1
|
Guo Q, Wang J, Ni C, Pan J, Zou J, Shi Y, Sun J, Zhang X, Wang D, Luan F. Research progress on the natural products in the intervention of myocardial infarction. Front Pharmacol 2024; 15:1445349. [PMID: 39239656 PMCID: PMC11374734 DOI: 10.3389/fphar.2024.1445349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 08/05/2024] [Indexed: 09/07/2024] Open
Abstract
Coronary heart disease is a prevalent cardiovascular ailment globally, with myocardial infarction (MI) being one of its most severe manifestations. The morbidity and mortality of MI are escalating, showing an increasing trend among younger, highly educated individuals, thereby posing a serious threat to public health. Currently, thrombolysis, percutaneous coronary intervention, and coronary artery bypass grafting are the primary clinical treatments for MI. Although these methods significantly reduce patient mortality, complications often result in poor prognoses. Due to limitations in chemical synthetic drug research, the focus has shifted towards developing herbs based on natural substances. Natural medicines represent a novel approach for safer and more effective MI management and treatment. They can control multiple pathogenic variables by targeting various pathways and systems. This paper investigates the molecular mechanisms of MI and evaluates the application of natural products and medicinal plants in MI treatment over the past 5 years, demonstrating their specific good therapeutic potential and superior tolerance. These natural therapies have been shown to mitigate myocardial cell damage caused by MI through mechanisms such as oxidative stress, inflammation, apoptosis, angiogenesis, myocardial fibrosis, autophagy, endoplasmic reticulum stress, mitophagy, and pyroptosis. This review offers the latest insights into the application of natural products and medicinal plants in MI treatment, elucidating their mechanisms of action and serving as an important reference for MI prevention.
Collapse
Affiliation(s)
- Qiuting Guo
- College of Pharmacy, Xianyang Polytechnic Institute, Xianyang, China
| | - Jinhui Wang
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an, Shaanxi, China
| | - Caixia Ni
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, Sichuan, China
| | - Jiaojiao Pan
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an, Shaanxi, China
| | - Junbo Zou
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an, Shaanxi, China
| | - Yajun Shi
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an, Shaanxi, China
| | - Jing Sun
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an, Shaanxi, China
| | - Xiaofei Zhang
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an, Shaanxi, China
| | - Deng Wang
- Department of Pharmacy, Xi'an No. 3 Hospital, The Affiliated Hospital of Northwest University, Xi'an, Shaanxi, China
| | - Fei Luan
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an, Shaanxi, China
| |
Collapse
|
2
|
Wu S, Wu Y, Hu X, Wu F, Zhao J, Pan F, Liu X, Li Y, Ao Y, Zhuang P, Jiao J, Zheng W, Zhang Y. Fruit but not vegetable consumption is beneficial for low prevalence of colorectal polyps in a high-risk population: findings from a Chinese Lanxi Pre-colorectal Cancer Cohort study. Eur J Nutr 2024; 63:1759-1769. [PMID: 38622294 DOI: 10.1007/s00394-024-03377-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 03/15/2024] [Indexed: 04/17/2024]
Abstract
PURPOSE The available evidence regarding the role of fruit and vegetable consumption in the development of colorectal polyps remains inconclusive, and there is a lack of data on different histopathologic features of polyps. We aimed to evaluate the associations of fruit and vegetable consumption with the prevalence of colorectal polyps and its subtypes in a high-risk population in China. METHODS We included 6783 Chinese participants aged 40-80 years who were at high risk of colorectal cancer (CRC) in the Lanxi Pre-colorectal Cancer Cohort (LP3C). Dietary information was obtained through a validated food-frequency questionnaire (FFQ), and colonoscopy screening was used to detect colorectal polyps. Dose-response associations of fruit and vegetable intake with the prevalence of polyps were calculated using multivariate-adjusted regression models, which was reported as odds ratios (ORs) with 95% confidence intervals (CIs). RESULTS 2064 cases of colorectal polyps were ascertained in the LP3C during 2018-2019. Upon multivariable adjustments, including the diet quality, fruit consumption was inversely associated with the prevalence of polyps (P trend = 0.02). Participants in the highest tertile of fruit intake had a 25% lower risk (OR: 0.75; 95% CI 0.62‒0.92) compared to non-consumers, while vegetable consumption had no significant association with polyp prevalence (P trend = 0.86). In terms of colorectal histopathology and multiplicity, higher fruit intake was correlated with 24, 23, and 33% lower prevalence of small polyps (OR: 0.76; 95% CI 0.62‒0.94; P trend = 0.05), single polyp (OR: 0.77; 95% CI 0.62‒0.96; P trend = 0.04), and distal colon polyps (OR: 0.67; 95% CI 0.51‒0.87; P trend = 0.003), respectively. CONCLUSIONS Fresh fruit is suggested as a protective factor to prevent colorectal polyps in individuals at high risk of CRC, and should be underscored in dietary recommendations, particularly for high-risk populations.
Collapse
Affiliation(s)
- Shengzhi Wu
- Lanxi Red Cross Hospital, Jinhua, 321000, Zhejiang, China
| | - Yuqi Wu
- Department of Food Science and Nutrition, Zhejiang Key Laboratory for Agro-Food Processing, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Xiaodong Hu
- Lanxi Red Cross Hospital, Jinhua, 321000, Zhejiang, China
| | - Fei Wu
- Department of Nutrition, School of Public Health, Zhejiang University School of Medicine, Hangzhou, 310058, Zhejiang, China
| | - Jing Zhao
- Lanxi Red Cross Hospital, Jinhua, 321000, Zhejiang, China
| | - Fuzhen Pan
- Lanxi Hospital of Traditional Chinese Medicine, Jinhua, 321100, Zhejiang, China
| | - Xiaohui Liu
- Department of Nutrition, School of Public Health, Zhejiang University School of Medicine, Hangzhou, 310058, Zhejiang, China
| | - Yin Li
- Department of Nutrition, School of Public Health, Zhejiang University School of Medicine, Hangzhou, 310058, Zhejiang, China
| | - Yang Ao
- Department of Nutrition, School of Public Health, Zhejiang University School of Medicine, Hangzhou, 310058, Zhejiang, China
| | - Pan Zhuang
- Department of Food Science and Nutrition, Zhejiang Key Laboratory for Agro-Food Processing, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Jingjing Jiao
- Department of Nutrition, School of Public Health, Zhejiang University School of Medicine, Hangzhou, 310058, Zhejiang, China
| | - Weifang Zheng
- Lanxi Hospital of Traditional Chinese Medicine, Jinhua, 321100, Zhejiang, China.
| | - Yu Zhang
- Department of Food Science and Nutrition, Zhejiang Key Laboratory for Agro-Food Processing, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, Zhejiang, China.
| |
Collapse
|
3
|
Santos TS, Bahia MO, Guimarães AC, Souza CRT, Muto NA, Rogez H, Burbano RMR. In vitro assessment of the genotoxic and cytotoxic effects of clarified açai (Euterpe oleracea MART) extract in a gastric cancer cell line (AGP01 cells). Toxicol In Vitro 2024; 99:105873. [PMID: 38851601 DOI: 10.1016/j.tiv.2024.105873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 05/22/2024] [Accepted: 06/05/2024] [Indexed: 06/10/2024]
Abstract
Açaí (Euterpe oleracea MART) is a fruit of great importance for the Amazon region in nutritional, cultural and socioeconomic terms. In recent years, açaí has been the subject of several studies due to its beneficial properties for health, including effects against tumor cells. Therefore, the present work aimed to evaluate in vitro the genotoxic and cytotoxic effects of the clarified extract of açaí juice in a human metastatic gastric cancer cell line (AGP01 cells). For comparison purposes, a non-transformed cell line of African green monkey renal epithelial cells (VERO cells) was used. The viability assay by resazurin reduction, the comet assay, the determination of cell death by differential fluorescent dyes and the wound healing migration assay were performed. A reduction in viability was observed only in the AGP01 line within 72 h. There was no genotoxic damage or cell death (through apoptosis or necrosis) in any of the cell lines. However, açaí extract induced motility reduction in both cell lines. The reduction in cell viability and the induction of the anti-migratory effect in the AGP01 cell line opens perspectives for exploring the potential of açaí as an adjuvant in the treatment of gastric cancer.
