1
|
Lagoa R, Rajan L, Violante C, Babiaka SB, Marques-da-Silva D, Kapoor B, Reis F, Atanasov AG. Application of curcuminoids in inflammatory, neurodegenerative and aging conditions - Pharmacological potential and bioengineering approaches to improve efficiency. Biotechnol Adv 2025; 82:108568. [PMID: 40157560 DOI: 10.1016/j.biotechadv.2025.108568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 03/21/2025] [Accepted: 03/22/2025] [Indexed: 04/01/2025]
Abstract
Curcumin, a natural compound found in turmeric, has shown promise in treating brain-related diseases and conditions associated with aging. Curcumin has shown multiple anti-inflammatory and brain-protective effects, but its clinical use is limited by challenges like poor absorption, specificity and delivery to the right tissues. A range of contemporary approaches at the intersection with bioengineering and systems biology are being explored to address these challenges. Data from preclinical and human studies highlight various neuroprotective actions of curcumin, including the inhibition of neuroinflammation, modulation of critical cellular signaling pathways, promotion of neurogenesis, and regulation of dopamine levels. However, curcumin's multifaceted effects - such as its impact on microRNAs and senescence markers - suggest novel therapeutic targets in neurodegeneration. Tetrahydrocurcumin, a primary metabolite of curcumin, also shows potential due to its presence in circulation and its anti-inflammatory properties, although further research is needed to elucidate its neuroprotective mechanisms. Recent advancements in delivery systems, particularly brain-targeting nanocarriers like polymersomes, micelles, and liposomes, have shown promise in enhancing curcumin's bioavailability and therapeutic efficacy in animal models. Furthermore, the exploration of drug-laden scaffolds and dermal delivery may extend the pharmacological applications of curcumin. Studies reviewed here indicate that engineered dermal formulations and devices could serve as viable alternatives for neuroprotective treatments and to manage skin or musculoskeletal inflammation. This work highlights the need for carefully designed, long-term studies to better understand how curcumin and its bioactive metabolites work, their safety, and their effectiveness.
Collapse
Affiliation(s)
- Ricardo Lagoa
- School of Technology and Management, Polytechnic Institute of Leiria, Morro do Lena-Alto do Vieiro, 2411-901 Leiria, Portugal; Laboratory of Separation and Reaction Engineering-Laboratory of Catalysis and Materials LSRE-LCM, Associate Laboratory in Chemical Engineering ALiCE, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; Applied Molecular Biosciences Unit UCIBIO, Institute for Health and Bioeconomy i4HB, NOVA University of Lisbon, 2829-516 Caparica, Portugal.
| | - Logesh Rajan
- Department of Pharmacognosy, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India.
| | - Cristiana Violante
- School of Technology and Management, Polytechnic Institute of Leiria, Morro do Lena-Alto do Vieiro, 2411-901 Leiria, Portugal
| | - Smith B Babiaka
- Department of Chemistry, Faculty of Science, University of Buea, P.O. Box 63, Buea, Cameroon; Department of Microbial Bioactive Compounds, Interfaculty Institute for Microbiology and Infection Medicine, University of Tübingen, 72076 Tübingen, Germany.
| | - Dorinda Marques-da-Silva
- School of Technology and Management, Polytechnic Institute of Leiria, Morro do Lena-Alto do Vieiro, 2411-901 Leiria, Portugal; Laboratory of Separation and Reaction Engineering-Laboratory of Catalysis and Materials LSRE-LCM, Associate Laboratory in Chemical Engineering ALiCE, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal.
| | - Bhupinder Kapoor
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Flávio Reis
- Institute of Pharmacology and Experimental Therapeutics & Coimbra Institute for Clinical and Biomedical Research iCBR, Faculty of Medicine, University of Coimbra, 3004-504 Coimbra, Portugal; Center for Innovative Biomedicine and Biotechnology CIBB, University of Coimbra, 3000-548 Coimbra, Portugal; Clinical Academic Center of Coimbra, 3004-531 Coimbra, Portugal.
| | - Atanas G Atanasov
- Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, 05-552 Magdalenka, Poland; Laboratory of Natural Products and Medicinal Chemistry LNPMC, Center for Global Health Research, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences SIMATS, Thandalam, Chennai, India; Ludwig Boltzmann Institute Digital Health and Patient Safety, Medical University of Vienna, Spitalgasse 23, 1090 Vienna, Austria.
| |
Collapse
|
2
|
Li W, Huang Y, Fan L, Yangzom D, Zhang K, Shen L, Cao S, Gu C, Yu S. Curcumin liposomes alleviate senescence of bone marrow mesenchymal stem cells by activating mitophagy. Sci Rep 2024; 14:31291. [PMID: 39732809 PMCID: PMC11682429 DOI: 10.1038/s41598-024-82614-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 12/06/2024] [Indexed: 12/30/2024] Open
Abstract
The senescence of mesenchymal stem cells (MSCs) is closely related to aging and degenerative diseases. Curcumin exhibits antioxidant and anti-inflammatory effects and has been extensively used in anti-cancer and anti-aging applications. Studies have shown that curcumin can promote osteogenic differentiation, autophagy and proliferation of MSCs. Liposome, as a nano-carrier, provides a feasible strategy for improving the bioavailability and controlled-release profile of curcumin.This study aimed to evaluate the effects of curcumin liposomes (Cur-Lip) on the senescence of rat bone marrow mesenchymal stem cells (rBMSCs). Based on network pharmacology, we predicted the targets and mechanisms of curcumin on senescence of MSC. 23 key targets of Cur were associated with MSC senescence were screened out and mitophagy signaling was significantly enriched. Cur-Lip treatment alleviated senescence of D-galactose (D-gal)-induced rBMSCs, protected mitochondrial function, and activated mitophagy, which may be related to mitochondrial fission. Inhibition of mitophagy attenuated the protective effects of Cur-lip on mitochondrial function and senescence of rBMSCs. Our findings suggested that Cur-Lip could alleviate senescence of rBMSC and improve mitochondrial function by activating mitophagy.
Collapse
Affiliation(s)
- Weiyao Li
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yixin Huang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Lei Fan
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Dekyi Yangzom
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Kun Zhang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Liuhong Shen
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Suizhong Cao
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Congwei Gu
- Laboratory Animal Centre, Southwest Medical University, Luzhou, 646000, China.
| | - Shumin Yu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China.
| |
Collapse
|
3
|
He Y, Zhao Y, Lv RJ, Dong N, Wang X, Yu Q, Yue HM. Curcumin activates the Wnt/β-catenin signaling pathway to alleviate hippocampal neurogenesis abnormalities caused by intermittent hypoxia: A study based on network pharmacology and experimental verification. Int Immunopharmacol 2024; 143:113299. [PMID: 39362017 DOI: 10.1016/j.intimp.2024.113299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 09/18/2024] [Accepted: 09/28/2024] [Indexed: 10/05/2024]
Abstract
The purpose of this work was to investigate how curcumin (Cur) might enhance cognitive function and to gain a better understanding of the molecular mechanisms behind Cur's impacts on neurogenesis deficits brought on by intermittent hypoxia (IH). Using network pharmacology, we explored possible targets for Cur's obstructive sleep apnea (OSA) therapy. We established an IH model using C57BL/6 mice and c17.2 cells, and we assessed the influence of Cur on treatment outcomes as well as the effect of IH on cognitive function. Hippocampal damage and neurogenesis, as well as expression of core targets, were then examined. Network pharmacology analysis revealed that Cur has the potential for multi-target, multi-pathway therapy, with CTNNB1 and MYC as core target genes. The Morris water maze test showed that Cur (100 mg/kg, intragastrically) significantly improved cognitive dysfunction induced by IH. The hematoxylin and eosin (H&E) and Nissl staining indicated that Cur could alleviate damage to the hippocampus caused by IH. Immunohistochemistry, immunofluorescence, and western blotting results showed that Cur might promote neurogenesis and upregulate the expression of β-catenin and c-myc. In vitro, Cur (0.5 μM) has a protective effect on IH-induced neural stem cells (NSCs) injury and apoptosis and can restore the Wnt/β-catenin. Cur significantly increased the neurogenesis via the Wnt/β-catenin pathway, providing the scientific groundwork for the development of new treatment strategies for neurological damage linked to OSA.
Collapse
Affiliation(s)
- Yao He
- The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu 730000, China
| | - Yan Zhao
- The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu 730000, China
| | - Ren-Jun Lv
- The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu 730000, China
| | - Na Dong
- The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu 730000, China
| | - Xiao Wang
- The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu 730000, China
| | - Qin Yu
- The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu 730000, China; Department of Respiratory and Critical Care Medicine, The First Hospital of Lanzhou University, Lanzhou, Gansu 730000, China.
| | - Hong-Mei Yue
- The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu 730000, China; Department of Respiratory and Critical Care Medicine, The First Hospital of Lanzhou University, Lanzhou, Gansu 730000, China.
| |
Collapse
|
4
|
Martin M, Boulaire M, Lucas C, Peltier A, Pourtau L, Gaudout D, Layé S, Pallet V, Joffre C, Dinel AL. Plant Extracts and ω-3 Improve Short-Term Memory and Modulate the Microbiota-Gut-Brain Axis in D-galactose Model Mice. J Nutr 2024; 154:3704-3717. [PMID: 39332773 DOI: 10.1016/j.tjnut.2024.09.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 09/05/2024] [Accepted: 09/16/2024] [Indexed: 09/29/2024] Open
Abstract
BACKGROUND Aging, characterized by a slow and progressive alteration of cognitive functions, is associated with gut microbiota dysbiosis, low-grade chronic inflammation, as well as increased oxidative stress and neurofunctional alterations. Some nutrients, such as polyphenols, carotenoids, and omega (ω)-3 (n-3), are good candidates to prevent age-related cognitive decline, because of their immunomodulatory, antioxidant, and neuroprotective properties. OBJECTIVES The objective of this study was to demonstrate the preventive effect of a combination of plant extracts (PE) containing Memophenol™ (grapes and blueberries polyphenols) and a patented saffron extract (saffron carotenoids and safranal) and ω-3 on cognitive function in a mouse model of accelerated aging and to understand the biological mechanisms involved. METHODS We used an accelerated-aging model by injecting 3-mo-old male C57Bl6/J mice with D-galactose for 8 wk, during which they were fed with a balanced control diet and supplemented or not with PE and/or ω-3 (n = 15-16/group). Short-term memory was evaluated by Y-maze test, following analyses of hippocampal and intestinal RNA expressions, brain fatty acid and oxylipin amounts, and gut microbiota composition (16S rRNA gene sequencing). Statistical analyses were performed (t test, analysis of variance, and Pearson correlation). RESULTS Our results showed that oral administration of PE, ω-3, or both (mix) prevented hippocampus-dependent short-term memory deficits induced by D-galactose (P < 0.05). This effect was accompanied by the modulation of gut microbiota, altered by the treatment. PE and the mix increased the expression of antioxidative and neurogenesis markers, such as catalase and doublecortin, in hippocampus (P < 0.05 for both). Moreover, ω-3 and the mix showed a higher ω-3 amounts (P < 0.05) and EPA-derived 18- hydroxyeicosapentaenoic acid (P < 0.001) in prefrontal cortex. These changes may contribute to the improvement in memory. CONCLUSIONS These results suggest that the mix of PE and ω-3 could be more efficient at attenuating age-related cognitive decline than individual supplementations because it targeted, in mice, the different pathways impaired with aging.
Collapse
Affiliation(s)
- Marie Martin
- Université Bordeaux, INRAE, Bordeaux INP, Nutrineuro, Bordeaux, France; Activ'Inside, 12 route de Beroy, ZA du Grand Cazeau, Beychac-et-Caillau
| | - Milan Boulaire
- Université Bordeaux, INRAE, Bordeaux INP, Nutrineuro, Bordeaux, France
| | - Céline Lucas
- Université Bordeaux, INRAE, Bordeaux INP, Nutrineuro, Bordeaux, France; NutriBrain Research and Technology Transfer, NutriNeuro, Bordeaux, France
| | - Adrien Peltier
- Université Bordeaux, INRAE, Bordeaux INP, Nutrineuro, Bordeaux, France; NutriBrain Research and Technology Transfer, NutriNeuro, Bordeaux, France
| | - Line Pourtau
- Activ'Inside, 12 route de Beroy, ZA du Grand Cazeau, Beychac-et-Caillau
| | - David Gaudout
- Activ'Inside, 12 route de Beroy, ZA du Grand Cazeau, Beychac-et-Caillau
| | - Sophie Layé
- Université Bordeaux, INRAE, Bordeaux INP, Nutrineuro, Bordeaux, France
| | - Véronique Pallet
- Université Bordeaux, INRAE, Bordeaux INP, Nutrineuro, Bordeaux, France
| | - Corinne Joffre
- Université Bordeaux, INRAE, Bordeaux INP, Nutrineuro, Bordeaux, France
| | - Anne-Laure Dinel
- Université Bordeaux, INRAE, Bordeaux INP, Nutrineuro, Bordeaux, France; NutriBrain Research and Technology Transfer, NutriNeuro, Bordeaux, France.
| |
Collapse
|
5
|
Rossato DR, Rosa JLO, Fontoura MB, de Souza LEM, de Almeida TM, Kudrna KB, Schaffazick SR, da Silva CB, Birk L, Eller S, de Oliveira TF, Burger ME. Ferulic Acid-Loaded Nanostructure Maintains Brain Levels of ACh, Glutamate, and GABA and Ameliorates Anxiety and Memory Impairments Induced by the D-Galactose Aging Process in Rats. Neurochem Res 2024; 49:3383-3395. [PMID: 39302597 DOI: 10.1007/s11064-024-04248-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 09/09/2024] [Accepted: 09/11/2024] [Indexed: 09/22/2024]
Abstract
Population aging is a global reality driven by increased life expectancy. This demographic phenomenon is intrinsically linked to the epidemic of cognitive disorders such as dementia and Alzheimer's disease, posing challenges for elderly and their families. In this context, the search for new therapeutic strategies to prevent or minimize cognitive impairments becomes urgent, as these deficits are primarily associated with oxidative damage and increased neuroinflammation. Ferulic acid (FA), a natural and potent antioxidant compound, is proposed to be nanoencapsulated to target the central nervous system effectively with lower doses and an extended duration of action. Here, we evaluated the effects of the nanoencapsulated FA on d-galactose (d-Gal)- induced memory impairments. Male Wistar adult rats were treated with ferulic acid-loaded nanocapsules (FA-Nc) or non-encapsulated ferulic acid (D-FA) for 8 weeks concurrently with d-Gal (150 mg/kg s.c.) injection. As expected, our findings showed that d-Gal injection impaired memory processes and increased anxiety behavior, whereas FA-Nc treatment ameliorated these behavioral impairments associated with the aging process induced by d-Gal. At the molecular level, nanoencapsulated ferulic acid (FA-Nc) ameliorated the decrease in ACh and glutamate induced by d-galactose (d-Gal), and also increased GABA levels in the dorsal hippocampus, indicating its therapeutic superiority. Additional studies are needed to elucidate the mechanisms underlying our current promising outcomes. Nanoscience applied to pharmacology can reduce drug dosage, thereby minimizing adverse effects while enhancing therapeutic response, particularly in neurodegenerative diseases associated with aging. Therefore, the strategy of brain-targeted drug delivery through nanoencapsulation can be effective in mitigating aging-related factors that may lead to cognitive deficits.
