1
|
Wu J, Xu XT, Xing C, Hao XB, Fang XY, Xie ZH, Zhao S, Gao JL, Xu L, Wang SJ. Metabolic profiling and evaluation of antioxidant and anti-inflammatory properties of Apis cerana cerana Honey from Sansha City, Hainan Province, China. Food Chem 2025; 475:143256. [PMID: 39938270 DOI: 10.1016/j.foodchem.2025.143256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 01/18/2025] [Accepted: 02/05/2025] [Indexed: 02/14/2025]
Abstract
Honey has been recognized for its role in disease prevention through nutritional modulation. In this study, we comprehensively assessed the physicochemical parameters, metabolic profile, antioxidant and anti-inflammatory activities of multifloral honeys produced by Apis cerana cerana in Sansha City (SS), Hainan Province. Metabolomic analysis identified SS honey had multiple bioactive compounds known for antioxidant and anti-inflammatory properties. Compared to A. cerana cerana honey from central regions of Hainan Province, SS honey showed higher levels of TFC (113.80 mg RE/100 g) and TPC (45.86 mg GAE/100 g). Furthermore, SS honey demonstrated greater antioxidant activity, as evidenced by FRAP (1503.16 μmol TE/kg), DPPH IC50 (33.59 mg/mL), and ABTS IC50 (11.03 mg/mL). SS honey significantly reduced the levels of cyclooxygenase-2 (COX-2), interleukin-1β (IL-1β), interleukin-6 (IL-6), inducible nitric oxide synthase (iNOS), and tumor necrosis factor-α (TNF-α) in lipopolysaccharide (LPS)-induced RAW 264.7 cells, along with suppressing the mRNA expression of these inflammatory markers.
Collapse
Affiliation(s)
- Jiao Wu
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Xiang-Tan Xu
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; Hunan University of Humanities, Science and Technology, Loudi 417000, China
| | - Cheng Xing
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; Haikou University of Economics, Haikou 571127, China
| | - Xin-Bao Hao
- Department of Hematology, The First Affiliated Hospital of Hainan Medical University, Haikou 570102, China
| | - Xing-Yue Fang
- Department of Hematology, The First Affiliated Hospital of Hainan Medical University, Haikou 570102, China
| | - Zhi-Hao Xie
- Department of Hematology, The First Affiliated Hospital of Hainan Medical University, Haikou 570102, China
| | - Shan Zhao
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Jing-Lin Gao
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China.
| | - Lu Xu
- Department of Hematology, The First Affiliated Hospital of Hainan Medical University, Haikou 570102, China.
| | - Shi-Jie Wang
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China.
| |
Collapse
|
2
|
Browne E, Kavanagh S, Devery S. The In Vitro Antioxidant and Immunomodulatory Effects of the Irish Monofloral Ivy and Heather Honey Varieties. Int J Mol Sci 2025; 26:3625. [PMID: 40332151 PMCID: PMC12027192 DOI: 10.3390/ijms26083625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2025] [Revised: 04/07/2025] [Accepted: 04/10/2025] [Indexed: 05/08/2025] Open
Abstract
Honey has long been valued for its medicinal properties, yet the therapeutic potential of Irish monofloral honey remains largely unexplored. This study investigates the antioxidant and immunomodulatory effects of Irish ivy (Hedera helix) and heather (Calluna vulgaris) honey samples on PMA-differentiated THP-1 macrophages, a well-characterised immune model. Antioxidant capacity was assessed through free radical scavenging assays, DPPH and ORAC, while qPCR analysis examined the key inflammatory markers. Both the heather and ivy honey varieties demonstrated antioxidant activity, with heather honey exhibiting the highest total phenolic content (TPC), and ivy honey stimulating Nrf2 activation. Manuka honey showed the strongest radical scavenging capacity, as reflected in its higher ORAC and DPPH values. These findings suggest that the different honey varieties may exert antioxidant effects through distinct mechanisms. Exposure to honey reduced oxidative stress and upregulated the expression of a key antioxidant transcription regulator (Nrf2) and an associated downstream antioxidant defence enzyme, superoxide dismutase (SOD). Additionally, both the honey types exhibited immunomodulatory effects, upregulating pro-inflammatory cytokines, such as TNF-α and IL-1β, while increasing the expression of the anti-inflammatory cytokine IL-10. These findings suggest potential bioactive properties that warrant further investigation. Given the growing interest in alternative treatments for inflammation-related conditions, further research is warranted to determine whether the observed in vitro effects translate into clinically relevant outcomes. This study expands the current understanding of Irish monofloral honey, reinforcing its potential as a functional bioactive compound with relevance in antioxidant therapies, immune modulation, and wound healing.
Collapse
Affiliation(s)
- Emma Browne
- Bioscience Research Institute, Technological University of the Shannon, Athlone, Co., N37HD68 Westmeath, Ireland
| | - Siobhán Kavanagh
- Department of Pharmaceutical Sciences and Biotechnology, Technological University of the Shannon, Athlone, Co., N37HD68 Westmeath, Ireland
| | - Sinead Devery
- Department of Pharmaceutical Sciences and Biotechnology, Technological University of the Shannon, Athlone, Co., N37HD68 Westmeath, Ireland
| |
Collapse
|
3
|
Zhang F, Gan Y, Xie W, Lu S, Zha Y, Liang Y, Qian J, Duan Y, Liao C, Wu Z, Zhang S. A novel zinc ferrite nanoparticle protects against MSU-induced gout arthritis via Nrf2/NF-κB/NLRP3 pathway. Life Sci 2025; 366-367:123475. [PMID: 39983819 DOI: 10.1016/j.lfs.2025.123475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 02/09/2025] [Accepted: 02/15/2025] [Indexed: 02/23/2025]
Abstract
AIMS Gouty arthritis (GA), a prevalent and intricate form of inflammatory arthritis, affects individuals across all age groups. Existing therapeutic agents for GA are associated with substantial adverse effects. The overarching objective of this study is to identify an efficacious and biocompatible intervention strategy for GA. MATERIALS AND METHODS In this investigation, we developed a zinc ferrite nanoparticle (ZFN) characterized by outstanding catalytic activities in anti-inflammatory and antioxidative processes, along with negligible biotoxicity. ZFN features low-content Zn2+ doping, which effectively overcomes the issue of low biocompatibility commonly encountered in Zn-based nanoparticles. Both in vitro and in vivo experimental models were utilized to comprehensively evaluate the effects of ZFN. KEY FINDINGS The experimental results demonstrate that ZFN exhibits remarkable efficacy in alleviating inflammation and oxidative stress both in vitro and in vivo. It exerts its therapeutic effect on GA by modulating the NF-κB signaling pathway, suppressing the activation of the NLRP3 inflammasome, and activating the Nrf2 pathway. SIGNIFICANCE The protective effect of ZFN against GA holds great promise for the clinical translation of biocompatible inorganic nanoplatforms in the treatment of GA. This finding offers a potential alternative to the currently available medications, thereby providing new insights and possibilities for the management of GA.
Collapse
Affiliation(s)
- Feng Zhang
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, College of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Yuehao Gan
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China
| | - Wenteng Xie
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China
| | - Shengyuan Lu
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, College of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Yang Zha
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, College of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Yingquan Liang
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, College of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Junchao Qian
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, China
| | - Yajun Duan
- Department of Cardiology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Chenzhong Liao
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, College of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Zhengyan Wu
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China
| | - Shuang Zhang
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, College of Food and Biological Engineering, Hefei University of Technology, Hefei, China.
| |
Collapse
|
4
|
Patouna A, Tekos F, Charouli M, Vardakas P, Kouretas D. Greek Raw Honey from Pindos Mountain Improves Redox Homeostasis of RAW264.7 Macrophages. Int J Mol Sci 2025; 26:2868. [PMID: 40243439 PMCID: PMC11989164 DOI: 10.3390/ijms26072868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 03/17/2025] [Accepted: 03/19/2025] [Indexed: 04/18/2025] Open
Abstract
Honey is a complex mixture of various compounds that possesses strong biological properties, among which is its antioxidant activity. It is worth mentioning that the botanical origin and the phytochemical composition are crucial parameters that determine the bioactive profile of honey. Oxidative stress is a biological phenomenon implicated into the pathogenesis of various diseases. Hence, the multifaceted evaluation of the redox-related effects of natural products, rich in bioactive compounds, may lead to the growth of putative strategies for the attenuation of oxidative stress and the prevention of such pathophysiological conditions. Within this context, the aim of the present study was to assess the biological activities of six Greek raw honey samples from Pindos Mountain in vitro, by examining their ability to cause redox alterations in RAW264.7 macrophages. For that purpose, we evaluated a panel of markers associated with antioxidant defense and oxidative damage. According to our findings, most honey samples had positive impacts on cellular redox homeostasis, as indicated by the enhancement of antioxidant defense mechanisms and the protection against oxidative damage to lipids and proteins. Conclusively, this study highlights the Greek raw honey samples potent antioxidant capacity, confirming their promising role in improving redox homeostasis.
Collapse
Affiliation(s)
| | | | | | | | - Demetrios Kouretas
- Department of Biochemistry and Biotechnology, School of Health Sciences, University of Thessaly, 41500 Larissa, Greece; (A.P.); (F.T.); (M.C.); (P.V.)
| |
Collapse
|
5
|
Zainuddin ANZ, Mustakim NN, Rosemanzailani FA, Fadilah NIM, Maarof M, Fauzi MB. A Comprehensive Review of Honey-Containing Hydrogel for Wound Healing Applications. Gels 2025; 11:194. [PMID: 40136899 PMCID: PMC11942582 DOI: 10.3390/gels11030194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 02/20/2025] [Accepted: 02/21/2025] [Indexed: 03/27/2025] Open
Abstract
Honey has long been recognized for its medicinal properties, particularly in wound healing. Recent advancements in material science have led to the development of honey-containing hydrogels, combining the natural healing properties of honey with the versatile characteristics of hydrogel matrices. These hydrogels offer numerous advantages, including high moisture retention, biocompatibility, and the controlled release of bioactive compounds, making them highly effective for wound healing applications. Hydrogels hold significant potential in advancing medical applications, particularly for cutaneous injuries. The diverse properties of honey, including antimicrobial, anti-inflammatory, and anti-eschar effects, have shown promise in accelerating tissue regeneration. According to studies, they are effective in maintaining a good swelling ratio index, Water Vapour Transmission Rate (WVTR), contact angle, tensile and elongation at break, in vitro biodegradation rate, viscosity and porosity analysis, lowering bacterial infections, and encouraging rapid tissue regeneration with notable FTIR peaks and SEM average pore sizes. However, limitations such as low bioavailability and inefficiencies in direct application reduce their therapeutic effectiveness at the wound site. Integrating honey into hydrogels can help preserve its wound healing mechanisms while enhancing its ability to facilitate skin tissue recovery. This review explores the underlying mechanisms of honey in wound healing management and presents an extensive analysis of honey-containing hydrogels reported in the literature over the past eight years. It emphasizes the physicochemical and mechanical effectiveness and advancements of honey-incorporated hydrogels in promoting skin wound healing and tissue regeneration, supported by evidence from both in vitro and in vivo studies. While honey-based therapies for wound healing have demonstrated promising outcomes in numerous in vitro and animal studies, clinical studies remain limited. Despite that, honey's incorporation into hydrogel systems, however, offers a potent fusion of contemporary material technology and natural healing qualities, marking a substantial breakthrough in wound treatment.
Collapse
Affiliation(s)
- Andik Nisa Zahra Zainuddin
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Cheras, Kuala Lumpur 56000, Malaysia; (A.N.Z.Z.); (N.N.M.); (F.A.R.); (N.I.M.F.); (M.M.)
| | - Nurul Nadhirah Mustakim
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Cheras, Kuala Lumpur 56000, Malaysia; (A.N.Z.Z.); (N.N.M.); (F.A.R.); (N.I.M.F.); (M.M.)
| | - Farah Alea Rosemanzailani
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Cheras, Kuala Lumpur 56000, Malaysia; (A.N.Z.Z.); (N.N.M.); (F.A.R.); (N.I.M.F.); (M.M.)
| | - Nur Izzah Md Fadilah
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Cheras, Kuala Lumpur 56000, Malaysia; (A.N.Z.Z.); (N.N.M.); (F.A.R.); (N.I.M.F.); (M.M.)
- Advance Bioactive Materials-Cells UKM Research Group, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia
| | - Manira Maarof
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Cheras, Kuala Lumpur 56000, Malaysia; (A.N.Z.Z.); (N.N.M.); (F.A.R.); (N.I.M.F.); (M.M.)
- Advance Bioactive Materials-Cells UKM Research Group, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia
- Ageing and Degenerative Disease UKM Research Group, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia
| | - Mh Busra Fauzi
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Cheras, Kuala Lumpur 56000, Malaysia; (A.N.Z.Z.); (N.N.M.); (F.A.R.); (N.I.M.F.); (M.M.)
- Advance Bioactive Materials-Cells UKM Research Group, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia
| |
Collapse
|
6
|
Ye Y, Fang Y, Engholm-Keller K, Bechshøft MR, Chatterton DEW, Sangild PT, Nguyen DN, Bering SB, Lund MN. Protein Digestibility and Anti-inflammatory Activity of Processed Whey Protein Ingredients for Infant Formula. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:5465-5476. [PMID: 39977279 DOI: 10.1021/acs.jafc.4c08785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2025]
Abstract
Conventional whey protein concentrate (WPC) and gently processed skim-milk-derived WPC (SPC) undergo heat processing to ensure microbial safety before use in infant formula products. Heat treatment and storage induce protein structural changes, which may modulate digestibility and bioactivity. The objective of the study was to evaluate the effect of heat treatment and storage on the SPC ingredient by subjecting it to heat treatment (80 °C, 30 s) with or without an additional six-week storage at 37 °C (resulting in HT-SPC and HTS-SPC, respectively) and to compare these effects with a reference WPC ingredient. Reducible aggregates were present in HT-SPC, HTS-SPC, and WPC but not in the control SPC ingredient. As assessed in vitro, infant gastric digestion conditions had a limited hydrolytic effect on whey proteins, while significant protein hydrolysis occurred under infant intestinal conditions. WPC was more digestible than SPC, and additional heat treatment of SPC increased the protein digestibility. The digested protein ingredients exhibited similar anti-inflammatory activity (e.g., inhibition of the NFκB pathway in THP-1 macrophages in vitro). In conclusion, the SPC ingredient was less digestible, which was improved by heat treatment but with similar bioactivity as a conventional WPC ingredient.