Collapse
Affiliation(s)
- Thiago S Santos
- Laboratório de Citogenética Humana e Genética Toxicológica, Instituto de Ciências Biológicas, Universidade Federal do Pará (UFPA), Belém-Pará, Brazil
| | - Marcelo O Bahia
- Laboratório de Citogenética Humana e Genética Toxicológica, Instituto de Ciências Biológicas, Universidade Federal do Pará (UFPA), Belém-Pará, Brazil.
| | - Adriana C Guimarães
- Laboratório de Citogenética Humana e Genética Toxicológica, Instituto de Ciências Biológicas, Universidade Federal do Pará (UFPA), Belém-Pará, Brazil
| | - Carolina R T Souza
- Laboratório de Citogenética Humana e Genética Toxicológica, Instituto de Ciências Biológicas, Universidade Federal do Pará (UFPA), Belém-Pará, Brazil
| | - Nilton A Muto
- Centro de Valorização de Compostos Bioativos da Amazônia, Universidade Federal do Pará (UFPA), Belém-Pará, Brazil
| | - Hervé Rogez
- Centro de Valorização de Compostos Bioativos da Amazônia, Universidade Federal do Pará (UFPA), Belém-Pará, Brazil
| | - Rommel M R Burbano
- Laboratório de Citogenética Humana e Genética Toxicológica, Instituto de Ciências Biológicas, Universidade Federal do Pará (UFPA), Belém-Pará, Brazil
| |
Collapse
|
4
|
Chen X, Ding Y, Yi Y, Chen Z, Fu J, Chang Y. Review of Animal Models of Colorectal Cancer in Different Carcinogenesis Pathways. Dig Dis Sci 2024; 69:1583-1592. [PMID: 38526618 DOI: 10.1007/s10620-024-08384-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 03/05/2024] [Indexed: 03/27/2024]
Abstract
Colorectal cancer (CRC) is a common malignant tumor of the gastrointestinal tract with increasing morbidity and mortality. Exploring the factors affecting colorectal carcinogenesis and controlling its occurrence at its root is as important as studying post-cancer treatment and management. Establishing ideal animal models of CRC is crucial, which can occur through various pathways, such as adenoma-carcinoma sequence, inflammation-induced carcinogenesis, serrated polyp pathway and de-novo pathway. This article aims to categorize the existing well-established CRC animal models based on different carcinogenesis pathways, and to describe their mechanisms, methods, advantages and limitations using domestic and international literature sources. This will provide suggestions for the selection of animal models in early-stage CRC research.
Collapse
Affiliation(s)
- Xue Chen
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Diseases, Wuhan, 430071, China
| | - Yirong Ding
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Diseases, Wuhan, 430071, China
| | - Yun Yi
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Diseases, Wuhan, 430071, China
| | - Zhishan Chen
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Diseases, Wuhan, 430071, China
| | - Jiaping Fu
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Diseases, Wuhan, 430071, China
| | - Ying Chang
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.
- Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Diseases, Wuhan, 430071, China.
| |
Collapse
|
5
|
Lais Alves Almeida Nascimento A, Sampaio da Silveira de Souza M, Lorrane Rodrigues Borges L, Renon Eller M, Augusto Ribeiro de Barros F, Correa Mendonça A, Azevedo L, Araújo Vieira do Carmo M, Dos Santos Lima A, da Silva Cruz L, Abranches Dias Castro G, Antonio Fernandes S, Cesar Stringheta P. Influence of spontaneous and inoculated fermentation of açai on simulated digestion, antioxidant capacity and cytotoxic activity. Food Res Int 2023; 173:113222. [PMID: 37803540 DOI: 10.1016/j.foodres.2023.113222] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/30/2023] [Accepted: 07/03/2023] [Indexed: 10/08/2023]
Abstract
This work describes the kinetic study of different types (spontaneous, lactic and alcoholic) of açai fermentation in terms of total phenolics and total anthocyanins, as well as antioxidant capacity, before and after simulated digestion (SD). Cytotoxicity (A549, HCT8 and IMR90 cells) and formation of reactive oxygen species (A549 cells) were also evaluated. The results revealed that spontaneous fermentation (SF) for 24 h, followed by SD, generated a product with greater bioaccessibility of phenolics (52.68%) and cyanidin-3-glucoside (27.01%) than unfermented açai. Likewise, lactic fermentation (LF) for 72 h improved the bioavailability of phenolics (64.49%) and cyanidin-3-rutinoside (20.00%). On the other hand, alcoholic fermentation (AF) decreased the bioaccessibility of phenolic compounds and anthocyanins after SD. The SF 24 h (10.16 ± 1.25 μmol Trolox /g) and LF 72 h (15.90 ± 0.51 μmol Trolox /g) significantly increased the antioxidant capacity after SD, when compared to unfermented açai (SF 0 h, 4.00 ± 0.09 μmol Trolox /g; LF 0 h, 10.57 ± 0.91 μmol Trolox /g). It was concluded that the samples did not show cytotoxicity in the cell lines tested and, in addition, AF 24 h showed antioxidant and antimutagenic effects in vitro, reducing about 40% of chromosomal aberrations. The results obtained provide important information that can be used to produce foods with greater bioaccessibility of bioactive compounds.