Collapse
Affiliation(s)
- Domenika R Rossato
- Graduation Program of Pharmacology, Universidade Federal de Santa Maria (UFSM), Santa Maria, RS, Brazil
| | - Jéssica L O Rosa
- Graduation Program of Pharmacology, Universidade Federal de Santa Maria (UFSM), Santa Maria, RS, Brazil
| | - Murilo B Fontoura
- Graduation Program of Pharmacology, Universidade Federal de Santa Maria (UFSM), Santa Maria, RS, Brazil
| | - Leana E M de Souza
- Departamento de Fisiologia e Farmacologia, UFSM, Santa Maria, RS, Brazil
| | - Tielle M de Almeida
- Graduation Program of Pharmaceutical Sciences, UFSM, Santa Maria, RS, Brazil
| | | | - Scheila R Schaffazick
- Graduation Program of Pharmaceutical Sciences, UFSM, Santa Maria, RS, Brazil
- Departamento de Farmácia, UFSM, Santa Maria, RS, Brazil
| | - Cristiane B da Silva
- Graduation Program of Pharmaceutical Sciences, UFSM, Santa Maria, RS, Brazil
- Departamento de Farmácia, UFSM, Santa Maria, RS, Brazil
| | - Letícia Birk
- Graduation Program in Health Sciences, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, Brazil
| | - Sarah Eller
- Graduation Program in Health Sciences, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, Brazil
| | - Tiago F de Oliveira
- Graduation Program in Health Sciences, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, Brazil
| | - Marilise E Burger
- Graduation Program of Pharmacology, Universidade Federal de Santa Maria (UFSM), Santa Maria, RS, Brazil.
- Departamento de Fisiologia e Farmacologia, UFSM, Santa Maria, RS, Brazil.
| |
Collapse
|
6
|
Nagaraju M, Savitikadi P, Kalahasti KK, Addi UR, Reddy GB, Reddy SS. Functional Food Mixture Extricates D-Galactose-Induced Skeletal Muscle Impairment in Rats. Rejuvenation Res 2024; 27:181-190. [PMID: 39162821 DOI: 10.1089/rej.2024.0030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/21/2024] Open
Abstract
Aging-related muscle atrophy/sarcopenia is the most common type of muscle impairment that affects the quality of life. In the current study, we examined the effect of a functional food mixture of amla, turmeric, black pepper, cinnamon, and ginger on D-galactose-induced muscle alterations in rats. Wistar rats were randomly divided into three groups: Control (C), D-galactose (G), and D-galactose + functional food mixture intervention (G + I). Rats in group-G and -G + I were injected with D-galactose (300 mg/kg/day) for 90 days. After 3 months of the experimental period, the rats were sacrificed to collect gastrocnemius muscle. Group-G rats showed elevated levels of inflammatory cytokines (TNFα and NF-kB), atrogenes (atrogin-1 and MuRF1), decreased insulin/IGF1 signaling (decreased AKT phosphorylation), altered mitochondrial dynamics (increased fission and decreased fusion proteins), increased apoptotic mediators (Bax/Bcl-2, and caspase-3), and decreased muscle cell cross-sectional area when compared with group-C (p < 0.05). Interestingly, supplementation with the functional food mixture prevented galactose-induced alterations in the muscle. The observed anti-inflammatory, insulin-sensitizing, mitochondria-protective, and antiapoptotic effects of the functional food could be the underlying mechanisms in displaying positive effects against galactose-induced muscle atrophy and, hence, may be useful for the prevention of age-related muscle disorders.
Collapse
Affiliation(s)
- M Nagaraju
- Biochemistry Division, ICMR-National Institute of Nutrition, Hyderabad, India
| | | | | | - Utkarsh R Addi
- Biochemistry Division, ICMR-National Institute of Nutrition, Hyderabad, India
| | | | - S Sreenivasa Reddy
- Biochemistry Division, ICMR-National Institute of Nutrition, Hyderabad, India
| |
Collapse
|
7
|
Mougin C, Chataigner M, Lucas C, Pallet V, Bouvret E, Joffre C, Dinel AL. Dietary marine hydrolysate alleviates D-galactose-induced brain aging by attenuating cognitive alterations, oxidative stress and inflammation through the AGE-RAGE axis. PLoS One 2024; 19:e0309542. [PMID: 39446794 PMCID: PMC11500938 DOI: 10.1371/journal.pone.0309542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 08/13/2024] [Indexed: 10/26/2024] Open
Abstract
Aging represents a natural and unavoidable phenomenon in organisms. With the acceleration of population aging, investigations into aging have garnered widespread global interest. One of the most striking aspects of human aging is the decline in brain function, a phenomenon intricately tied to the onset of neurodegenerative conditions. This study aimed to assess the impact of a fish hydrolysate, rich in low-molecular-weight peptides and n-3 LC-PUFAs, on cognitive function, inflammatory response, and oxidative stress via the AGE-RAGE axis in a mouse model of accelerated aging. This model induces cognitive decline and biochemical alterations akin to those observed during natural aging. The findings revealed that fish hydrolysate exhibited a protective effect against cognitive impairment induced by D-galactose. This effect was associated with increased protein expression of SOD1 and decreased genetic expression of IL-6 and advanced glycation end products (AGE). Consequently, within the realm of preventive and personalized nutrition, fish hydrolysate emerges as a promising avenue for mitigating age-related declines in memory function.
Collapse
Affiliation(s)
- Camille Mougin
- Nutrineuro, UMR 1286, Université Bordeaux, INRAE, Bordeaux INP, Bordeaux, France
- Abyss Ingredients, Caudan, France
| | - Mathilde Chataigner
- Nutrineuro, UMR 1286, Université Bordeaux, INRAE, Bordeaux INP, Bordeaux, France
- Abyss Ingredients, Caudan, France
| | - Céline Lucas
- NutriBrain Research and Technology Transfer, NutriNeuro, Bordeaux, France
| | - Véronique Pallet
- Nutrineuro, UMR 1286, Université Bordeaux, INRAE, Bordeaux INP, Bordeaux, France
| | | | - Corinne Joffre
- Nutrineuro, UMR 1286, Université Bordeaux, INRAE, Bordeaux INP, Bordeaux, France
| | - Anne-Laure Dinel
- Nutrineuro, UMR 1286, Université Bordeaux, INRAE, Bordeaux INP, Bordeaux, France
- NutriBrain Research and Technology Transfer, NutriNeuro, Bordeaux, France
| |
Collapse
|
8
|
Li M, Xu X, Jia Y, Yuan Y, Na G, Zhu L, Xiao X, Zhang Y, Ye H. Transformation of mulberry polyphenols by Lactobacillus plantarum SC-5: Increasing phenolic acids and enhancement of anti-aging effect. Food Res Int 2024; 192:114778. [PMID: 39147466 DOI: 10.1016/j.foodres.2024.114778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 07/02/2024] [Accepted: 07/14/2024] [Indexed: 08/17/2024]
Abstract
Fermentation can transform bioactive compounds in food and improve their biological activity. This study aims to explore the transformation of polyphenols in mulberry juice and the improvement of its anti-aging effect. The results demonstrated that Lactobacillus plantarum SC-5 transformed anthocyanin in mulberry juice into more phenolic acids, especially improved 2-hydroxy-3-(4-hydroxyphenyl) propanoic acid from 4.16 ± 0.06 to 10.07 ± 0.03. In the D-gal-induced mouse model, fermented mulberry juice significantly raised the abundance of Bifidobacteriaceae (303.7 %) and Lactobacillaceae (237.2 %) and Short-chain fatty acids (SCFAs) in intestine, further reducing the level of oxidative stress (12.3 %). Meanwhile, the expression of Sirtuin 1 (SIRT1) and Brain-derived neurotrophic factor (BDNF) increased, which protected the integrity of hippocampal tissue. Morris water maze results approved that fermented mulberry juice improved cognitive ability in aging mice (30.3 %). This study provides theoretical support for the view that fermentation is an effective means of developing functional foods.
Collapse
Affiliation(s)
- Mengyao Li
- College of Food Science and Engineering, Jilin University, 5333 Xi'an Road, Changchun 130062, China
| | - Xiangxiu Xu
- Changchun City Market Supervision Comprehensive Administrative Law Enforcement Detachment, 1150a-1 Wanfu Road, Changchun 130062, China
| | - Yifan Jia
- College of Food Science and Engineering, Jilin University, 5333 Xi'an Road, Changchun 130062, China
| | - Yuan Yuan
- College of Food Science and Engineering, Jilin University, 5333 Xi'an Road, Changchun 130062, China
| | - Guo Na
- College of Food Science and Engineering, Jilin University, 5333 Xi'an Road, Changchun 130062, China
| | - Ling Zhu
- College of Food Science and Engineering, Jilin University, 5333 Xi'an Road, Changchun 130062, China
| | - Xiaowei Xiao
- College of Food Science and Engineering, Jilin University, 5333 Xi'an Road, Changchun 130062, China
| | - Yamin Zhang
- College of Food Science and Engineering, Jilin University, 5333 Xi'an Road, Changchun 130062, China
| | - Haiqing Ye
- College of Food Science and Engineering, Jilin University, 5333 Xi'an Road, Changchun 130062, China.
| |
Collapse
|
9
|
Olasehinde TA, Ekundayo TC, Ijabadeniyi OA, Olaniran AO. The Impact of Hesperidin on Cognitive Deficit and Neurobehavioural Disorders: A Systematic Review and Meta-Analysis of Preclinical Individual Studies. Curr Behav Neurosci Rep 2024; 11:246-259. [DOI: 10.1007/s40473-024-00284-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/04/2024] [Indexed: 01/03/2025]
Abstract
AbstractPurpose of Review Experimental evidence suggests that flavonoids prevent neurodegeneration and improves cognitive function. In this study, we systematically reviewed the effect of hesperidin on cognitive deficits and neurobehavioural outcomes in in vivo studies.Recent Findings: A systematic search of PubMed, EBSCOhost, Web of Science, Scopus and ProQuest was conducted. Meta-analysis was performed on the effect of hesperidin on cognitive and neurobehavioural parameters (Morris Water Maze, Y-Maze, elevated plus maze, rotarod test, locomotion activity, passive avoidance test, open field test and forced swimming test). The mixed effect model was used to compute the standard mean difference (SMD). A total of 1069 documents were retrieved. However, 46 studies were included in the systematic review and meta-analysis. Our findings revealed that hesperidin did not significantly affect cognitive performance in normal rats compared with placebo. Moreover, hesperidin improved memory and learning, sensorimotor function and locomotion activity in cognitive impaired rats. Hesperidin did not show any significant effect on anxiety-related outcomes in the diseased model.Summary: Hesperidin improved cognitive function and neurocognitive effects could be associated with its neuroprotective effects against neuroinflammation, oxidative stress-induced neuronal damage, inhibition of cholinergic deficit and mitochondrial dysfunction. These results correlate with available scientific evidence on the effect of hesperidin on cognitive dysfunction and neurobehavioural deficits in cognitive-impaired rats.
Collapse
|
10
|
Ma Y, Ma Z, Zhang Y, Luo C, Huang P, Tong J, Ding H, Liu H. Apigenin and baicalein ameliorate thoracic aortic structural deterioration and cognitive deficit via inhibiting AGEs/RAGE/NF-κB pathway in D-galactose-induced aging rats. Eur J Pharmacol 2024; 976:176660. [PMID: 38795756 DOI: 10.1016/j.ejphar.2024.176660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 05/04/2024] [Accepted: 05/16/2024] [Indexed: 05/28/2024]
Abstract
Apigenin and baicalein are structurally related flavonoids that have been reported to have multiple pharmacological activities. The aim of this study was to investigate the protective effects and potential mechanisms of apigenin and baicalein in D-galactose-induced aging rats. First, apigenin and baicalein showed remarkable antioxidant activity and anti-glycation activity in vitro. Secondly, the protective effects of apigenin and baicalein on aging rats were investigated. We found that apigenin and baicalein supplementation significantly ameliorated aging-related changes such as declines in the spatial learning and memory and histopathological damage of the hippocampus and thoracic aorta. In addition, our data showed that apigenin and baicalein alleviated oxidative stress as illustrated by decreasing MDA level, increasing SOD activity and GSH level. Further data showed that they significantly reduced the accumulation of advanced glycation end products (AGEs), inhibited the expression of RAGE, down-regulated phosphorylated nuclear factor (p-NF-κB (p65)). Our results suggested that the protective effects of apigenin and baicalein on aging rats were at least partially related to the inhibition of AGEs/RAGE/NF-κB pathway and the improvement of oxidative damage. Overall, apigenin and baicalein showed almost equal anti-aging efficacy. Our results provided an experimental basis for the application of apigenin and baicalein to delay the aging process.
Collapse
Affiliation(s)
- Yufang Ma
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Wuhan University, Wuhan, Hubei, 430072, China
| | - Zhenming Ma
- College of Software Engineering, Chengdu University of Information Technology, Chengdu, Sichuan, 610200, China
| | - Yiyuan Zhang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Wuhan University, Wuhan, Hubei, 430072, China
| | - Chunyun Luo
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Wuhan University, Wuhan, Hubei, 430072, China
| | - Puxin Huang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Wuhan University, Wuhan, Hubei, 430072, China
| | - Jing Tong
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Wuhan University, Wuhan, Hubei, 430072, China.
| | - Hong Ding
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Wuhan University, Wuhan, Hubei, 430072, China.
| | - Honghui Liu
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Wuhan University, Wuhan, Hubei, 430072, China.
| |
Collapse
|
11
|
Fan L, Zhang Z. Therapeutic potential of curcumin on the cognitive decline in animal models of Alzheimer's disease: a systematic review and meta-analysis. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:4499-4509. [PMID: 38265680 DOI: 10.1007/s00210-024-02946-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 01/09/2024] [Indexed: 01/25/2024]
Abstract
Curcumin, a polyphenol derived from the herb turmeric, has emerged as a prospective potential therapy in the treatment of Alzheimer's disease (AD). However, the efficacy of curcumin treatment in improving cognitive decline caused controversy recently. We aimed to systematically review the effect of curcumin on cognitive impairment in an animal model of AD. We conducted an exhaustive database search of related studies. Two investigators identified studies and independently extracted data. Stratified meta-analyses and meta-regression analyses were carried out to explore the sources of heterogeneity. Publication bias was assessed using funnel plots and Egger's test. Our systematic review included 33 articles. A meta-analysis of 29 publications showed that curcumin exerts significant positive effects on cognitive performance. For acquisition, the global estimated effect of curcumin was - 2.027 (95% CI - 2.435 to - 1.619, p < 0.001); for retention, the global estimated effect of curcumin was 1.606 (95% CI 1.101 to 2.111, p < 0.001). The stratified meta-analysis demonstrated that an increased effect size depended on diverse study characteristics. Additionally, publication bias was detected. We conclude that curcumin may reduce cognitive deficits in experimental AD. Furthermore, we emphasize that additional well-designed and well-reported animal studies are needed to inform further clinical studies.
Collapse
Affiliation(s)
- Longmin Fan
- Department of Integrated Traditional Chinese & Western Medicine, The Second Xiangya Hospital, Central South University, No. 139 Middle Renmin Road, Changsha, 410011, Hunan, China
| | - Zheyu Zhang
- Department of Integrated Traditional Chinese & Western Medicine, The Second Xiangya Hospital, Central South University, No. 139 Middle Renmin Road, Changsha, 410011, Hunan, China.
| |
Collapse
|
12
|
Cheriki M, Habibian M, Moosavi SJ. Curcumin attenuates brain aging by reducing apoptosis and oxidative stress. Metab Brain Dis 2024; 39:833-840. [PMID: 38687459 DOI: 10.1007/s11011-023-01326-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 11/17/2023] [Indexed: 05/02/2024]
Abstract
Brain aging is a physiological event, and oxidative stress and apoptosis are involved in the natural aging process of the brain. Curcumin is a natural antioxidant with potent anti-aging and neuroprotective properties. Therefore, we investigated the protective effects of curcumin on brain apoptosis and oxidative stress, brain-derived neurotrophic factor (BDNF), and vascular endothelial growth factor (VEGF) in aged rats. Old female Wistar rats were randomly divided into three groups (n = 7); as follows: (1) control; (2); saline and (3) curcumin (received 30 mg/kg of curcumin, 5 days/week for 8 weeks, intraperitoneally). Our results indicated that treatment with curcumin in aged rats attenuates brain lipid peroxidation, which was accompanied by a significant increase in the BDNF, VEGF, superoxide dismutase (SOD) activity, and anti-apoptotic protein BCl-2. No significant change in brain anti-apoptotic Bax protein levels was observed after curcumin treatment. The study indicates that curcumin could alleviate brain aging which may be due to attenuating oxidative stress, inhibiting apoptosis, and up-regulating SOD activity, which in turn enhances VEGF and BDNF. Therefore, curcumin has potential therapeutic value in the treatment of neurological apoptosis, neurogenesis, and angiogenesis changes caused by brain aging.
