transcription factor Atoh1. Following damage, long-term fate mapping revealed that support cells non-mitotically and modestly regenerated HCs displaying no or immature bundles. By contrast, Atoh1 overexpression stimulated proliferation and widespread regeneration of HCs exhibiting elongated bundles, patent mechanotransduction channels, and synaptic connections. Finally, although damage without Atoh1 overexpression failed to initiate or sustain a spontaneous functional recovery, Atoh1 overexpression significantly enhanced both the degree and percentage of animals exhibiting sustained functional recovery. Therefore, the mature, damaged utricle has an Atoh1-responsive regenerative program leading to functional recovery, underscoring the potential of a reprogramming approach to sensory regeneration. The mature mouse utricle, which detects linear acceleration, displays limited regeneration, but whether function returns is unknown. Sayyid et al. show that regenerated hair cells appear and mature over months, resulting in a limited, unsustained functional recovery. Atoh1 overexpression enhances regeneration and leads to a sustained recovery of vestibular function.
Collapse
Affiliation(s)
- Zahra N Sayyid
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Tian Wang
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Leon Chen
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Sherri M Jones
- Department of Special Education and Communication Disorders, College of Education and Human Sciences, University of Nebraska, Lincoln, NE 68583, USA
| | - Alan G Cheng
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
8
|
Rosas-Jarquín CDJ, Rivadeneyra-Domínguez E, León-Chávez BA, Nadella R, Sánchez-García ADC, Rembao-Bojórquez D, Rodríguez-Landa JF, Hernandez-Baltazar D. Chronic consumption of cassava juice induces cellular stress in rat substantia nigra. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2020; 23:93-101. [PMID: 32405352 PMCID: PMC7206837 DOI: 10.22038/ijbms.2019.38460.9131] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 07/31/2019] [Indexed: 11/06/2022]
Abstract
OBJECTIVES Cassava (Manihot esculenta Crantz) contains cyanogenic glycosides (linamarin and lotaustralin) that have been associated with neurological disorders in humans and rats. In basal ganglia, the dopaminergic neurons of substantia nigra pars compacta (SNpc) show high cytotoxic susceptibility; therefore, the chronic consumption of cassava (CCC) could induce neurodegeneration in SNpc. In this study we examine the impact of CCC on the integrity of the nigrostriatal system, including apoptosis and microgliosis. MATERIALS AND METHODS Male Wistar rats were administered cassava juice daily (3.57 g/kg and 28.56 g/kg, per os) or linamarin (0.15 mg/ml, IP), and its effects were evaluated in rota-rod and swim tests at days 7, 14, 21, 28, and 35 of administration. In SNpc, oxidative/nitrosative stress was determined by malondialdehyde/4-hydroxyalkenals (MDA-4-HAD) and nitrite contents. Tyrosine hydroxylase immunoreactivity (TH-IR) was evaluated in SNpc, neostriatum (NE), and nucleus accumbens (NA). Apoptosis and microgliosis were determined by active-caspase-3 (C3) and CD11b/c (OX42) expression in the medial region of SNpc. RESULTS Chronic administration of cassava juice, or linamarin, increased motor impairment. The rats that received 28.56 g/kg cassava showed increased MDA-4-HAD content in SNpc and nitrite levels in NE with respect to controls. Significant loss of TH-IR in SNpc, NE, and NA was not found. The 28.56 g/kg cassava administration produced dopaminergic atrophy and microgliosis, whereas linamarin induced hypertrophy and C3-related apoptosis in SNpc. CONCLUSION CCC induces cellular stress on dopaminergic neurons, which could contribute to motor impairment in the rat.