Collapse
Affiliation(s)
| | | | | | - Monique Renon Eller
- Universidade Federal de Viçosa, Department of Food Technology, Avenida Peter Henry Rolfs, s/n, Viçosa, MG 36570-900, Brazil
| | | | - Adriana Correa Mendonça
- Universidade Federal de Viçosa, Department of Food Technology, Avenida Peter Henry Rolfs, s/n, Viçosa, MG 36570-900, Brazil
| | - Luciana Azevedo
- Universidade Federal de Alfenas, Nutrition Faculty, Rua Gabriel Monteiro da Silva, 700. Centro - Alfenas, MG 37130-001, Brazil
| | - Mariana Araújo Vieira do Carmo
- Universidade Federal de Alfenas, Nutrition Faculty, Rua Gabriel Monteiro da Silva, 700. Centro - Alfenas, MG 37130-001, Brazil
| | - Amanda Dos Santos Lima
- Universidade Federal de Alfenas, Nutrition Faculty, Rua Gabriel Monteiro da Silva, 700. Centro - Alfenas, MG 37130-001, Brazil
| | - Laura da Silva Cruz
- Universidade Federal de Alfenas, Nutrition Faculty, Rua Gabriel Monteiro da Silva, 700. Centro - Alfenas, MG 37130-001, Brazil
| | - Gabriel Abranches Dias Castro
- Universidade Federal de Viçosa, Department of Chemistry, Avenida Peter Henry Rolfs, s/n, Viçosa, MG 36570-900, Brazil
| | - Sergio Antonio Fernandes
- Universidade Federal de Viçosa, Department of Chemistry, Avenida Peter Henry Rolfs, s/n, Viçosa, MG 36570-900, Brazil
| | - Paulo Cesar Stringheta
- Universidade Federal de Viçosa, Department of Food Technology, Avenida Peter Henry Rolfs, s/n, Viçosa, MG 36570-900, Brazil
| |
Collapse
|
6
|
Ijinu TP, De Lellis LF, Shanmugarama S, Pérez-Gregorio R, Sasikumar P, Ullah H, Buccato DG, Di Minno A, Baldi A, Daglia M. Anthocyanins as Immunomodulatory Dietary Supplements: A Nutraceutical Perspective and Micro-/Nano-Strategies for Enhanced Bioavailability. Nutrients 2023; 15:4152. [PMID: 37836436 PMCID: PMC10574533 DOI: 10.3390/nu15194152] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 09/21/2023] [Accepted: 09/24/2023] [Indexed: 10/15/2023] Open
Abstract
Anthocyanins (ACNs) have attracted considerable attention for their potential to modulate the immune system. Research has revealed their antioxidant and anti-inflammatory properties, which play a crucial role in immune regulation by influencing key immune cells, such as lymphocytes, macrophages, and dendritic cells. Moreover, ACNs contribute towards maintaining a balance between proinflammatory and anti-inflammatory cytokines, thus promoting immune health. Beyond their direct effects on immune cells, ACNs significantly impact gut health and the microbiota, essential factors in immune regulation. Emerging evidence suggests that they positively influence the composition of the gut microbiome, enhancing their immunomodulatory effects. Furthermore, these compounds synergize with other bioactive substances, such as vitamins and minerals, further enhancing their potential as immune-supporting dietary supplements. However, detailed clinical studies must fully validate these findings and determine safe dosages across varied populations. Incorporating these natural compounds into functional foods or supplements could revolutionize the management of immune-related conditions. Personalized nutrition and healthcare strategies may be developed to enhance overall well-being and immune resilience by fully understanding the mechanisms underlying the actions of their components. Recent advancements in delivery methods have focused on improving the bioavailability and effectiveness of ACNs, providing promising avenues for future applications.
Collapse
Affiliation(s)
- Thadiyan Parambil Ijinu
- Naturæ Scientific, Kerala University-Business Innovation and Incubation Centre, Kariavattom Campus, University of Kerala, Thiruvananthapuram 695581, India;
- The National Society of Ethnopharmacology, VRA-179, Mannamoola, Peroorkada P.O., Thiruvananthapuram 695005, India
| | - Lorenza Francesca De Lellis
- Department of Pharmacy, University of Napoli Federico II, Via D. Montesano 49, 80131 Naples, Italy; (L.F.D.L.); (D.G.B.); (A.D.M.); (A.B.)
| | - Santny Shanmugarama
- Department of Pathology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA;
| | - Rosa Pérez-Gregorio
- Food and Health Omics Group, Institute of Agroecology and Food, Faculty of Sciences, University of Vigo, 32004 Ourense, Spain;
- LAQV-REQUIMTE, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal
- Department of Analytical and Food Chemistry, Galicia Sur Health Research Institute (IISGS), SERGAS-UVIGO, 32002 Ourense, Spain
| | | | - Hammad Ullah
- Department of Pharmacy, University of Napoli Federico II, Via D. Montesano 49, 80131 Naples, Italy; (L.F.D.L.); (D.G.B.); (A.D.M.); (A.B.)
| | - Daniele Giuseppe Buccato
- Department of Pharmacy, University of Napoli Federico II, Via D. Montesano 49, 80131 Naples, Italy; (L.F.D.L.); (D.G.B.); (A.D.M.); (A.B.)
| | - Alessandro Di Minno
- Department of Pharmacy, University of Napoli Federico II, Via D. Montesano 49, 80131 Naples, Italy; (L.F.D.L.); (D.G.B.); (A.D.M.); (A.B.)
- CEINGE-Biotecnologie Avanzate, Via Gaetano Salvatore 486, 80145 Naples, Italy
| | - Alessandra Baldi
- Department of Pharmacy, University of Napoli Federico II, Via D. Montesano 49, 80131 Naples, Italy; (L.F.D.L.); (D.G.B.); (A.D.M.); (A.B.)
| | - Maria Daglia
- Department of Pharmacy, University of Napoli Federico II, Via D. Montesano 49, 80131 Naples, Italy; (L.F.D.L.); (D.G.B.); (A.D.M.); (A.B.)
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
7
|
Nascimento RDPD, Machado APDF. The preventive and therapeutic effects of anthocyanins on colorectal cancer: A comprehensive review based on up-to-date experimental studies. Food Res Int 2023; 170:113028. [PMID: 37316089 DOI: 10.1016/j.foodres.2023.113028] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 05/01/2023] [Accepted: 05/21/2023] [Indexed: 06/16/2023]
Abstract
Colorectal cancer (CRC) is the second most lethal and the third most diagnosed type of cancer worldwide. More than 75% of CRC cases are sporadic and lifestyle-related. Risk factors include diet, physical inactivity, genetics, smoking, alcohol, changes in the intestinal microbiota, and inflammation-related diseases such as obesity, diabetes, and inflammatory bowel diseases. The limits of conventional treatments (surgery, chemotherapy, radiotherapy), as demonstrated by the side effects and resistance of many CRC patients, are making professionals search for new chemopreventive alternatives. In this context, diets rich in fruits and vegetables or plant-based products, which contain high levels of phytochemicals, have been postulated as complementary therapeutic options. Anthocyanins, phenolic pigments responsible for the vivid colors of most red, purple, and blue fruits and vegetables, have been shown protective effects on CRC. Berries, grapes, Brazilian fruits, and vegetables such as black rice and purple sweet potato are examples of products rich in anthocyanins, which have been able to reduce cancer development by modulating signaling pathways associated with CRC. Therefore, this review has as main objective to present and discuss the potential preventive and therapeutic effects of anthocyanins present in fruits and vegetables, in plant extracts, or in their pure form on CRC, taking into account up-to-date experimental studies (2017-2023). Additionally, a highlight is given towards the mechanisms of action of anthocyanins on CRC.
Collapse
Affiliation(s)
- Roberto de Paula do Nascimento
- Laboratory of Nutrition and Metabolism (LANUM), Department of Food Science and Nutrition (DECAN), School of Food Engineering (FEA), University of Campinas (UNICAMP), Monteiro Lobato Street 80, 13083-862, Campinas, São Paulo, Brazil; European Cancer Stem Cell Research Institute, School of Biosciences, Cardiff University, Hadyn Ellis Building, Maindy Rd, CF24 4HQ, Cardiff, Wales, United Kingdom.
| | - Ana Paula da Fonseca Machado
- Study and Research Group on Agroindustrial Products from the Cerrado (GEPPAC), Faculty of Engineering (FAEN), Federal University of Grande Dourados (UFGD), Dourados-Itahum Highway Km 12, 79804-970, Dourados, Mato Grosso do Sul, Brazil.