Collapse
Affiliation(s)
- Mehran Cheriki
- Department of Physical Education and Sports Sciences, Qaemshahar Branch, Islamic Azad University, Qaemshahar, Iran
| | - Masoumeh Habibian
- Department of Physical Education and Sports Sciences, Qaemshahar Branch, Islamic Azad University, Qaemshahar, Iran.
| | - Seyyed Jafar Moosavi
- Department of Physical Education and Sports Sciences, Qaemshahar Branch, Islamic Azad University, Qaemshahar, Iran
| |
Collapse
|
13
|
Singh A, Yadawa AK, Rizvi SI. Curcumin protects against aging-related stress and dysfunction through autophagy activation in rat brain. Mol Biol Rep 2024; 51:694. [PMID: 38796662 DOI: 10.1007/s11033-024-09639-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 05/13/2024] [Indexed: 05/28/2024]
Abstract
BACKGROUND Curcumin (Curcuma longa) is a well-known medicinal plant that induces autophagy in various model species, helping maintain cellular homeostasis. Its role as a caloric restriction mimetic (CRM) is being investigated. This study explores the potential of curcumin (CUR), as a CRM, to provide neuroprotection in D galactose induced accelerated senescence model of rats through modulation of autophagy. For six weeks, male rats received simultaneous supplementation of D-gal (300 mg/kg b.w., subcutaneously) and CUR (200 mg/kg b.w., oral). METHOD AND RESULTS The oxidative stress indices, antioxidants, and electron transport chain complexes in brain tissues were measured using standard methods. Reverse transcriptase-polymerase chain reaction (RT-PCR) gene expression analysis was used to evaluate the expression of autophagy, neuroprotection, and aging marker genes. Our results show that curcumin significantly (p ≤ 0.05) enhanced the level of antioxidants and considerably lowered the level of oxidative stress markers. Supplementing with CUR also increased the activity of electron transport chain complexes in the mitochondria of aged brain tissue, demonstrating the antioxidant potential of CUR at the mitochondrial level. CUR was found to upregulate the expression of the aging marker gene (SIRT-1) and the genes associated with autophagy (Beclin-1 and ULK-1), as well as neuroprotection (NSE) in the brain. The expression of IL-6 and TNF-α was downregulated. CONCLUSION Our findings demonstrate that CUR suppresses oxidative damage brought on by aging by modulating autophagy. These findings imply that curcumin might be beneficial for neuroprotection in aging and age-related disorders.
Collapse
Affiliation(s)
- Akanksha Singh
- Department of Biochemistry, University of Allahabad, Allahabad, Uttar Pradesh, 211002, India
| | - Arun Kumar Yadawa
- Department of Biochemistry, University of Allahabad, Allahabad, Uttar Pradesh, 211002, India
| | - Syed Ibrahim Rizvi
- Department of Biochemistry, University of Allahabad, Allahabad, Uttar Pradesh, 211002, India.
| |
Collapse
|
14
|
Islam MR, Jony MH, Thufa GK, Akash S, Dhar PS, Rahman MM, Afroz T, Ahmed M, Hemeg HA, Rauf A, Thiruvengadam M, Venkidasamy B. A clinical study and future prospects for bioactive compounds and semi-synthetic molecules in the therapies for Huntington's disease. Mol Neurobiol 2024; 61:1237-1270. [PMID: 37698833 DOI: 10.1007/s12035-023-03604-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 08/21/2023] [Indexed: 09/13/2023]
Abstract
A neurodegenerative disorder (ND) refers to Huntington's disease (HD) which affects memory loss, weight loss, and movement dysfunctions such as chorea and dystonia. In the striatum and brain, HD most typically impacts medium-spiny neurons. Molecular genetics, excitotoxicity, oxidative stress (OS), mitochondrial, and metabolic dysfunction are a few of the theories advanced to explicit the pathophysiology of neuronal damage and cell death. Numerous in-depth studies of the literature have supported the therapeutic advantages of natural products in HD experimental models and other treatment approaches. This article briefly discusses the neuroprotective impacts of natural compounds against HD models. The ability of the discovered natural compounds to suppress HD was tested using either in vitro or in vivo models. Many bioactive compounds considerably lessened the memory loss and motor coordination brought on by 3-nitropropionic acid (3-NP). Reduced lipid peroxidation, increased endogenous enzymatic antioxidants, reduced acetylcholinesterase activity, and enhanced mitochondrial energy generation have profoundly decreased the biochemical change. It is significant since histology showed that therapy with particular natural compounds lessened damage to the striatum caused by 3-NP. Moreover, natural products displayed varying degrees of neuroprotection in preclinical HD studies because of their antioxidant and anti-inflammatory properties, maintenance of mitochondrial function, activation of autophagy, and inhibition of apoptosis. This study highlighted about the importance of bioactive compounds and their semi-synthetic molecules in the treatment and prevention of HD.
Collapse
Affiliation(s)
- Md Rezaul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, 1207, Dhaka, Bangladesh
| | - Maruf Hossain Jony
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, 1207, Dhaka, Bangladesh
| | - Gazi Kaifeara Thufa
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, 1207, Dhaka, Bangladesh
| | - Shopnil Akash
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, 1207, Dhaka, Bangladesh
| | - Puja Sutra Dhar
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, 1207, Dhaka, Bangladesh
| | - Md Mominur Rahman
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, 1207, Dhaka, Bangladesh
| | - Tahmina Afroz
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, 1207, Dhaka, Bangladesh
| | - Muniruddin Ahmed
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, 1207, Dhaka, Bangladesh
| | - Hassan A Hemeg
- Department of Medical Laboratory Technology, College of Applied Medical Sciences, Taibah University, Al-Medinah Al-Monawara, Saudi Arabia
| | - Abdur Rauf
- Department of Chemistry, University of Swabi, Swabi, Khyber Pukhtanukha, Pakistan.
| | - Muthu Thiruvengadam
- Department of Applied Bioscience, College of Life and Environmental Science, Konkuk University, Seoul, 05029, South Korea.
| | - Baskar Venkidasamy
- Department of Oral and Maxillofacial Surgery, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 600 077, India.
| |
Collapse
|
15
|
Xiao Y, Duan C, Gong P, Zhao Q, Wang XH, Geng F, Zeng J, Luo T, Xu Y, Zhao J. Kinsenoside from Anoectochilus roxburghii (Wall.) Lindl. suppressed oxidative stress to attenuate aging-related learning and memory impairment via ERK/Nrf2 pathway. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117152. [PMID: 37689328 DOI: 10.1016/j.jep.2023.117152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 09/02/2023] [Accepted: 09/06/2023] [Indexed: 09/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Anoectochilusroxburghii (Wall.) Lindl. (AR), as an exceptionally valuable traditional Chinese medicine, has been widely used to treat hepatitis, cancer, diabetes, etc. But, the effects and the primary functioning element of AR on attenuating aging and aging-related learning and memory degradation has not yet been explored. AIM OF THE STUDY This study aimed at exploring the protective property of aqueous extract of AR (AEAR) on alleviation of aging and aging-related learning and memory impairment in vivo, and further investigating the main active ingredient and mechanism of AEAR. MATERIALS AND METHODS D-galactose (D-gal) induced aging mice and HT22 cells exposed with L-Glutamic acid (Glu) were used as in vivo and in vitro model, separately. The effects of AEAR on aging and aging-related learning and memory degradation were explored by using morris water maze test, immunohistochemistry staining, biochemistry assay, etc. The effects and mechanism of AEAR and Kinsenoside (Kin) on antioxidation in vitro were investigated by cell viability assay, biochemistry assay, qRT-PCR, western blotting and molecular docking studies. RESULTS Treatment with AEAR (containing 69.52 ± 0.85% Kin, i.g.) for 63 days, alleviated low growth rate, abnormal brain, liver and thymus index, and decline in learning and memory capability of aging mice. Meanwhile, AEAR inhibited the decreased activities of SOD and GSH-PX, the decline in the ratio of GSH to GSSG, and the increase of MDA in both serum and brain, and also promoted the Nrf2 nuclear translocation in brain of aging mice induced by D-gal. The effects of AEAR on alleviating abnormal physiological characteristics, attenuating learning and memory impairment, and inhibiting oxidative stress in aging mice was similar to or even better than that of Vc. In HT22 cells exposed with Glu, Kin increased the cell viability, up-regulated the activities of SOD and GSH-PX, enhanced the ratio of GSH to GSSG, and down-regulated MDA, which was superior to AEAR. Kin up-regulated the ratio of p-ERK1/2 to ERK1/2, promoted the Nrf2 nuclear translocation and its downstream target genes, i.e. HO-1, NQO-1, GCLC and GCLM expression at the mRNA and protein levels, which were consistent with AEAR. Further, molecular docking results also confirmed that Kin had strong binding energy with ERK1 and ERK2. CONCLUSION The present study indicated that Kin could alleviate the oxidative stress in aging mice via activating the ERK/Nrf2 signaling pathway, in order to attenuate aging and aging-related learning and memory impairment, as the main active ingredient of AR.
Collapse
Affiliation(s)
- Yu Xiao
- Engineering Research Center of Sichuan-Tibet Traditional Medicinal Plant, Chengdu University, Chengdu, 610106, China; College of Food and Biological Engineering, Chengdu University, Chengdu, 610106, China.
| | - Changsong Duan
- Engineering Research Center of Sichuan-Tibet Traditional Medicinal Plant, Chengdu University, Chengdu, 610106, China; College of Food and Biological Engineering, Chengdu University, Chengdu, 610106, China.
| | - Pushuang Gong
- Engineering Research Center of Sichuan-Tibet Traditional Medicinal Plant, Chengdu University, Chengdu, 610106, China; College of Food and Biological Engineering, Chengdu University, Chengdu, 610106, China.
| | - Qi Zhao
- Engineering Research Center of Sichuan-Tibet Traditional Medicinal Plant, Chengdu University, Chengdu, 610106, China.
| | - Xin Hui Wang
- College of Food and Biological Engineering, Chengdu University, Chengdu, 610106, China.
| | - Fang Geng
- College of Food and Biological Engineering, Chengdu University, Chengdu, 610106, China.
| | - Jin Zeng
- Key Laboratory of Biological Evaluation of Traditional Chinese Medicine Quality of National Administration of Traditional Chinese Medicine, Translational Chinese Medicine Key Laboratory of Sichuan Province, Sichuan Institute for Translational Chinese Medicine, Sichuan Academy of Chinese Medical Sciences, Chengdu, 610041, China.
| | - Tianfeng Luo
- Engineering Research Center of Sichuan-Tibet Traditional Medicinal Plant, Chengdu University, Chengdu, 610106, China; College of Food and Biological Engineering, Chengdu University, Chengdu, 610106, China.
| | - Yisha Xu
- College of Food and Biological Engineering, Chengdu University, Chengdu, 610106, China.
| | - Junning Zhao
- National Key Laboratory of Drug Regulatory Science, National Institutes for Food and Drug Control, National Medical Products Administration of China, Beijing, 100037, China; Key Laboratory of Biological Evaluation of Traditional Chinese Medicine Quality of National Administration of Traditional Chinese Medicine, Translational Chinese Medicine Key Laboratory of Sichuan Province, Sichuan Institute for Translational Chinese Medicine, Sichuan Academy of Chinese Medical Sciences, Chengdu, 610041, China.
| |
Collapse
|
16
|
Wang X, Fu X, Luo X, Lai Y, Cai C, Liao Y, Dai Z, Fang S, Fang J. Network Proximity Analysis Deciphers the Pharmacological Mechanism of Osthole against D-Galactose Induced Cognitive Disorder in Rats. Molecules 2023; 29:21. [PMID: 38202603 PMCID: PMC10779601 DOI: 10.3390/molecules29010021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 12/07/2023] [Accepted: 12/12/2023] [Indexed: 01/12/2024] Open
Abstract
Osthole, a natural coumarin found in various medicinal plants, has been previously reported to have neuroprotective effects. However, the specific mechanism by which Osthole alleviates dysmnesia associated with Alzheimer's disease (AD) remains unclear. This study aimed to investigate the neuroprotective properties of Osthole against cognitive impairment in rats induced by D-galactose and elucidate its pharmacological mechanism. The rat model was established by subcutaneously injecting D-galactose at a dose of 150 mg/kg/day for 56 days. The effect of Osthole on cognitive impairment was evaluated by behavior and biochemical analysis. Subsequently, a combination of in silico prediction and experimental validation was performed to verify the network-based predictions, using western blot, Nissl staining, and immunofluorescence. The results demonstrate that Osthole could improve memory dysfunction induced by D-galactose in Sprague Dawley male rats. A network proximity-based approach and integrated pathways analysis highlight two key AD-related pathological processes that may be regulated by Osthole, including neuronal apoptosis, i.e., neuroinflammation. Among them, the pro-apoptotic markers (Bax), anti-apoptotic protein (Bcl-2), the microgliosis (Iba-1), Astro-cytosis (GFAP), and inflammatory cytokines (TNF-R1) were evaluated in both hippocampus and cortex. The results indicated that Osthole significantly ameliorated neuronal apoptosis and neuroinflammation in D-galactose-induced cognitive impairment rats. In conclusion, this study sheds light on the pharmacological mechanism of Osthole in mitigating D-galactose-induced memory impairment and identifies Osthole as a potential drug candidate for AD treatment, targeting multiple signaling pathways through network proximity and integrated pathways analysis.