Collapse
Affiliation(s)
| | | | | | - Rasajna Nadella
- IIIT Srikakulam, Rajiv Gandhi University of Knowledge Technologies (RGUKT); International collaboration ID: 1840; India
| | | | - Daniel Rembao-Bojórquez
- Instituto Nacional de Neurología y Neurocirugía “Manuel Velasco Suárez”. Ciudad de México. Mexico
| | | | | |
Collapse
|
9
|
Adebayo PB, Taiwo FT. RE: Electrodiagnostic consultations in Zambia: Referral characteristics and neuromuscular disorders. J Neurol Sci 2020; 408:116561. [DOI: 10.1016/j.jns.2019.116561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 10/31/2019] [Indexed: 10/25/2022]
|
10
|
Rivadeneyra-Domínguez E, Rodríguez-Landa JF. Preclinical and clinical research on the toxic and neurological effects of cassava (Manihot esculenta Crantz) consumption. Metab Brain Dis 2020; 35:65-74. [PMID: 31802307 DOI: 10.1007/s11011-019-00522-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 11/21/2019] [Indexed: 10/25/2022]
Abstract
Cassava (Manihot esculenta Crantz) is a tropical plant that is used as fresh food, processed food, or raw material for the preparation of flours with high nutritional value. However, cassava contains cyanogenic glycosides, such as linamarin and lotaustralin, that can trigger severe toxic effects and some neurological disorders, including motor impairment, cognitive deterioration, and symptoms that characterize tropical ataxic neuropathy and spastic epidemic paraparesis (Konzo). These alterations that are associated with the consumption of cassava or its derivatives have been reported in both humans and experimental animals. The present review discusses and integrates preclinical and clinical evidence that indicates the toxic and neurological effects of cassava and its derivatives by affecting metabolic processes and the central nervous system. An exhaustive review of the literature was performed using specialized databases that focused on the toxic and neurological effects of the consumption of cassava and its derivatives. We sought to provide structured information that will contribute to understanding the undesirable effects of some foods and preventing health problems in vulnerable populations who consume these vegetables. Cassava contains cyanogenic glycosides that contribute to the development of neurological disorders when they are ingested inappropriately or for prolonged periods of time. Such high consumption can affect neurochemical and neurophysiological processes in particular brain structures and affect peripheral metabolic processes that impact wellness. Although some vegetables have high nutritional value and ameliorate food deficits in vulnerable populations, they can also predispose individuals to the development of neurological diseases.
Collapse
Affiliation(s)
- E Rivadeneyra-Domínguez
- Facultad de Química Farmacéutica Biológica, Universidad Veracruzana, Xalapa, 91000, Veracruz, Mexico.
| | - J F Rodríguez-Landa
- Facultad de Química Farmacéutica Biológica, Universidad Veracruzana, Xalapa, 91000, Veracruz, Mexico
- Laboratorio de Neurofarmacología, Instituto de Neuroetología, Universidad Veracruzana, Xalapa, 91190, Veracruz, Mexico
| |
Collapse
|
11
|
Bateman JR, Taber KH, Hurley RA. Complex Metal Ions: Neuropsychiatric and Imaging Features. J Neuropsychiatry Clin Neurosci 2020; 32:A4-321. [PMID: 33118851 PMCID: PMC9808918 DOI: 10.1176/appi.neuropsych.20080223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- James R. Bateman
- Veterans Affairs Mid Atlantic Mental Illness Research, Education, and Clinical Center, and the Research and Academic Affairs Service Line at the W.G. Hefner Veterans Affairs Medical Center in Salisbury, North Carolina; Departments of Neurology and Psychiatry at Wake Forest School of Medicine in Winston-Salem, North Carolina
| | - Katherine H. Taber
- Veterans Affairs Mid Atlantic Mental Illness Research, Education, and Clinical Center, and the Research and Academic Affairs Service Line at the W.G. Hefner Veterans Affairs Medical Center in Salisbury, North Carolina; Division of Biomedical Sciences at the Via College of Osteopathic Medicine in Blacksburg, Virginia, and the Department of Physical Medicine and Rehabilitation at Baylor College of Medicine in Houston
| | - Robin A. Hurley
- Veterans Affairs Mid Atlantic Mental Illness Research, Education, and Clinical Center, and the Research and Academic Affairs Service Line at the W.G. Hefner Veterans Affairs Medical Center in Salisbury, North Carolina; Departments of Psychiatry and Radiology at Wake Forest School of Medicine in Winston-Salem, North Carolina, and the Menninger Department of Psychiatry and Behavioral Sciences at Baylor College of Medicine in Houston, Texas
| |
Collapse
|
12
|
Plants with neurotoxic potential in undernourished subjects. Rev Neurol (Paris) 2019; 175:631-640. [DOI: 10.1016/j.neurol.2019.07.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 07/22/2019] [Accepted: 07/23/2019] [Indexed: 12/20/2022]
|
13
|
Giménez-Roldán S, Morales-Asín F, Ferrer I, Spencer PS. Historical setting and neuropathology of lathyrism: Insights from the neglected 1944 report by Oliveras de la Riva. JOURNAL OF THE HISTORY OF THE NEUROSCIENCES 2019; 28:361-386. [PMID: 31268820 DOI: 10.1080/0964704x.2019.1600357] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Lathyrism is a central motor system disorder recognized since antiquity resulting from prolonged dietary dependence on the grasspea (Lathyrus sativus). The neuropathology underlying the characteristic spastic paraparesis of lathyrism is sketchy. Described here is a landmark but little-known Spanish-language neuropathological study of two patients with lathyrism of recent onset. Due to erroneous interpretations of Filimonov's influential work in 1926, it was assumed that spastic paraparesis of lathyrism was explained by destruction of Betz's pyramidal cells in the motor cortex. Contrary to present understanding, Betz cells and anterior horn cells were preserved, and pathological findings dominated by myelin loss were largely limited to pyramidal tracts in the lumbar cord. Thickening of the adventitia of capillaries and arterioles, together with proliferation of perivascular astrocytes, was found along the length of the spinal cord. Oliveras de la Riva proposed that the segmental spinal pathology arose because distal regions of elongate pyramidal tract axons are distant from their trophic center in the motor cortex, a view not far from the current distal axonopathy concept of lathyrism. In addition, we review the historical circumstances of Filimonov's work in Russia, a summary of the epidemic of lathyrism in Spain following its Civil War (1936-1939), and some historical aspects of the Cajal Institute in Madrid, where Oliveras de la Riva's work was carried out under the supervision of Fernando de Castro, one of Cajal's favorite students.