Collapse
Affiliation(s)
- Yuhui Ye
- Department of Food Science, University of Copenhagen, 1958 Frederiksberg C, Denmark
| | - Yajing Fang
- Department of Food Science, University of Copenhagen, 1958 Frederiksberg C, Denmark
| | | | | | | | - Per T Sangild
- Comparative Pediatrics and Nutrition, Department of Veterinary and Animal Sciences, University of Copenhagen, Dyrlægevej 68, 1870 Frederiksberg C, Denmark
- Department of Pediatrics, Odense University Hospital, 5000 Odense C, Denmark
- Department of Neonatology, Rigshospitalet, 2100 Copenhagen Ø, Denmark
| | - Duc Ninh Nguyen
- Comparative Pediatrics and Nutrition, Department of Veterinary and Animal Sciences, University of Copenhagen, Dyrlægevej 68, 1870 Frederiksberg C, Denmark
| | - Stine B Bering
- Comparative Pediatrics and Nutrition, Department of Veterinary and Animal Sciences, University of Copenhagen, Dyrlægevej 68, 1870 Frederiksberg C, Denmark
| | - Marianne N Lund
- Department of Food Science, University of Copenhagen, 1958 Frederiksberg C, Denmark
- Department of Biomedical Sciences, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen N, Denmark
| |
Collapse
|
7
|
Ekhtiar M, Ghasemi-Dehnoo M, Azadegan-Dehkordi F, Bagheri N. Evaluation of Anti-Inflammatory and Antioxidant Effects of Ferulic Acid and Quinic Acid on Acetic Acid-Induced Ulcerative Colitis in Rats. J Biochem Mol Toxicol 2025; 39:e70169. [PMID: 39957712 DOI: 10.1002/jbt.70169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 01/30/2025] [Accepted: 02/05/2025] [Indexed: 02/18/2025]
Abstract
Ulcerative colitis is a chronic inflammatory disease characterized by oxidative stress and the production of pro-inflammatory cytokines. Ferulic acid and quinic acid, two phenolic compounds, are thought to have potent antioxidant and anti-inflammatory properties. This study aimed to investigate the anti-inflammatory and antioxidant effects of ferulic acid and quinic acid in rats with acetic acid (AA)-induced ulcerative colitis. To this end, 64 Wistar rats were randomly divided into eight groups, each consisting of eight rats. AA was administered intrarectally to induce ulcerative colitis. Ferulic acid (20, 40, and 60 mg/kg), quinic acid (10, 30, 60, and 100 mg/kg), and dexamethasone (2 mg/kg) were received daily for five consecutive days. Then, the macroscopic and histopathological changes in the colon tissue were examined. Finally, the tissue levels of heme oxygenase 1 (HO1), nuclear factor erythroid 2-related factor 2 (NRF2), and NAD(P)H quinone dehydrogenase 1 (NQO1) mRNA expression and pro-inflammatory cytokine tumor necrosis factor alpha (TNF-α) and interleukin-1 beta (IL-1β) were measured using the quantitative real-time polymerase chain reaction (PCR) and enzyme-linked immunosorbent assay (ELISA) methods, respectively. AA-induced ulcerative colitis in rats was associated with edema and severe damage to the epithelium, infiltration of inflammatory cells, and the presence of ulcers in the colon tissue. The results showed that rats who were administered AA showed a decrease in the expression of HO-1, Nrf2, and NQO1 and increased protein levels of TNF-α and IL-1β than the control group. Rats were administered ferulic acid, quinic acid and, dexamethasone significantly improved histopathological indices. The expression of HO-1, Nrf2, and NQO1 were upregulated by 60 mg/kg of ferulic acid, 60 and100 mg/kg of quinic acid and, 2 mg/kg of dexamethasone treatment compared to the ulcerative colitis group. The protein levels of TNF-α and IL-1β dose-dependently decreased by ferulic acid and quinic acid treatment compared to the ulcerative colitis group. Ferulic acid and quinic acid effectively reduce inflammation and mucosal damage in rats with ulcerative colitis, especially when administered in high doses. The possible mechanism of anti-inflammatory response by ferulic acid and quinic acid may involve the activating of the Nrf2/HO-1 pathway.
Collapse
Affiliation(s)
- Mahsa Ekhtiar
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Maryam Ghasemi-Dehnoo
- Razi Herbal Medicines Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Fatemeh Azadegan-Dehkordi
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Nader Bagheri
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| |
Collapse
|
8
|
Silva B, Biluca FC, Lubschinski TL, Mohr ETB, Gonzaga LV, Fett R, Dalmarco EM, Costa ACO. Unveiling Stingless Bee Honey Anti-inflammatory Potential Through the Polarization of LPS-induced J774 Macrophages. Cell Biochem Biophys 2024:10.1007/s12013-024-01590-5. [PMID: 39441248 DOI: 10.1007/s12013-024-01590-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/03/2024] [Indexed: 10/25/2024]
Abstract
Macrophages play an important role during the inflammatory process. These cells can adopt either the pro- or anti-inflammatory phenotypes. While stingless bee honeys have demonstrated evidence of anti-inflammatory potential, their capacity to induce a shift from a pro-inflammatory state to an inflammation-resolution state has not been thoroughly investigated. In this study, the anti-inflammatory activity of two stingless bees (Scaptotrigona bicunctata-honey A and Melipona quadriasciata-honey G) honeys in J774 macrophages induced by LPS was evaluated. Both honeys exhibited non-cytotoxic effects and reduced nitrite and IL-4 levels. However, only honey G increased the levels of the anti-inflammatory cytokine IL-13, by 163.1 ± 14.8% (p < 0.05) and was further investigated for its immunomodulatory effect. This honey reduced the expression of TLR4 by 59.3 ± 3.5% (p < 0.001) and increased the mannose receptor levels by 67.3 ± 2.4% (p < 0.001). Moreover, it increased the phagocytic activity by 25.0 ± 7.7% (p < 0.01) and decreased the death of the macrophages by 32.1 ± 1.7% (p < 0.001). Collectively, these findings highlight stingless bee honey from Melipona quadriasciata bee has an important immunomodulatory effect, as it reduces the markers of the pro-inflammatory state of J774 cells and increases the markers of resolution or anti-inflammatory responses.
Collapse
Affiliation(s)
- Bibiana Silva
- Department of Food Science and Technology, Federal University of Santa Catarina, Florianópolis, SC, Brazil.
| | - Fabíola Carina Biluca
- Department of Food Science and Technology, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | | | | | - Luciano Valdemiro Gonzaga
- Department of Food Science and Technology, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - Roseane Fett
- Department of Food Science and Technology, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | | | | |
Collapse
|
9
|
Wang HL, He Y, Wang SWM, Aziz-Ur-Rahman M, Zhang SY, Shi CX, Wang HM, Su HW. Unlocking the potential of methionine: a dietary supplement for preventing colitis. Food Funct 2024; 15:10373-10389. [PMID: 39318168 DOI: 10.1039/d4fo02883j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
The incidence rate of colitis and conversion of colitis into colorectal cancer is increasing. However, the results of drug treatments are inconsistent with variable side effects; therefore, it is necessary to find alternative ways of treating colitis, e.g. through dietary supplements. One such dietary supplement could be sulfur-containing amino acids, which are known to have anti-inflammatory, antioxidant, and gut microbiota homeostasis effects. Therefore, the aim of the present study was to explore the effect of methionine supplementation in the diet of mice on experimental dextran sulfate sodium (DSS)-induced colitis. Here, 24 male C57BL/6J mice were split into three experimental treatment groups in such a way that each treatment group had four replicates and each replicate had two mice. The control group was colitis-free, while colitis was induced by the administration of DSS in the DSS groups. In the DSS and DSS plus methionine (DSS + Met) groups, DSS was provided in drinking water containing 3% DSS on days 1-5 and later provided with purified water on days 6-7. It was found that supplementing with methionine could activate pathways like Nrf2, and inhibit pathways like TLR4 and Nlrp3 to realize anti-inflammatory and antioxidant effects. Moreover, methionine could alter the microbiota of the gut in the experimental mice, whereby exploration of the gut microbiota demonstrated that methionine supplementation in the diet increased the abundance of parabacteroides and the production of propionate and butyrate. The current study shows that the dietary prophylactic supplementation of methionine has a beneficial effect on resisting colitis, providing new insights for the prevention of colitis.
Collapse
Affiliation(s)
- Hui-Li Wang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, P.R. China.
| | - Yang He
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, P.R. China.
| | - Song-Wei-Min Wang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, P.R. China.
| | - Muhammad Aziz-Ur-Rahman
- Institute of Animal and Dairy Sciences, University of Agriculture Faisalabad, Faisalabad 38040, Pakistan
| | - Si-Yu Zhang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, P.R. China.
| | - Chang-Xiao Shi
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, P.R. China.
| | - Hao-Ming Wang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, P.R. China.
| | - Hua-Wei Su
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, P.R. China.
| |
Collapse
|
10
|
Wang W, Pan Y, Lin Y, Zhao J, Liu M, Wang G, Li S. Network pharmacology combined with an experimental validation study to reveal the effect and mechanism of Lonicera japonica Thunb. extracts against immunomodulation. J Food Sci 2024; 89:3829-3846. [PMID: 38745368 DOI: 10.1111/1750-3841.17074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 03/25/2024] [Accepted: 03/27/2024] [Indexed: 05/16/2024]
Abstract
Lonicera japonica Thunb. (LJT) is known for its valuable medicinal properties that highlight its potential application in the pharmaceutical and health food industry. We predict that LJT polyphenols by network pharmacology may be involved in immunomodulation, and the study of LJT polyphenols regulating immunity is still insufficient; therefore, we experimentally found that LJT enhances immunity by promoting the proliferation and phagocytic activity of RAW246.7 cells. A model of an immunosuppressed mouse was constructed using cyclophosphamide-induced, and LJT was extracted for the intervention. We found that LJT restored immune homeostasis in immune deficiency mice by inhibiting the abnormal apoptosis in lymphocytes, enhancing natural killer cell cytotoxicity, promoting T lymphocyte proliferation, and increasing the CD4+ and CD8+ T lymphocytes in quantity. Moreover, LJT treatment modulates immunity by significantly downregulating lipopolysaccharide-induced inflammation and oxidative stress levels. We verified the immunomodulatory function of LJT through both cell and animal experiments. The combination of potential-protein interactions and molecular docking later revealed that LJT polyphenols were associated with immunomodulatory effects on MAPK1; together, LJT intervention significantly modulates the immune, with the activation of MAPK1 as the underlying mechanism of action, which provided evidence for the utilization of LJT as a nutraceutical in immune function.
Collapse
Affiliation(s)
- Wei Wang
- School of Perfume & Aroma and Cosmetics, Shanghai Institute of Technology, Shanghai, People's Republic of China
| | - Yunan Pan
- School of Perfume & Aroma and Cosmetics, Shanghai Institute of Technology, Shanghai, People's Republic of China
| | - Yucheng Lin
- Shanghai JAKA Biotech Co., Ltd., Shanghai, People's Republic of China
| | - Junjie Zhao
- School of Perfume & Aroma and Cosmetics, Shanghai Institute of Technology, Shanghai, People's Republic of China
| | - Meimei Liu
- School of Perfume & Aroma and Cosmetics, Shanghai Institute of Technology, Shanghai, People's Republic of China
| | - Guangyu Wang
- School of Perfume & Aroma and Cosmetics, Shanghai Institute of Technology, Shanghai, People's Republic of China
| | - Shanshan Li
- School of Perfume & Aroma and Cosmetics, Shanghai Institute of Technology, Shanghai, People's Republic of China
| |
Collapse
|
11
|
Sanie-Jahromi F, Khaki M, Heydari M, Nowroozzadeh MH, Akbarizadeh AR, Daneshamouz S, NejatyJahromy Y, Nejabat M, Mahmoudi A, Zareei A, Nejabat M. Effect of low dose honey on the apoptosis and inflammation gene expression in corneal limbal stem cells and keratocytes and its efficacy as an ophthalmic formulation in the treatment of dry eye: in-vitro and clinical study. Front Med (Lausanne) 2024; 11:1359463. [PMID: 38831993 PMCID: PMC11144896 DOI: 10.3389/fmed.2024.1359463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 04/29/2024] [Indexed: 06/05/2024] Open
Abstract
Background The use of honey as an eye treatment encounters challenges due to its high osmolarity, low pH, and difficulties in sterilization. This study addresses these issues by employing a low concentration of honey, focusing on both in-vitro experiments and clinical trials for treating dry eye disease in corneal cells. Methods In the in-vitro experiment, we investigated the impact of a 1% honey-supplemented medium (HSM) on limbal stem cells (LSCs) and keratocytes using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay and real-time polymerase chain reaction (PCR) for BCL-2, BAX, and IL-1β gene expression. Simultaneously, in the clinical trial, 80 participants were divided into two groups, receiving either a 1% w/v honey ophthalmic formulation or a placebo for 3 months. Study outcomes included subjective improvement in dry eye symptoms, tear break-up time (TBUT), and Schirmer's test results. Results MTT results indicated that 1% HSM did not compromise the survival of corneal cells and significantly reduced the expression of the IL-1β gene. Additionally, participants in the honey group demonstrated a higher rate of improvement in dry eye symptoms and a significant enhancement in TBUT values at the three-month follow-up. However, there was no significant difference between the study groups in terms of Schirmer's test values. No adverse events were observed or reported. Conclusion In conclusion, 1% honey exhibits anti-inflammatory and anti-infective properties, proving effective in ameliorating dry eye symptoms and enhancing tear film stability in patients with dry eye disease.Clinical Trial Registration: https://irct.behdasht.gov.ir/trial/63800.
Collapse
Affiliation(s)
- Fatemeh Sanie-Jahromi
- Poostchi Ophthalmology Research Center, Department of Ophthalmology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mehdi Khaki
- Poostchi Ophthalmology Research Center, Department of Ophthalmology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mojtaba Heydari
- Poostchi Ophthalmology Research Center, Department of Ophthalmology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Hossein Nowroozzadeh
- Poostchi Ophthalmology Research Center, Department of Ophthalmology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amin Reza Akbarizadeh
- Department of Quality Control, Food and Drug, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Saeid Daneshamouz
- Department of Pharmaceutics, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Yaser NejatyJahromy
- Poostchi Ophthalmology Research Center, Department of Ophthalmology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Maryam Nejabat
- HIV/AIDS Research Center, Institute of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ahmad Mahmoudi
- Poostchi Ophthalmology Research Center, Department of Ophthalmology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Athar Zareei
- Poostchi Ophthalmology Research Center, Department of Ophthalmology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mahmood Nejabat
- Poostchi Ophthalmology Research Center, Department of Ophthalmology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
12
|
Wang S, Qiu Y, Zhu F. An updated review of functional ingredients of Manuka honey and their value-added innovations. Food Chem 2024; 440:138060. [PMID: 38211407 DOI: 10.1016/j.foodchem.2023.138060] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 11/19/2023] [Accepted: 11/20/2023] [Indexed: 01/13/2024]
Abstract
Manuka honey (MH) is a highly prized natural product from the nectar of Leptospermum scoparium flowers. Increased competition on the global market drives MH product innovations. This review updates comparative and non-comparative studies to highlight nutritional, therapeutic, bioengineering, and cosmetic values of MH. MH is a good source of phenolics and unique chemical compounds, such as methylglyoxal, dihydroxyacetone, leptosperin glyoxal, methylsyringate and leptosin. Based on the evidence from in vitro, in vivo and clinical studies, multifunctional bioactive compounds of MH have exhibited anti-oxidative, anti-inflammatory, immunomodulatory, anti-microbial, and anti-cancer activities. There are controversial topics related to MH, such as MH grading, safety/efficacy, implied benefits, and maximum levels of contaminants concerned. Artificial intelligence can optimize MH studies related to chemical analysis, toxicity prediction, multi-functional mechanism exploration and product innovation.