Collapse
Affiliation(s)
- Xue Wang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; (X.W.); (X.F.); (X.L.); (Y.L.); (Y.L.); (Z.D.)
| | - Xiaomei Fu
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; (X.W.); (X.F.); (X.L.); (Y.L.); (Y.L.); (Z.D.)
| | - Xiurong Luo
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; (X.W.); (X.F.); (X.L.); (Y.L.); (Y.L.); (Z.D.)
| | - Yiyi Lai
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; (X.W.); (X.F.); (X.L.); (Y.L.); (Y.L.); (Z.D.)
| | - Chuipu Cai
- Division of Data Intelligence, Department of Computer Science, Key Laboratory of Intelligent Manufacturing Technology of Ministry of Education, College of Engineering, Shantou University, Shantou 515063, China;
| | - Yanfang Liao
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; (X.W.); (X.F.); (X.L.); (Y.L.); (Y.L.); (Z.D.)
| | - Zhao Dai
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; (X.W.); (X.F.); (X.L.); (Y.L.); (Y.L.); (Z.D.)
| | - Shuhuan Fang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; (X.W.); (X.F.); (X.L.); (Y.L.); (Y.L.); (Z.D.)
| | - Jiansong Fang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; (X.W.); (X.F.); (X.L.); (Y.L.); (Y.L.); (Z.D.)
| |
Collapse
|
17
|
Fan C, Wang JX, Xiong ZE, Hu SS, Zhou AJ, Yuan D, Zhang CC, Zhou ZY, Wang T. Saponins from Panax japonicus improve neuronal mitochondrial injury of aging rats. PHARMACEUTICAL BIOLOGY 2023; 61:1401-1412. [PMID: 37667488 PMCID: PMC10484050 DOI: 10.1080/13880209.2023.2244532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 06/16/2023] [Accepted: 07/31/2023] [Indexed: 09/06/2023]
Abstract
CONTEXT Panax japonicus is the dried rhizome of Panax japonicus C.A. Mey. (Araliaceae). Saponins from Panax japonicus (SPJ) exhibit anti-oxidative and anti-aging effects. OBJECTIVE We evaluated the neuroprotective effects of SPJ on aging rats. MATERIALS AND METHODS Sprague-Dawley rats (18-months-old) were randomly divided into aging and SPJ groups (n = 8). Five-month-old rats were taken as the adult control (n = 8). The rats were fed a normal chow diet or the SPJ-containing diet (10 or 30 mg/kg) for 4 months. An in vitro model was established by d-galactose (d-Gal) in the SH-SY5Y cell line and pretreated with SPJ (25 and 50 µg/mL). The neuroprotection of SPJ was evaluated via Nissl staining, flow cytometry, transmission electron microscopy and Western blotting in vivo and in vitro. RESULTS SPJ improved the neuronal degeneration and mitochondrial morphology that are associated with aging. Meanwhile, SPJ up-regulated the protein levels of mitofusin 2 (Mfn2) and optic atrophy 1 (Opa1) and down-regulated the protein level of dynamin-like protein 1 (Drp1) in the hippocampus of aging rats (p < 0.05 or p < 0.01 vs. 22 M). The in vitro studies also demonstrated that SPJ attenuated d-Gal-induced cell senescence concomitant with the improvement in mitochondrial function; SPJ, also up-regulated the Mfn2 and Opa1 protein levels, whereas the Drp1 protein level (p < 0.05 or p < 0.01 vs. d-Gal group) was down-regulated. DISCUSSION AND CONCLUSIONS Further research on the elderly population will contribute to the development and utilization of SPJ for the treatment of neurodegenerative disorders.
Collapse
Affiliation(s)
- Cheng Fan
- Institute of Pharmaceutical Process, Academy of Nutrition and Health Hubei Province Key Laboratory of Occupational Hazard Identification and Control School of Medicine, Wuhan University of Science and TechnologyWuhan, China
| | - Jin-Xin Wang
- College of Medical Science, Three Gorges University, Yichang, Hubei, China
| | - Zhang-E. Xiong
- Department of Gastroenterology, Wuhan Third Hospital, Wuhan, China
| | - Shan-Shan Hu
- College of Medical Science, Three Gorges University, Yichang, Hubei, China
| | - Ao-Jia Zhou
- Institute of Pharmaceutical Process, Academy of Nutrition and Health Hubei Province Key Laboratory of Occupational Hazard Identification and Control School of Medicine, Wuhan University of Science and TechnologyWuhan, China
| | - Ding Yuan
- College of Medical Science, Three Gorges University, Yichang, Hubei, China
| | - Chang-Cheng Zhang
- College of Medical Science, Three Gorges University, Yichang, Hubei, China
| | - Zhi-Yong Zhou
- College of Medical Science, Three Gorges University, Yichang, Hubei, China
| | - Ting Wang
- Institute of Pharmaceutical Process, Academy of Nutrition and Health Hubei Province Key Laboratory of Occupational Hazard Identification and Control School of Medicine, Wuhan University of Science and TechnologyWuhan, China
| |
Collapse
|
18
|
Dagsuyu E, Koroglu P, Gul IB, Bulan OK, Yanardag R. Oxidative brain and cerebellum injury in diabetes and prostate cancer model: Protective effect of metformin. J Biochem Mol Toxicol 2023; 37:e23440. [PMID: 37354076 DOI: 10.1002/jbt.23440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 05/24/2023] [Accepted: 06/14/2023] [Indexed: 06/26/2023]
Abstract
The body can host the spread of prostate cancer cells. Metastases from prostate cancer are more frequently seen in the brain, liver, lungs, and lymph nodes. A well-known antidiabetic drug, metformin, is also known to have antitumor effects. Our study focuses on the evaluation of potential metformin protective effects on brain and cerebellum damage in streptozotocin (STZ)-induced diabetic and Dunning prostate cancer models. In this investigation, six groups of male Copenhagen rats were created: control, diabetic (D), cancer (C), diabetic + cancer (DC), cancer + metformin, and diabetic + cancer + metformin. The brain and cerebellum tissues of the rats were taken after sacrifice. Oxidative stress markers including reduced glutathione level, lipid peroxidation, glutathione reductase, glutathione peroxidase, glutathione-S-transferase, catalase, superoxide dismutase activities, reactive oxygen species, total oxidant and total antioxidant status, lactate dehydrogenase, xanthine oxidase, acetylcholinesterase activities, protein carbonyl contents, nitric oxide and OH-proline levels, sodium potassium ATPase, carbonic anhydrase, and glucose-6-phosphate dehydrogenase activities; glycoprotein levels including hexose, hexosamine, fucose, and sialic acid levels; and histone deacetylase activity as a cancer marker were determined. Oxidative stress markers were impaired and glycoprotein levels and histone deacetylase activity were increased in the D, C, and DC groups. Metformin therapy reversed these effects. Metformin was found to protect the brain and cerebellum of STZ-induced diabetic rats with Dunning prostate cancer from harm caused by MAT-Lylu metastatic cells.
Collapse
Affiliation(s)
- Eda Dagsuyu
- Department of Chemistry, Faculty of Engineering, Istanbul University-Cerrahpaşa, Istanbul, Turkey
| | - Pınar Koroglu
- Department of Histology and Embryology, Faculty of Medicine, Halic University, Istanbul, Turkey
| | - Ilknur B Gul
- Department of Biology, Faculty of Science, Istanbul University, Istanbul, Turkey
| | - Omur K Bulan
- Department of Biology, Faculty of Science, Istanbul University, Istanbul, Turkey
| | - Refiye Yanardag
- Department of Chemistry, Faculty of Engineering, Istanbul University-Cerrahpaşa, Istanbul, Turkey
| |
Collapse
|
19
|
Naewla S, Prajit R, Sritawan N, Suwannakot K, Sirichoat A, Aranarochana A, Wigmore P, Welbat JU. Hesperidin ameliorates impairment in hippocampal neural stem cells related to apoptosis induced by methotrexate in adult rats. Biomed Pharmacother 2023; 166:115329. [PMID: 37597319 DOI: 10.1016/j.biopha.2023.115329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 08/05/2023] [Accepted: 08/12/2023] [Indexed: 08/21/2023] Open
Abstract
Neurogenesis is a process of generating neural stem cells (NSCs) as functional neurons can be decreased after chemotherapy treatments. Methotrexate (MTX) is a folate antagonist that is used for cancer treatment but has negative effects, including oxidative stress, neuronal apoptosis and cognitive impairments. Hesperidin (Hsd), a flavonoid found in citrus fruits, has antioxidant and neuroprotection properties. This study investigated whether Hsd could attenuate impairments of hippocampal neural stem cells related to apoptosis induced by MTX. Spraque-Dawley rats (n = 24) were divided into 4 groups: (1) Vehicle group received propylene glycol (21 days) and 0.9% normal saline (day 8 and 15), (2) Hsd group received 100 mg/kg (21 days), (3) MTX group received 75 mg/kg (days 8 and 15) and (4) MTX+Hsd group received MTX, 75 mg/kg (day 8 and 15) and Hsd 100 mg/kg (21 days). Our results showed that MTX decreased hippocampal neural stem cells including SRY (sex determining region Y)-box 2 (SOX2) and nestin. MTX diminished vascular related (VR) Ki-67 positive cells in the hippocampus but not non-vascular related (NVR) Ki-67. Additionally, MTX reduced SOX2, nestin, postsynaptic density protein 95 (PSD-95) and B-cell lymphoma-2 family of proteins (Bcl-2), whereas Bax and caspase-3 were enhanced in the hippocampal tissues. Interestingly, co-treatment with Hsd and MTX revealed upregulation of SOX2, nestin and VR Ki-67 positive cells as well as elevated SOX2, nestin, PSD-95 and Bcl-2 proteins. Moreover, receiving both Hsd and MTX significantly suppressed increased Bax and caspase-3. These results confirm that Hsd can ameliorate MTX-induced impairments of hippocampal NSC proliferation and neuronal apoptosis.
Collapse
Affiliation(s)
- Salinee Naewla
- Department of Basic Medical Science, Faculty of Medicine Vajira Hospital, Navamindradhiraj University, Bangkok, Thailand; Neurogenesis Research Group, Department of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Ram Prajit
- Department of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; Neurogenesis Research Group, Department of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Nataya Sritawan
- Department of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; Neurogenesis Research Group, Department of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Kornrawee Suwannakot
- Department of Basic Medical Science, Faculty of Medicine Vajira Hospital, Navamindradhiraj University, Bangkok, Thailand; Neurogenesis Research Group, Department of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Apiwat Sirichoat
- Department of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; Neurogenesis Research Group, Department of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Anusara Aranarochana
- Department of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; Neurogenesis Research Group, Department of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Peter Wigmore
- Queen's Medical Centre, School of Life Sciences, Medical School, University of Nottingham, Nottingham NG7 2RD, UK
| | - Jariya Umka Welbat
- Department of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; Neurogenesis Research Group, Department of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand.
| |
Collapse
|
20
|
Yoshimoto N, Nakamura Y, Hisaoka-Nakashima K, Morioka N. Mitochondrial dysfunction and type I interferon signaling induce anxiodepressive-like behaviors in mice with neuropathic pain. Exp Neurol 2023; 367:114470. [PMID: 37327964 DOI: 10.1016/j.expneurol.2023.114470] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/22/2023] [Accepted: 06/11/2023] [Indexed: 06/18/2023]
Abstract
Clinical evidence indicates that major depression is a common comorbidity of chronic pain, including neuropathic pain; however, the cellular basis for chronic pain-mediated major depression remains unclear. Mitochondrial dysfunction induces neuroinflammation and has been implicated in various neurological diseases, including depression. Nevertheless, the relationship between mitochondrial dysfunction and anxiodepressive-like behaviors in the neuropathic pain state remains unclear. The current study examined whether hippocampal mitochondrial dysfunction and downstream neuroinflammation are involved in anxiodepressive-like behaviors in mice with neuropathic pain, which was induced by partial sciatic nerve ligation (PSNL). At 8 weeks after surgery, there was decreased levels of mitochondrial damage-associated molecular patterns, such as cytochrome c and mitochondrial transcription factor A, and increased level of cytosolic mitochondrial DNA in the contralateral hippocampus, suggesting the development of mitochondrial dysfunction. Type I interferon (IFN) mRNA expression in the hippocampus was also increased at 8 weeks after PSNL surgery. The restoration of mitochondrial function by curcumin blocked the increased cytosolic mitochondrial DNA and type I IFN expression in PSNL mice and improved anxiodepressive-like behaviors. Blockade of type I IFN signaling by anti-IFN alpha/beta receptor 1 antibody also improved anxiodepressive-like behaviors in PSNL mice. Together, these findings suggest that neuropathic pain induces hippocampal mitochondrial dysfunction followed by neuroinflammation, which may contribute to anxiodepressive-behaviors in the neuropathic pain state. Improving mitochondrial dysfunction and inhibiting type I IFN signaling in the hippocampus might be a novel approach to reducing comorbidities associated with neuropathic pain, such as depression and anxiety.
Collapse
Affiliation(s)
- Natsuki Yoshimoto
- Department of Pharmacology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Kasumi 1-2-3, Minami-ku, Hiroshima, Japan
| | - Yoki Nakamura
- Department of Pharmacology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Kasumi 1-2-3, Minami-ku, Hiroshima, Japan
| | - Kazue Hisaoka-Nakashima
- Department of Pharmacology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Kasumi 1-2-3, Minami-ku, Hiroshima, Japan
| | - Norimitsu Morioka
- Department of Pharmacology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Kasumi 1-2-3, Minami-ku, Hiroshima, Japan.
| |
Collapse
|
21
|
Assi AA, Farrag MMY, Badary DM, Allam EAH, Nicola MA. Protective effects of curcumin and Ginkgo biloba extract combination on a new model of Alzheimer's disease. Inflammopharmacology 2023; 31:1449-1464. [PMID: 36856916 PMCID: PMC10229698 DOI: 10.1007/s10787-023-01164-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 02/10/2023] [Indexed: 03/02/2023]
Abstract
Alzheimer's disease (AD) is one of the most prevalent neurodegenerative illnesses, and yet, no workable treatments have been discovered to prevent or reverse AD. Curcumin (CUR), the major polyphenolic compound of turmeric (Curcuma longa) rhizomes, and Ginkgo biloba extract (GBE) are natural substances derived from conventional Chinese herbs that have long been shown to provide therapeutic advantages for AD. The uptake of curcumin into the brain is severely restricted by its low ability to cross the blood-brain barrier (BBB). Meanwhile, GBE has been shown to improve BBB permeability. The present study evaluated the neuroprotective effects and pharmacokinetic profile of curcumin and GBE combination to find out whether GBE can enhance curcumin's beneficial effects in AD by raising its brain concentration. Results revealed that CUR + GBE achieved significantly higher levels of curcumin in the brain and plasma after 30 min and 1 h of oral administration, compared to curcumin alone, and this was confirmed by reversed phase high-performance liquid chromatography (RP-HPLC). The effect of combined oral treatment, for 28 successive days, on cognitive function and other AD-like alterations was studied in scopolamine-heavy metal mixtures (SCO + HMM) AD model in rats. The combination reversed at least, partially on the learning and memory impairment induced by SCO + HMM. This was associated with a more pronounced inhibitory effect on acetylcholinesterase (AChE), caspase-3, hippocampal amyloid beta (Aβ1-42), and phosphorylated tau protein (p-tau) count, and pro-inflammatory cytokines tumor necrosis factor-alpha (TNF-α) and interleukine-1beta (IL-1β), as compared to the curcumin alone-treated group. Additionally, the combined treatment significantly decreased lipid peroxidation (MDA) and increased levels of reduced glutathione (GSH), when compared with the curcumin alone. These findings support the concept that the combination strategy might be an alternative therapy in the management/prevention of neurological disorders. This study sheds light on a new approach for exploring new phyto-therapies for AD and emphasizes that more research should focus on the synergic effects of herbal drugs in future.
Collapse
Affiliation(s)
- Abdel-Azim Assi
- Department of Pharmacology, Faculty of Medicine, Assiut University, Assiut, Egypt, 71524
| | - Magda M Y Farrag
- Department of Pharmacology, Faculty of Medicine, Assiut University, Assiut, Egypt, 71524
| | - Dalia M Badary
- Pathology Department, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Essmat A H Allam
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Assiut University, Assiut, 71526, Egypt
| | - Mariam A Nicola
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Assiut University, Assiut, 71526, Egypt.
| |
Collapse
|
22
|
Salama AAA, Yassen NN, Mansour HM. Naringin protects mice from D-galactose-induced lung aging and mitochondrial dysfunction: Implication of SIRT1 pathways. Life Sci 2023; 324:121471. [PMID: 36746356 DOI: 10.1016/j.lfs.2023.121471] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/23/2023] [Accepted: 01/31/2023] [Indexed: 02/07/2023]
Abstract
AIM Aging is the leading risk factor for diminishing lung function, as well as injury and lung disorder. The target of our research was to examine the potential protective effect of naringin and the possible role of SIRT1 in mice with D-galactose-induced lung aging, by evaluating its effects on antioxidant systems, mitochondrial biogenesis, autophagy, and apoptosis, by referring to the potential involvement of Nrf2/NQO1, LKB1/AMPK/PGC-1α, FOXO1, and P53/caspase-3 signaling. MATERIAL AND METHODS The mice were randomly sorted into 5 groups (10 each): 1st: normal group received subcutaneous normal saline and intragastric distilled water, 2nd: naringin 300 mg/kg orally, 3rd: D-galactose (200 mg/kg/day) was administered subcutaneously into mice for eight weeks, to accelerate aging, 4th & 5th: oral naringin (150, 300 mg/kg) was given daily concurrently with D-galactose injection for 8 weeks. KEY FINDING In silico investigation revealed that naringin substantially stimulates the SIRT1 and AMPK molecules. At the molecular level, our findings indicated that treatment with naringin stimulated the mitochondrial biogenesis pathway through regulation of the LKB1/AMPK/PGC-1α signals and upregulated FOXO1-mediated autophagy. Furthermore, naringin exhibited antioxidant properties by activating the Nrf2/NQO1 pathway and inhibiting MDA and AGEs levels. In addition, Naringin ameliorated alveolar spaces destruction and bronchial wall thickening, as well as alleviated P53/caspase-3 apoptosis signaling. SIGNIFICANCE Naringin exerts protective effects against D-galactose-induced lung aging and enhances longevity by activating SIRT1. SIRT1 regulates various aging-related molecular pathways via restoring pro-oxidant/antioxidant homeostasis, activation of mitochondrial biogenesis, modulating of autophagy and inhibition of apoptosis.