| |
Collapse
|
8
|
da Silva MACN, Tessmann JW, Borges KRA, Wolff LAS, Botelho FD, Vieira LA, Morgado-Diaz JA, Franca TCC, Barbosa MDCL, Nascimento MDDSB, Rocha MR, de Carvalho JE. Açaí ( Euterpe oleracea Mart.) Seed Oil Exerts a Cytotoxic Role over Colorectal Cancer Cells: Insights of Annexin A2 Regulation and Molecular Modeling. Metabolites 2023; 13:789. [PMID: 37512496 PMCID: PMC10384432 DOI: 10.3390/metabo13070789] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/18/2023] [Accepted: 06/19/2023] [Indexed: 07/30/2023] Open
Abstract
Açaí, Euterpe oleracea Mart., is a native plant from the Amazonian and is rich in several phytochemicals with anti-tumor activities. The aim was to analyze the effects of açaí seed oil on colorectal adenocarcinoma (ADC) cells. In vitro analyses were performed on CACO-2, HCT-116, and HT-29 cell lines. The strains were treated with açaí seed oil for 24, 48, and 72 h, and cell viability, death, and morphology were analyzed. Molecular docking was performed to evaluate the interaction between the major compounds in açaí seed oil and Annexin A2. The viability assay showed the cytotoxic effect of the oil in colorectal adenocarcinoma cells. Acai seed oil induced increased apoptosis in CACO-2 and HCT-116 cells and interfered with the cell cycle. Western blotting showed an increased expression of LC3-B, suggestive of autophagy, and Annexin A2, an apoptosis regulatory protein. Molecular docking confirmed the interaction of major fatty acids with Annexin A2, suggesting a role of açaí seed oil in modulating Annexin A2 expression in these cancer cell lines. Our results suggest the anti-tumor potential of açaí seed oil in colorectal adenocarcinoma cells and contribute to the development of an active drug from a known natural product.
Collapse
Affiliation(s)
- Marcos Antonio Custódio Neto da Silva
- Faculty of Medical Science, Post-graduation in Internal Medicine, State University of Campinas, Campinas 13083-970, Brazil
- Nucleum of Basic and Applied Immunology, Pathology Department, Federal University of Maranhão, São Luís 65080-805, Brazil
| | - Josiane Weber Tessmann
- Cell Structure and Dynamics Group, Cellular and Molecular Oncobiology Program, National Cancer Institute, Rio de Janeiro 20231-050, Brazil
| | - Kátia Regina Assunção Borges
- Nucleum of Basic and Applied Immunology, Pathology Department, Federal University of Maranhão, São Luís 65080-805, Brazil
| | - Laís Araújo Souza Wolff
- Nucleum of Basic and Applied Immunology, Pathology Department, Federal University of Maranhão, São Luís 65080-805, Brazil
| | - Fernanda Diniz Botelho
- Laboratory of Molecular Modeling Applied to Chemical and Biological Defense (LMCBD), Military Institute of Engineering, Rio de Janeiro 22290-270, Brazil
| | - Leandro Alegria Vieira
- Laboratory of Molecular Modeling Applied to Chemical and Biological Defense (LMCBD), Military Institute of Engineering, Rio de Janeiro 22290-270, Brazil
| | - Jose Andres Morgado-Diaz
- Cell Structure and Dynamics Group, Cellular and Molecular Oncobiology Program, National Cancer Institute, Rio de Janeiro 20231-050, Brazil
| | - Tanos Celmar Costa Franca
- Laboratory of Molecular Modeling Applied to Chemical and Biological Defense (LMCBD), Military Institute of Engineering, Rio de Janeiro 22290-270, Brazil
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Rokitansheho 62, 500-03 Kralove, Czechia
| | - Maria do Carmo Lacerda Barbosa
- Nucleum of Basic and Applied Immunology, Pathology Department, Federal University of Maranhão, São Luís 65080-805, Brazil
| | | | - Murilo Ramos Rocha
- Cell Structure and Dynamics Group, Cellular and Molecular Oncobiology Program, National Cancer Institute, Rio de Janeiro 20231-050, Brazil
| | - João Ernesto de Carvalho
- Faculty of Pharmaceutical Sciences, Post-graduation in Internal Medicine, State University of Campinas, Campinas 13083-970, Brazil
| |
Collapse
|
9
|
Neto Í, Rocha J, Gaspar MM, Reis CP. Experimental Murine Models for Colorectal Cancer Research. Cancers (Basel) 2023; 15:2570. [PMID: 37174036 PMCID: PMC10177088 DOI: 10.3390/cancers15092570] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/25/2023] [Accepted: 04/26/2023] [Indexed: 05/15/2023] Open
Abstract
Colorectal cancer (CRC) is the third most prevalent malignancy worldwide and in both sexes. Numerous animal models for CRC have been established to study its biology, namely carcinogen-induced models (CIMs) and genetically engineered mouse models (GEMMs). CIMs are valuable for assessing colitis-related carcinogenesis and studying chemoprevention. On the other hand, CRC GEMMs have proven to be useful for evaluating the tumor microenvironment and systemic immune responses, which have contributed to the discovery of novel therapeutic approaches. Although metastatic disease can be induced by orthotopic injection of CRC cell lines, the resulting models are not representative of the full genetic diversity of the disease due to the limited number of cell lines suitable for this purpose. On the other hand, patient-derived xenografts (PDX) are the most reliable for preclinical drug development due to their ability to retain pathological and molecular characteristics. In this review, the authors discuss the various murine CRC models with a focus on their clinical relevance, benefits, and drawbacks. From all models discussed, murine CRC models will continue to be an important tool in advancing our understanding and treatment of this disease, but additional research is required to find a model that can correctly reflect the pathophysiology of CRC.
Collapse
Affiliation(s)
- Íris Neto
- Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; (Í.N.); (J.R.)
| | - João Rocha
- Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; (Í.N.); (J.R.)
| | - Maria Manuela Gaspar
- Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; (Í.N.); (J.R.)
| | - Catarina P. Reis
- Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; (Í.N.); (J.R.)
- Instituto de Biofísica e Engenharia Biomédica (IBEB), Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| |
Collapse
|
10
|
Laurindo LF, Barbalho SM, Araújo AC, Guiguer EL, Mondal A, Bachtel G, Bishayee A. Açaí ( Euterpe oleracea Mart.) in Health and Disease: A Critical Review. Nutrients 2023; 15:989. [PMID: 36839349 PMCID: PMC9965320 DOI: 10.3390/nu15040989] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/11/2023] [Accepted: 02/13/2023] [Indexed: 02/18/2023] Open
Abstract
The açaí palm (Euterpe oleracea Mart.), a species belonging to the Arecaceae family, has been cultivated for thousands of years in tropical Central and South America as a multipurpose dietary plant. The recent introduction of açaí fruit and its nutritional and healing qualities to regions outside its origin has rapidly expanded global demand for açaí berry. The health-promoting and disease-preventing properties of this plant are attributed to numerous bioactive phenolic compounds present in the leaf, pulp, fruit, skin, and seeds. The purpose of this review is to present an up-to-date, comprehensive, and critical evaluation of the health benefits of açaí and its phytochemicals with a special focus on cellular and molecular mechanisms of action. In vitro and in vivo studies showed that açaí possesses antioxidant and anti-inflammatory properties and exerts cardioprotective, gastroprotective, hepatoprotective, neuroprotective, renoprotective, antilipidemic, antidiabetic, and antineoplastic activities. Moreover, clinical trials have suggested that açaí can protect against metabolic stress induced by oxidation, inflammation, vascular abnormalities, and physical exertion. Due to its medicinal properties and the absence of undesirable effects, açaí shows a promising future in health promotion and disease prevention, in addition to a vast economic potential in the food and cosmetic industries.