Collapse
Affiliation(s)
- Sunan Wang
- Canadian Food and Wine Institute, Niagara College, 135 Taylor Road, Niagara-on-the-Lake, Ontario L0S 1J0, Canada; School of Chemical Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Yi Qiu
- Division of Engineering Science, Faculty of Applied Science and Engineering, University of Toronto, 35 St. George Street, Toronto, Ontario M5S 1A4, Canada
| | - Fan Zhu
- School of Chemical Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand.
| |
Collapse
|
13
|
Yang B, Li W, Saeki H, Shimizu Y, Joe GH. Maillard-type glycated collagen with alginate oligosaccharide suppresses inflammation and oxidative stress by attenuating the expression of LPS receptors Tlr4 and Cd14 in macrophages. Food Funct 2024; 15:3629-3639. [PMID: 38482590 DOI: 10.1039/d3fo02731g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Inflammation and oxidative stress contribute to noncommunicable diseases (NCDs), with macrophages playing pivotal roles. Glycated collagen through Maillard-type glycation holds promise for enhancing anti-inflammatory properties, but its mechanism remains unclear. This study investigates the cellular mechanism and aims to contribute to expanding collagen utilization. Collagen was glycated with alginate oligosaccharide (AO) and glucose (Glc: as a comparative case) at 60 °C and 35% relative humidity for up to 24 h (C-AO and C-Glc, respectively). The anti-inflammatory activities of both C-AO and C-Glc were evaluated using an LPS-stimulated macrophage model. 18 h AO-glycated collagen (C-AO18 h) was found to significantly reduce the production of nitric oxide and proinflammatory cytokines (TNF-α), interleukin-6 (IL-6), and interleukin-1β (IL-1β). In contrast, C-Glc did not exhibit enhanced anti-inflammatory activity during any of the glycation periods. The enhanced anti-inflammatory activity of C-AO18 h was attributed to its downregulating effect on LPS receptors (toll-like receptor 4, Tlr4; cluster of differentiation 14, Cd14) and myeloid differentiation primary response 88 (Myd88) mRNA expression, with suppression in receptor expression resulting in decreased phagocytic ability of macrophages against E. coli. In addition, compared with intact collagen, C-AO18 h exhibited improved antioxidant activity in the LPS-stimulated macrophage model, as it significantly upregulated superoxide dismutase (SOD) and catalase (CAT) activities while reducing malondialdehyde (MDA) levels. Overall, this study contributes to the development of collagen-based functional foods for mitigating inflammation and oxidative stress in NCDs.
Collapse
Affiliation(s)
- Boxue Yang
- Faculty of Fisheries Sciences, Hokkaido University, Minato 3, Hakodate, Hokkaido 041-8611, Japan.
- Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning, 116023, PR China
| | - Wenzhao Li
- Faculty of Fisheries Sciences, Hokkaido University, Minato 3, Hakodate, Hokkaido 041-8611, Japan.
| | - Hiroki Saeki
- Faculty of Fisheries Sciences, Hokkaido University, Minato 3, Hakodate, Hokkaido 041-8611, Japan.
| | - Yutaka Shimizu
- Faculty of Fisheries Sciences, Hokkaido University, Minato 3, Hakodate, Hokkaido 041-8611, Japan.
| | - Ga-Hyun Joe
- Faculty of Fisheries Sciences, Hokkaido University, Minato 3, Hakodate, Hokkaido 041-8611, Japan.
| |
Collapse
|
14
|
de Sousa Silveira Z, Silva Macêdo N, de Menezes Dantas D, Vieira Brito S, Silva Dos Santos H, Regis de Sousa Gomes RV, Douglas Melo Coutinho H, Bezerra da Cunha FA, Vanusa da Silva M. Chemical Profile and Biological Potential of Scaptotrigona Bee Products (Hymenoptera, Apidae, Meliponini): An Review. Chem Biodivers 2024; 21:e202301962. [PMID: 38415915 DOI: 10.1002/cbdv.202301962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 02/12/2024] [Accepted: 02/27/2024] [Indexed: 02/29/2024]
Abstract
Stingless bees belong to the Meliponini tribe and are widely distributed in the tropics and subtropics, where they perform important ecological services. Among the best distributed groups of stingless bees is the genus Scaptotrigona, which includes 22 species distributed throughout the neotropical region, including the area from Mexico to Argentina. Bees of this genus are responsible for the production of products such as honey, propolis, geopropolis and fermented pollen ("saburá"). This review aimed to provide an overview of the chemical composition and biological activities associated with derived products from stingless bees of the genus Scaptotrigona. The bibliographic review was carried out through searches in the Scopus, Web of Science, ScienceDirect and PubMed databases, including publications from 2003 to January 2023. The study of the chemodiversity of products derived from Scaptotrigona demonstrated the mainly presence of flavonoids, phenolic acids, terpenoids and alkaloids. It was also demonstrated that products derived from bees of the genus Scaptotrigona exhibit a wide range of biological effects, such as antibacterial, antioxidant, anti-inflammatory and antifungal activities, among other bioactivities. This review provides an overview of phytochemical and pharmacological investigations of the genus Scaptotrigona. However, it is essential to clarify the toxicity and food safety of these products.
Collapse
Affiliation(s)
- Zildene de Sousa Silveira
- Graduate Program in Biological Sciences (PPGCB), Federal University of Pernambuco (UFPE), Recife, 50670-901, PE, Brazil
| | - Nair Silva Macêdo
- Graduate Program in Biological Chemistry (PPQB), Regional University of Cariri (URCA), Crato, 63105-000, CE, Brazil
| | - Débora de Menezes Dantas
- Graduate Program in Biological Chemistry (PPQB), Regional University of Cariri (URCA), Crato, 63105-000, CE, Brazil
| | - Samuel Vieira Brito
- Graduate Program in Environmental Sciences, Center for Agricultural and Environmental Sciences, Federal University of Maranhão (UFMA), Chapadinha, 65500-000, Maranhão, Brazil
| | - Helcio Silva Dos Santos
- Graduate Program in Natural Sciences, State University of Ceara (UECE), Fortaleza, CE, 60.714.903, Brazil
| | | | | | | | - Márcia Vanusa da Silva
- Graduate Program in Biological Sciences (PPGCB), Federal University of Pernambuco (UFPE), Recife, 50670-901, PE, Brazil
| |
Collapse
|
15
|
Xu L, Wang X, Wu Y, Zhang Z, Li X, Zhang J. Effectiveness of APG and Honey Gauze in Pressure Injury of Elderly: A Randomized Control Trial. INT J LOW EXTR WOUND 2024:15347346241234420. [PMID: 38403980 DOI: 10.1177/15347346241234420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
This study was designed to evaluate the efficiency of the combination of autologous platelet-rich plasma gel (APG) and Manuka honey gauze in the treatment of Stages 3-4 pressure injury of older adults. Patients were divided into four groups: Manuka honey gauze and APG (M + A), Manuka honey gauze (M), APG (A), and a control group (C). Different treatments were given, then wound bed coverage with granulation tissue, wound size reduction, and Pressure Ulcer Scale for Healing (PUSH) score were examined. Paraffin-embedded sections of wound tissues were analyzed and wound swab cultures were assessed. Kruskal-Wallis test and Mann-Whitney U test were performed in statistical analysis at a 5% significance level. A total of 42 patients were accepted. Significant increase of wound bed coverage with granulation tissue (51.24%, P = .004, Kruskal-Wallis test) and decrease of PUSH score (-5) were observed in the M + A group at the end of the observation (P = .032, Mann-Whitney U test). The hematoxylin-eosin staining of wound tissues showed that typical squamous epithelium was seen in wound bed of patient in M + A group. Manuka honey gauze and APG were proved to be superior treatments for pressure injury of old patient. Increase of granulation tissue coverage, reduction of PUSH score, and improved growth of epithelium were observed in M + A group. There was no side-effect, and the treatment would not cause infection.
Collapse
Affiliation(s)
- Lulu Xu
- Department of Geriatrics, Chongqing Clinical Research Center for Geriatric Diseases, Chongqing General Hospital, Chongqing, China
| | - Xinmeng Wang
- Chinese Academy of Sciences, Chongqing Medical University & Chongqing Institute of Green and Intelligent Technology, Chongqing, China
- Chongqing School, University of Chinese Academy of Sciences, Chongqing, China
| | - Yongmei Wu
- Department of Geriatrics, Chongqing Clinical Research Center for Geriatric Diseases, Chongqing General Hospital, Chongqing, China
| | - Zhen Zhang
- Department of Clinical Laboratory, Chongqing General Hospital, Chongqing, China
| | - Xiafei Li
- Department of Geriatrics, Chongqing Clinical Research Center for Geriatric Diseases, Chongqing General Hospital, Chongqing, China
| | - Jie Zhang
- Department of Geriatrics, Chongqing Clinical Research Center for Geriatric Diseases, Chongqing General Hospital, Chongqing, China
- Graduate School, Chongqing Medical University, Chongqing, China
| |
Collapse
|
16
|
Masad RJ, Idriss I, Mohamed YA, Al-Sbiei A, Bashir G, Al-Marzooq F, Altahrawi A, Fernandez-Cabezudo MJ, Al-Ramadi BK. Oral administration of Manuka honey induces IFNγ-dependent resistance to tumor growth that correlates with beneficial modulation of gut microbiota composition. Front Immunol 2024; 15:1354297. [PMID: 38444857 PMCID: PMC10912506 DOI: 10.3389/fimmu.2024.1354297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 02/01/2024] [Indexed: 03/07/2024] Open
Abstract
Background To investigate the potential of Manuka honey (MH) as an immunomodulatory agent in colorectal cancer (CRC) and dissect the underlying molecular and cellular mechanisms. Methods MH was administered orally over a 4 week-period. The effect of MH treatment on microbiota composition was studied using 16S rRNA sequencing of fecal pellets collected before and after treatment. Pretreated mice were implanted with CRC cells and followed for tumor growth. Tumors and lymphoid organs were analyzed by flow cytometry (FACS), immunohistochemistry and qRT-PCR. Efficacy of MH was also assessed in a therapeutic setting, with oral treatment initiated after tumor implantation. We utilized IFNγ-deficient mice to determine the importance of interferon signaling in MH-induced immunomodulation. Results Pretreatment with MH enhanced anti-tumor responses leading to suppression of tumor growth. Evidence for enhanced tumor immunogenicity included upregulated MHC class-II on intratumoral macrophages, enhanced MHC class-I expression on tumor cells and increased infiltration of effector T cells into the tumor microenvironment. Importantly, oral MH was also effective in retarding tumor growth when given therapeutically. Transcriptomic analysis of tumor tissue highlighted changes in the expression of various chemokines and inflammatory cytokines that drive the observed changes in tumor immunogenicity. The immunomodulatory capacity of MH was abrogated in IFNγ-deficient mice. Finally, bacterial 16S rRNA sequencing demonstrated that oral MH treatment induced unique changes in gut microbiota that may well underlie the IFN-dependent enhancement in tumor immunogenicity. Conclusion Our findings highlight the immunostimulatory properties of MH and demonstrate its potential utilization in cancer prevention and treatment.
Collapse
Affiliation(s)
- Razan J. Masad
- Department of Medical Microbiology and Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Ienas Idriss
- Department of Medical Microbiology and Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Yassir A. Mohamed
- Department of Medical Microbiology and Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Ashraf Al-Sbiei
- Department of Biochemistry and Molecular Biology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Ghada Bashir
- Department of Medical Microbiology and Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Farah Al-Marzooq
- Department of Medical Microbiology and Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Abeer Altahrawi
- Department of Pathology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Maria J. Fernandez-Cabezudo
- Department of Biochemistry and Molecular Biology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
- Zayed Center for Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Basel K. Al-Ramadi
- Department of Medical Microbiology and Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
- Zayed Center for Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
- ASPIRE Precision Medicine Research Institute Abu Dhabi, United Arab Emirates University, Al Ain, United Arab Emirates
| |
Collapse
|
17
|
Magoshi IB, Nekhumbe AW, Ibrahim MA, Serem JC, Bester MJ. Gastrointestinal Effects on the Antioxidant and Immunomodulatory Properties of South African Fynbos Honey. INTERNATIONAL JOURNAL OF FOOD SCIENCE 2023; 2023:2553197. [PMID: 38045104 PMCID: PMC10691895 DOI: 10.1155/2023/2553197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 10/20/2023] [Accepted: 11/02/2023] [Indexed: 12/05/2023]
Abstract
The Fynbos biome, Western Cape Province, South Africa, produces a unique honey from Apis mellifera capensis. The bioactivity of Fynbos (FB1-FB6) honeys and Manuka, unique manuka factor 15+ (MAN UMF15+) honey subjected to simulated in vitro digestion, was compared. The effect of each phase of digestion on the antioxidant properties and nitric oxide- (NO-) associated immunomodulatory effects was determined. The total phenolic content of MAN (UMF15+) was higher than that of FB honeys, and following digestion, the percentage bioaccessibility (BA) was 68.6% and 87.1 ± 27.0%, respectively. With the Trolox equivalent antioxidant capacity assay, the activity of FB1 and FB6 was similar to MAN (UMF15+) but reduced for FB2, FB3, FB4, and FB5 with a %BA of 77.9% for MAN (UMF15+) and 78.2 ± 13.4% for FB. The oxygen radical absorbance capacity of MAN (UMF15+) and FB honeys was similar and unaltered with digestion. In a cellular environment, using colon adenocarcinoma (Caco-2) cells, both undigested and the gastric digested honey reduced 2,2'-azobis-(2-amidinopropane) dihydrochloride- (AAPH-) mediated peroxyl radical formation. In contrast, following gastroduodenal digestion, the formation of reactive oxygen species (ROS) was increased. In murine macrophage (RAW 264.7) cells, all honeys induced different levels of NO which was significantly increased with digestion for MAN (UMF15+) and FB1. In LPS/IFN-γ stimulated RAW 264.7 macrophages, only undigested MAN (UMF15+) effectively reduced NO levels, and with digestion, NO scavenging activity of MAN (UMF15+) was reduced but increased for FB5 and FB6. In a noncellular environment, MAN (UMF15+), FB1, FB2, and FB6 scavenged NO, and with digestion, this activity was maintained. This study has identified that undigested and gastric-digested FB honey has antioxidant properties with strong potential anticancer effects following gastroduodenal digestion, related to ROS formation. MAN (UMF15+) had anti-inflammatory effects which were lost postdigestion, and in contrast, FB5 and FB6 had anti-inflammatory effects postdigestion.
Collapse
Affiliation(s)
| | | | | | - June Cheptoo Serem
- Department of Anatomy, University of Pretoria, Pretoria 002, South Africa
| | - Megan Jean Bester
- Department of Anatomy, University of Pretoria, Pretoria 002, South Africa
| |
Collapse
|
18
|
Navarro-Hortal MD, Romero-Márquez JM, Jiménez-Trigo V, Xiao J, Giampieri F, Forbes-Hernández TY, Grosso G, Battino M, Sánchez-González C, Quiles JL. Molecular bases for the use of functional foods in the management of healthy aging: Berries, curcumin, virgin olive oil and honey; three realities and a promise. Crit Rev Food Sci Nutr 2023; 63:11967-11986. [PMID: 35816321 DOI: 10.1080/10408398.2022.2098244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
As the number of older people has grown in recent decades, the search for new approaches to manage or delay aging is also growing. Among the modifiable factors, diet plays a crucial role in healthy aging and in the prevention of age-related diseases. Thus, the interest in the use of foods, which are rich in bioactive compounds such as functional foods with anti-aging effects is a growing market. This review summarizes the current knowledge about the molecular mechanisms of action of foods considered as functional foods in aging, namely berries, curcumin, and virgin olive oil. Moreover, honey is also analyzed as a food with well-known healthy benefits, but which has not been deeply evaluated from the point of view of aging. The effects of these foods on aging are analyzed from the point of view of molecular mechanisms including oxidative stress, mitochondrial dysfunction, inflammation, genomic stability, telomere attrition, cellular senescence, and deregulated nutrient-sensing. A comprehensive study of the scientific literature shows that the aforementioned foods have demonstrated positive effects on certain aspects of aging, which might justify their use as functional foods in elderly. However, more research is needed, especially in humans, designed to understand in depth the mechanisms of action through which they act.