Collapse
Affiliation(s)
| | - F Morales-Asín
- Department of Neurology, Hospital Clínico Universitario Lozano Blesa, Faculty of Medicine , Zaragoza , Spain
| | - Isidre Ferrer
- Department of Pathology and Experimental Therapeutics, University of Barcelona, Campus Bellvitge , CIBERNED, Hospitalet de Llobregat, Barcelona , Spain
| | - Peter S Spencer
- Department of Neurology, School of Medicine, and Oregon Institute of Occupational Health Sciences, Oregon Health & Science University , Portland , Oregon , USA
| |
Collapse
|
14
|
Otubogun FM, Akinyemi RO, Ogunniyi AO. Tropical ataxic neuropathy: Findings of a neuroepidemiological survey of Odeda, southwest Nigeria. J Neurol Sci 2019; 405:116434. [PMID: 31520868 DOI: 10.1016/j.jns.2019.116434] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 07/22/2019] [Accepted: 08/23/2019] [Indexed: 11/27/2022]
Abstract
BACKGROUND Tropical ataxic neuropathy seems to have dwindled in public health importance in Nigeria despite the high consumption of cassava-based meals by a huge proportion of people in local Nigerian communities. Yet a recent report suggest its persistence in the same ethnogeographic setting where it was first reported in Nigeria. Our objective was to investigate the prevalence of tropical ataxic neuropathy in Odeda, Ogun state, southwest Nigeria inhabited by a different ethnic group compared to Epe where the disease was first described. METHODS A two-stage, cross-sectional survey of Odeda local government area for the prevalence and profile of toxiconutritional neurological disorders was carried out between May and June 2015. A screening instrument was applied by trained non - medical interviewers with positive responders further evaluated by a neurologist. RESULTS 2392 individuals aged 18 years or older were screened and had a mean age of 37.2 ± 16.1 years, were predominantly of Egba Yoruba ethnicity. Thirty nine cases of tropical ataxic neuropathy were diagnosed and crude prevalence rate was 16.3/1000 (95% CI 11.2-21.4/1000). Older age and rural residence were associated with higher prevalence. Distal sensory polyneuropathy was the most common feature whereas sensorineural deafness was the least common finding. CONCLUSION This report provides evidence that tropical ataxic neuropathy persists and in a wider geographic spread. Thus tropical ataxic neuropathy still remains a significant public health importance and concerted efforts are required to mitigate or eradicate tropical ataxic neuropathy in southwest Nigeria and other regions of Africa affected by cassava- related toxiconutritional disorders.
Collapse
Affiliation(s)
- F M Otubogun
- Department of Internal Medicine, Federal Medical Centre, Birnin Kebbi, Kebbi, Nigeria.
| | - R O Akinyemi
- Department of Medicine, University College Hospital, Ibadan, Oyo, Nigeria; Neuroscience and Ageing Research Unit, Institute for Advanced Medical Research and Training, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - A O Ogunniyi
- Department of Medicine, University College Hospital, Ibadan, Oyo, Nigeria; Neuroscience and Ageing Research Unit, Institute for Advanced Medical Research and Training, College of Medicine, University of Ibadan, Ibadan, Nigeria
| |
Collapse
|
15
|
Schrenk D, Bignami M, Bodin L, Chipman JK, Del Mazo J, Grasl-Kraupp B, Hogstrand C, Hoogenboom LR, Leblanc JC, Nebbia CS, Nielsen E, Ntzani E, Petersen A, Sand S, Vleminckx C, Wallace H, Benford D, Brimer L, Mancini FR, Metzler M, Viviani B, Altieri A, Arcella D, Steinkellner H, Schwerdtle T. Evaluation of the health risks related to the presence of cyanogenic glycosides in foods other than raw apricot kernels. EFSA J 2019; 17:e05662. [PMID: 32626287 PMCID: PMC7009189 DOI: 10.2903/j.efsa.2019.5662] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
In 2016, the EFSA Panel on Contaminants in the Food Chain (CONTAM) published a scientific opinion on the acute health risks related to the presence of cyanogenic glycosides (CNGs) in raw apricot kernels in which an acute reference dose (ARfD) of 20 μg/kg body weight (bw) was established for cyanide (CN). In the present opinion, the CONTAM Panel concluded that this ARfD is applicable for acute effects of CN regardless the dietary source. To account for differences in cyanide bioavailability after ingestion of certain food items, specific factors were used. Estimated mean acute dietary exposures to cyanide from foods containing CNGs did not exceed the ARfD in any age group. At the 95th percentile, the ARfD was exceeded up to about 2.5-fold in some surveys for children and adolescent age groups. The main contributors to exposures were biscuits, juice or nectar and pastries and cakes that could potentially contain CNGs. Taking into account the conservatism in the exposure assessment and in derivation of the ARfD, it is unlikely that this estimated exceedance would result in adverse effects. The limited data from animal and human studies do not allow the derivation of a chronic health-based guidance value (HBGV) for cyanide, and thus, chronic risks could not be assessed.