Collapse
Affiliation(s)
- Lucas Fornari Laurindo
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília, Marília 17525-902, SP, Brazil
- Department of Biochemistry and Pharmacology, School of Medicine, Faculdade de Medicina de Marília, Marília 17519-030, SP, Brazil
| | - Sandra Maria Barbalho
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília, Marília 17525-902, SP, Brazil
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marília, Marília 17525-902, SP, Brazil
- Department of Biochemistry and Nutrition, School of Food and Technology of Marília, Marília 17500-000, SP, Brazil
| | - Adriano Cressoni Araújo
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília, Marília 17525-902, SP, Brazil
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marília, Marília 17525-902, SP, Brazil
| | - Elen Landgraf Guiguer
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília, Marília 17525-902, SP, Brazil
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marília, Marília 17525-902, SP, Brazil
- Department of Biochemistry and Nutrition, School of Food and Technology of Marília, Marília 17500-000, SP, Brazil
| | - Arijit Mondal
- Department of Pharmaceutical Chemistry, M.R. College of Pharmaceutical Sciences and Research, Balisha 743 234, India
| | - Gabrielle Bachtel
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA
| | - Anupam Bishayee
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA
| |
Collapse
|
11
|
Lozano-Casabianca GA, Arango-Varela SS, Aguillón-Osma J, Llano-Ramírez MA, Maldonado-Celis ME. Inhibition of Cell Proliferation and Induction of Cell Cycle Arrest in Colon Cancer Cells by Lyophilized Mango ( Mangifera indica L.) Pulp Extract. Prev Nutr Food Sci 2022; 27:436-447. [PMID: 36721744 PMCID: PMC9843718 DOI: 10.3746/pnf.2022.27.4.436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/14/2022] [Accepted: 09/16/2022] [Indexed: 01/03/2023] Open
Abstract
The present study evaluated the antiproliferative capacity and possible cell death mechanisms of lyophilized mango pulp extract (LMPE), applied to human colon cancer cells (SW480) and their metastasis-derived counterparts (SW620). The total phenolic content of LMPE was estimated by the Folin-Ciocalteu method. Three assays were employed to determine its antioxidant capacity: ferric-reducing antioxidant power, oxygen radical absorbance capacity, and 2,2-diphenyl-1-picrylhydrazyl. Furthermore, the antiproliferative activity of LMPE was assessed by sulforhodamine B, clonogenic, and Ki-67 assays. Flow cytometry was employed to examine the cell cycle, production of intracellular reactive oxygen species (ROS), cell-surface phosphatidylserine, and change in mitochondrial membrane potential. LMPE exhibited a high level of total phenolic content and antioxidant activity. The mean maximal inhibitory concentration values of LMPE at 48 h of exposure were 43 and 29 mg/mL for SW480 and SW620, respectively. In the SW480 and SW620 cell lines, LMPE at 50 mg/mL and 48 h of exposure induced an increase in intracellular ROS, cell cycle arrest in the G2/M phase, and probably, apoptotic processes without mitochondrial depolarization. LMPE had an antiproliferative capacity against the human colorectal cancer cell lines SW480 and SW620. These results highlight the chemopreventive potential of LMPE in colorectal cancer treatments.
Collapse
Affiliation(s)
- Gustavo Argenor Lozano-Casabianca
- School of Nutrition and Dietetics, University of Antioquia, Medellín 050010, Colombia,
Correspondence to Gustavo Argenor Lozano-Casabianca, E-mail:
| | - Sandra Sulay Arango-Varela
- Faculty of Exact and Applied Sciences, Instituto Tecnológico Metropolitano (ITM)-Institución Universitaria, Medellín 050034, Colombia
| | - Johanny Aguillón-Osma
- Faculty of Science of Education, The University of Quindío, Armenia 630004, Colombia
| | - María Alejandra Llano-Ramírez
- Faculty of Exact and Applied Sciences, Instituto Tecnológico Metropolitano (ITM)-Institución Universitaria, Medellín 050034, Colombia
| | | |
Collapse
|
12
|
Multifaceted Pharmacological Potentials of Curcumin, Genistein, and Tanshinone IIA through Proteomic Approaches: An In-Depth Review. Cancers (Basel) 2022; 15:cancers15010249. [PMID: 36612248 PMCID: PMC9818426 DOI: 10.3390/cancers15010249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 12/03/2022] [Accepted: 12/12/2022] [Indexed: 01/03/2023] Open
Abstract
Phytochemicals possess various intriguing pharmacological properties against diverse pathological conditions. Extensive studies are on-going to understand the structural/functional properties of phytochemicals as well as the molecular mechanisms of their therapeutic function against various disease conditions. Phytochemicals such as curcumin (Cur), genistein (Gen), and tanshinone-IIA (Tan IIA) have multifaceted therapeutic potentials and various efforts are in progress to understand the molecular dynamics of their function with different tools and technologies. Cur is an active lipophilic polyphenol with pleiotropic function, and it has been shown to possess various intriguing properties including antioxidant, anti-inflammatory, anti-microbial, anticancer, and anti-genotoxic properties besides others beneficial properties. Similarly, Gen (an isoflavone) exhibits a wide range of vital functions including antioxidant, anti-inflammatory, pro-apoptotic, anti-proliferative, anti-angiogenic activities etc. In addition, Tan IIA, a lipophilic compound, possesses antioxidant, anti-angiogenic, anti-inflammatory, anticancer activities, and so on. Over the last few decades, the field of proteomics has garnered great momentum mainly attributed to the recent advancement in mass spectrometry (MS) techniques. It is envisaged that the proteomics technology has considerably contributed to the biomedical research endeavors lately. Interestingly, they have also been explored as a reliable approach to understand the molecular intricacies related to phytochemical-based therapeutic interventions. The present review provides an overview of the proteomics studies performed to unravel the underlying molecular intricacies of various phytochemicals such as Cur, Gen, and Tan IIA. This in-depth study will help the researchers in better understanding of the pharmacological potential of the phytochemicals at the proteomics level. Certainly, this review will be highly instrumental in catalyzing the translational shift from phytochemical-based biomedical research to clinical practice in the near future.
Collapse
|
13
|
Câmara JS, Locatelli M, Pereira JAM, Oliveira H, Arlorio M, Fernandes I, Perestrelo R, Freitas V, Bordiga M. Behind the Scenes of Anthocyanins-From the Health Benefits to Potential Applications in Food, Pharmaceutical and Cosmetic Fields. Nutrients 2022; 14:5133. [PMID: 36501163 PMCID: PMC9738495 DOI: 10.3390/nu14235133] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/25/2022] [Accepted: 11/28/2022] [Indexed: 12/09/2022] Open
Abstract
Anthocyanins are widespread and biologically active water-soluble phenolic pigments responsible for a wide range of vivid colours, from red (acidic conditions) to purplish blue (basic conditions), present in fruits, vegetables, and coloured grains. The pigments' stability and colours are influenced mainly by pH but also by structure, temperature, and light. The colour-stabilizing mechanisms of plants are determined by inter- and intramolecular co-pigmentation and metal complexation, driven by van der Waals, π-π stacking, hydrogen bonding, and metal-ligand interactions. This group of flavonoids is well-known to have potent anti-inflammatory and antioxidant effects, which explains the biological effects associated with them. Therefore, this review provides an overview of the role of anthocyanins as natural colorants, showing they are less harmful than conventional colorants, with several technological potential applications in different industrial fields, namely in the textile and food industries, as well as in the development of photosensitizers for dye-sensitized solar cells, as new photosensitizers in photodynamic therapy, pharmaceuticals, and in the cosmetic industry, mainly on the formulation of skin care formulations, sunscreen filters, nail colorants, skin & hair cleansing products, amongst others. In addition, we will unveil some of the latest studies about the health benefits of anthocyanins, mainly focusing on the protection against the most prevalent human diseases mediated by oxidative stress, namely cardiovascular and neurodegenerative diseases, cancer, and diabetes. The contribution of anthocyanins to visual health is also very relevant and will be briefly explored.