Collapse
Affiliation(s)
- Abeer A A Salama
- Pharmacology Department, National Research Centre, El-Buhouth St., Dokki, Cairo 12622, Egypt
| | - Noha N Yassen
- Pathology Department, National Research Centre, El-Buhouth St., Dokki, Cairo 12622, Egypt
| | - Heba M Mansour
- Department of Pharmacology and Toxicology, Faculty of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology (MUST), 6th of October City, Giza, Egypt.
| |
Collapse
|
23
|
Yao J, Wei W, Wen J, Cao Y, Li H. The efficacy and mechanism of berberine in improving aging-related cognitive dysfunction: A study based on network pharmacology. Front Neurosci 2023; 17:1093180. [PMID: 36743801 PMCID: PMC9895386 DOI: 10.3389/fnins.2023.1093180] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 01/06/2023] [Indexed: 01/21/2023] Open
Abstract
Objective To analyze the effects and mechanisms of berberine in the treatment of aging-related cognitive dysfunction based on network pharmacology methods, molecular docking techniques, and animal experiments. Methods A mouse model of cognitive dysfunction was constructed by subcutaneous injection of D-galactose (D-gal) for 10 weeks, and the neuroprotective effects of berberine on aging-related cognitive dysfunction mice were evaluated by the Morris water maze (MWM) and immunofluorescence staining. The targets of berberine were obtained by SwissTargetPrediction, GeneCards, and PharmMapper. Putative targets of cognitive dysfunction were obtained by GeneCards, TTD, and DrugBank database. The STRING database and Cytoscape software were applied for protein-protein interaction (PPI) analysis and further screening of core targets. The DAVID database was used for Kyoto Encyclopedia of Genes and Genomes (KEGG) and gene ontology (GO) enrichment analysis to clarify the biological processes and pathways involved in the intersection targets, and AutoDockTools was adopted for molecular docking verification of core targets. Finally, the core genes were validated using real-time quantitative PCR. Results The MWM results showed that treatment with berberine significantly improved spatial learning and memory in mice with cognitive decline induced by D-gal. Immunofluorescence staining indicated that berberine modified the levels of aging-related markers in the brain. A total of 386 berberine putative targets associated with cognitive dysfunction were identified based on the public database. The core targets of berberine for improving cognitive function, include Mapk1, Src, Ctnnb1, Akt1, Pik3ca, Tp53, Jun, and Hsp90aa1. GO enrichment and KEGG pathway enrichment analyses indicated that the mechanism of berberine in the treatment of aging-related cognitive dysfunction is attributed to pathways such as PI3K-AKT and MAPK pathways. In vivo experiments further confirmed that Akt1, Ctnnb1, Tp53, and Jun were involved in the neuroprotective actions of berberine. Conclusion This study reveals the multi-target and multi-pathway effects of berberine on regulating aging-related cognitive dysfunction, which provides preclinical evidence and may promote new drug development in mitigating cognitive dysfunction.
Collapse
Affiliation(s)
- Jiuxiu Yao
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Wei Wei
- Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, China,Department of Geriatrics, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jiayu Wen
- Graduate College, Beijing University of Chinese Medicine, Beijing, China
| | - Yu Cao
- Department of Geriatrics, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China,*Correspondence: Yu Cao,
| | - Hao Li
- Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, China,Department of Geriatrics, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China,Hao Li,
| |
Collapse
|
24
|
Islam F, Islam MM, Khan Meem AF, Nafady MH, Islam MR, Akter A, Mitra S, Alhumaydhi FA, Emran TB, Khusro A, Simal-Gandara J, Eftekhari A, Karimi F, Baghayeri M. Multifaceted role of polyphenols in the treatment and management of neurodegenerative diseases. CHEMOSPHERE 2022; 307:136020. [PMID: 35985383 DOI: 10.1016/j.chemosphere.2022.136020] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 07/21/2022] [Accepted: 08/07/2022] [Indexed: 06/15/2023]
Abstract
Neurodegenerative diseases (NDDs) are conditions that cause neuron structure and/or function to deteriorate over time. Genetic alterations may be responsible for several NDDs. However, a multitude of physiological systems can trigger neurodegeneration. Several NDDs, such as Huntington's, Parkinson's, and Alzheimer's, are assigned to oxidative stress (OS). Low concentrations of reactive oxygen and nitrogen species are crucial for maintaining normal brain activities, as their increasing concentrations can promote neural apoptosis. OS-mediated neurodegeneration has been linked to several factors, including notable dysfunction of mitochondria, excitotoxicity, and Ca2+ stress. However, synthetic drugs are commonly utilized to treat most NDDs, and these treatments have been known to have side effects during treatment. According to providing empirical evidence, studies have discovered many occurring natural components in plants used to treat NDDs. Polyphenols are often safer and have lesser side effects. As, epigallocatechin-3-gallate, resveratrol, curcumin, quercetin, celastrol, berberine, genistein, and luteolin have p-values less than 0.05, so they are typically considered to be statistically significant. These polyphenols could be a choice of interest as therapeutics for NDDs. This review highlighted to discusses the putative effectiveness of polyphenols against the most prevalent NDDs.
Collapse
Affiliation(s)
- Fahadul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, 1207, Bangladesh
| | - Md Mohaimenul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, 1207, Bangladesh
| | - Atkia Farzana Khan Meem
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, 1207, Bangladesh
| | - Mohamed H Nafady
- Faculty of Applied Health Science Technology, Misr University for Science and Technology, Giza, 12568, Egypt
| | - Md Rezaul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, 1207, Bangladesh
| | - Aklima Akter
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, 1207, Bangladesh
| | - Saikat Mitra
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Fahad A Alhumaydhi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, 52571, Saudi Arabia
| | - Talha Bin Emran
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, 1207, Bangladesh; Department of Pharmacy, BGC Trust University Bangladesh, Chittagong, 4381, Bangladesh.
| | - Ameer Khusro
- Department of Biotechnology, Hindustan College of Arts & Science, Padur, OMR, Chennai, 603103, India; Centre for Research and Development, Department of Biotechnology, Hindustan College of Arts & Science, Padur, OMR, Chennai, 603103, India
| | - Jesus Simal-Gandara
- Universidade de Vigo, Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, E32004, Ourense, Spain.
| | - Aziz Eftekhari
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Pharmacology & Toxicology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fatemeh Karimi
- Department of Chemical Engineering, Quchan University of Technology, Quchan, Iran.
| | - Mehdi Baghayeri
- Department of Chemistry, Faculty of Science, Hakim Sabzevari University, PO. Box 397, Sabzevar, Iran.
| |
Collapse
|
25
|
Ahmadabady S, Hosseini M, Shafei MN, Marefati N, Salmani H, Amirahmadi S, Mortazavi Sani SS, Beheshti F. The effects of curcumin in learning and memory impairment associated with hypothyroidism in juvenile rats: the role of nitric oxide, oxidative stress, and brain-derived neurotrophic factor. Behav Pharmacol 2022; 33:466-481. [PMID: 36094051 DOI: 10.1097/fbp.0000000000000694] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The effect of curcumin (Cur) on cognitive impairment and the possible role of brain tissue oxidative stress, nitric oxide (NO) levels, and brain-derived neurotrophic factor (BDNF) were investigated in juvenile hypothyroid rats. The juvenile rats (21 days old) were allocated into the following groups: (1) control; (2) hypothyroid (0.05% propylthiouracil (PTU) in drinking water); (3-5) hypothyroid-Cur 50, 100, and 150, which in these groups 50, 100, or 150 mg/kg, Cur was orally administered by gavage during 6 weeks. In the hypothyroid rats, the time elapsed and the traveled distance to locate the hidden platform in the learning trials of Morris water maze (MWM) increased, and on the probe day, the amount of time spent in the target quadrant and the distance traveled in there was decreased. Hypothyroidism also decreased the latency and increased the time spent in the darkroom of the passive avoidance (PA) test. Compared with the hypothyroid group, Cur enhanced the performance of the rats in both MWM and PA tests. In addition, Cur reduced malondialdehyde concentration and NO metabolites; however, it increased thiol content as well as the activity of catalase (CAT) and superoxide dismutase enzymes in both the cortex and hippocampus. Cur also increased hippocampal synthesis of BDNF in hypothyroid rats. The beneficial effects of Cur cognitive function in juvenile hypothyroid rats might be attributed to its protective effect against oxidative stress and potentiation of BDNF production.
Collapse
Affiliation(s)
- Somaieh Ahmadabady
- Division of Neurocognitive Sciences, Psychiatry and Behavioral Sciences Research Center, Mashhad University of Medical Sciences
| | - Mahmoud Hosseini
- Division of Neurocognitive Sciences, Psychiatry and Behavioral Sciences Research Center, Mashhad University of Medical Sciences
- Neuroscience Research Center, Mashhad University of Medical Sciences
| | | | - Narges Marefati
- Division of Neurocognitive Sciences, Psychiatry and Behavioral Sciences Research Center, Mashhad University of Medical Sciences
| | - Hossein Salmani
- Applied Biomedical Research Center, Mashhad University of Medical Sciences
| | - Sabiheh Amirahmadi
- Department of Physiology and Medical Physics, Faculty of Medicine, Baqiyatallah University of Medical Sciences, Tehran
| | - Sakineh Sadat Mortazavi Sani
- Department of Physiology and Medical Physics, Faculty of Medicine, Baqiyatallah University of Medical Sciences, Tehran
| | - Farimah Beheshti
- Department of Physiology, School of Medicine, Mashhad University of Medical Sciences, Mashhad
- Neuroscience Research Center, Torbat Heydariyeh University of Medical Sciences
| |
Collapse
|
26
|
Erol I, Hazman Ö, Aksu M, Bulut E. Synergistic effect of ZnO nanoparticles and hesperidin on the antibacterial properties of chitosan. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2022; 33:1973-1997. [PMID: 35797143 DOI: 10.1080/09205063.2022.2099668] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 07/04/2022] [Accepted: 07/05/2022] [Indexed: 06/15/2023]
Abstract
In this study, hesperidin (HSP) biological agent, which has strong antioxidant properties, was successfully transferred to ZnO nanoparticles, which were first synthesized by the hydrothermal method. Then, chitosan (CS)/ZnO-HSP nanocomposites were produced by adding different ratios of the ZnO-HSPs to the biodegradable CS biopolymer by hydrothermal method. The resulting materials were characterized using various biophysical strategies, including X-ray diffraction (XRD), Fourier transform infrared spectrometry, scanning electron microscopy (SEM), and energy dispersive X-ray spectroscopy. The mean particle size of ZnO was estimated to be 29 nm from the XRD calculations and SEM measurements. The effect of the ZnO-HSPs on the thermal properties of pure CS was investigated by thermogravimetric analysis and differential scanning calorimetry techniques, and improvements were noted in the thermal properties of CS. While the Tg value of CS was 81 °C, this value increased by 13-94 °C with the addition of 6 wt% by weight of the ZnO-HSP. The antibacterial effect of materials was determined by the disc diffusion method. The ZnO-HSPs added to the CS caused the nanocomposites to have a remarkable effect against Escherichia coli and Staphylococcus aureus microorganisms. While the inhibition diameter of the CS against E. coli was 18.3, the same value increased to 22.3 for the composite containing 6 wt% the ZnO-HSP. The HSP increased the antioxidant capacity of both the ZnO-HSP particles and the CS/ZnO-HSP nanocomposites, reducing the toxic effects of ZnO nanoparticles. Thus, it was determined that the CS/ZnO-HSP nanocomposites did not have any cytotoxicity in healthy human cells. The fact that the produced nanocomposites exhibit antibacterial activity and do not harm human cells shows that they can be a safe product for health. From all these results, this triple hybrid system is hoped that it will be used in biomedical applications as a naturally-sourced, environmentally friendly, and cost-effective composite biomaterial by combining its antimicrobial and strong antioxidant properties.
Collapse
Affiliation(s)
- Ibrahim Erol
- Department of Chemistry, Faculty of Science and Arts, Afyon Kocatepe University, Afyonkarahisar, Turkey
| | - Ömer Hazman
- Department of Chemistry, Faculty of Science and Arts, Afyon Kocatepe University, Afyonkarahisar, Turkey
| | - Mecit Aksu
- Department of Chemistry, Faculty of Science and Arts, Düzce University, Düzce, Turkey
| | - Emine Bulut
- Department of Food Processing, Bolvadin Vocational School, Afyon Kocatepe University, Afyonkarahisar, Turkey
| |
Collapse
|
27
|
Guo Y, Qu Y, Li W, Shen H, Cui J, Liu J, Li J, Wu D. Protective effect of Monarda didymaL. essential oil and its main component thymol on learning and memory impairment in aging mice. Front Pharmacol 2022; 13:992269. [PMID: 36105199 PMCID: PMC9464920 DOI: 10.3389/fphar.2022.992269] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 07/22/2022] [Indexed: 11/13/2022] Open
Abstract
The aging process of human beings is accompanied by the decline of learning and memory ability and progressive decline of brain function, which induces Alzheimer’s Disease (AD) in serious cases and seriously affects the quality of patient’s life. In recent years, more and more studies have found that natural plant antioxidants can help to improve the learning and memory impairment, reduce oxidative stress injury and aging lesions in tissues. This study aimed to investigate the effect of Monarda didymaL. essential oil and its main component thymol on learning and memory impairment in D-galactose-induced aging mice and its molecular mechanism. The composition of Monarda didymaL. essential oil was analyzed by Gas Chromatography-Mass Spectrometer (GC-MS). A mouse aging model was established by the subcutaneous injection of D-galactose in mice. The behavior changes of the mice were observed by feeding the model mice with essential oil, thymol and donepezil, and the histopathological changes of the hippocampus were observed by HE staining. And the changes of acetylcholinesterase (AchE), superoxide dismutase (SOD) and glutathione peroxidase (GSH-PX) activities, and the content of malondialdehyde (MDA) in hippocampal tissues were detected by corresponding kits. The expression of mitogen activated protein kinase (MAPK) and nuclear factor E2 related factor 2 (Nrf2) pathways related proteins were detected by western blot. Animal experimental results showed that compared with model group, the above indexes in Monarda didymaL. essential oil and thymol groups improved significantly in a dose-dependent manner. Monarda didymaL. essential oil and its main active component thymol can improve the learning and memory impairment of aging mice to some extent, and Nrf2 and MAPK pathways may be involved in its action process.