Collapse
Affiliation(s)
- María D Navarro-Hortal
- Institute of Nutrition and Food Technology "José Mataix Verdú", Biomedical Research Centre, Department of Physiology, University of Granada, Granada, Spain
| | - Jose M Romero-Márquez
- Institute of Nutrition and Food Technology "José Mataix Verdú", Biomedical Research Centre, Department of Physiology, University of Granada, Granada, Spain
| | - Victoria Jiménez-Trigo
- Institute of Nutrition and Food Technology "José Mataix Verdú", Biomedical Research Centre, Department of Physiology, University of Granada, Granada, Spain
| | - Jianbo Xiao
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo-Ourense Campus, Ourense, Spain
| | - Francesca Giampieri
- Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
- Research Group on Foods, Nutritional Biochemistry and Health, Universidad Europea del Atlántico, Santander, Spain
| | - Tamara Y Forbes-Hernández
- Institute of Nutrition and Food Technology "José Mataix Verdú", Biomedical Research Centre, Department of Physiology, University of Granada, Granada, Spain
| | - Giuseppe Grosso
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Maurizio Battino
- Research Group on Foods, Nutritional Biochemistry and Health, Universidad Europea del Atlántico, Santander, Spain
- International Joint Research Laboratory of Intelligent Agriculture and Agri-products Processing, Jiangsu University, Zhenjiang, China
- Department of Clinical Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Cristina Sánchez-González
- Institute of Nutrition and Food Technology "José Mataix Verdú", Biomedical Research Centre, Department of Physiology, University of Granada, Granada, Spain
| | - José L Quiles
- Institute of Nutrition and Food Technology "José Mataix Verdú", Biomedical Research Centre, Department of Physiology, University of Granada, Granada, Spain
- Research Group on Foods, Nutritional Biochemistry and Health, Universidad Europea del Atlántico, Santander, Spain
| |
Collapse
|
19
|
Nathani S, Das N, Katiyar P, Waghmode B, Sircar D, Roy P. Consumption of honey ameliorates lipopolysaccharide-induced intestinal barrier dysfunction via upregulation of tight junction proteins. Eur J Nutr 2023; 62:3033-3054. [PMID: 37493680 DOI: 10.1007/s00394-023-03203-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 06/30/2023] [Indexed: 07/27/2023]
Abstract
PURPOSE The leaky gut barrier is an important factor leading to various inflammatory gastrointestinal disorders. The nutritional value of honey and variety of its health benefits have long been recognized. This study was undertaken to assess the role of Indian mustard honey in preventing lipopolysaccharide (LPS)-induced intestinal barrier dysfunction using a combination of in vitro and in vivo experimental model systems. METHODS LPS was used to induce intestinal barrier damage in a trans-well model of Caco-2 cells (1 µg/ml) and in Swiss albino mice (5 mg/kg body weight). Gas chromatography-mass spectrometry (GC-MS) and liquid chromatography-mass spectrometry (LC-MS) were used to analyse sugar and phenolic components in honey samples. The Caco-2 cell monolayer integrity was evaluated by transepithelial electrical resistance (TEER) and paracellular permeability assays. The histopathology of intestinal tissue was analysed by haematoxylin and eosin dual staining. The quantitative reverse transcription-polymerase chain reaction (qRT-PCR) was used to quantify the transcription of genes. The protein expression was analysed by immunofluorescence, western blot and ELISA-based techniques. RESULTS The in vitro data showed that honey prevented LPS-induced intestinal barrier dysfunction dose dependently as was measured by TEER and paracellular flux of FITC-dextran dye. Further, the in vivo data showed a prophylactic effect of orally administered honey as it prevented the loss of intestinal barrier integrity and villus structure. The cellular localization and expression of tight junction (TJ) proteins were upregulated along with downregulation of pro-inflammatory cytokines in response to the administration of honey with LPS. CONCLUSIONS The findings of this study suggest a propitious role of honey in the maintenance of TJ protein integrity, thereby preventing LPS-induced intestinal barrier disintegration.
Collapse
Affiliation(s)
- Sandip Nathani
- Molecular Endocrinology Laboratory, Department of Biosciences & Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247 667, India
| | - Neeladrisingha Das
- Molecular Endocrinology Laboratory, Department of Biosciences & Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247 667, India
| | - Parul Katiyar
- Molecular Endocrinology Laboratory, Department of Biosciences & Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247 667, India
| | - Bhairavnath Waghmode
- Plant Molecular Biology Laboratory, Department of Biosciences & Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247 667, India
| | - Debabrata Sircar
- Plant Molecular Biology Laboratory, Department of Biosciences & Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247 667, India
| | - Partha Roy
- Molecular Endocrinology Laboratory, Department of Biosciences & Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247 667, India.
| |
Collapse
|
20
|
Wang Z, Wang L, Huang H, Li Q, Wang X, Sun Q, Wang Q, Li N. In vitro antioxidant analysis of flavonoids extracted from Artemisia argyi stem and their anti-inflammatory activity in lipopolysaccharide-stimulated RAW 264.7 macrophages. Food Chem 2023; 407:135198. [PMID: 36527947 DOI: 10.1016/j.foodchem.2022.135198] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 12/02/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022]
Abstract
In this study, flavonoids were successfully extracted from Artemisia argyi stem, and their yield reached 15.3 mg/g dry A. argyi stem. The flavonoid extract from A. argyi stem had a purity of 88.58 % (w/w), meanwhile, which also contained 1.57 % (w/w) carbohydrates, 2.04 % (w/w) proteins and 7.81 % (w/w) polyphenols, respectively. In vitro antioxidant activity analysis showed the increased scavenging effects of flavonoid extract from A. argyi stem on 1,1-diphenyl-2-picrylhydrazyl, 2,2'-azinobis-di-(3-ethyl-benzothiazolin-6-sulfonic acid) diammonium salt, hydroxyl, and superoxide radicals in a concentration-dependent manner. Furthermore, the flavonoid extract from A. argyi stem exerted protective effects on lipopolysaccharide-stimulated RAW 264.7 macrophages via inhibiting the levels of tumor necrosis factor-alpha, interleukin-6, interleukin-1 beta, and nitric oxide free radicals. Overall, this work will provide guidance and help in the utilization of edible A. argyi as plant-based diet and its bioactive flavonoid extract as antioxidant and anti-inflammatory ingredients to improve the function, nutrition, and healthiness of foods.
Collapse
Affiliation(s)
- Zichao Wang
- National Engineering Laboratory/Key Laboratory of Henan Province, Henan University of Technology, Zhengzhou 450001, China; School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Lu Wang
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Hongtao Huang
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Qiuyan Li
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Xiaoyuan Wang
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Qi Sun
- College of Life Sciences, Chongqing Normal University, Chongqing 401331, China.
| | - Qi Wang
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China.
| | - Na Li
- Henan Provincial Key Laboratory of Ultrasound Imaging and Artificial Intelligence, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou University, Zhengzhou 450001, China; Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
21
|
Brito LSDO, Batista A, Santos FA, de Lima RP, Ayala AP, Canuto KM, Silveira ER, Pessoa ODL. Anti-inflammatory kaurane diterpenoids of Erythroxylum bezerrae. Fitoterapia 2023; 165:105424. [PMID: 36603699 DOI: 10.1016/j.fitote.2022.105424] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/30/2022] [Accepted: 12/30/2022] [Indexed: 01/03/2023]
Abstract
Five unusual kaurane diterpenes, designated as bezerraditerpenes A-E (1-5), along with six known ones (6-11), were isolated from the hexane extract of the stems of Erythroxylum bezerrae. Their structures were elucidated based on the interpretation of the NMR spectroscopy, mass spectrometry, and X-ray diffraction analysis. The anti-inflammatory potential of the diterpenes 1-11 was screened through cellular viability and lipopolysaccharide (LPS)-induced nitric oxide (NO) production on murine macrophage-like cells RAW 264.7. Diterpene 6 (cauren-6β-ol) showed potent cytotoxicity and increased ability to inhibit NO production. Diterpenes 1 (bezerraditerpene A), 2 (bezerraditerpene B), and 8 (ent-kaur-16-ene-3β,15β-diol) exhibited the same significant anti-inflammatory activity with NO CI50 inhibition (3.21-3.76 μM) without cytotoxicity, in addition to decreasing the levels of pro-inflammatory cytokines TNF-α and IL-6 in LPS-induced RAW264.7 cells.
Collapse
Affiliation(s)
- Luana San de O Brito
- Departamento de Química Orgânica e Inorgânica, Centro de Ciências, Universidade Federal do Ceará, 60021-970 Fortaleza, CE, Brazil
| | - Alison Batista
- Departamento de Química Orgânica e Inorgânica, Centro de Ciências, Universidade Federal do Ceará, 60021-970 Fortaleza, CE, Brazil
| | - Flávia Almeida Santos
- Departamento de Fisiologia e Farmacologia, Universidade Federal do Ceará, 60430-270 Fortaleza, CE, Brazil
| | - Renan Pereira de Lima
- Departamento de Fisiologia e Farmacologia, Universidade Federal do Ceará, 60430-270 Fortaleza, CE, Brazil
| | - Alejandro Pedro Ayala
- Departamento de Física, Universidade Federal do Ceará, 60440-900 Fortaleza, CE, Brazil
| | - Kirley M Canuto
- Embrapa Agroindústria Tropical, R. Dra. Sara Mesquita, 2270, 60511-110 Fortaleza, CE, Brazil
| | - Edilberto R Silveira
- Departamento de Química Orgânica e Inorgânica, Centro de Ciências, Universidade Federal do Ceará, 60021-970 Fortaleza, CE, Brazil
| | - Otilia Deusdenia L Pessoa
- Departamento de Química Orgânica e Inorgânica, Centro de Ciências, Universidade Federal do Ceará, 60021-970 Fortaleza, CE, Brazil.
| |
Collapse
|
22
|
Romero-Márquez JM, Navarro-Hortal MD, Orantes FJ, Esteban-Muñoz A, Pérez-Oleaga CM, Battino M, Sánchez-González C, Rivas-García L, Giampieri F, Quiles JL, Forbes-Hernández TY. In Vivo Anti-Alzheimer and Antioxidant Properties of Avocado ( Persea americana Mill.) Honey from Southern Spain. Antioxidants (Basel) 2023; 12:antiox12020404. [PMID: 36829962 PMCID: PMC9952156 DOI: 10.3390/antiox12020404] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/26/2023] [Accepted: 01/31/2023] [Indexed: 02/11/2023] Open
Abstract
There is growing evidence that Alzheimer's disease (AD) can be prevented by reducing risk factors involved in its pathophysiology. Food-derived bioactive molecules can help in the prevention and reduction of the progression of AD. Honey, a good source of antioxidants and bioactive molecules, has been tied to many health benefits, including those from neurological origin. Monofloral avocado honey (AH) has recently been characterized but its biomedical properties are still unknown. The aim of this study is to further its characterization, focusing on the phenolic profile. Moreover, its antioxidant capacity was assayed both in vitro and in vivo. Finally, a deep analysis on the pathophysiological features of AD such as oxidative stress, amyloid-β aggregation, and protein-tau-induced neurotoxicity were evaluated by using the experimental model C. elegans. AH exerted a high antioxidant capacity in vitro and in vivo. No toxicity was found in C. elegans at the dosages used. AH prevented ROS accumulation under AAPH-induced oxidative stress. Additionally, AH exerted a great anti-amyloidogenic capacity, which is relevant from the point of view of AD prevention. AH exacerbated the locomotive impairment in a C. elegans model of tauopathy, although the real contribution of AH remains unclear. The mechanisms under the observed effects might be attributed to an upregulation of daf-16 as well as to a strong ROS scavenging activity. These results increase the interest to study the biomedical applications of AH; however, more research is needed to deepen the mechanisms under the observed effects.
Collapse
Affiliation(s)
- Jose M. Romero-Márquez
- Department of Physiology, Institute of Nutrition and Food Technology “José Mataix Verdú”, Biomedical Research Centre, University of Granada, 18016 Armilla, Spain
| | - María D. Navarro-Hortal
- Department of Physiology, Institute of Nutrition and Food Technology “José Mataix Verdú”, Biomedical Research Centre, University of Granada, 18016 Armilla, Spain
| | | | - Adelaida Esteban-Muñoz
- Department of Physiology, Institute of Nutrition and Food Technology “José Mataix Verdú”, Biomedical Research Centre, University of Granada, 18016 Armilla, Spain
| | - Cristina M. Pérez-Oleaga
- Department of Biostatistics, Universidad Europea del Atlántico, Isabel Torres 21, 39011 Santander, Spain
- Department of Biostatistics, Universidad Internacional Iberoamericana, Arecibo, PR 00613, USA
- Department of Biostatistics, Universidade Internacional do Cuanza, Cuito 250, Angola
| | - Maurizio Battino
- Department of Clinical Sciences, Polytechnic University of Marche, 60131 Ancona, Italy
- International Joint Research Laboratory of Intelligent Agriculture and Agri-Products Processing, Jiangsu University, Zhenjiang 212013, China
| | - Cristina Sánchez-González
- Department of Physiology, Institute of Nutrition and Food Technology “José Mataix Verdú”, Biomedical Research Centre, University of Granada, 18016 Armilla, Spain
- Sport and Health Research Centre, University of Granada, C/Menéndez Pelayo 32, 18016 Granada, Spain
| | - Lorenzo Rivas-García
- Department of Physiology, Institute of Nutrition and Food Technology “José Mataix Verdú”, Biomedical Research Centre, University of Granada, 18016 Armilla, Spain
- Sport and Health Research Centre, University of Granada, C/Menéndez Pelayo 32, 18016 Granada, Spain
| | - Francesca Giampieri
- Research Group on Foods, Nutritional Biochemistry and Health, Universidad Europea del Atlántico, Isabel Torres, 21, 39011 Santander, Spain
| | - José L. Quiles
- Department of Physiology, Institute of Nutrition and Food Technology “José Mataix Verdú”, Biomedical Research Centre, University of Granada, 18016 Armilla, Spain
- Research Group on Foods, Nutritional Biochemistry and Health, Universidad Europea del Atlántico, Isabel Torres, 21, 39011 Santander, Spain
- Research and Development Functional Food Centre (CIDAF), Health Science Technological Park, Avenida del Conocimiento 37, 18016 Granada, Spain
- Correspondence: (J.L.Q.); (T.Y.F.-H.); Tel.: +34-95-824-1000 (ext. 20316) (J.L.Q. & T.Y.F.-H.)
| | - Tamara Y. Forbes-Hernández
- Department of Physiology, Institute of Nutrition and Food Technology “José Mataix Verdú”, Biomedical Research Centre, University of Granada, 18016 Armilla, Spain
- Correspondence: (J.L.Q.); (T.Y.F.-H.); Tel.: +34-95-824-1000 (ext. 20316) (J.L.Q. & T.Y.F.-H.)
| |
Collapse
|
23
|
Naqvi F, Dastagir N, Jabeen A. Honey proteins regulate oxidative stress, inflammation and ameliorates hyperglycemia in streptozotocin induced diabetic rats. BMC Complement Med Ther 2023; 23:14. [PMID: 36653816 PMCID: PMC9847130 DOI: 10.1186/s12906-023-03837-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 01/06/2023] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Diabetes Mellitus (DM) poses a serious health problem worldwide and several inflammatory mediators are involved in the pathogenesis of this disease. Honey composed of various constituents which have been proven to have immunomodulatory and anti-inflammatory properties. The aim of this study is to investigate the in vitro and in vivo effects of Ziziphus honey and its isolated crude proteins in modulation of immune system and inflammation involved in the pathogenesis of diabetes. METHODOLOGY The proteins from Ziziphus honey were isolated by ammonium sulfate precipitation and estimated by Bradford method. In vitro anti-inflammatory activities were evaluated by inhibition of reactive oxygen species (ROS) from phagocytes via chemiluminescence immunoassay and nitric oxide (NO) by Griess method. Cytotoxicity was evaluated by MTT Assay. The comparative effect of oral and IP routes of honey and isolated proteins was observed in streptozotocin (STZ) induced diabetic male Wistar rats. qRT-PCR technique was utilized for gene expression studies. RESULTS The honey proteins suppressed phagocyte oxidative burst and nitric oxide (NO) at significantly lower concentrations as compared to crude honey. The isolated proteins showed promising anti-inflammatory and hypoglycemic effects along with maintenance of body weight of rodents via both oral and IP routes, with significant down-regulation of inflammatory markers TNF-α, IL-1β, IFN-γ, iNOS, caspase 1, Calgranulin A (S100A8) and NF-κB expression in diabetic rats. CONCLUSION The isolated honey proteins showed better immunomodulatory and therapeutic potential at significantly lower doses as compared to crude honey.