Collapse
|
16
|
Khandare AL, Kumar RH, Meshram II, Arlappa N, Laxmaiah A, Venkaiah K, Rao PA, Validandi V, Toteja GS. Current scenario of consumption of Lathyrus sativus and lathyrism in three districts of Chhattisgarh State, India. Toxicon 2018; 150:228-234. [PMID: 29908260 DOI: 10.1016/j.toxicon.2018.06.069] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 06/06/2018] [Accepted: 06/12/2018] [Indexed: 11/16/2022]
Abstract
Lathyrism is a disease caused by excessive consumption of grass pea, Lathyrus sativus especially under conditions of severe drought. Grass pea contains 3-N-oxalyl-L-2, 3-diaminopropanoic acid (β-ODAP) a putative neurotoxin which acts through excitatory mechanism causing Neurolathyrism. Due to awareness of the disease, availability of food and levels of consumption of L. sativus there is reduction in lathyrism cases where higher consumption of L. sativus is reported in India. The present study was undertaken with the objective to assess the current scenario of consumption of L. sativus, incidence of cases of lathyrism, β-ODAP, protein and amino acids content in L. sativus pulse collected from three districts (Bilaspur, Durg and Raipur) of Chattisgarh state. For this purpose, a total of 17,755 (13,129 rural and 4626 urban) individuals from 151 villages and 60 wards from urban area were covered for clinical examination. Out of total 5769 households (HHs) covered during the survey, 1602 HHs were cultivators, 1791 HHs non-cultivators and 2376 agricultural and other labourers. A one day 24-hour re-call diet survey was carried out in 5758 HHs (4549 rural and 1209 urban). A total of 360 split grass pea (SGP) samples were collected to estimate β-ODAP, protein and amino acids content. Results of the study revealed that an average consumption of SGP was 20.9 gm/CU/day in Bilaspur and no consumption was reported among urban population of Raipur. Only nine old cases of lathyrism were found during the study. The mean β-ODAP content in SGP was 0.63 ± 0.14, 0.65 ± 0.13 and 0.65 ± 0.14 gm/100 gm, whereas the protein content was 27.0 ± 2.39, 27.0 ± 1.99 and 26.7 ± 1.90 gm/100 gm in samples collected from Bilaspur, Durg and Raipur districts respectively. Arginine content was high in SGP and sulphur containing amino acids (cysteine and methionine) were less than other amino acids. In conclusion, the consumption of SGP was lower in these three districts with lower β-ODAP content than earlier reports, thus the lower prevalence of lathyrism in the districts surveyed.
Collapse
Affiliation(s)
- Arjun L Khandare
- Department of Food Toxicology, ICMR-National Institute of Nutrition, Hyderabad, India.