Collapse
Affiliation(s)
- Yingxue Guo
- Key Laboratory of Microecology-Immune Regulatory Network and Related Diseases, School of Basic Medicine, Jiamusi University, Jiamusi, Heilongjiang, China
- College of Pharmacy, Jiamusi University, Jiamusi, Heilongjiang, China
| | - Yan Qu
- Key Laboratory of Microecology-Immune Regulatory Network and Related Diseases, School of Basic Medicine, Jiamusi University, Jiamusi, Heilongjiang, China
- College of Jiamusi, Heilongjiang University of Chinese Medicine, Jiamusi, Heilongjiang, China
| | - Wenpeng Li
- School of Stomatology, Jiamusi University, Jiamusi, Heilongjiang, China
| | - Hongkuan Shen
- Jiamusi Inspection and Testing Center, Jiamusi, Heilongjiang, China
| | - Jiwen Cui
- College of Pharmacy, Jiamusi University, Jiamusi, Heilongjiang, China
| | - Jiguang Liu
- Key Laboratory of Microecology-Immune Regulatory Network and Related Diseases, School of Basic Medicine, Jiamusi University, Jiamusi, Heilongjiang, China
- School of Stomatology, Jiamusi University, Jiamusi, Heilongjiang, China
- *Correspondence: Jiguang Liu, ; Jinlian Li, ; Dongmei Wu,
| | - Jinlian Li
- College of Pharmacy, Jiamusi University, Jiamusi, Heilongjiang, China
- *Correspondence: Jiguang Liu, ; Jinlian Li, ; Dongmei Wu,
| | - Dongmei Wu
- College of Pharmacy, Jiamusi University, Jiamusi, Heilongjiang, China
- *Correspondence: Jiguang Liu, ; Jinlian Li, ; Dongmei Wu,
| |
Collapse
|
28
|
Sahebnasagh A, Eghbali S, Saghafi F, Sureda A, Avan R. Neurohormetic phytochemicals in the pathogenesis of neurodegenerative diseases. Immun Ageing 2022; 19:36. [PMID: 35953850 PMCID: PMC9367062 DOI: 10.1186/s12979-022-00292-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 07/24/2022] [Indexed: 12/02/2022]
Abstract
The world population is progressively ageing, assuming an enormous social and health challenge. As the world ages, neurodegenerative diseases are on the rise. Regarding the progressive nature of these diseases, none of the neurodegenerative diseases are curable at date, and the existing treatments can only help relieve the symptoms or slow the progression. Recently, hormesis has increased attention in the treatment of age-related neurodegenerative diseases. The concept of hormesis refers to a biphasic dose-response phenomenon, where low levels of the drug or stress exert protective of beneficial effects and high doses deleterious or toxic effects. Neurohormesis, as the adaptive aspect of hormetic dose responses in neurons, has been shown to slow the onset of neurodegenerative diseases and reduce the damages caused by aging, stroke, and traumatic brain injury. Hormesis was also observed to modulate anxiety, stress, pain, and the severity of seizure. Thus, neurohormesis can be considered as a potentially innovative approach in the treatment of neurodegenerative and other neurologic disorders. Herbal medicinal products and supplements are often considered health resources with many applications. The hormesis phenomenon in medicinal plants is valuable and several studies have shown that hormetic mechanisms of bioactive compounds can prevent or ameliorate the neurodegenerative pathogenesis in animal models of Alzheimer’s and Parkinson’s diseases. Moreover, the hormesis activity of phytochemicals has been evaluated in other neurological disorders such as Autism and Huntington’s disease. In this review, the neurohormetic dose–response concept and the possible underlying neuroprotection mechanisms are discussed. Different neurohormetic phytochemicals used for the better management of neurodegenerative diseases, the rationale for using them, and the key findings of their studies are also reviewed.
Collapse
|
29
|
Rahman MA, Shuvo AA, Bepari AK, Hasan Apu M, Shill MC, Hossain M, Uddin M, Islam MR, Bakshi MK, Hasan J, Rahman A, Rahman GMS, Reza HM. Curcumin improves D-galactose and normal-aging associated memory impairment in mice: In vivo and in silico-based studies. PLoS One 2022; 17:e0270123. [PMID: 35767571 PMCID: PMC9242463 DOI: 10.1371/journal.pone.0270123] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 06/03/2022] [Indexed: 12/14/2022] Open
Abstract
Aging-induced memory impairment is closely associated with oxidative stress. D-Galactose (D-gal) evokes severe oxidative stress and mimics normal aging in animals. Curcumin, a natural flavonoid, has potent antioxidant and anti-aging properties. There are several proteins like glutathione S-transferase A1 (GSTA1), glutathione S-transferase omega-1 (GSTO1), kelch-like ECH-associated protein 1 (KEAP1), beta-secretase 1 (BACE1), and amine oxidase [flavin-containing] A (MAOA) are commonly involved in oxidative stress and aging. This study aimed to investigate the interaction of curcumin to these proteins and their subsequent effect on aging-associated memory impairment in two robust animal models: D-Gal and normal aged (NA) mice. The aging mice model was developed by administering D-gal intraperitoneally (i.p). Mice (n = 64) were divided into the eight groups (8 mice in each group): Vehicle, Curcumin-Control, D-gal (100mg/kg; i.p), Curcumin + D-gal, Astaxanthin (Ast) + D-gal, Normal Aged (NA), Curcumin (30mg/kg Orally) + NA, Ast (20mg/kg Orally) + NA. Retention and freezing memories were assessed by passive avoidance (PA) and contextual fear conditioning (CFC). Molecular docking was performed to predict curcumin binding with potential molecular targets. Curcumin significantly increased retention time (p < 0.05) and freezing response (p < 0.05) in PA and CFC, respectively. Curcumin profoundly ameliorated the levels of glutathione, superoxide dismutase, catalase, advanced oxidation protein products, nitric oxide, and lipid peroxidation in mice hippocampi. In silico studies revealed favorable binding energies of curcumin with GSTA1, GSTO1, KEAP1, BACE1, and MAOA. Curcumin improves retention and freezing memory in D-gal and nature-induced aging mice. Curcumin ameliorates the levels of oxidative stress biomarkers in mice. Anti-aging effects of curcumin could be attributed to, at least partially, the upregulation of antioxidant enzymes through binding with GSTA1, GSTO1, KEAP1, and inhibition of oxidative damage through binding with BACE1 and MAOA.
Collapse
Affiliation(s)
- Md. Ashrafur Rahman
- Department of Pharmaceutical Sciences, North South University, Bashundhara, Dhaka, Bangladesh
- Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Science Center (TTUHSC), Amarillo, TX, United States of America
- * E-mail: (MAR); (HMR)
| | - Arif Anzum Shuvo
- Department of Pharmaceutical Sciences, North South University, Bashundhara, Dhaka, Bangladesh
| | - Asim Kumar Bepari
- Department of Pharmaceutical Sciences, North South University, Bashundhara, Dhaka, Bangladesh
| | - Mehedi Hasan Apu
- Department of Pharmaceutical Sciences, North South University, Bashundhara, Dhaka, Bangladesh
| | - Manik Chandra Shill
- Department of Pharmaceutical Sciences, North South University, Bashundhara, Dhaka, Bangladesh
| | - Murad Hossain
- Department of Pharmaceutical Sciences, North South University, Bashundhara, Dhaka, Bangladesh
| | - Mohammed Uddin
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, UAE
- Cellular Intelligence (Ci) Lab, GenomeArc Inc., Toronto, ON, Canada
| | - Md. Rabiul Islam
- Department of Pharmacy, University of Asia Pacific, Dhaka, Bangladesh
| | - Monjurul Kader Bakshi
- Department of Pharmaceutical Sciences, North South University, Bashundhara, Dhaka, Bangladesh
| | - Javed Hasan
- Department of Pharmaceutical Sciences, North South University, Bashundhara, Dhaka, Bangladesh
| | - Atiqur Rahman
- Department of Pharmaceutical Sciences, North South University, Bashundhara, Dhaka, Bangladesh
| | | | - Hasan Mahmud Reza
- Department of Pharmaceutical Sciences, North South University, Bashundhara, Dhaka, Bangladesh
- * E-mail: (MAR); (HMR)
| |
Collapse
|
30
|
Cheng LH, Chou PY, Hou AT, Huang CL, Shiu WL, Wang S. Lactobacillus paracasei PS23 improves cognitive deficits via modulating the hippocampal gene expression and the gut microbiota in D-galactose-induced aging mice. Food Funct 2022; 13:5240-5251. [PMID: 35438699 DOI: 10.1039/d2fo00165a] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Probiotic supplements are potential therapeutic agents for age-related cognitive deficits. A prior study showed that probiotic Lactobacillus paracasei PS23 (PS23) supplementation delayed age-related cognitive decline in mice. However, the underlying mechanisms remain unclear. This study aimed to investigate the effects of live or heat-killed PS23 (HK-PS23) on cognitive function in D-galactose (D-gal)-induced aging mice and explore the underlying mechanisms. We designed four groups of mice: control, D-gal aging mice, and PS23 supplemented and HK-PS23 supplemented D-gal aging mice. We evaluated memory function and anxiety using Morris water maze and open field tests, respectively. Neural monoamines and activities of superoxide dismutase (SOD) in the hippocampus were evaluated. RNA-seq was used to evaluate hippocampal gene expression profiles in each group, and the composition of the gut microbiota was analyzed. We revealed that PS23 and HK-PS23 supplementation ameliorated D-gal-induced memory deficits and improved motor and anxiety-behaviors in aging mice. In the hippocampus, serotonin levels (5-HT) were increased and the genes involved in neuroplasticity, anti-inflammatory, and antioxidant functions were upregulated in PS23 and HK-PS23 supplemented groups. The gut microbiota showed specific changes. Our results suggest that PS23 and HK-PS23 supplements could ameliorate age-related cognitive decline, possibly by upregulating the genes involved in synaptic plasticity and preventing oxidation and inflammation.
Collapse
Affiliation(s)
| | | | - An-Tian Hou
- Institute of Anatomy and Cell Biology, National Yang Ming Chiao Tung University, Taipei, Taiwan.
| | | | - Wei-Lin Shiu
- Institute of Anatomy and Cell Biology, National Yang Ming Chiao Tung University, Taipei, Taiwan.
| | - Sabrina Wang
- Institute of Anatomy and Cell Biology, National Yang Ming Chiao Tung University, Taipei, Taiwan.
| |
Collapse
|
31
|
Dietary and nutraceutical-based therapeutic approaches to combat the pathogenesis of Huntington’s disease. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2022] Open
|
32
|
Induction of Accelerated Aging in a Mouse Model. Cells 2022; 11:cells11091418. [PMID: 35563724 PMCID: PMC9102583 DOI: 10.3390/cells11091418] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 04/11/2022] [Accepted: 04/20/2022] [Indexed: 12/12/2022] Open
Abstract
With the global increase of the elderly population, the improvement of the treatment for various aging-related diseases and the extension of a healthy lifespan have become some of the most important current medical issues. In order to understand the developmental mechanisms of aging and aging-related disorders, animal models are essential to conduct relevant studies. Among them, mice have become one of the most prevalently used model animals for aging-related studies due to their high similarity to humans in terms of genetic background and physiological structure, as well as their short lifespan and ease of reproduction. This review will discuss some of the common and emerging mouse models of accelerated aging and related chronic diseases in recent years, with the aim of serving as a reference for future application in fundamental and translational research.
Collapse
|
33
|
D-galactose-induced aging in rats – The effect of metformin on bioenergetics of brain, skeletal muscle and liver. Exp Gerontol 2022; 163:111770. [DOI: 10.1016/j.exger.2022.111770] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 03/14/2022] [Accepted: 03/15/2022] [Indexed: 11/18/2022]
|
34
|
Singh S, Garg G, Singh AK, Tripathi SS, Rizvi SI. Fisetin, a potential caloric restriction mimetic, modulates ionic homeostasis in senescence induced and naturally aged rats. Arch Physiol Biochem 2022; 128:51-58. [PMID: 31496286 DOI: 10.1080/13813455.2019.1662452] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
CONTEXT Fisetin as a caloric restriction mimetic (CRM) exerts numerous beneficial effects on different aging model systems. The effect of fisetin on erythrocyte membrane functions against induced aging is not very clear. OBJECTIVES The potential role of fisetin in the modulation of erythrocytes membrane-bound transporters during natural and induced aging in rats was assessed. MATERIALS AND METHODS Male Wistar rats were used for natural and D-galactose (D-gal) induced aging model. After supplementation with fisetin, the activities of different membrane transporters and biomarkers of oxidative stress were evaluated. RESULTS Fisetin modulated membrane transporters such as calcium-ATPase, sodium potassium-ATPase and sodium hydrogen exchanger during senescence-induced as well as in natural aging. Fisetin also protected oxidative modifications in rat aging. DISCUSSION AND CONCLUSION Fisetin supplementation improves the ionic homeostasis, a factor that is involved in the aetiology of several age-associated diseases, in naturally old as well as D-gal induced aged rats.
Collapse
Affiliation(s)
- Sandeep Singh
- Department of Biochemistry, University of Allahabad, Allahabad, India
| | - Geetika Garg
- Department of Biochemistry, University of Allahabad, Allahabad, India
| | - Abhishek Kumar Singh
- Department of Biochemistry, University of Allahabad, Allahabad, India
- Amity Institute of Neuropsychology and Neurosciences, Amity University Uttar Pradesh, Noida, India
| | | | | |
Collapse
|
35
|
Sun CC, Yin ZP, Chen JG, Wang WJ, Zheng GD, Li JE, Chen LL, Zhang QF. Dihydromyricetin Improves Cognitive Impairments in d-Galactose-Induced Aging Mice through Regulating Oxidative Stress and Inhibition of Acetylcholinesterase. Mol Nutr Food Res 2022; 66:e2101002. [PMID: 34932880 DOI: 10.1002/mnfr.202101002] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 12/02/2021] [Indexed: 02/05/2023]
Abstract
SCOPE Alzheimer's disease (AD) is a neurodegenerative disease with phenomena of cognitive impairments. Oxidative stress and cholinergic system dysfunction are two widely studied pathogenesis of AD. Dihydromyricetin (DMY) is a natural dihydroflavonol with many bioactivities. In this study, it is aimed to investigate the effects of DMY on cognitive impairment in d-galactose (d-gal) induced aging mice. METHODS AND RESULTS Mice are intraperitoneally injected with d-gal for 16 weeks, and DMY is supplemented in drinking water. The results show that DMY significantly improves d-gal-induced cognitive impairments in novel object recognition and Y-maze studies. H&E and TUNEL staining show that DMY could improve histopathological changes and cell apoptosis in mice brain. DMY effectively induces the activities of catalase, superoxide dismutase and glutathione peroxidase, and reduces malondialdehyde level in mice brain and liver. Furthermore, DMY reduces cholinergic injury by inhibiting the activity of Acetylcholinesterase (AChE) in mice brain. In vitro studies show that DMY is a non-competitive inhibitor of AChE with IC50 value of 161.2 µg mL-1 . CONCLUSION DMY alleviates the cognitive impairments in d-gal-induced aging mice partly through regulating oxidative stress and inhibition of acetylcholinesterase.