Collapse
Affiliation(s)
- Farwa Naqvi
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Nida Dastagir
- Dow University of Health Sciences (DUHS), Karachi, Pakistan
| | - Almas Jabeen
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan.
| |
Collapse
|
24
|
Yu W, Sun F, Xu R, Cui M, Liu Y, Xie Q, Guo L, Kong C, Li X, Guo X, Luo L. Chemical composition and anti-inflammatory activities of Castanopsis honey. Food Funct 2023; 14:250-261. [PMID: 36484340 DOI: 10.1039/d2fo02233h] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Castanopsis is diffusely spread in tropical and subtropical regions and is an important nectar source plant in China. The Castanopsis honey (CH) is characterized by its bitter taste. However, its composition and functions remain unclear. In this study, the physicochemical parameters, chemical composition, and antioxidant capacity of CH were comprehensively investigated, with the anti-inflammatory effects of the Castanopsis honey extract (CHE) evaluated based on the RAW 264.7 cell inflammatory model. The results revealed a high level of quality in CH based on the quality standards. Among a total of 84 compounds identified in CH, 5 high response compounds and 29 phenols were further quantified by UPLC-Q/TOF-MS. The high content of phenylethylamine (117.58 ± 64.81 mg kg-1) was identified as a potential marker of CH. Furthermore, the CH showed evident antioxidant activities, and the anti-inflammatory activities of CHE were observed to inhibit the release of nitric oxide (NO) and reduce the content of tumor necrosis factor alpha (TNF-α) and improve the content of interleukin-10 (IL-10) by regulating the NF-κB pathway. Our study indicates that CH has sound physicochemical properties and biological activities with a high level of quality, providing strong experimental evidence to support the further economic and agricultural development and application of CH.
Collapse
Affiliation(s)
- Wenjie Yu
- School of Life Sciences, Nanchang University, Nanchang, 330031, China
| | - Fengjie Sun
- School of Science and Technology, Georgia Gwinnett College, Lawrenceville, GA 30043, USA
| | - Ruixin Xu
- School of Life Sciences, Nanchang University, Nanchang, 330031, China
| | - Meng Cui
- School of Life Sciences, Nanchang University, Nanchang, 330031, China
| | - Yongquan Liu
- School of Life Sciences, Nanchang University, Nanchang, 330031, China.,College of Life Sciences, Gannan Normal University, Ganzhou 341000, China
| | - Quanyuan Xie
- School of Life Sciences, Nanchang University, Nanchang, 330031, China
| | - Limin Guo
- School of Life Sciences, Nanchang University, Nanchang, 330031, China
| | - Chenxian Kong
- School of Life Sciences, Nanchang University, Nanchang, 330031, China
| | - Xin Li
- School of Life Sciences, Nanchang University, Nanchang, 330031, China
| | - Xiali Guo
- School of Life Sciences, Nanchang University, Nanchang, 330031, China
| | - Liping Luo
- College of Food and Health, Beijing Technology and Business University (BTBU), Beijing, 100048, China.
| |
Collapse
|
25
|
Anti-Inflammatory and Antibacterial Effects and Mode of Action of Greek Arbutus, Chestnut, and Fir Honey in Mouse Models of Inflammation and Sepsis. Microorganisms 2022; 10:microorganisms10122374. [PMID: 36557628 PMCID: PMC9784341 DOI: 10.3390/microorganisms10122374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/23/2022] [Accepted: 11/24/2022] [Indexed: 12/03/2022] Open
Abstract
Background: Honey has been shown to possess anti-inflammatory and bactericidal properties that may be useful for the prevention and treatment of infections as well as of acute and chronic inflammatory diseases. The antimicrobial potency of honey could be attributed to its physicochemical characteristics combined with the presence of certain compounds, such as hydrogen peroxide and polyphenols. Honey's bacteriostatic or bactericidal capacity varies depending on its composition and the bacterial type of each infection. Nevertheless, not all honey samples possess anti-inflammatory or antibacterial properties and their mechanism of action has not been clearly elucidated. Objectives: We therefore investigated the anti-inflammatory properties of three different honey samples that derived from different geographical areas of Greece and different botanical origins, namely, arbutus, chestnut, and fir; they were compared to manuka honey, previously known for its anti-inflammatory and antibacterial activity. Materials and Methods: To test the anti-inflammatory activity of the different samples, we utilized the in vivo model of LPS-driven inflammation, which induces septic shock without the presence of pathogens. To evaluate the antibacterial action of the same honey preparations, we utilized the cecal-slurry-induced peritonitis model in mice. Since acute inflammation and sepsis reduce the biotransformation capacity of the liver, the expression of key enzymes in the process was also measured. Results: The administration of all Greek honey samples to LPS-stimulated mice revealed a potent anti-inflammatory activity by suppressing the TNFα serum levels and the expression of TNFα and iNOS in the liver at levels comparable to those of the manuka honey, but they had no effect on IL-6 or IL-1β. It was shown that the LPS-induced suppression of CYP1A1 in the liver was reversed by Epirus and Crete fir honey, while, correspondingly, the suppression of CYP2B10 in the liver was reversed by Evros chestnut and Epirus fir honey. The effect of the same honey samples in polymicrobial peritonitis in mice was also evaluated. Even though no effect was observed on the disease severity or peritoneal bacterial load, the bacterial load in the liver was reduced in mice treated with Evros chestnut, Epiros fir, and Crete fir, while the bacterial load in the lungs was reduced in Epirus arbutus, Crete fir, and manuka honey-treated mice. Conclusion: Our findings suggest that these specific Greek honey samples possess distinct anti-inflammatory and antibacterial properties, as evidenced by the reduced production of pro-inflammatory mediators and the impaired translocation of bacteria to tissues in septic mice. Their mode of action was comparable or more potent to those of manuka honey.
Collapse
|
26
|
Neocinnamomum caudatum Essential Oil Ameliorates Lipopolysaccharide-Induced Inflammation and Oxidative Stress in RAW 264.7 Cells by Inhibiting NF-κB Activation and ROS Production. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27238193. [PMID: 36500283 PMCID: PMC9736579 DOI: 10.3390/molecules27238193] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/11/2022] [Accepted: 11/16/2022] [Indexed: 11/27/2022]
Abstract
Neocinnamomum caudatum (Lauraceae) plant is used in the traditional system of medicine and is considered a potential source of edible fruits, spices, flavoring agents and biodiesel. The leaves, bark and roots of the species are used by local communities for the treatment of inflammatory responses, such as allergies, sinusitis and urinary tract infections. However, there is no scientific evidence to support the molecular mechanism through which this plant exerts its anti-inflammatory effect. The aim of the current research was to characterize the chemical constituents of bark (NCB) and leaf (NCL) essential oil of N. caudatum and to elucidate its anti-inflammatory action in lipopolysaccharide (LPS)-treated RAW 264.7 cells. Essential oils extracted by hydrodistillation were further subjected to gas chromatography mass spectrometry (GC-MS) analysis. The major constituents in bark essential oil identified as β-pinene (13.11%), α-cadinol (11.18%) and α-pinene (10.99%), whereas leaf essential oil was found to be rich in β-pinene (45.21%), myrcene (9.97%) and α-pinene (9.27%). Treatment with NCB and NCL at a concentration of 25 µg/mL exerted significant anti-inflammatory activity by significantly reducing LPS-triggered nitric oxide (NO) production to 45.86% and 61.64%, respectively, compared to the LPS-treated group. In the LPS-treated group, the production of proinflammatory cytokines, such as tumor necrosis factor (TNF)-α, interleukin (IL)-6 and IL-1β, decreased after treatment with essential oil, alleviating the mRNA levels of inducible nitric oxide synthase (iNOS) and cyclooxygenase (COX)-2. The essential oil also inhibited the production of intracellular ROS and attenuated the depletion of mitochondrial membrane potential in a concentration-dependent manner. Pretreatment with NCB also reduced nuclear factor kappa-B (NF-κB)/p65 translocation and elevated the levels of endogenous antioxidant enzymes in LPS-induced macrophages. The present findings, for the first time, demonstrate the anti-inflammatory potential of both bark and leaf essential oils of N. caudatum. The bark essential oil exhibited a significantly more important anti-inflammatory effect than the leaf essential oil and could be used as a potential therapeutic agent for the treatment of inflammatory diseases.
Collapse
|
27
|
Abd Rashid N, Mohammed SNF, Syed Abd Halim SA, Ghafar NA, Abdul Jalil NA. Therapeutic Potential of Honey and Propolis on Ocular Disease. Pharmaceuticals (Basel) 2022; 15:1419. [PMID: 36422549 PMCID: PMC9696375 DOI: 10.3390/ph15111419] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/09/2022] [Accepted: 11/11/2022] [Indexed: 09/01/2023] Open
Abstract
Honey and propolis have recently become the key target of attention for treating certain diseases and promoting overall health and well-being. A high content of flavonoids and phenolic acids found in both honey and propolis contributes to the antioxidant properties to scavenge free radicals. Honey and propolis also exhibited antibacterial effects where they act in two ways, namely the production of hydrogen peroxide (H2O2) and gluconic acids following the enzymatic activities of glucose oxidase, which exerts oxidative damage on the bacteria. Additionally, the anti-inflammatory effects of honey and propolis are mainly by reducing proinflammatory factors such as interleukins and tumor necrosis factor alpha (TNF-α). Their effects on pain were discovered through modulation at a peripheral nociceptive neuron or binding to an opioid receptor in the higher center. The aforementioned properties of honey have been reported to possess potential therapeutic topical application on the exterior parts of the eyes, particularly in treating conjunctivitis, keratitis, blepharitis, and corneal injury. In contrast, most of the medicinal values of propolis are beneficial in the internal ocular area, such as the retina, optic nerve, and uvea. This review aims to update the current discoveries of honey and propolis in treating various ocular diseases, including their antioxidant, anti-inflammatory, antibacterial, and anti-nociceptive properties. In conclusion, research has shown that propolis and honey have considerable therapeutic promise for treating various eye illnesses, although the present study designs are primarily animal and in vitro studies. Therefore, there is an urgent need to translate this finding into a clinical setting.
Collapse
Affiliation(s)
- Norhashima Abd Rashid
- Department of Biomedical Science, Faculty of Applied Science, Lincoln University College, Petaling Jaya 47301, Malaysia
| | - Siti Nur Farhana Mohammed
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | | | - Norzana Abd Ghafar
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Nahdia Afiifah Abdul Jalil
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| |
Collapse
|
28
|
Masad RJ, Nasser RA, Bashir G, Mohamed YA, Al-Sbiei A, Al-Saafeen BH, Fernandez-Cabezudo MJ, Al-Ramadi BK. Characterization of immunomodulatory responses induced by manuka honey. Front Immunol 2022; 13:1020574. [PMID: 36405698 PMCID: PMC9670174 DOI: 10.3389/fimmu.2022.1020574] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 10/10/2022] [Indexed: 03/12/2024] Open
Abstract
Manuka honey (MH) is known for its wound-healing, anti-microbial, anti-oxidant and anti-tumor properties. However, there is conflicting evidence regarding the role of MH in inflammatory responses, with some studies highlighting its pro-inflammatory capacity and others showing that it has a predominantly anti-inflammatory activity. The current study is aimed at characterizing the immunomodulatory capacity of MH using both in vitro and in vivo approaches, focusing on the underlying mechanisms. Treatment of RAW 264.7 macrophages with 1% MH (w/v) resulted in a significant increase in the gene expression (~26-fold) and secretion (~27-fold) of tumor necrosis factor-alpha (TNF-α). Similarly, an increase was observed in the gene expression of other inflammatory cytokines including interleukin-1β (IL-1β), interleukin-6 (IL-6), and inducible nitric oxide synthase (iNOS), as well as the chemokines; (C-X-C motif) ligand 2 (CXCL2) and (C-C) motif ligand 2 (CCL2). Using an in vivo model, intraperitoneal (i.p.) administration of MH in C57BL/6 mice elicited a peritoneal response characterized by a significant expansion in the number of peritoneal exudate cells (PECs), which was mainly due to a 35-fold increase in the recruitment of neutrophils. Importantly, this response was evident in toll-like receptor 4 (TLR4)-defective C3H/HeJ mice, indicating that the observed stimulatory effect occurs independently of TLR4 and unlikely to be mediated by any lipopolysaccharide (LPS) contaminant. MH administration also led to changes in the phenotypic expression and functional maturation of peritoneal macrophages, as evidenced by a shift towards the CD11blo F4/80lo phenotype and an increase in the expression of major histocompatibility complex (MHC) class II proteins. In contrast, the MH-initiated peritoneal response was largely abrogated in mice deficient in myeloid differentiation primary response 88 (MyD88) protein, a critical adaptor of most TLR signaling pathways. Thus, the current findings help to characterize the immunostimulatory properties of MH and their dependence on TLR signaling, and highlight the potential utility of MH as an immunomodulatory agent in a variety of disorders.