| | - R Hari Kumar
- Division of Community Studies, ICMR-National Institute of Nutrition, Hyderabad, India
| | - I I Meshram
- Division of Community Studies, ICMR-National Institute of Nutrition, Hyderabad, India
| | - N Arlappa
- Division of Community Studies, ICMR-National Institute of Nutrition, Hyderabad, India
| | - A Laxmaiah
- Division of Community Studies, ICMR-National Institute of Nutrition, Hyderabad, India
| | - K Venkaiah
- Department of Biostatistics, ICMR-National Institute of Nutrition, Hyderabad, India
| | - P Amrutha Rao
- Clinical Division, ICMR-National Institute of Nutrition, Hyderabad, India
| | - Vakdevi Validandi
- Department of Food Toxicology, ICMR-National Institute of Nutrition, Hyderabad, India
| | - G S Toteja
- Desert Medicine Research Centre, New Palli Road, ICMR, Jodhpur, India
| |
Collapse
|
17
|
Xu Q, Liu F, Chen P, Jez JM, Krishnan HB. β-N-Oxalyl-l-α,β-diaminopropionic Acid (β-ODAP) Content in Lathyrus sativus: The Integration of Nitrogen and Sulfur Metabolism through β-Cyanoalanine Synthase. Int J Mol Sci 2017; 18:ijms18030526. [PMID: 28264526 PMCID: PMC5372542 DOI: 10.3390/ijms18030526] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 02/06/2017] [Accepted: 02/21/2017] [Indexed: 11/16/2022] Open
Abstract
Grass pea (Lathyrus sativus L.) is an important legume crop grown mainly in South Asia and Sub-Saharan Africa. This underutilized legume can withstand harsh environmental conditions including drought and flooding. During drought-induced famines, this protein-rich legume serves as a food source for poor farmers when other crops fail under harsh environmental conditions; however, its use is limited because of the presence of an endogenous neurotoxic nonprotein amino acid β-N-oxalyl-l-α,β-diaminopropionic acid (β-ODAP). Long-term consumption of Lathyrus and β-ODAP is linked to lathyrism, which is a degenerative motor neuron syndrome. Pharmacological studies indicate that nutritional deficiencies in methionine and cysteine may aggravate the neurotoxicity of β-ODAP. The biosynthetic pathway leading to the production of β-ODAP is poorly understood, but is linked to sulfur metabolism. To date, only a limited number of studies have been conducted in grass pea on the sulfur assimilatory enzymes and how these enzymes regulate the biosynthesis of β-ODAP. Here, we review the current knowledge on the role of sulfur metabolism in grass pea and its contribution to β-ODAP biosynthesis. Unraveling the fundamental steps and regulation of β-ODAP biosynthesis in grass pea will be vital for the development of improved varieties of this underutilized legume.
Collapse
Affiliation(s)
- Quanle Xu
- College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, China.
- Plant Genetics Research Unit, USDA-Agricultural Research Service, 108 Curtis Hall, University of Missouri, Columbia, MO 65211, USA.
| | - Fengjuan Liu
- College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Peng Chen
- College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Joseph M Jez
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63130, USA.
| | - Hari B Krishnan
- Plant Genetics Research Unit, USDA-Agricultural Research Service, 108 Curtis Hall, University of Missouri, Columbia, MO 65211, USA.
| |
Collapse
|
18
|
A Stochastic Multiscale Model That Explains the Segregation of Axonal Microtubules and Neurofilaments in Neurological Diseases. PLoS Comput Biol 2015; 11:e1004406. [PMID: 26285012 PMCID: PMC4540448 DOI: 10.1371/journal.pcbi.1004406] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Accepted: 06/17/2015] [Indexed: 11/19/2022] Open
Abstract
The organization of the axonal cytoskeleton is a key determinant of the normal function of an axon, which is a long thin projection of a neuron. Under normal conditions two axonal cytoskeletal polymers, microtubules and neurofilaments, align longitudinally in axons and are interspersed in axonal cross-sections. However, in many neurotoxic and neurodegenerative disorders, microtubules and neurofilaments segregate apart from each other, with microtubules and membranous organelles clustered centrally and neurofilaments displaced to the periphery. This striking segregation precedes the abnormal and excessive neurofilament accumulation in these diseases, which in turn leads to focal axonal swellings. While neurofilament accumulation suggests an impairment of neurofilament transport along axons, the underlying mechanism of their segregation from microtubules remains poorly understood for over 30 years. To address this question, we developed a stochastic multiscale model for the cross-sectional distribution of microtubules and neurofilaments in axons. The model describes microtubules, neurofilaments and organelles as interacting particles in a 2D cross-section, and is built upon molecular processes that occur on a time scale of seconds or shorter. It incorporates the longitudinal transport of neurofilaments and organelles through this domain by allowing stochastic arrival and departure of these cargoes, and integrates the dynamic interactions of these cargoes with microtubules mediated by molecular motors. Simulations of the model demonstrate that organelles can pull nearby microtubules together, and in the absence of neurofilament transport, this mechanism gradually segregates microtubules from neurofilaments on a time scale of hours, similar to that observed in toxic neuropathies. This suggests that the microtubule-neurofilament segregation can be a consequence of the selective impairment of neurofilament transport. The model generates the experimentally testable prediction that the rate and extent of segregation will be dependent on the sizes of the moving organelles as well as the density of their traffic. The shape and function of axons is dependent on a dynamic system of microscopic intracellular protein polymers (microtubules, neurofilaments and microfilaments) that comprise the axonal cytoskeleton. Neurofilaments are cargoes of intracellular transport that move along microtubule tracks, and they accumulate abnormally in axons in many neurotoxic and neurodegenerative disorders. Intriguingly, it has been reported that neurofilaments and microtubules, which are normally interspersed in axonal cross-sections, often segregate apart from each other in these disorders, which is something that is never observed in healthy axons. Here we describe a stochastic multiscale computational model that explains the mechanism of this striking segregation and offers insights into the mechanism of neurofilament accumulation in disease.