Collapse
Affiliation(s)
- José S. Câmara
- CQM—Centro de Química da Madeira, Natural Products Research Group, Campus Universitário da Penteada, Universidade da Madeira, 9020-105 Funchal, Portugal
- Departamento de Química, Faculdade de Ciências Exatas e Engenharia, Campus da Penteada, Universidade da Madeira, 9020-105 Funchal, Portugal
| | - Monica Locatelli
- Department of Pharmaceutical Sciences, Università degli Studi del Piemonte Orientale “A. Avogadro”, Largo Donegani 2, 28100 Novara, Italy
| | - Jorge A. M. Pereira
- CQM—Centro de Química da Madeira, Natural Products Research Group, Campus Universitário da Penteada, Universidade da Madeira, 9020-105 Funchal, Portugal
| | - Hélder Oliveira
- LAQV, REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Marco Arlorio
- Department of Pharmaceutical Sciences, Università degli Studi del Piemonte Orientale “A. Avogadro”, Largo Donegani 2, 28100 Novara, Italy
| | - Iva Fernandes
- LAQV, REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Rosa Perestrelo
- CQM—Centro de Química da Madeira, Natural Products Research Group, Campus Universitário da Penteada, Universidade da Madeira, 9020-105 Funchal, Portugal
| | - Victor Freitas
- LAQV, REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Matteo Bordiga
- Department of Pharmaceutical Sciences, Università degli Studi del Piemonte Orientale “A. Avogadro”, Largo Donegani 2, 28100 Novara, Italy
| |
Collapse
|
14
|
da Silva MACN, Soares CS, Borges KRA, Wolff LAS, Barbosa MDCL, Nascimento MDDSB, Carvalho JED. Ultrastructural changes induced by açaí (Euterpe oleracea Mart) in MCF-7 breast cancer cell line. Ultrastruct Pathol 2022; 46:511-518. [DOI: 10.1080/01913123.2022.2141404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Marcos Antonio Custódio Neto da Silva
- Faculty of Medical Science, Post-graduate Program in Internal Medicine, Universidade Estadual de Campi- nas. Rua Tessália Vieira de Camargo, Campinas, Brasil
| | - Camila Simões Soares
- Faculty of Pharmaceutical Sciences, Universidade Estadual de Campinas, Campinas, Brazil
| | - Kátia Regina Assunção Borges
- Department of Pathology, Federal University of Maranhão (UFMA), Nucleum of Basic and Applied Immunology, São Luís, Brazil
| | - Laís Araujo Souza Wolff
- Department of Pathology, Federal University of Maranhão (UFMA), Nucleum of Basic and Applied Immunology, São Luís, Brazil
| | - Maria Do Carmo Lacerda Barbosa
- Department of Pathology, Federal University of Maranhão (UFMA), Nucleum of Basic and Applied Immunology, São Luís, Brazil
| | | | | |
Collapse
|
15
|
Morais RA, Teixeira GL, Ferreira SRS, Cifuentes A, Block JM. Nutritional Composition and Bioactive Compounds of Native Brazilian Fruits of the Arecaceae Family and Its Potential Applications for Health Promotion. Nutrients 2022; 14:nu14194009. [PMID: 36235663 PMCID: PMC9571529 DOI: 10.3390/nu14194009] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 09/21/2022] [Accepted: 09/22/2022] [Indexed: 11/25/2022] Open
Abstract
The fruits from the Arecaceae family, although being rich in bioactive compounds with potential benefits to health, have been underexplored. Studies on their composition, bioactive compounds, and effects of their consumption on health are also scarce. This review presents the composition of macro- and micronutrients, and bioactive compounds of fruits of the Arecaceae family such as bacaba, patawa, juçara, açaí, buriti, buritirana, and butiá. The potential use and reported effects of its consumption on health are also presented. The knowledge of these underutilized fruits is important to encourage production, commercialization, processing, and consumption. It can also stimulate their full use and improve the economy and social condition of the population where these fruits are found. Furthermore, it may help in future research on the composition, health effects, and new product development. Arecaceae fruits presented in this review are currently used as raw materials for producing beverages, candies, jams, popsicles, ice creams, energy drinks, and edible oils. The reported studies show that they are rich in phenolic compounds, carotenoids, anthocyanins, tocopherols, minerals, vitamins, amino acids, and fatty acids. Moreover, the consumption of these compounds has been associated with anti-inflammatory, antiproliferative, antiobesity, and cardioprotective effects. These fruits have potential to be used in food, pharmaceutical, and cosmetic industries. Despite their potential, some of them, such as buritirana and butiá, have been little explored and limited research has been conducted on their composition, biological effects, and applications. Therefore, more detailed investigations on the composition and mechanism of action based on in vitro and/or in vivo studies are needed for fruits from the Arecaceae family.
Collapse
Affiliation(s)
- Rômulo Alves Morais
- Graduate Program in Food Science, Department of Food Science and Technology, Federal University of Santa Catarina (UFSC), Florianópolis 88034-001, Brazil
| | - Gerson Lopes Teixeira
- Graduate Program in Food Science, Department of Food Science and Technology, Federal University of Santa Catarina (UFSC), Florianópolis 88034-001, Brazil
| | | | - Alejandro Cifuentes
- Foodomics Laboratory, Institute of Food Science Research (CIAL), Spanish National Research Council (CSIC), 28049 Madrid, Spain
- Correspondence: (A.C.); (J.M.B.)
| | - Jane Mara Block
- Graduate Program in Food Science, Department of Food Science and Technology, Federal University of Santa Catarina (UFSC), Florianópolis 88034-001, Brazil
- Correspondence: (A.C.); (J.M.B.)
| |
Collapse
|
16
|
Lesser-Consumed Tropical Fruits and Their by-Products: Phytochemical Content and Their Antioxidant and Anti-Inflammatory Potential. Nutrients 2022; 14:nu14173663. [PMID: 36079920 PMCID: PMC9460136 DOI: 10.3390/nu14173663] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 08/30/2022] [Accepted: 08/31/2022] [Indexed: 11/20/2022] Open
Abstract
Açaí, lychee, mamey, passion fruit and jackfruit are some lesser-consumed tropical fruits due to their low commercial production. In 2018, approximately 6.8 million tons of these fruits were harvested, representing about 6.35% of the total world production of tropical fruits. The present work reviews the nutritional content, profile of bioactive compounds, antioxidant and anti-inflammatory capacity of these fruits and their by-products, and their ability to modulate oxidative stress due to the content of phenolic compounds, carotenoids and dietary fiber. Açaí pulp is an excellent source of anthocyanins (587 mg cyanidin-3-glucoside equivalents/100 g dry weight, dw), mamey pulp is rich in carotenoids (36.12 mg β-carotene/100 g fresh weight, fw), passion fruit peel is rich in dietary fiber (61.16 g/100 dw). At the same time, jackfruit contains unique compounds such as moracin C, artocarpesin, norartocarpetin and oxyresveratrol. These molecules play an important role in the regulation of inflammation via activation of mitogen-activated protein kinases (including p38, ERK and JNK) and nuclear factor κB pathways. The properties of the bioactive compounds found in these fruits make them a good source for use as food ingredients for nutritional purposes or alternative therapies. Research is needed to confirm their health benefits that can increase their marketability, which can benefit the primary producers, processing industries (particularly smaller ones) and the final consumer, while an integral use of their by-products will allow their incorporation into the circular bioeconomy.