Collapse
Affiliation(s)
- Razan J. Masad
- Department of Medical Microbiology and Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Rasha A. Nasser
- Department of Medical Microbiology and Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Ghada Bashir
- Department of Medical Microbiology and Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Yassir A. Mohamed
- Department of Medical Microbiology and Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Ashraf Al-Sbiei
- Department of Biochemistry and Molecular Biology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Besan H. Al-Saafeen
- Department of Medical Microbiology and Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Maria J. Fernandez-Cabezudo
- Department of Biochemistry and Molecular Biology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Basel K. Al-Ramadi
- Department of Medical Microbiology and Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
- Zayed Center for Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| |
Collapse
|
29
|
Liu R, Zhou F, Yu J, Wei X, Liu X, Yuan X, Yu C. Abrusamide H Impairs the Secretion of the Cytokines in RAW264.7 Cells and the Inflammatory Infiltration in Tail Transection-Induced Zebrafish. Chem Biodivers 2022; 19:e202200474. [PMID: 36190475 DOI: 10.1002/cbdv.202200474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 09/28/2022] [Indexed: 11/09/2022]
Abstract
Abrus mollis Hance (Leguminosae) has a variety of biological activities, including anti-inflammatory, antioxidant, antibacterial, antiviral, and antitumor activities. However, the specific substances responsible for the anti-inflammatory effects are unknown. Abrusamide H (BJBS) is a truxillic acid derivative obtained from the leaves of Abrus mollis Hance and has potential anti-inflammatory effects. In this study, we aimed to estimate the potential effect and mechanism of BJBS in inflammation by establishing lipopolysaccharide (LPS)-stimulated RAW264.7 cells in vitro and an injured zebrafish tail fin in vivo. The RAW264.7 cells were treated with different concentrations of BJBS after LPS stimulation. The production of nitric oxide (NO) was detected by Griess reaction, and reactive oxygen species (ROS) were detected by an ROS assay kit. The levels of proinflammatory cytokines, including interleukin 6 (IL-6), tumor necrosis factor α (TNF-α), interleukin 1β (IL-1β), and interleukin 18 (IL-18) were measured by ELISA. Results showed that BJBS at all concentrations inhibited the proliferation of RAW264.7 macrophages after LPS stimulation by cell counting kit-8 and the production of NO and ROS. In the BJBS treatment group, the levels of IL-6, TNF-α, IL-1β, and IL-18 decreased in a concentration-dependent manner. The results in vivo showed that no significant difference in the survival of zebrafish between the BJBS and blank groups and BJBS inhibited the migration and aggregation of zebrafish neutrophils in a dose-dependent manner in inflammation induced by tail transection-induced inflammation. In conclusion, BJBS inhibited the production of NO and ROS, decreased the levels of secreted IL-6, TNF-α, IL-1β, and IL-18, and reduced the migration and aggregation of zebrafish neutrophils.
Collapse
Affiliation(s)
- Roujia Liu
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery Systems, Guangdong Pharmaceutical University, Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangdong Engineering & Technology Research Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, East Waihuan Road 280, Guangzhou, P. R. China
| | - Feirong Zhou
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery Systems, Guangdong Pharmaceutical University, Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangdong Engineering & Technology Research Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, East Waihuan Road 280, Guangzhou, P. R. China
| | - Jiaxian Yu
- Jinan University, Guangzhou, P. R. China
| | - Xinru Wei
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery Systems, Guangdong Pharmaceutical University, Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangdong Engineering & Technology Research Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, East Waihuan Road 280, Guangzhou, P. R. China
| | - Xiangying Liu
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery Systems, Guangdong Pharmaceutical University, Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangdong Engineering & Technology Research Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, East Waihuan Road 280, Guangzhou, P. R. China
| | - Xujiang Yuan
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery Systems, Guangdong Pharmaceutical University, Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangdong Engineering & Technology Research Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, East Waihuan Road 280, Guangzhou, P. R. China
| | - Chuqin Yu
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery Systems, Guangdong Pharmaceutical University, Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangdong Engineering & Technology Research Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, East Waihuan Road 280, Guangzhou, P. R. China
| |
Collapse
|
30
|
Dantas Rocha KA, de Freitas Paulo T, Ayala AP, da Silva Sampaio V, Gomes Nunes PI, Santos FA, Canuto KM, Silveira ER, Loiola Pessoa OD. Anti-inflammatory withajardins from the leaves of Athenaea velutina. PHYTOCHEMISTRY 2022; 203:113338. [PMID: 35948140 DOI: 10.1016/j.phytochem.2022.113338] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 07/18/2022] [Accepted: 07/20/2022] [Indexed: 06/15/2023]
Abstract
Withajardins, uncommon modified withanolide-type steroids, have been isolated exclusively from plants of the Solanaceae family so far. Two undescribed withajardins and the known tuboanosigenin were isolated from the hexane/EtOAc 1:1 extract from Athenaea velutina leaves. Their structures were established by an extensive analysis of 1D and 2D-NMR and HRMS data. The absolute configuration was determined by X-ray diffraction (withajardin L and tuboanosigenin) and circular dichroism (CD) analyses (withajardin M). The anti-inflammatory activity of compounds was evaluated through the inhibition of the lipopolysaccharide (LPS)-induced nitric oxide (NO), TNF-α, and IL-6 release in RAW264.7 cells. The cell viability effects to RAW 264.7 cells showed IC50 values of 74.4-354.4 μM. The compounds attenuated LPS-induced release of NO and decreased pro-inflammatory cytokines TNF-α and IL-6 in RAW264.7 cells.
Collapse
Affiliation(s)
- Késya Amanda Dantas Rocha
- Departamento de Química Orgânica e Inorgânica, Centro de Ciências, Universidade Federal do Ceará, 60021-970, Fortaleza, CE, Brazil
| | - Tércio de Freitas Paulo
- Departamento de Química Orgânica e Inorgânica, Centro de Ciências, Universidade Federal do Ceará, 60021-970, Fortaleza, CE, Brazil
| | - Alejandro Pedro Ayala
- Departamento de Física, Centro de Ciências, Universidade Federal do Ceará, 60440-900, Fortaleza, CE, Brazil
| | | | - Paulo Iury Gomes Nunes
- Departamento de Fisiologia e Farmacologia, Faculdade de Medicina, Universidade Federal do Ceará, 60430-270, Fortaleza, CE, Brazil
| | - Flávia Almeida Santos
- Departamento de Fisiologia e Farmacologia, Faculdade de Medicina, Universidade Federal do Ceará, 60430-270, Fortaleza, CE, Brazil
| | | | - Edilberto Rocha Silveira
- Departamento de Química Orgânica e Inorgânica, Centro de Ciências, Universidade Federal do Ceará, 60021-970, Fortaleza, CE, Brazil
| | - Otília Deusdenia Loiola Pessoa
- Departamento de Química Orgânica e Inorgânica, Centro de Ciências, Universidade Federal do Ceará, 60021-970, Fortaleza, CE, Brazil.
| |
Collapse
|
31
|
Honeys with anti-inflammatory capacity can alter the elderly gut microbiota in an ex vivo gut model. Food Chem 2022; 392:133229. [PMID: 35679723 DOI: 10.1016/j.foodchem.2022.133229] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 04/19/2022] [Accepted: 05/14/2022] [Indexed: 11/21/2022]
Abstract
The anti-inflammatory effect of different sourced honeys and the impact on elderly gut microbiota were studied in terms of chemical compositions, anti-inflammatory effect and gut microbiota modulating capacities. All four honeys suppressed the production of pro-inflammatory markers NO, IL-1β and IL-6 induced by lipopolysaccharide and promoted the expression of anti-inflammatory cytokines IL-10 in RAW 264.7 cells. Moreover, in the ex vivo batch gut model using elderly fecal microbiota (referred to as microcosm), it was showed that the addition of honeys increased the abundance of beneficial lactobacilli, decreased the abundance of potentially harmful Gram negative enteric bacteria, and exerted a beneficial effect on the production of short chain fatty acids. The concentration of gallic acid in honeys was positively correlated with the expression level of IL-10 and the abundance of lactobacilli. These findings indicate honeys with anti-inflammatory capacity have great potential for regulating the elderly gut microbiota which would lead to health benefits.
Collapse
|
32
|
Russell FD, Visagie JC, Noll JL. Secretion of IL-6 by fibroblasts exposed to Australian honeys involves lipopolysaccharide and is independent of floral source. Sci Rep 2022; 12:16628. [PMID: 36198760 PMCID: PMC9534836 DOI: 10.1038/s41598-022-21130-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 09/22/2022] [Indexed: 11/18/2022] Open
Abstract
Honey stimulates cellular secretion of cytokines, which has been attributed to activation of lipopolysaccharide (LPS)-dependent and LPS-independent pathways. The objective of this study was to identify whether LPS is present in Australian honey samples at levels that can stimulate interleukin-6 (IL-6) secretion by fibroblasts and whether it can transduce cell signalling by activating toll-like receptor 4 (TLR4). IL-6 was measured in culture media of fibroblasts exposed to honey for 24 h. LPS was detected in a 0.125 mg/mL solution of grey ironbark honey (0.61 ± 0.05 ng/g honey). TLR4 signalling was observed in RAW264.7 macrophages that were exposed to honey and this was prevented by preincubating the honey with the LPS-neutralising agent, polymyxin B. Australian Eucalyptus, Leptospermum and Cyathode honeys stimulated IL-6 secretion in cultured human dermal fibroblasts. To examine whether the response was dependent on floral source, fibroblasts were exposed to four different samples of grey ironbark honey obtained from Queensland and New South Wales, Australia. The magnitude of the cytokine response to these honeys was highly varied. We conclude that Australian honeys contain endotoxin at levels that can stimulate IL-6 secretion by fibroblasts and that signalling in macrophages involves TLR4 activation. The IL-6 secretory response was independent of floral source.
Collapse
Affiliation(s)
- Fraser D Russell
- Centre for Bioinnovation, University of the Sunshine Coast, Maroochydore DC, QLD, 4558, Australia. .,School of Health and Behavioural Sciences, University of the Sunshine Coast, Maroochydore DC, QLD, 4558, Australia.
| | - Jeanne C Visagie
- School of Health and Behavioural Sciences, University of the Sunshine Coast, Maroochydore DC, QLD, 4558, Australia
| | - Jamie L Noll
- School of Health and Behavioural Sciences, University of the Sunshine Coast, Maroochydore DC, QLD, 4558, Australia
| |
Collapse
|
33
|
Differential effects of oilseed protein hydrolysates in attenuating inflammation in murine macrophages. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
34
|
Yu Y, Pei F, Li Z. Orientin and vitexin attenuate lipopolysaccharide-induced inflammatory responses in RAW264.7 cells: a molecular docking study, biochemical characterization, and mechanism analysis. FOOD SCIENCE AND HUMAN WELLNESS 2022. [DOI: 10.1016/j.fshw.2022.04.024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
35
|
Abstract
Dry eye has become an increasingly prevalent public health issue for which there is currently no cure. Manuka honey possesses anti-inflammatory and antioxidant properties that can be used to treat dry eye. The present study aimed to systematically review evidence supporting the treatment of dry eye with manuka honey and quantify this evidence via meta-analysis. Randomised clinical trials that fulfilled the inclusion criteria from database inception until 5 September 2021, were identified through online searches of seven databases, including but not limited to Embase, Medline, and Central. Changes between the point of longest follow-up and baseline subjective symptoms, tear film quality, ocular surface characteristics, adverse events, and compliance were selected for meta-analysis. A total of 288 adult participants with dry eye from five eligible randomised controlled trials were analysed. Compared with the control groups, treatment with manuka honey demonstrated a significant improvement in Ocular Surface Disease Index, Standard Patient Evaluation of Eye Dryness, tear evaporation rate, negative conversion rate of matrix metalloproteinase-9 levels, ocular surface staining, and daily use frequency of lubricant. No serious adverse events were reported, except for temporary stinging and redness, which were generally tolerated. This review found that manuka honey demonstrated promising results for the treatment of dry eye. However, limitations of the included studies and analytical methodology affect the reliability of this conclusion. Therefore, further high-quality randomised clinical trials are required to confirm the efficacy and safety of the use of manuka honey in the treatment of dry eye.
Collapse
Affiliation(s)
- Jindong Hu
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Lingwen Kong
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Sixing Zhu
- Institute of Science, Technology and Humanities of Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Mohan Ju
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China
| | - Qianfu Zhang
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
36
|
Agussalim, Umami N, Nurliyani, Agus A. STINGLESS BEE HONEY (Tetragonula laeviceps): CHEMICAL COMPOSITION AND THEIR POTENTIAL ROLES AS AN IMMUNOMODULATOR IN MALNOURISHED RATS. Saudi J Biol Sci 2022; 29:103404. [PMID: 36033927 PMCID: PMC9411681 DOI: 10.1016/j.sjbs.2022.103404] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 07/10/2022] [Accepted: 07/30/2022] [Indexed: 11/16/2022] Open
Abstract
Honey is rich in bioactive compounds, phenolic acids, and flavonoids and is an antioxidant and an immunomodulator. The objectives of this study were to determine the honey chemical composition of Indonesian stingless bees and their potential roles as an immunomodulator in the malnourished rats. Tetragonula laeviceps honey was used to analyses of chemical composition was obtained from three different geographical origins were Depok Sleman, Bayan Lombok, and Nglipar Gunungkidul. Thirty-two rats were divided into four groups of 8 rats and placed in individual cages. The experimental designed was as follows: T1 = normal rats + without honey (0–7 weeks), T2 = normal rats + with honey of 1.8 g/kg BW/day (0–7 weeks), T3 = malnourished honey of 1.8 g/kg BW/day started from 2 weeks after the malnourished condition (2–7 weeks). The results showed that the chemical composition of Tetragonula laeviceps honey from three different geographical origins were vitamin C content (6.49–13.58 mg/100 g), total phenolic content (0.65–2.30% GAE/100 g), total flavonoid content (0.28–1.00 mg QE/g), and antioxidant activity DPPH (61.43–90.28%). The application of fresh honey from stingless bee that was offered to either normal or malnourished rats were increased lymphocytes proliferation and decreased the production of both proinflammatory markers, interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) from tissue culture supernatant of lymphocytes (p < 0.01). Data from this study clearly indicates the potential role of honey from stingless bee as an immunomodulator in malnourished rats.
Collapse
|
37
|
Das N, Ray N, Patil AR, Saini SS, Waghmode B, Ghosh C, Patil SB, Patil SB, Mote CS, Saini S, Saraswat BL, Sircar D, Roy P. Inhibitory effect of selected Indian honey on colon cancer cell growth by inducing apoptosis and targeting the β-catenin/Wnt pathway. Food Funct 2022; 13:8283-8303. [PMID: 35834215 DOI: 10.1039/d1fo03727g] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Colon cancer is the most prevalent cause of death from cancer across the globe. Although chemotherapy drugs are predominantly used, their toxicity always remains a cause of concern. As an alternative to synthetic drugs, natural compounds or nutraceuticals are comparatively less toxic. Honey is widely used across different cultures as an alternative form of medicine. It represents a prominent source of plant-phenolic compounds and there is demonstrable evidence of its anti-oxidant and anti-microbial activities. The aim of the present work was to investigate the anti-proliferative effect of some Indian honeys and analyze their mechanism of action in colon cancer. In order to establish the composition-activity relationship, we evaluated the bioactive components present in selected honey samples by GC-MS and HPLC analysis. Indian honey samples showed a significant inhibitory impact on cell growth by restricting cell proliferation, causing apoptosis, and restricting the cell cycle in the G2/M phase specifically for colon cancer cells. The apoptotic activities, as imparted by the honey samples, were established by Annexin V/PI staining, real-time PCR, and immunoblot analyses. The treated cells showed increased expressions of p53 and caspases 3, 8, and 9, thus indicating the involvement of both extrinsic and intrinsic apoptotic pathways. The honey samples were also found to inhibit the β-catenin/Wnt pathway. In the next phase of the study, the efficacy of these honey samples was evaluated in colon carcinoma induced SD-rats. Overall, these findings demonstrated that selected Indian honeys could be established as effective nutraceuticals for the prevention as well as cure of colon cancer.