Collapse
Affiliation(s)
- Cui-Cui Sun
- Jiangxi Key Laboratory of Natural Product and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Zhong-Ping Yin
- Jiangxi Key Laboratory of Natural Product and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Ji-Guang Chen
- Jiangxi Key Laboratory of Natural Product and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Wen-Jun Wang
- Jiangxi Key Laboratory of Natural Product and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Guo-Dong Zheng
- Jiangxi Key Laboratory of Natural Product and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Jing-En Li
- Jiangxi Key Laboratory of Natural Product and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Ling-Li Chen
- Jiangxi Key Laboratory of Natural Product and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Qing-Feng Zhang
- Jiangxi Key Laboratory of Natural Product and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang, 330045, China
| |
Collapse
|
36
|
Sarkar C, Chaudhary P, Jamaddar S, Janmeda P, Mondal M, Mubarak MS, Islam MT. Redox Activity of Flavonoids: Impact on Human Health, Therapeutics, and Chemical Safety. Chem Res Toxicol 2022; 35:140-162. [PMID: 35045245 DOI: 10.1021/acs.chemrestox.1c00348] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The cost-effectiveness of presently used therapies is a problem in overall redox-based management, which is posing a significant financial burden on communities across the world. As a result, sophisticated treatment models that provide notions of predictive diagnoses followed by targeted preventive therapies adapted to individual patient profiles are gaining global acclaim as being beneficial to patients, the healthcare sector, and society as a whole. In this context, natural flavonoids were considered due to their multifaceted antioxidant, anti-inflammatory, and anticancer effects as well as their low toxicity and ease of availability. The aim of this review is to focus on the capacity of flavonoids to modulate the responsiveness of various diseases and ailments associated with redox toxicity. The review will also focus on the flavonoids' pathway-based redox activity and the advancement of redox-based therapies as well as flavonoids' antioxidant characteristics and their influence on human health, therapeutics, and chemical safety. Research findings indicated that flavonoids significantly exhibit various redox-based therapeutic responses against several diseases such as inflammatory, neurodegenerative, cardiovascular, and hepatic diseases and various types of cancer by activating the Nrf2/Keap1 transcription system, suppressing the nuclear factor κB (NF-κB)/IκB kinase inflammatory pathway, abrogating the function of the Hsp90/Hsf1 complex, inhibiting the PTEN/PI3K/Akt pathway, and preventing mitochondrial dysfunction. Some flavonoids, especially genistein, apigenin, amentoflavone, baicalein, quercetin, licochalcone A, and biochanin A, play a potential role in redox regulation. Conclusions of this review on the antioxidant aspects of flavonoids highlight the medicinal and folk values of these compounds against oxidative stress and various diseases and ailments. In short, treatment with flavonoids could be a novel therapeutic invention in clinical trials, as we hope.
Collapse
Affiliation(s)
- Chandan Sarkar
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
| | - Priya Chaudhary
- Department of Bioscience and Biotechnology, Banasthali Vidyapith, Rajasthan 304022, India
| | - Sarmin Jamaddar
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
| | - Pracheta Janmeda
- Department of Bioscience and Biotechnology, Banasthali Vidyapith, Rajasthan 304022, India
| | - Milon Mondal
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
| | | | - Muhammad Torequl Islam
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
| |
Collapse
|
37
|
A New Perspective on the Treatment of Alzheimer's Disease and Sleep Deprivation-Related Consequences: Can Curcumin Help? OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:6168199. [PMID: 35069976 PMCID: PMC8769857 DOI: 10.1155/2022/6168199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 12/03/2021] [Accepted: 12/08/2021] [Indexed: 01/09/2023]
Abstract
Sleep disturbances, as well as sleep-wake rhythm disorders, are characteristic symptoms of Alzheimer's disease (AD) that may head the other clinical signs of this neurodegenerative disease. Age-related structural and physiological changes in the brain lead to changes in sleep patterns. Conditions such as AD affect the cerebral cortex, basal forebrain, locus coeruleus, and the hypothalamus, thus changing the sleep-wake cycle. Sleep disorders likewise adversely affect the course of the disease. Since the sleep quality is important for the proper functioning of the memory, impaired sleep is associated with problems in the related areas of the brain that play a key role in learning and memory functions. In addition to synthetic drugs, utilization of medicinal plants has become popular in the treatment of neurological diseases. Curcuminoids, which are in a diarylheptanoid structure, are the main components of turmeric. Amongst them, curcumin has multiple applications in treatment regimens of various diseases such as cardiovascular diseases, obesity, cancer, inflammatory diseases, and aging. Besides, curcumin has been reported to be effective in different types of neurodegenerative diseases. Scientific studies exclusively showed that curcumin leads significant improvements in the pathological process of AD. Yet, its low solubility hence low bioavailability is the main therapeutic limitation of curcumin. Although previous studies have focused different types of advanced nanoformulations of curcumin, new approaches are needed to solve the solubility problem. This review summarizes the available scientific data, as reported by the most recent studies describing the utilization of curcumin in the treatment of AD and sleep deprivation-related consequences.
Collapse
|
38
|
Deng J, Liu L, Li L, Sun J, Yan F. Hesperidin delays cell cycle progression into the G0/G1 phase via suspension of MAPK signaling pathway in intrahepatic cholangiocarcinoma. J Biochem Mol Toxicol 2022; 36:e22981. [PMID: 34984768 DOI: 10.1002/jbt.22981] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 10/20/2021] [Accepted: 12/16/2021] [Indexed: 12/18/2022]
Abstract
Intrahepatic cholangiocarcinoma (iCCA) derived from epithelial cells of bile ducts is highly aggressive tumor. Hesperidin extracted from citrus fruits is a promising antitumor compound. The purpose of this study is to explore molecular mechanism by which hesperidin affects cholangiocarcinoma progression. Cellular functional experiments were performed and subcutaneous transplant xenograft model was established. Our findings indicated that hesperidin suppressed iCCA cell proliferation in time- and concentration-dependent manners. Hesperidin treatment induced cell cycle arrest at G0/G1 phase, whereas it has no effect on cell apoptosis. Further, data revealed that hesperidin attenuated MEK5 and ERK5 phosphorylation and inhibited ERK5 nuclear localization by reducing MEKK2 activity in MAPK signaling pathway. It could cause alterations in expression of the downstream genes, including CDK4, CDK6 (cell cycle protein kinases), Cyclin D1 (a G1/S checkpoint), P21, and P27 (two G1-checkpoint CDK inhibitors), thereby arresting cell cycle distribution of iCCA cells in the G0/G1 phase. BIX02189 treatment, a specific inhibitor of MEK5, in combination with hesperidin displayed synergistic inhibitory effects on cell cycle arrest and gene expressions. Furthermore, hesperidin administration alone or in combination with MEK5 inhibitor BIX02189 restrained iCCA tumor growth in vivo. Taken together, these results confirmed that hesperidin regulated the expression of cell cycle-related genes by inhibiting the activation of MEKK2/MEK5/ERK5 signaling pathway, inducing iCCA cell cycle arrest at the G0/G1 phase. Our study provides a theoretical foundation and experimental basis for further development of hesperidin as a therapeutic agent for iCCA treatment.
Collapse
Affiliation(s)
- Jie Deng
- Department of Oncology, Hubei NO. 3 People's Hospital of Jianghan University, Wuhan, Hubei, China
| | - Li Liu
- Department of Oncology, Hubei NO. 3 People's Hospital of Jianghan University, Wuhan, Hubei, China
| | - Li Li
- Department of Oncology, Hubei NO. 3 People's Hospital of Jianghan University, Wuhan, Hubei, China
| | - Jianhai Sun
- Department of Oncology, Hubei NO. 3 People's Hospital of Jianghan University, Wuhan, Hubei, China
| | - Fei Yan
- Department of Oncology, Hubei NO. 3 People's Hospital of Jianghan University, Wuhan, Hubei, China
| |
Collapse
|
39
|
Ma Q, Chen Y, Zhang X, Cai S, Sun Y, Ma N, Yi J. Crateva unilocalaris Buch. shoots attenuate D-galactose-induced brain injury and cognitive disorders of mice through PI3K/Akt/Nrf2 pathway. Food Funct 2022; 13:3465-3480. [DOI: 10.1039/d1fo03452a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Crateva unilocalaris Buch. shoots are traditionally served as vegetable with many health-promoting benefits. The aim of the current investigation was designed to study the preventive effect of ethanol extract from...
Collapse
|
40
|
Xie Y, Song A, Zhu Y, Jiang A, Peng W, Zhang C, Meng X. Effects and mechanisms of probucol on aging-related hippocampus-dependent cognitive impairment. Biomed Pharmacother 2021; 144:112266. [PMID: 34634555 DOI: 10.1016/j.biopha.2021.112266] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 09/26/2021] [Accepted: 09/27/2021] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND In the present study, we aimed to investigate the effects of probucol on aging-related hippocampus-dependent cognitive impairment and explore the potential mechanisms. METHODS D-galactose (100 mg/kg, once daily for 6 weeks) was subcutaneously injected to induce aging in mice. Then the mice were administered with probucol or vehicle once a day for 2 weeks. The hippocampus-related cognition was evaluated with Morris water maze test, novel object recognition test, and contextual fear conditioning test. Moreover, synaptic plasticity was assessed, and RNA-sequencing was applied to further explore the molecular mechanisms. RESULTS Aging mice induced by D-galactose showed conspicuous learning and memory impairment, which was significantly ameliorated by probucol. Meanwhile, probucol enhanced the spine density and dendritic branches, improved long-term potentiation, and increased the expression of PSD95 of aging mice. Probucol regulated 70 differentially expressed genes compared to D-galactose group, of which 38 genes were upregulated and 32 genes were downregulated. At last, RNA-sequencing results were verified by quantitative reverse transcription-polymerase chain reaction. CONCLUSIONS Probucol improved learning and memory in aging mice through enhancing synaptic plasticity and regulating gene expression, indicating the potential application of probucol to prevent and treat aging-related disorders.
Collapse
Affiliation(s)
- Yaru Xie
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Department of Neurobiology, Institute of Brain Research, School of Basic Medical Sciences, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Anni Song
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yuting Zhu
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Anni Jiang
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Wenpeng Peng
- Department of cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Chun Zhang
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xianfang Meng
- Department of Neurobiology, Institute of Brain Research, School of Basic Medical Sciences, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| |
Collapse
|
41
|
Cacao powder supplementation attenuates oxidative stress, cholinergic impairment, and apoptosis in D-galactose-induced aging rat brain. Sci Rep 2021; 11:17914. [PMID: 34504131 PMCID: PMC8429651 DOI: 10.1038/s41598-021-96800-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 08/11/2021] [Indexed: 12/31/2022] Open
Abstract
Aging, a critical risk factor of several diseases, including neurodegenerative disorders, affects an ever-growing number of people. Cacao supplementation has been suggested to improve age-related neuronal deficits. Therefore, this study investigated the protective effects of raw cacao powder on oxidative stress-induced aging. Male Sprague-Dawley rats were divided into 4 groups: Control (C), D-galactose-induced aging (G), D-galactose injection with 10% (LC), and 16% (HC) cacao powder mixed diet. D-galactose (300 mg/3 mL/kg) was intraperitoneally injected into all but the control group for 12 weeks. Cacao supplemented diets were provided for 8 weeks. The levels of serum Malondialdehyde (MDA), Advanced Glycation End-products (AGEs), brain and liver MDA, the indicators of the D-galactose induced oxidative stress were significantly decreased in LC and HC but increased in G. The Acetylcholinesterase (AChE) activity of brain showed that the cholinergic impairment was significantly lower in LC, and HC than G. Furthermore, the expression levels of catalase (CAT), phospho-Akt/Akt, and procaspase-3 were significantly increased in LC and HC. In conclusion, cacao consumption attenuated the effects of oxidative stress, cholinergic impairment and apoptosis, indicating its potential in future clinical studies.
Collapse
|
42
|
Chen Z, Xiao J, Liu H, Yao K, Hou X, Cao Y, Liu X. Astaxanthin attenuates oxidative stress and immune impairment in D-galactose-induced aging in rats by activating the Nrf2/Keap1 pathway and suppressing the NF-κB pathway. Food Funct 2021; 11:8099-8111. [PMID: 32857080 DOI: 10.1039/d0fo01663b] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
As a potential antioxidant, astaxanthin (AST) exhibits anti-aging effects. However, its relationships to oxidative stress and immunity have yet to be sufficiently investigated. In this research, integrated analysis of oxidative stress and immunosenescence was performed to elucidate the efficacy and potential mechanisms of AST in d-galactose-induced aging in rats. The results showed that AST significantly decreased malonaldehyde (MDA) levels and increased antioxidase activity, in addition to demonstrating the ability to repair histopathological injuries to the liver, thereby attenuating oxidative stress. Nuclear factor erythroid 2-related factor 2 (Nrf2) expression was up-regulated by 117.95%, whereas Kelch-like ECH-associated protein-1 (Keap1) expression was simultaneously down-regulated by 51.22%. Moreover, AST significantly reduced interleukin-1β (IL-1β) and interleukin-6 (IL-6) levels, as well as expression of nuclear factor-kappa B (NF-κB) (p65) and i-kappa-B-alpha (IκBα) proteins. Findings of repair of immune organs, as well as elevated levels of interleukin-2 (IL-2), immunoglobulin M (IgM) and immunoglobulin G (IgG), suggest a novel mechanism by which AST could regulate cellular immunity and humoral immunity to attenuate immunosenescence. The anti-aging effects of AST were shown to be due in part to the Nrf2/Keap1 and NF-κB pathways, and AST treatment ameliorated oxidative stress and immune impairment overall.
Collapse
Affiliation(s)
- Zhiqing Chen
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510642, Guangdong, China. and Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Jie Xiao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510642, Guangdong, China. and Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Han Liu
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510642, Guangdong, China. and Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Kangfei Yao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510642, Guangdong, China. and Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Xiaoning Hou
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510642, Guangdong, China. and Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Yong Cao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510642, Guangdong, China. and Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Xiaojuan Liu
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510642, Guangdong, China. and Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| |
Collapse
|
43
|
El-Far AH, Elewa YHA, Abdelfattah EZA, Alsenosy AWA, Atta MS, Abou-Zeid KM, Al Jaouni SK, Mousa SA, Noreldin AE. RETRACTED: Thymoquinone and Curcumin Defeat Aging-Associated Oxidative Alterations Induced by D-Galactose in Rats' Brain and Heart. Int J Mol Sci 2021; 22:6839. [PMID: 34202112 PMCID: PMC8268720 DOI: 10.3390/ijms22136839] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/09/2021] [Accepted: 06/18/2021] [Indexed: 01/17/2023] Open
Abstract
D-galactose (D-gal) administration causes oxidative disorder and is widely utilized in aging animal models. Therefore, we subcutaneously injected D-gal at 200 mg/kg BW dose to assess the potential preventive effect of thymoquinone (TQ) and curcumin (Cur) against the oxidative alterations induced by D-gal. Other than the control, vehicle, and D-gal groups, the TQ and Cur treated groups were orally supplemented at 20 mg/kg BW of each alone or combined. TQ and Cur effectively suppressed the oxidative alterations induced by D-gal in brain and heart tissues. The TQ and Cur combination significantly decreased the elevated necrosis in the brain and heart by D-gal. It significantly reduced brain caspase 3, calbindin, and calcium-binding adapter molecule 1 (IBA1), heart caspase 3, and BCL2. Expression of mRNA of the brain and heart TP53, p21, Bax, and CASP-3 were significantly downregulated in the TQ and Cur combination group along with upregulation of BCL2 in comparison with the D-gal group. Data suggested that the TQ and Cur combination is a promising approach in aging prevention.