Collapse
|
17
|
Dong Y, Wu X, Han L, Bian J, He C, El-Omar E, Gong L, Wang M. The Potential Roles of Dietary Anthocyanins in Inhibiting Vascular Endothelial Cell Senescence and Preventing Cardiovascular Diseases. Nutrients 2022; 14:nu14142836. [PMID: 35889793 PMCID: PMC9316990 DOI: 10.3390/nu14142836] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/08/2022] [Accepted: 07/08/2022] [Indexed: 12/31/2022] Open
Abstract
Cardiovascular disease (CVD) is a group of diseases affecting the heart and blood vessels and is the leading cause of morbidity and mortality worldwide. Increasingly more evidence has shown that the senescence of vascular endothelial cells is the key to endothelial dysfunction and cardiovascular diseases. Anthocyanin is a type of water-soluble polyphenol pigment and secondary metabolite of plant-based food widely existing in fruits and vegetables. The gut microbiome is involved in the metabolism of anthocyanins and mediates the biological activities of anthocyanins and their metabolites, while anthocyanins also regulate the growth of specific bacteria in the microbiota and promote the proliferation of healthy anaerobic flora. Accumulating studies have shown that anthocyanins have antioxidant, anti-inflammatory, and anti-aging effects. Many animal and in vitro experiments have also proven that anthocyanins have protective effects on cardiovascular-disease-related dysfunction. However, the molecular mechanism of anthocyanin in eliminating aging endothelial cells and preventing cardiovascular diseases is very complex and is not fully understood. In this systematic review, we summarize the metabolism and activities of anthocyanins, as well as their effects on scavenging senescent cells and cardioprotection.
Collapse
Affiliation(s)
- Yonghui Dong
- College of Food Science and Engineering, Northwest A&F University, Xianyang 712100, China; (Y.D.); (X.W.); (L.H.); (C.H.)
| | - Xue Wu
- College of Food Science and Engineering, Northwest A&F University, Xianyang 712100, China; (Y.D.); (X.W.); (L.H.); (C.H.)
| | - Lin Han
- College of Food Science and Engineering, Northwest A&F University, Xianyang 712100, China; (Y.D.); (X.W.); (L.H.); (C.H.)
| | - Ji Bian
- Kolling Institute, Sydney Medical School, Royal North Shore Hospital, University of Sydney, St. Leonards, NSW 2065, Australia;
| | - Caian He
- College of Food Science and Engineering, Northwest A&F University, Xianyang 712100, China; (Y.D.); (X.W.); (L.H.); (C.H.)
| | - Emad El-Omar
- Microbiome Research Centre, St George and Sutherland Clinical School, University of New South Wales, Sydney, NSW 2052, Australia;
| | - Lan Gong
- Microbiome Research Centre, St George and Sutherland Clinical School, University of New South Wales, Sydney, NSW 2052, Australia;
- Correspondence: (L.G.); (M.W.)
| | - Min Wang
- College of Food Science and Engineering, Northwest A&F University, Xianyang 712100, China; (Y.D.); (X.W.); (L.H.); (C.H.)
- Correspondence: (L.G.); (M.W.)
| |
Collapse
|
18
|
|
19
|
Figueiredo AM, Cardoso AC, Pereira BLB, Silva RAC, Ripa AFGD, Pinelli TFB, Oliveira BC, Rafacho BPM, Ishikawa LLW, Azevedo PS, Okoshi K, Fernandes AAH, Zornoff LAM, Minicucci MF, Polegato BF, Paiva SAR. Açai supplementation (Euterpe oleracea Mart.) attenuates cardiac remodeling after myocardial infarction in rats through different mechanistic pathways. PLoS One 2022; 17:e0264854. [PMID: 35245316 PMCID: PMC8896726 DOI: 10.1371/journal.pone.0264854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Accepted: 02/17/2022] [Indexed: 11/18/2022] Open
Abstract
Myocardial infarction has a high mortality rate worldwide. Therefore, clinical intervention in cardiac remodeling after myocardial infarction is essential. Açai pulp is a natural product and has been considered a functional food because of its antioxidant/anti-inflammatory properties. The aim of the present study was to analyze the effect of açai pulp supplementation on cardiac remodeling after myocardial infarction in rats. After 7 days of surgery, male Wistar rats were assigned to six groups: sham animals fed standard chow (SA0, n = 14), fed standard chow with 2% açai pulp (SA2, n = 12) and fed standard chow with 5% açai pulp (SA5, n = 14), infarcted animals fed standard chow (IA0, n = 12), fed standard chow with 2% açai pulp (IA2, n = 12), and fed standard chow with 5% açai pulp (IA5, n = 12). After 3 months of supplementation, echocardiography and euthanasia were performed. Açai pulp supplementation, after myocardial infarction, improved energy metabolism, attenuated oxidative stress (lower concentration of malondialdehyde, P = 0.023; dose-dependent effect), modulated the inflammatory process (lower concentration of interleukin-10, P<0.001; dose-dependent effect) and decreased the deposit of collagen (lower percentage of interstitial collagen fraction, P<0.001; dose-dependent effect). In conclusion, açai pulp supplementation attenuated cardiac remodeling after myocardial infarction in rats. Also, different doses of açai pulp supplementation have dose-dependent effects on cardiac remodeling.
Collapse
Affiliation(s)
- Amanda Menezes Figueiredo
- Internal Medicine Department, Botucatu Medical School, Universidade Estadual Paulista (UNESP), Botucatu, São Paulo, Brazil
- * E-mail:
| | - Ana Carolina Cardoso
- Internal Medicine Department, Botucatu Medical School, Universidade Estadual Paulista (UNESP), Botucatu, São Paulo, Brazil
| | - Bruna Leticia Buzati Pereira
- Internal Medicine Department, Botucatu Medical School, Universidade Estadual Paulista (UNESP), Botucatu, São Paulo, Brazil
| | - Renata Aparecida Candido Silva
- Internal Medicine Department, Botucatu Medical School, Universidade Estadual Paulista (UNESP), Botucatu, São Paulo, Brazil
| | | | | | - Bruna Camargo Oliveira
- Internal Medicine Department, Botucatu Medical School, Universidade Estadual Paulista (UNESP), Botucatu, São Paulo, Brazil
| | - Bruna Paola Murino Rafacho
- Internal Medicine Department, Botucatu Medical School, Universidade Estadual Paulista (UNESP), Botucatu, São Paulo, Brazil
| | - Larissa Lumi Watanabe Ishikawa
- Chemistry and Biochemistry Department, Institute of Biosciences, Universidade Estadual Paulista (UNESP), Botucatu, São Paulo, Brazil
| | - Paula Schmidt Azevedo
- Internal Medicine Department, Botucatu Medical School, Universidade Estadual Paulista (UNESP), Botucatu, São Paulo, Brazil
| | - Katashi Okoshi
- Internal Medicine Department, Botucatu Medical School, Universidade Estadual Paulista (UNESP), Botucatu, São Paulo, Brazil
| | - Ana Angelica Henrique Fernandes
- Chemistry and Biochemistry Department, Institute of Biosciences, Universidade Estadual Paulista (UNESP), Botucatu, São Paulo, Brazil
| | | | - Marcos Ferreira Minicucci
- Internal Medicine Department, Botucatu Medical School, Universidade Estadual Paulista (UNESP), Botucatu, São Paulo, Brazil
| | - Bertha Furlan Polegato
- Internal Medicine Department, Botucatu Medical School, Universidade Estadual Paulista (UNESP), Botucatu, São Paulo, Brazil
| | - Sergio Alberto Rupp Paiva
- Internal Medicine Department, Botucatu Medical School, Universidade Estadual Paulista (UNESP), Botucatu, São Paulo, Brazil
| |
Collapse
|
20
|
Tao Y, Chen R, Fan Y, Liu G, Wang M, Wang S, Li L. Interaction mechanism of pelargonidin against tyrosinase by multi-spectroscopy and molecular docking. J Mol Recognit 2022; 35:e2955. [PMID: 35076992 DOI: 10.1002/jmr.2955] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/10/2022] [Accepted: 01/17/2022] [Indexed: 11/12/2022]
Abstract
The interaction mechanism of pelargonidin (PG) with tyrosinase was investigated by multi-spectroscopy and molecular docking. As a result, PG had strong inhibitory activity on tyrosinase with the IC50 value of 41.94×10-6 mol·L-1 . The inhibition type of PG against tyrosinase was determined as a mixed mode. Meanwhile, the fluorescence of tyrosinase was quenched statically by PG, and accompanied by non-radiative energy transfer. The three-dimensional (3-D) fluorescence, ultraviolet-visible spectroscopy (UV-Vis) and circular dichroism spectroscopies (CD) indicated that PG decreased the hydrophobicity of the micro-environment around tryptophan (Trp) and tyrosine (Tyr), which resulted in the conformational change of tyrosinase. In addition, fluorescence and molecular docking analysis indicated that PG bound to tyrosinase via hydrogen bonds (H-bonds) and van der Waals force (vdW force). We herein recommended that PG might be a potential candidate drug for the treatment of melanin-related diseases.