Collapse
Affiliation(s)
- Neeladrisingha Das
- Molecular Endocrinology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee - 247 667, Uttarakhand, India.
| | - Neelanjana Ray
- Molecular Endocrinology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee - 247 667, Uttarakhand, India.
| | - Abhinandan R Patil
- Centre for Interdisciplinary Research, D. Y. Patil University, Kolhapur - 416 006, Maharashtra, India
| | - Shashank Sagar Saini
- Plant Molecular Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee - 247 667, Uttarakhand, India
| | - Bhairavnath Waghmode
- Plant Molecular Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee - 247 667, Uttarakhand, India
| | - Chandrachur Ghosh
- Molecular Endocrinology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee - 247 667, Uttarakhand, India.
| | - Sunita B Patil
- Department of Pathology, D. Y. Patil Medical College, Kolhapur - 416 006, Maharashtra, India
| | - Sandeep B Patil
- Biocyte Institute of Research and Development, Sangli - 416 416, Maharashtra, India
| | - Chandrasekhar S Mote
- Department of Veterinary Pathology, KNP College of Veterinary Science, Sirwal - 412 801, Maharashtra, India
| | - Surendra Saini
- Molecular Endocrinology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee - 247 667, Uttarakhand, India.
| | - B L Saraswat
- Department of Agriculture, Cooperation & Farmers Welfare (DAC & FW), Ministry of Agriculture and Farmers Welfare, Govt. of India, 150 A, Krishi Bhawan, New Delhi - 110001, India
| | - Debabrata Sircar
- Plant Molecular Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee - 247 667, Uttarakhand, India
| | - Partha Roy
- Molecular Endocrinology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee - 247 667, Uttarakhand, India.
| |
Collapse
|
38
|
Ahmed SS, Al Nohair SF, Abdulmonem WA, Alhomaidan HT, Rasheed N, Ismail MS, Albatanony MA, Rasheed Z. Honey polyphenolic fraction inhibits cyclooxygenase-2 expression via upregulation of microRNA-26a-5p expression in pancreatic islets. EUR J INFLAMM 2022. [DOI: 10.1177/20587392221076473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Objectives Honey total polyphenolic fraction (HTPF) is reported to have anti-disease potential, however the role of HTPF in the regulation of microRNAs (miRNAs) has never been investigated. This study was undertaken to investigate the potential of HTPF against inflammation via regulation of miRNAs in pancreatic islets of Langerhans. Methods Pancreatic islets were isolated from C57BL/6 mice and HTPF was purified from honey. Bioinformatics algorithms were used to determine miRNA target genes. Expression of miRNA and mRNA was determined using their specific taqman assays. Pairing between miRNA and 3′ untranslated region (3′UTR) of mRNA was confirmed using luciferase reporter clone containing the 3′UTR of mRNA sequences and results were verified by transfection of mouse pancreatic β-cell line Min6 with miRNA inhibitors. Results The data showed that mmu-miR-26a-5p is a direct regulator of cyclooxygenase-2 (COX-2) expression and HTPF inhibits COX-2 expression or prostaglandin E2 (PGE2) production via up-regulating mmu-miR-26a-5p expression. Transfection of islets with anti-miR-26a-5p significantly enhanced COX-2 expression and PGE2 production ( p < .01), while HTPF treatment significantly inhibited anti-miR-26a-5p transfection-induced COX-2 expression or PGE2 production ( p < .05). These findings were further verified in pancreatic β-cells Min6. Moreover, the data also determined that HTPF also inhibits glucose-induced nuclear transcription factor (NF)-κB activity. Conclusion HTPF suppresses glucose-induced PGE2 production and activation of NF-κB via negative regulation of COX-2 and mmu-miR26a-5p. These novel pharmacological actions of HTPF on glucose-stimulated pancreatic islets provide new suggestions that HTPF or HTPF-derived compounds inhibit glucose induced inflammation in pancreas by up-regulating the expression of microRNAs.
Collapse
Affiliation(s)
- Syed Suhail Ahmed
- Department of Medical Microbiology, College of Medicine, Qassim University, Buraidah, Saudi Arabia
| | - Sultan Fahad Al Nohair
- Department of Family and Community Medicine, College of Medicine, Qassim University, Buraidah, Saudi Arabia
| | - Waleed Al Abdulmonem
- Department of Pathology, College of Medicine, Qassim University, Buraidah, Saudi Arabia
| | - Homaidan T Alhomaidan
- Department of Family and Community Medicine, College of Medicine, Qassim University, Buraidah, Saudi Arabia
| | - Naila Rasheed
- Department of Medical Biochemistry, College of Medicine, Qassim University, Buraidah, Saudi Arabia
| | - Mohamed S Ismail
- Department of Nutrition and Food Sciences, Menoufia University, Shebin El-Kom, Egypt
| | - Manal A Albatanony
- Department of Family Medicine, College of Medicine, Qassim University, Unaizah, Saudi Arabia
| | - Zafar Rasheed
- Department of Medical Biochemistry, College of Medicine, Qassim University, Buraidah, Saudi Arabia
| |
Collapse
|
39
|
da Silva B, Caon T, Mohr ETB, Biluca FC, Gonzaga LV, Fett R, Dalmarco EM, Costa ACO. Phenolic profile and in vitro anti-inflammatory activity of Mimosa scabrella Bentham honeydew honey in RAW 264.7 murine macrophages. J Food Biochem 2022; 46:e14076. [PMID: 34997588 DOI: 10.1111/jfbc.14076] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 12/13/2021] [Accepted: 12/27/2021] [Indexed: 12/11/2022]
Abstract
The anti-inflammatory activity is mainly attributed to the phenolic compounds. Once the geographical location affects the phenolic content of honeys, a relationship between the collection spot and the anti-inflammatory effect of bracatinga (Mimosa scabrella Bentham) honeydew honeys was hypothesized. The inhibitory effect of 14 honey samples on NOx, TNF-α, IL-6, IL-12p70, MCP-1, INF-γ, and IL-10 in RAW 264.7 macrophages inflamed by LPS was evaluated. Fourteen phenolic compounds were identified, mainly syringic acid and rutin. Ten honeys inhibited nitrite production; at least six downregulated TNF-α, IL-12p70, MCP-1, and IFN-γ; only four honey samples inhibited IL-6; and one honey sample inhibited IL-10 levels, showing their variable effects on the inflammatory markers. Principal component analysis grouped samples according to the phenolic content and downregulation of specific inflammatory markers. The bracatinga honeydew honey effectiveness was associated with geographical location, as samples from areas with higher density and diversity of plants had a more significant anti-inflammatory effect. PRACTICAL APPLICATIONS: The present research study investigated the anti-inflammatory potential of bracatinga honeydew honey samples collected from regions with different vegetation coverages. Honey samples collected from locations presenting greater forest diversity and density inhibited inflammatory markers more efficiently. This study reinforces the role of the bracatinga honeydew honey in preventing inflammatory processes and the importance of preserving forests so that products with a greater diversity of compounds and consequently more active can be obtained.
Collapse
Affiliation(s)
- Bibiana da Silva
- Department of Food Science and Technology, Federal University of Santa Catarina, Florianopolis, Brazil
| | - Thiago Caon
- Department of Pharmaceutical Sciences, Federal University of Santa Catarina, Florianopolis, Brazil
| | | | - Fabíola Carina Biluca
- Department of Food Science and Technology, Federal University of Santa Catarina, Florianopolis, Brazil
| | - Luciano Valdomiro Gonzaga
- Department of Food Science and Technology, Federal University of Santa Catarina, Florianopolis, Brazil
| | - Roseane Fett
- Department of Food Science and Technology, Federal University of Santa Catarina, Florianopolis, Brazil
| | | | | |
Collapse
|
40
|
Cianciosi D, Forbes-Hernandez TY, Alvarez-Suarez JM, Ansary J, Quinzi D, Amici A, Navarro-Hortal MD, Esteban-Muñoz A, Quiles JL, Battino M, Giampieri F. Anti-inflammatory activities of Italian Chestnut and Eucalyptus honeys on murine RAW 264.7 macrophages. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104752] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
41
|
Gohar A, Dastagir N, Jabeen A, Azim MK. Characterization of immunomodulatory activity of proteins of natural honeys. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2021. [DOI: 10.1007/s11694-021-01033-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
42
|
van Riel SJJM, Lardenoije CMJG, Oudhuis GJ, Cremers NAJ. Treating (Recurrent) Vulvovaginal Candidiasis with Medical-Grade Honey-Concepts and Practical Considerations. J Fungi (Basel) 2021; 7:jof7080664. [PMID: 34436203 PMCID: PMC8400673 DOI: 10.3390/jof7080664] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 08/11/2021] [Accepted: 08/13/2021] [Indexed: 01/04/2023] Open
Abstract
Recurrent vulvovaginal candidiasis (RVVC) is a relapsing vaginal fungal infection caused by Candida species. The prevalence varies among age populations and can be as high as 9%. Treatment options are limited, and in 57% of the cases, relapses occur within six months after fluconazole maintenance therapy, which is the current standard of care. The pathogenesis of RVVC is multifactorial, and recent studies have demonstrated that the vaginal microenvironment and activity of the immune system have a strong influence on the disease. Medical-grade honey (MGH) has protective, antimicrobial, and immunomodulatory activity and forms a putative alternative treatment. Clinical trials have demonstrated that honey can benefit the treatment of bacterial and Candida-mediated vaginal infections. We postulate that MGH will actively fight ongoing infections; eradicate biofilms; and modulate the vaginal microenvironment by its anti-inflammatory, antioxidative, and immunomodulatory properties, and subsequently may decrease the number of relapses when compared to fluconazole. The MGH formulation L-Mesitran Soft has stronger antimicrobial activity against various Candida species than its raw honey. In advance of a planned randomized controlled clinical trial, we present the setup of a study comparing L-Mesitran Soft with fluconazole and its practical considerations.
Collapse
Affiliation(s)
- Senna J. J. M. van Riel
- Department of Gynecology and Obstetrics, Maastricht University Medical Centre, 6202 AZ Maastricht, The Netherlands; (S.J.J.M.v.R.); (C.M.J.G.L.)
| | - Celine M. J. G. Lardenoije
- Department of Gynecology and Obstetrics, Maastricht University Medical Centre, 6202 AZ Maastricht, The Netherlands; (S.J.J.M.v.R.); (C.M.J.G.L.)
| | - Guy J. Oudhuis
- Department of Medical Microbiology, Maastricht University Medical Centre, NUTRIM School of Nutrition and Translational Research in Metabolism, Faculty of Health, Medicine and Life Sciences, Maastricht University, 6202 AZ Maastricht, The Netherlands;
| | - Niels A. J. Cremers
- Triticum Exploitatie B.V., Sleperweg 44, 6222 NK Maastricht, The Netherlands
- Correspondence: ; Tel.: +31-43-325-1773
| |
Collapse
|
43
|
Xu JJ, Gong LL, Li YY, Zhou ZB, Yang WW, Wan CX, Zhang WN. Anti-inflammatory effect of a polysaccharide fraction from Craterellus cornucopioides in LPS-stimulated macrophages. J Food Biochem 2021; 45:e13842. [PMID: 34189750 DOI: 10.1111/jfbc.13842] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 05/24/2021] [Accepted: 06/14/2021] [Indexed: 11/30/2022]
Abstract
Immunocytes-involved inflammation is considered to modulate the damage in various diseases. Oxidative stress is initiated by oxidative agents such as LPS and ROS, which are strongly involved in chronic inflammation. Our previous study found that a polysaccharide fraction from Craterellus cornucopioides (CCPP-1) showed good antioxidant activity. However, the anti-inflammatory effect of CCPP-1 was still elusive. The objective of this study was to evaluate the anti-inflammatory activity of CCPP-1 and its potential mechanism in LPS-stimulated RAW264.7 macrophages. The results showed that CCPP-1 could inhibit LPS-induced ROS and NO accumulation. Additionally, CCPP-1 could decrease pro-inflammatory cytokines production (TNF-α, IL-1β, and IL-18) and inflammatory mediator (iNOS) expression, which might be associated with its capacity to inhibit NF-κB signaling pathway and NLRP3 inflammasome activation. Therefore, this study suggested that CCPP-1 had an ameliorative effect on the inflammation response and was potential to develop into functional food for treating chronic inflammation. PRACTICAL APPLICATIONS: Craterellus cornucopioides is an edible fungus widely distributed in Southwestern China. It was reported that C. cornucopioides polysaccharide (CCPP-1), as important active ingredient, showed good antioxidant activity. However, the anti-inflammatory effect was still elusive. This study showed that CCPP-1 possessed anti-inflammatory activity. The molecular mechanism might be associated with its capacity to inhibit NF-κB signaling pathway and NLRP3 inflammasome activation. Therefore, polysaccharides from C. cornucopioides have potential to develop into functional food to combat inflammatory condition and thus indirectly halt the progression of various inflammatory response-related chronic diseases.
Collapse
Affiliation(s)
- Jia-Jia Xu
- School of Life Sciences, Anhui University, Hefei, China
| | - Li-Li Gong
- School of Life Sciences, Anhui University, Hefei, China
| | - Yuan-Yuan Li
- School of Life Sciences, Anhui University, Hefei, China
| | - Zhong-Bo Zhou
- Xinjiang Production & Construction Corps Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin, Tarim University, Alar, China
| | - Wei-Wei Yang
- School of Life Sciences, Anhui University, Hefei, China
| | - Chuan-Xing Wan
- Xinjiang Production & Construction Corps Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin, Tarim University, Alar, China
| | - Wen-Na Zhang
- School of Life Sciences, Anhui University, Hefei, China
- Key Laboratory of Eco-engineering and Biotechnology of Anhui Province, Hefei, China
| |
Collapse
|
44
|
Santos ACD, Biluca FC, Braghini F, Gonzaga LV, Costa ACO, Fett R. Phenolic composition and biological activities of stingless bee honey: An overview based on its aglycone and glycoside compounds. Food Res Int 2021; 147:110553. [PMID: 34399530 DOI: 10.1016/j.foodres.2021.110553] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 06/10/2021] [Accepted: 06/20/2021] [Indexed: 11/25/2022]
Abstract
Stingless bees are native to tropical and subtropical countries, such as Brazil. The wide variety of species, the sources of food collection (nectar and pollen), and the climate conditions strongly affect the chemical composition of the honey, making this a unique product with peculiar characteristics. Stingless bee honey presents higher water content, higher acidity, and a lower sugar concentration when compared to Apis mellifera honey. Moreover, there is a wide variety of microorganisms in stingless bees' environment, which leads their honey to go through a natural fermentative process during its production in the hive. Besides, fermentation and hydrolysis are effective ways to convert glycosides into aglycones, thus increasing the bioavailability of compounds. In this sense, stingless bee honey may possess a greater concentration of phenolic compounds aglycones than glycosides, which would increase its potential benefits. Therefore, this review aims to compile the most recent studies of stingless bee honey phenolic profile and its biological potential (antioxidant, antimicrobial, and anti-inflammatory activities) and a possible connection to its natural fermentation process.