Collapse
|
19
|
Vaz Patto MC, Rubiales D. Lathyrus diversity: available resources with relevance to crop improvement--L. sativus and L. cicera as case studies. ANNALS OF BOTANY 2014; 113:895-908. [PMID: 24623333 PMCID: PMC3997641 DOI: 10.1093/aob/mcu024] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Accepted: 02/04/2014] [Indexed: 05/09/2023]
Abstract
BACKGROUND The Lathyrus genus includes 160 species, some of which have economic importance as food, fodder and ornamental crops (mainly L. sativus, L. cicera and L. odoratus, respectively) and are cultivated in >1·5 Mha worldwide. However, in spite of their well-recognized robustness and potential as a source of calories and protein for populations in drought-prone and marginal areas, cultivation is in decline and there is a high risk of genetic erosion. SCOPE In this review, current and past taxonomic treatments of the Lathyrus genus are assessed and its current status is examined together with future prospects for germplasm conservation, characterization and utilization. A particular emphasis is placed on the importance of diversity analysis for breeding of L. sativus and L. cicera. CONCLUSIONS Efforts for improvement of L. sativus and L. cicera should concentrate on the development of publicly available joint core collections, and on high-resolution genotyping. This will be critical for permitting decentralized phenotyping. Such a co-ordinated international effort should result in more efficient and faster breeding approaches, which are particularly needed for these neglected, underutilized Lathyrus species.
Collapse
Affiliation(s)
- M. C. Vaz Patto
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Av. da República (EAN), Apartado 127, 2781-901 Oeiras, Portugal
| | - D. Rubiales
- Institute for Sustainable Agriculture, CSIC, Apdo. 4084, E-14080 Córdoba, Spain
| |
Collapse
|
20
|
Cross-species and tissue variations in cyanide detoxification rates in rodents and non-human primates on protein-restricted diet. Food Chem Toxicol 2014; 66:203-9. [PMID: 24500607 DOI: 10.1016/j.fct.2014.01.047] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2013] [Revised: 01/22/2014] [Accepted: 01/23/2014] [Indexed: 11/21/2022]
Abstract
We sought to elucidate the impact of diet, cyanide or cyanate exposure on mammalian cyanide detoxification capabilities (CDC). Male rats (~8 weeks old) (N=52) on 75% sulfur amino acid (SAA)-deficient diet were treated with NaCN (2.5mg/kg bw) or NaOCN (50mg/kg bw) for 6 weeks. Macaca fascicularis monkeys (~12 years old) (N=12) were exclusively fed cassava for 5 weeks. CDC was assessed in plasma, or spinal cord, or brain. In rats, NaCN induced seizures under SAA-restricted diet whereas NaOCN induced motor deficits. No deficits were observed in non-human primates. Under normal diet, the CDC were up to ~80× faster in the nervous system (14 ms to produce one μmol of thiocyanate from the detoxification of cyanide) relative to plasma. Spinal cord CDC was impaired by NaCN, NaOCN, or SAA deficiency. In M. fascicularis, plasma CDC changed proportionally to total proteins (r=0.43; p<0.001). The plasma CDC was ~2× relative to that of rodents. The nervous system susceptibility to cyanide may result from a "multiple hit" by the toxicity of cyanide or its cyanate metabolite, the influences of dietary deficiencies, and the tissue variations in CDC. Chronic dietary reliance on cassava may cause metabolic derangement including poor CDC.