Collapse
Affiliation(s)
- Ali H. El-Far
- Department of Biochemistry, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, Egypt;
| | - Yaser H. A. Elewa
- Department of Histology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
- Laboratory of Anatomy, Faculty of Veterinary Medicine, Basic Veterinary Sciences, Hokkaido University, Sapporo 060-0818, Japan
| | | | - Abdel-Wahab A. Alsenosy
- Department of Biochemistry, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, Egypt;
| | - Mustafa S. Atta
- Department of Physiology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh 33516, Egypt;
| | - Khalid M. Abou-Zeid
- Animal Care Unit, Medical Research Institute, Alexandria University, Alexandria 21544, Egypt; (E.-Z.A.A.); (K.M.A.-Z.)
| | - Soad K. Al Jaouni
- Department of Hematology/Pediatric Oncology, Yousef Abdulatif Jameel Scientific Chair of Prophetic Medicine Application, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Shaker A. Mousa
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Rensselaer, NY 12144, USA;
| | - Ahmed E. Noreldin
- Histology and Cytology Department, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, Egypt;
| |
Collapse
|
44
|
Berry A, Collacchi B, Masella R, Varì R, Cirulli F. Curcuma Longa, the "Golden Spice" to Counteract Neuroinflammaging and Cognitive Decline-What Have We Learned and What Needs to Be Done. Nutrients 2021; 13:1519. [PMID: 33946356 PMCID: PMC8145550 DOI: 10.3390/nu13051519] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/26/2021] [Accepted: 04/26/2021] [Indexed: 12/11/2022] Open
Abstract
Due to the global increase in lifespan, the proportion of people showing cognitive impairment is expected to grow exponentially. As target-specific drugs capable of tackling dementia are lagging behind, the focus of preclinical and clinical research has recently shifted towards natural products. Curcumin, one of the best investigated botanical constituents in the biomedical literature, has been receiving increased interest due to its unique molecular structure, which targets inflammatory and antioxidant pathways. These pathways have been shown to be critical for neurodegenerative disorders such as Alzheimer's disease and more in general for cognitive decline. Despite the substantial preclinical literature on the potential biomedical effects of curcumin, its relatively low bioavailability, poor water solubility and rapid metabolism/excretion have hampered clinical trials, resulting in mixed and inconclusive findings. In this review, we highlight current knowledge on the potential effects of this natural compound on cognition. Furthermore, we focus on new strategies to overcome current limitations in its use and improve its efficacy, with attention also on gender-driven differences.
Collapse
Affiliation(s)
- Alessandra Berry
- Center for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy;
| | - Barbara Collacchi
- Center for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy;
| | - Roberta Masella
- Center for Gender-specific Medicine, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; (R.M.); (R.V.)
| | - Rosaria Varì
- Center for Gender-specific Medicine, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; (R.M.); (R.V.)
| | - Francesca Cirulli
- Center for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy;
| |
Collapse
|
45
|
Potential Therapeutic Effects of New Ruthenium (III) Complex with Quercetin: Characterization, Structure, Gene Regulation, and Antitumor and Anti-Inflammatory Studies (RuIII/Q Novel Complex Is a Potent Immunoprotective Agent). CRYSTALS 2021. [DOI: 10.3390/cryst11040367] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The aim of this study was to evaluate the antioxidant and anti-inflammatory effects of the new [Ru(Q)(Cl)2(H2O)2] complex (RuIII/Q). A new vital complex containing quercetin flavonoid compound (Q) with ruthenium (III) ions was synthesized. The molar conductivity of the RuIII/Q complex was measured in dimethylsulfoxide (DMSO) with value 12 (Ω−1 mol−1 cm−1, indicating their non-electrolytic nature. Infrared (FTIR) spectroscopic investigation of the RuIII/Q complex indicated that Q is coordinated as a bidentate with Ru metal ions through the oxygen of carbonyl C(4)=O group and oxygen of phenolic C(3)−O group based on the wavenumber shifts at 1654 and 1335 cm−1 respectively. The electronic (UV−Vis) spectra and the magnetic susceptibility value (1.85 B.M.) revealed that the Ru(III) complex has an octahedral geometry. The average diameter of the RuIII/Q nanoparticles was approximately 7–15 nm according to the transmission electron microscopy. The thermogravimetric study (TG/DTG) indicates that the RuIII/Q compound is quite stable until 300 °C. To assess biological activity, 60 male rats were allocated to six groups, namely control, DG (D-galactose), Q, RuIII/Q, DG plus Q, and DG plus RuIII/Q. Antioxidant enzymes (SOD, CAT, GPx, and GRx), markers of lipid peroxidation (such as MDA), expression of genes (namely Nrf2, Cu-ZnSOD, CAT, GPx, cyto c, P53, Bax, BCl2, caspase-3, and caspase-9 in testicular tissue), glutamate, 4-hydroxynonenal (HNE), GSH, HCY, amyloid beta, and GABA levels were evaluated in brain tissues. Cytokines, such as IL-6 and TNF-α, histological and ultrastructural studies were estimated in both the brain and testicular tissues, while the comet assay was performed in the brain tissue. RuIII/Q administration either alone or combined with DG reduced oxidative injury to normal levels and decreased apoptotic activities. Thus, RuIII/Q inhibited injury in both the testis and brain and reduced oxidative stress in male rats. The (RuIII/Q) complex has a potent ameliorative effect against aging neurotoxicity, reproductive toxicity, and antihepatic cancer activity induced by D-galactose (DG).
Collapse
|
46
|
Kanojia U, Chaturbhuj SG, Sankhe R, Das M, Surubhotla R, Krishnadas N, Gourishetti K, Nayak PG, Kishore A. Beta-Caryophyllene, a CB2R Selective Agonist, Protects Against Cognitive Impairment Caused by Neuro-inflammation and Not in Dementia Due to Ageing Induced by Mitochondrial Dysfunction. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2021; 20:963-974. [PMID: 33530917 DOI: 10.2174/1871527320666210202121103] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 10/09/2020] [Accepted: 11/30/2020] [Indexed: 01/24/2023]
Abstract
BACKGROUND Dementia is a neurodegenerative disorder majorly evidenced by cognitive impairment. Although there are many types of dementia, the common underlying etiological factors in all the types are neuro-inflammation or aging induced apoptosis. β-caryophyllene, a cannabinoid type-2 receptor agonist, has been reported to have promising neuroprotective effects in cerebral ischemia and neuro-inflammation. OBJECTIVE In the present study, we evaluated the effects of β-caryophyllene against animal models of dementia whose etiology mimicked neuro-inflammation and aging. METHODS Two doses (50 and 100 mg/kg of body weight) of β-caryophyllene given orally were tested against AlCl3-induced dementia in male Sprague Dawley (SD) rats using the Morris water maze test. Subsequently, the effect of the drug was assessed for episodic memory in female SD rats using novel object recognition task in doxorubicin-induced neuro-inflammation and chemobrain model. Moreover, its effects were evaluated in D-galactose-induced mitochondrial dysfunction leading to dementia. RESULTS β-caryophyllene, at both doses, showed significant improvement in memory when assessed using parameters like target quadrant entries, escape latency and path efficiency in the Morris water maze test for spatial memory. In the doxorubicin-induced chemobrain model, β-caryophyllene at 100 mg/kg significantly elevated acetylcholinesterase and catalase levels and lowered lipid peroxidation compared to the disease control. In the novel object recognition task, β-caryophyllene at 100 mg/kg significantly improved recognition index and discrimination index in the treated animals compared to the disease control, with a significant increase in catalase and a decrease in lipid peroxidation in both hippocampus and frontal cortex. However, in the D-galactose-induced mitochondrial dysfunction model, β-caryophyllene failed to show positive effects when spatial memory was assessed. It also failed to improve D-galactose-induced diminished mitochondrial complex I and II activities. CONCLUSION Hence, we conclude that β-caryophyllene at 100 mg/kg protects against dementia induced by neuro-inflammation with no effect on neuronal aging induced by mitochondrial dysfunction.
Collapse
Affiliation(s)
- Urja Kanojia
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal-576104, Karnataka, India
| | - Shrikant Gyaneshwar Chaturbhuj
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal-576104, Karnataka, India
| | - Runali Sankhe
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal-576104, Karnataka, India
| | - Maushami Das
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal-576104, Karnataka, India
| | - Raviteja Surubhotla
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal-576104, Karnataka, India
| | - Nandakumar Krishnadas
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal-576104, Karnataka, India
| | - Karthik Gourishetti
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal-576104, Karnataka, India
| | - Pawan Ganesh Nayak
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal-576104, Karnataka, India
| | - Anoop Kishore
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal-576104, Karnataka, India
| |
Collapse
|
47
|
Labanca F, Ullah H, Khan H, Milella L, Xiao J, Dajic-Stevanovic Z, Jeandet P. Therapeutic and Mechanistic Effects of Curcumin in Huntington's Disease. Curr Neuropharmacol 2021; 19:1007-1018. [PMID: 32442088 PMCID: PMC8686321 DOI: 10.2174/1570159x18666200522201123] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 05/10/2020] [Accepted: 05/17/2020] [Indexed: 02/08/2023] Open
Abstract
Curcumin is a spice derived nutraceutical which gained tremendous attention because of its profound medicinal values. It alters a number of molecular pathways such as nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), signal transducer and activator of transcription 3 (STAT3), nuclear factor erythroid 2-related factor 2 (Nrf2) and cyclooxygenases-2 (COX-2), which make it potential therapeutic choice in treating multiple disorders. It also possesses the potential to prevent protein aggregation and thus protect against degeneration of neurons in neurodegenerative disorders including Huntington's disease (HD). HD is an autosomal dominant disorder linked with altered gene expression which leads to an increase in the size of cytosine, adenine and guanine (CAG) trinucleotide repeats, aids in protein aggregation throughout the brain and thus damages neurons. Upstream regulation of oxidative stress and inflammatory cascade are two important factors that drive HD progression. Available therapies just suppress the severity of symptoms with a number of side effects. Curcumin targets multiple mechanisms in treating or preventing HD including antioxidant and anti-inflammatory potential, metal ion chelation, transcriptional alterations and upregulating activity of molecular chaperons, heat shock proteins (HSPs). Having a favorable safety profile, curcumin can be an alternative therapeutic choice in treating neurodegenerative disorders like HD. This review will focus on mechanistic aspects of curcumin in treating or preventing HD and its potential to arrest disease progression and will open new dimensions for safe and effective therapeutic agents in diminishing HD.
Collapse
Affiliation(s)
| | | | - Haroon Khan
- Address correspondence to this author at the Department of Pharmacy, Abdul Wali Khan University Mardan, 23200, Pakistan;, E-mails: ;
| | | | | | | | | |
Collapse
|
48
|
Romanenko M, Kholin V, Koliada A, Vaiserman A. Nutrition, Gut Microbiota, and Alzheimer's Disease. Front Psychiatry 2021; 12:712673. [PMID: 34421687 PMCID: PMC8374099 DOI: 10.3389/fpsyt.2021.712673] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 07/12/2021] [Indexed: 12/17/2022] Open
Abstract
Nutrition is known to play an important role in the pathogenesis of Alzheimer's disease. Evidence is obtained that the gut microbiota is a key player in these processes. Dietary changes (both adverse and beneficial) may influence the microbiome composition, thereby affecting the gut-brain axis and the subsequent risk for Alzheimer's disease progression. In this review, the research findings that support the role of intestinal microbiota in connection between nutritional factors and the risk for Alzheimer's disease onset and progression are summarized. The mechanisms potentially involved in these processes as well as the potential of probiotics and prebiotics in therapeutic modulation of contributed pathways are discussed.
Collapse
Affiliation(s)
- Mariana Romanenko
- Laboratory of Dietetics, D.F. Chebotarev State Institute of Gerontology NAMS of Ukraine, Kyiv, Ukraine
| | - Victor Kholin
- Department of Age Physiology and Pathology of the Nervous System, D.F. Chebotarev State Institute of Gerontology NAMS of Ukraine, Kyiv, Ukraine
| | | | - Alexander Vaiserman
- Laboratory of Epigenetics, D.F. Chebotarev State Institute of Gerontology NAMS of Ukraine, Kyiv, Ukraine
| |
Collapse
|
49
|
Lee J, Kim YS, Kim E, Kim Y, Kim Y. Curcumin and hesperetin attenuate D-galactose-induced brain senescence in vitro and in vivo. Nutr Res Pract 2020; 14:438-452. [PMID: 33029285 PMCID: PMC7520561 DOI: 10.4162/nrp.2020.14.5.438] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 05/06/2020] [Accepted: 07/16/2020] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND/OBJECTIVES Brain senescence causes cognitive impairment and neurodegeneration. It has also been demonstrated that curcumin (Cur) and hesperetin (Hes), both antioxidant polyphenolic compounds, mediate anti-aging and neuroprotective effects. Therefore, the objective of this study was to investigate whether Cur, Hes, and/or their combination exert anti-aging effects in D-galactose (Dg)-induced aged neuronal cells and rats. MATERIALS/METHODS SH-SY5Y cells differentiated in response to retinoic acid were treated with Cur (1 μM), Hes (1 μM), or a combination of both, followed by 300 mM Dg. Neuronal loss was subsequently evaluated by measuring average neurite length and analyzing expression of β-tubulin III, phosphorylated extracellular signal-regulated kinases, and neurofilament heavy polypeptide. Cellular senescence and related proteins, p16 and p21, were also investigated, including their regulation of antioxidant enzymes. In vivo, brain aging was induced by injecting 250 mg/kg body weight (b.w.) Dg. The effects of supplementing this model with 50 mg/kg b.w. Cur, 50 mg/kg b.w. Hes, or a combination of both for 3 months were subsequently evaluated. Brain aging was examined with a step-through passive avoidance test and apoptosis markers were analyzed in brain cortex tissues. RESULTS Cur, Hes, and their combination improved neuron length and cellular senescence by decreasing the number of β-gal stained cells, down-regulated expression of p16 and p21, and up-regulated expression of antioxidant enzymes, including superoxide dismutase 1, glutathione peroxidase 1, and catalase. Administration of Cur, Hes, or their combination also tended to ameliorate cognitive impairment and suppress apoptosis in the cerebral cortex by down-regulating Bax and poly (ADP-ribose) polymerase expression and increasing Bcl-2 expression. CONCLUSIONS Cur and Hes appear to attenuate Dg-induced brain aging via regulation of antioxidant enzymes and apoptosis. These results suggest that Cur and Hes may mediate neuroprotective effects in the aging process, and further study of these antioxidant polyphenolic compounds is warranted.
Collapse
Affiliation(s)
- Jihye Lee
- Department of Nutritional Science and Food Management, Ewha Womans University, Seoul 03760, Korea
| | - Yoo Sun Kim
- Department of Nutritional Science and Food Management, Ewha Womans University, Seoul 03760, Korea
| | - Eunju Kim
- Department of Nutritional Science and Food Management, Ewha Womans University, Seoul 03760, Korea
| | - Yerin Kim
- Department of Nutritional Science and Food Management, Ewha Womans University, Seoul 03760, Korea
| | - Yuri Kim
- Department of Nutritional Science and Food Management, Ewha Womans University, Seoul 03760, Korea
| |
Collapse
|
50
|
Curcumin, a Multifaceted Hormetic Agent, Mediates an Intricate Crosstalk between Mitochondrial Turnover, Autophagy, and Apoptosis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:3656419. [PMID: 32765806 PMCID: PMC7387956 DOI: 10.1155/2020/3656419] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Revised: 03/01/2020] [Accepted: 05/25/2020] [Indexed: 02/06/2023]
Abstract
Curcumin has extensive therapeutic potential because of its antioxidant, anti-inflammatory, and antiproliferative properties. Multiple preclinical studies in vitro and in vivo have proven curcumin to be effective against various cancers. These potent effects are driven by curcumin's ability to induce G2/M cell cycle arrest, induce autophagy, activate apoptosis, disrupt molecular signaling, inhibit invasion and metastasis, and increase the efficacy of current chemotherapeutics. Here, we focus on the hormetic behavior of curcumin. Frequently, low doses of natural chemical products activate an adaptive stress response, whereas high doses activate acute responses like autophagy and cell death. This phenomenon is often referred to as hormesis. Curcumin causes cell death and primarily initiates an autophagic step (mitophagy). At higher doses, cells undergo mitochondrial destabilization due to calcium release from the endoplasmic reticulum, and die. Herein, we address the complex crosstalk that involves mitochondrial biogenesis, mitochondrial destabilization accompanied by mitophagy, and cell death.
Collapse
|