Collapse
Affiliation(s)
- Adriane Costa Dos Santos
- Department of Food Science and Technology, Federal University of Santa Catarina, Itacorubi, Florianópolis, SC 88034-001, Brazil.
| | - Fabiola Carina Biluca
- Department of Food Science and Technology, Federal University of Santa Catarina, Itacorubi, Florianópolis, SC 88034-001, Brazil
| | - Francieli Braghini
- Department of Food Science and Technology, Federal University of Santa Catarina, Itacorubi, Florianópolis, SC 88034-001, Brazil
| | - Luciano Valdemiro Gonzaga
- Department of Food Science and Technology, Federal University of Santa Catarina, Itacorubi, Florianópolis, SC 88034-001, Brazil
| | - Ana Carolina Oliveira Costa
- Department of Food Science and Technology, Federal University of Santa Catarina, Itacorubi, Florianópolis, SC 88034-001, Brazil
| | - Roseane Fett
- Department of Food Science and Technology, Federal University of Santa Catarina, Itacorubi, Florianópolis, SC 88034-001, Brazil.
| |
Collapse
|
45
|
The Rediscovery of Honey for Skin Repair: Recent Advances in Mechanisms for Honey-Mediated Wound Healing and Scaffolded Application Techniques. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11115192] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Honey is a honey-bee product obtained mainly by the enzymatic processing of nectar from a variety of plants, which leads to the wide range of colours and flavours available on the market. These organoleptic and nutritional features are influenced by the chemical composition, which in turn depends on the botanical origin. Bioactive compounds account for honey beneficial activity in medical applications, which explains the extensive use of honey in ethno-pharmacology since antiquity, from cough remedies to dermatological treatments. Wound healing is one of the main therapeutic uses of honey, and various design options in pharmaceutical technology such as smart delivery systems and advanced dressings are currently being developed to potentiate honey’s valuable properties for better performance and improved final outcome. In this review, we will focus on the latest research that discloses crucial factors in determining what properties are most beneficial when considering honey as a medicinal product. We will present the most recent updates on the possible mechanisms responsible for the exceptional effects of this ageless therapeutical remedy on skin repair. Furthermore, the state-of-the-art in application techniques (incorporation into scaffolds as an alternative to direct administration) used to enhance honey-mediated wound-healing properties are explored.
Collapse
|
46
|
Battino M, Giampieri F, Cianciosi D, Ansary J, Chen X, Zhang D, Gil E, Forbes-Hernández T. The roles of strawberry and honey phytochemicals on human health: A possible clue on the molecular mechanisms involved in the prevention of oxidative stress and inflammation. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 86:153170. [PMID: 31980299 DOI: 10.1016/j.phymed.2020.153170] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 12/19/2019] [Accepted: 01/06/2020] [Indexed: 05/28/2023]
Abstract
BACKGROUND Oxidative stress and inflammation contribute to the etiopathogenesis of several human chronic diseases, such as cancer, diabetes, cardiovascular diseases and metabolic syndrome. Besides classic stimuli, such as reactive oxidant species, endotoxins (i.e., bacteria lipopolysaccharide), cytokines or carcinogens, oxidative stress and inflammation can be triggered by a poor diet and an excess of body fat and energy intake. Strawberry and honey are common rich sources of nutrients and bioactive compounds, widely studied for their roles exerted in health maintenance and disease prevention. PURPOSE This review aims to summarize and update the effects of strawberry and honey against oxidative stress and inflammation, with emphasis on metabolism and on the main molecular mechanisms involved in these effects. METHODS A wide range of literature, published in the last 10 years, elucidating the effects of strawberry and honey in preventing oxidative stress and inflammation both in vitro (whole matrix and digested fractions) and in vivo was collected from online electronic databases (PubMed, Scopus and Web of Science) and reviewed. RESULTS Strawberry and honey polyphenols may potentially prevent the chronic diseases related to oxidative stress and inflammation. Several in vitro and in vivo studies reported the effects of these foods in suppressing the oxidative stress, by decreasing ROS production and oxidative biomarkers, restoring the antioxidant enzyme activities, ameliorating the mitochondrial antioxidant status and functionality, among others, and the inflammatory process, by modulating the mediators of acute and chronic inflammation essential for the onset of several human diseases. These beneficial properties are mediated in part through their ability to target multiple signaling pathways, such as p38 MAPK, AMPK, PI3K/Akt, NF-κB and Nrf2. CONCLUSIONS Available scientific literature show that strawberry and honey may be effective in preventing oxidative stress and inflammation. The deep evaluation of the factors that affect their metabolism as well as the assessment of the main molecular mechanisms involved are of extreme importance for the possible therapeutic and preventive benefit against the most common human diseases. However, published literature is still scarce so that deeper studies should be performed in order to evaluate the bioavailability of these food matrices and their effects after digestion.
Collapse
Affiliation(s)
- Maurizio Battino
- Nutrition and Food Science Group, Department of Analytical and Food Chemistry, CITACA, CACTI, University of Vigo - Vigo Campus, Vigo, Spain; International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China; Department of Clinical Sciences, Faculty of Medicine, Polytechnic University of Marche, Ancona, Italy.
| | - Francesca Giampieri
- Nutrition and Food Science Group, Department of Analytical and Food Chemistry, CITACA, CACTI, University of Vigo - Vigo Campus, Vigo, Spain; Department of Clinical Sciences, Faculty of Medicine, Polytechnic University of Marche, Ancona, Italy
| | - Danila Cianciosi
- Department of Clinical Sciences, Faculty of Medicine, Polytechnic University of Marche, Ancona, Italy
| | - Johura Ansary
- Department of Clinical Sciences, Faculty of Medicine, Polytechnic University of Marche, Ancona, Italy
| | - Xiumin Chen
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China
| | - Di Zhang
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China; Jiangsu Hengshun Group Co., Ltd., Zhenjiang 212000, China
| | - Emilio Gil
- Nutrition and Food Science Group, Department of Analytical and Food Chemistry, CITACA, CACTI, University of Vigo - Vigo Campus, Vigo, Spain
| | - Tamara Forbes-Hernández
- Nutrition and Food Science Group, Department of Analytical and Food Chemistry, CITACA, CACTI, University of Vigo - Vigo Campus, Vigo, Spain.
| |
Collapse
|
47
|
Asperuloside suppressing oxidative stress and inflammation in DSS-induced chronic colitis and RAW 264.7 macrophages via Nrf2/HO-1 and NF-κB pathways. Chem Biol Interact 2021; 344:109512. [PMID: 33974900 DOI: 10.1016/j.cbi.2021.109512] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 04/18/2021] [Accepted: 05/05/2021] [Indexed: 01/06/2023]
Abstract
BACKGROUND Inflammatory bowel diseases (IBDs), which mainly include Crohn's disease (CD) and ulcerative colitis (UC), are chronic idiopathic inflammatory disease of the gastrointestinal tract for which effective pharmacological treatments are lacking or options are very limited. PURPOSE Here, we aim to investigate the therapeutic effects of an iridoid glycoside, asperuloside (ASP) on mice experimental chronic colitis induced by dextran sulfate sodium (DSS) and further explore underlying mechanisms in vitro and in vivo. METHODS LPS-treated RAW 264.7 cells showed inflammation and were assessed for various physiological, morphological and biochemical parameters in the absence or presence of ASP. Chronic colitis was induced by 2% DSS in mice, which were used as an animal model to explore the pharmacodynamics of ASP. We detected p65 and Nrf2 pathway proteins via Western blot and RT-PCR analysis, assessed the cytokines TNF-α and IL-6 via ELISA, tested p65 and Nrf2 nuclear translocation via fluorescence. In addition, the docking affinity of ASP and p65 or Nrf2 proteins in the MOE 2015 software. RESULTS We found that ASP attenuated weight loss, disease activity index (DAI) and colonic pathological damage in colitis mice and restored the expressions of inflammatory cytokines in the colon. In addition, ASP restored antioxidant capacity in DSS-induced chronic colitis mice and lipopolysaccharide (LPS)-stimulated RAW 264.7 cells. Furthermore, ASP suppressed oxidative stress through increasing Nrf2, HO-1 and NQO-1 proteins expressions, and down-regulated nuclear levels of p65 to inhibit DSS-induced colonic oxidative stress and inflammation. Validation of the molecular docking results also indicated that ASP interacts with Nrf2 or p65 proteins. In summary, ASP improved DSS-induced chronic colitis by alleviating inflammation and oxidative stress, activating Nrf2/HO-1 signaling and limiting NF-κB signaling pathway, which may be an effective candidate for the treatment of IBD.
Collapse
|
48
|
Martinez-Armenta C, Camacho-Rea MC, Martínez-Nava GA, Espinosa-Velázquez R, Pineda C, Gomez-Quiroz LE, López-Reyes A. Therapeutic Potential of Bioactive Compounds in Honey for Treating Osteoarthritis. Front Pharmacol 2021; 12:642836. [PMID: 33967778 PMCID: PMC8097136 DOI: 10.3389/fphar.2021.642836] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 04/06/2021] [Indexed: 12/16/2022] Open
Abstract
Dysregulation of joint tissue homeostasis induces articular degenerative changes and musculoskeletal diseases such as osteoarthritis. This pathology represents the first cause of motor disability in individuals over 60 years of age, impacting their quality of life and the costs of health systems. Nowadays, pharmacological treatments for cartilage disease have failed to achieve full tissue regeneration, resulting in a functional loss of the joint; therefore, joint arthroplasty is the gold standard procedure to cure this pathology in severe cases of Osteoarthritis. A different treatment is the use of anti-inflammatory drugs which mitigate pain and inflammation in some degree, but without significant inhibition of disease progression. In this sense, new therapeutic alternatives based on natural compounds have been proposed to delay osteoarthritis progression, particularly those agents that regulate articular homeostasis. Preclinical studies have shown a therapeutic application of honey and its bioactive compounds, ranging from treating wounds, coughs, skin infections, and are also used as a biological stimulant by exerting antioxidant and anti-inflammatory properties. In this article, we reviewed the current medicinal applications of honey with particular emphasis on its use regulating articular homeostasis by inhibiting inflammation and oxidative stress.
Collapse
Affiliation(s)
- Carlos Martinez-Armenta
- Posgrado en Biología Experimental, Dirección de Ciencias Biológicas y de La Salud (DCBS), Universidad Autónoma Metropolitana Iztapalapa, Ciudad de México, Mexico
| | - María Carmen Camacho-Rea
- Departamento de Nutrición Animal, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México, Mexico
| | - Gabriela Angélica Martínez-Nava
- Laboratorio de Líquido Sinovial, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Ciudad de México, Mexico
| | | | - Carlos Pineda
- División de Enfermedades Musculo-esqueléticas y Reumáticas, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Ciudad de México, Mexico
| | - Luis Enrique Gomez-Quiroz
- Área de Medicina Experimental y Traslacional, Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana-Iztapalapa, Mexico City, Mexico
| | - Alberto López-Reyes
- Facultad de Ciencias de La Salud, Universidad Anáhuac México Sur, Ciudad de México, Mexico.,Laboratorio de Gerociencias, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Ciudad de México, Mexico
| |
Collapse
|
49
|
Masad RJ, Haneefa SM, Mohamed YA, Al-Sbiei A, Bashir G, Fernandez-Cabezudo MJ, al-Ramadi BK. The Immunomodulatory Effects of Honey and Associated Flavonoids in Cancer. Nutrients 2021; 13:1269. [PMID: 33924384 PMCID: PMC8069364 DOI: 10.3390/nu13041269] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/31/2021] [Accepted: 04/06/2021] [Indexed: 12/16/2022] Open
Abstract
Honey has exerted a high impact in the field of alternative medicine over many centuries. In addition to its wound healing, anti-microbial and antioxidant properties, several lines of evidence have highlighted the efficiency of honey and associated bioactive constituents as anti-tumor agents against a range of cancer types. Mechanistically, honey was shown to inhibit cancer cell growth through its pro-apoptotic, anti-proliferative and anti-metastatic effects. However, the potential of honey to regulate anti-tumor immune responses is relatively unexplored. A small number of in vitro and in vivo studies have demonstrated the ability of honey to modulate the immune system by inducing immunostimulatory as well as anti-inflammatory effects. In the present review, we summarize the findings from different studies that aimed to investigate the immunomodulatory properties of honey and its flavonoid components in relation to cancer. While these studies provide promising data, additional research is needed to further elucidate the immunomodulatory properties of honey, and to enable its utilization as an adjuvant therapy in cancer.
Collapse
Affiliation(s)
- Razan J. Masad
- Department of Medical Microbiology and Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates; (R.J.M.); (S.M.H.); (Y.A.M.); (G.B.)
| | - Shoja M. Haneefa
- Department of Medical Microbiology and Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates; (R.J.M.); (S.M.H.); (Y.A.M.); (G.B.)
| | - Yassir A. Mohamed
- Department of Medical Microbiology and Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates; (R.J.M.); (S.M.H.); (Y.A.M.); (G.B.)
| | - Ashraf Al-Sbiei
- Department of Biochemistry and Molecular Biology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates; (A.A.-S.); (M.J.F.-C.)
| | - Ghada Bashir
- Department of Medical Microbiology and Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates; (R.J.M.); (S.M.H.); (Y.A.M.); (G.B.)
| | - Maria J. Fernandez-Cabezudo
- Department of Biochemistry and Molecular Biology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates; (A.A.-S.); (M.J.F.-C.)
| | - Basel K. al-Ramadi
- Department of Medical Microbiology and Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates; (R.J.M.); (S.M.H.); (Y.A.M.); (G.B.)
- Zayed Center for Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| |
Collapse
|
50
|
Chan-Zapata I, Segura-Campos MR. Honey and its protein components: Effects in the cancer immunology. J Food Biochem 2021; 45:e13613. [PMID: 33768550 DOI: 10.1111/jfbc.13613] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 12/27/2020] [Accepted: 12/28/2020] [Indexed: 12/23/2022]
Abstract
The immune system plays an important role in cancer development, but some tumor cells can evade or inhibit the processes of innate and adaptive immunity. This review made a description of honey and its proteins effect on diverse mediators from the immune system. Scientific evidence reported that many types of honey (jungle, manuka, pasture, and others) and some isolated proteins enhanced the release of reactive oxygen species (O2 - and H2 O2 ) and cytokines (mostly IL-1β, IL-6, and TNF-α) by innate immune system cells. Furthermore, honey elicited proliferation and functions of T lymphocytes, cells related to specific adaptive immune responses. These studies have established a precedent over the honey and its properties on the immune system, demonstrating that it can promote the innate and adaptive immunity. PRACTICAL APPLICATIONS: Cancer is a genetic illness that represents a world health problem. Recognizing the potential of diet therapy in the prevention and treatment of chronic diseases, the present work summarizes the effects of honey on the immune system and mediators involved in cancer elimination processes, establishing the importance of this natural product as a future anticancer agent.
Collapse
Affiliation(s)
- Ivan Chan-Zapata
- Facultad de Ingeniería Química, Universidad Autónoma de Yucatán, Mérida, México
| | | |
Collapse
|