Collapse
|
21
|
Acute toxicity of some synthetic cyanogens in rats: Time-dependent cyanide generation and cytochrome oxidase inhibition in soft tissues after sub-lethal oral intoxication. Food Chem Toxicol 2013; 59:595-609. [DOI: 10.1016/j.fct.2013.06.035] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Revised: 06/13/2013] [Accepted: 06/19/2013] [Indexed: 11/18/2022]
|
22
|
Rúa F, Buffard M, Sedó-Cabezón L, Hernández-Mir G, de la Torre A, Saldaña-Ruíz S, Chabbert C, Bayona JM, Messeguer A, Llorens J. Vestibulotoxic properties of potential metabolites of allylnitrile. Toxicol Sci 2013; 135:182-92. [PMID: 23761299 DOI: 10.1093/toxsci/kft127] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
This study addressed the hypothesis that epoxidation of the double bond in allylnitrile mediates its vestibular toxicity, directly or after subsequent metabolism by epoxide hydrolases. The potential metabolites 3,4-epoxybutyronitrile and 3,4-dihydroxybutyronitrile were synthesized and characterized. In aqueous solutions containing sodium or potassium ions, 3,4-epoxybutyronitrile rearranged to 4-hydroxybut-2-enenitrile, and this compound was also isolated for study. Male adult Long-Evans rats were exposed to allylnitrile or 3,4-epoxybutyronitrile by bilateral transtympanic injection, and vestibular toxicity was assessed using a behavioral test battery and scanning electron microscopy (SEM) observation of the sensory epithelia. Overt vestibular toxicity was caused by 3,4-epoxybutyronitrile at 0.125 mmol/ear and by allylnitrile in some animals at 0.25 mmol/ear. Additional rats were exposed by unilateral transtympanic injection. In these studies, behavioral evidences and SEM observations demonstrated unilateral vestibular toxicity after 0.125 mmol of 3,4-epoxybutyronitrile and bilateral vestibular toxicity after 0.50 mmol of allylnitrile. However, 0.25 mmol of allylnitrile did not cause vestibular toxicity. Unilateral administration of 0.50 mmol of 3,4-dihydroxybutyronitrile or 4-hydroxybut-2-enenitrile caused no vestibular toxicity. The four compounds were also evaluated in the mouse utricle explant culture model. In 8-h exposure experiments, hair cells completely disappeared after 3,4-epoxybutyronitrile at concentrations of 325 or 450μM but not at concentrations of 150μM or lower. In contrast, no difference from controls was recorded in utricles exposed to 450μM or 1.5mM of allylnitrile, 3,4-dihydroxybutyronitrile, or 4-hydroxybut-2-enenitrile. Taken together, the present data support the hypothesis that 3,4-epoxybutyronitrile is the active metabolite of allylnitrile for vestibular toxicity.
Collapse
Affiliation(s)
- Federico Rúa
- Departament de Nanotecnologia Química i Biomolecular, Institut de Química Avançada de Catalunya-CSIC, 08034 Barcelona, Catalunya, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Saldaña-Ruíz S, Hernández-Mir G, Sedó-Cabezón L, Cutillas B, Llorens J. Vestibular toxicity of cis-2-pentenenitrile in the rat. Toxicol Lett 2012; 211:281-8. [PMID: 22546275 DOI: 10.1016/j.toxlet.2012.04.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Revised: 04/10/2012] [Accepted: 04/12/2012] [Indexed: 11/19/2022]
Abstract
cis-2-Pentenenitrile, an intermediate in the synthesis of nylon and other products, causes permanent behavioral deficits in rodents. Other low molecular weight nitriles cause degeneration either of the vestibular sensory hair cells or of selected neuronal populations in the brain. Adult male Long-Evans rats were exposed to cis-2-pentenenitrile (0, 1.25, 1.50, 1.75, or 2.0mmol/kg, oral, in corn oil) and assessed for changes in open field activity and rating scores in a test battery for vestibular dysfunction. Surface preparations of the vestibular sensory epithelia were observed for hair cell loss using scanning electron microscopy. A separate experiment examined the impact of pre-treatment with the universal CYP inhibitor,1-aminobenzotriazole, on the effect of cis-2-pentenenitrile on vestibular rating scores. The occurrence of degenerating neurons in the central nervous system was assessed by Fluoro-Jade C staining. cis-2-Pentenenitrile had a dose-dependent effect on body weight. Rats receiving 1.50mmol/kg or more of cis-2-pentenenitrile displayed reduced rearing activity in the open field and increased rating scores on the vestibular dysfunction test battery. Hair cell loss was observed in the vestibular sensory epithelia and correlated well with the behavioral deficits. Pre-treatment with 1-aminobenzotriazole blocked the behavioral effect. Fluoro-Jade C staining did not reveal significant neuronal degeneration in the central nervous system apart from neurite labeling in the olfactory glomeruli. We conclude that cis-2-pentenenitrile causes vestibular toxicity in a similar way to allylnitrile, cis-crotononitrile and 3,3'-iminodipropionitrile (IDPN), and also shares other targets such as the olfactory system with these other nitriles. The present data also suggest that CYP-mediated bioactivation is involved in cis-2-pentenenitrile toxicity.
Collapse
Affiliation(s)
- Sandra Saldaña-Ruíz
- Departament de Ciències Fisiològiques II, Universitat de Barcelona, Feixa Llarga s/n, 08907 Hospitalet de Llobregat-Catalunya, Spain
| | | | | | | | | |
Collapse
|
24
|
Saldaña-Ruíz S, Soler-Martín C, Llorens J. Role of CYP2E1-mediated metabolism in the acute and vestibular toxicities of nineteen nitriles in the mouse. Toxicol Lett 2011; 208:125-32. [PMID: 22051853 DOI: 10.1016/j.toxlet.2011.10.016] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2011] [Revised: 10/18/2011] [Accepted: 10/19/2011] [Indexed: 10/15/2022]
Abstract
Allylnitrile, cis-crotononitrile, and 3,3'-iminodipropionitrile are known to cause vestibular toxicity in rodents, and evidence is available indicating that cis-2-pentenenitrile shares this effect. We evaluated nineteen nitriles for vestibular toxicity in wild type (129S1) and CYP2E1-null mice, including all the above, several neurotoxic nitriles, and structurally similar nitriles. A new acute toxicity test protocol was developed to facilitate evaluation of the vestibular toxicity by a specific behavioral test battery at doses up to sub-lethal levels while using a limited number of animals. A mean number of 8.5±0.3 animals per nitrile, strain and sex was necessary to obtain evidence of vestibular toxicity and optionally an estimation of the lethal dose. For several but not all nitriles, lethal doses significantly increased in CYP2E1-null mice. The protocol revealed the vestibular toxicity of five nitriles, including previously identified ototoxic compounds and one nitrile (trans-crotononitrile) known to have a different profile of neurotoxic effects in the rat. In all five cases, both sexes were affected and no decrease in susceptibility was apparent in CYP2E1-null mice respect to 129S1 mice. Fourteen nitriles caused no vestibular toxicity, including six nitriles tested in CYP2E1-null mice at doses significantly larger than the maximal doses that can be tested in wild type animals. We conclude that only a subset of low molecular weight nitriles is toxic to the vestibular system, that species-dependent differences exist in this vestibular toxicity, and that CYP2E1-mediated metabolism is not involved in this effect of nitriles although it has a role in the acute lethality of some of these compounds.
Collapse
Affiliation(s)
- Sandra Saldaña-Ruíz
- Departament de Ciències Fisiològiques II, Universitat de Barcelona, 08907 L'Hospitalet de Llobregat, Catalunya, Spain
| | | | | |
Collapse
|
25
|
Nzwalo H, Cliff J. Konzo: from poverty, cassava, and cyanogen intake to toxico-nutritional neurological disease. PLoS Negl Trop Dis 2011; 5:e1051. [PMID: 21738800 PMCID: PMC3125150 DOI: 10.1371/journal.pntd.0001051] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Konzo is a distinct neurological entity with selective upper motor neuron damage, characterized by an abrupt onset of an irreversible, non-progressive, and symmetrical spastic para/tetraparesis. Despite its severity, konzo remains a neglected disease. The disease is associated with high dietary cyanogen consumption from insufficiently processed roots of bitter cassava combined with a protein-deficient diet. Epidemics occur when these conditions coincide at times of severe food shortage. Up to 1993, outbreaks in poor rural areas in Africa contributed to more than 3,700 cases of konzo. The number of affected people is underestimated. From unofficial reports, the number of cases was estimated to be at least 100,000 in 2000, in contrast to the 6,788 cases reported up to 2009 from published papers.
Collapse
|
26
|
Adamolekun B. Neurological disorders associated with cassava diet: a review of putative etiological mechanisms. Metab Brain Dis 2011; 26:79-85. [PMID: 21327546 DOI: 10.1007/s11011-011-9237-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2011] [Accepted: 02/02/2011] [Indexed: 10/18/2022]
Abstract
Tropical ataxic neuropathy (TAN) and epidemic spastic paraparesis (konzo) are two neurological disorders associated with the consumption of cassava (Manihot esculenta) in several African countries. TAN is characterized by sensory polyneuropathy, sensory ataxia, bilateral optic atrophy and bilateral sensori-neural deafness. It occurs in elderly individuals subsisting on a monotonous cassava diet with minimal protein supplementation. Konzo is a syndrome of symmetrical spastic paraparesis with a predilection for children and young women and invariably associated with consumption of inadequately processed bitter cassava roots with minimal protein supplementation. Despite numerous epidemiological, clinical and biochemical studies aimed at elucidating the etiological mechanisms of these disorders, their etiologies remain unknown, and there is no known treatment. The diseases continue to be prevalent in endemic areas, causing significant disability and increased mortality. A fresh appraisal of the putative etiologic mechanisms proposed for these intriguing and enigmatic syndromes is presented in this paper. Evidences against a causal role for cyanide intoxication are discussed, and evidences implicating thiamine deficiency as a unifying etiological mechanism for these neurological syndromes are presented. It is concluded that urgent research is needed to evaluate thiamine status and implement a therapeutic trial of thiamine in these debilitating neurological disorders.
Collapse
Affiliation(s)
- Bola Adamolekun
- Department of Neurology, University of Tennessee Health Science Center, 855 Monroe Avenue, Memphis, TN 38163, USA.
| |
Collapse
|