Collapse
Affiliation(s)
- Yanzhou Tao
- The College of Chemistry, Changchun Normal University, Changchun, China
| | - Rongda Chen
- The College of Chemistry, Changchun Normal University, Changchun, China
| | - Yangyang Fan
- The College of Chemistry, Changchun Normal University, Changchun, China
| | - Guiming Liu
- The College of Chemistry, Changchun Normal University, Changchun, China
| | - Meizi Wang
- The College of Chemistry, Changchun Normal University, Changchun, China
| | - Suqing Wang
- The College of Chemistry, Changchun Normal University, Changchun, China
| | - Li Li
- The College of Chemistry, Changchun Normal University, Changchun, China
| |
Collapse
|
21
|
Brazilian berries prevent colitis induced in obese mice by reducing the clinical signs and intestinal damage. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.101447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
22
|
Shi N, Chen X, Chen T. Anthocyanins in Colorectal Cancer Prevention Review. Antioxidants (Basel) 2021; 10:1600. [PMID: 34679735 PMCID: PMC8533526 DOI: 10.3390/antiox10101600] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 10/01/2021] [Accepted: 10/11/2021] [Indexed: 12/24/2022] Open
Abstract
Colorectal cancer (CRC) is still a big health burden worldwide. Nutrition and dietary factors are known to affect colorectal cancer development and prognosis. The protective roles of diets rich in fruits and vegetables have been previously reported to contain high levels of cancer-fighting phytochemicals. Anthocyanins are the most abundant flavonoid compounds that are responsible for the bright colors of most blue, purple, and red fruits and vegetables, and have been shown to contribute to the protective effects of fruits and vegetables against cancer and other chronic diseases. Berries and grapes are the most common anthocyanin-rich fruits with antitumor effects. The antitumor effects of anthocyanins are determined by their structures and bioavailability as well as how they are metabolized. In this review, we aimed to discuss the preventive as well as therapeutic potentials of anthocyanins in CRC. We summarized the antitumor effects of anthocyanins and the mechanisms of action. We also discussed the potential pharmaceutical application of anthocyanins in practice.
Collapse
Affiliation(s)
- Ni Shi
- Department of Internal Medicine, Division of Medical Oncology, The Ohio State University, 1800 Cannon Drive, 13th Floor, Columbus, OH 43210, USA;
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| | - Xiaoxin Chen
- Cancer Research Program, Julius L. Chambers Biomedical Biotechnology Research Institute, North Carolina Central University, 700 George St., Durham, NC 27707, USA;
| | - Tong Chen
- Department of Internal Medicine, Division of Medical Oncology, The Ohio State University, 1800 Cannon Drive, 13th Floor, Columbus, OH 43210, USA;
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
23
|
Sayago-Ayerdi S, García-Martínez DL, Ramírez-Castillo AC, Ramírez-Concepción HR, Viuda-Martos M. Tropical Fruits and Their Co-Products as Bioactive Compounds and Their Health Effects: A Review. Foods 2021; 10:foods10081952. [PMID: 34441729 PMCID: PMC8393595 DOI: 10.3390/foods10081952] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/13/2021] [Accepted: 08/19/2021] [Indexed: 12/11/2022] Open
Abstract
Tropical and subtropical fruits are recognized as a source of a high content of bioactive compounds and health promoting properties due to their nutritional composition. These beneficial health effects are related to the content of several of these bioactive compounds, mainly flavonoids and non-flavonoid phenolics. Many of these compounds are common in different tropical fruits, such as epicatechin in mango, pineapple, and banana, or catechin in pineapple, cocoa or avocado. Many studies of tropical fruits had been carried out, but in this work an examination is made in the current literature of the flavonoids and non-flavonoid phenolics content of some tropical fruits and their coproducts, comparing the content in the same units, as well as examining the role that these compounds play in health benefits.
Collapse
Affiliation(s)
- Sonia Sayago-Ayerdi
- Tecnologico Nacional de Mexico, Instituto Tecnologico de Tepic, Av Tecnológico 2595, Col Lagos del Country, Tepic 63175, Nayarit Mexico, Mexico; (S.S.-A.); (D.L.G.-M.); (A.C.R.-C.); (H.R.R.-C.)
| | - Diana Laura García-Martínez
- Tecnologico Nacional de Mexico, Instituto Tecnologico de Tepic, Av Tecnológico 2595, Col Lagos del Country, Tepic 63175, Nayarit Mexico, Mexico; (S.S.-A.); (D.L.G.-M.); (A.C.R.-C.); (H.R.R.-C.)
| | - Ailin Cecilia Ramírez-Castillo
- Tecnologico Nacional de Mexico, Instituto Tecnologico de Tepic, Av Tecnológico 2595, Col Lagos del Country, Tepic 63175, Nayarit Mexico, Mexico; (S.S.-A.); (D.L.G.-M.); (A.C.R.-C.); (H.R.R.-C.)
| | - Heidi Rubí Ramírez-Concepción
- Tecnologico Nacional de Mexico, Instituto Tecnologico de Tepic, Av Tecnológico 2595, Col Lagos del Country, Tepic 63175, Nayarit Mexico, Mexico; (S.S.-A.); (D.L.G.-M.); (A.C.R.-C.); (H.R.R.-C.)
| | - Manuel Viuda-Martos
- IPOA Research Group, Centro de Investigación e Innovación Agroalimentaria y Agroambiental (CIAGRO-UMH), Agro-Food Technology Department, Miguel Hernández University, Orihuela, 03312 Alicante, Spain
- Correspondence: ; Tel.: +34-966-749-661
| |
Collapse
|
24
|
do Carmo MAV, Fidelis M, de Oliveira PF, Feitoza LQ, Marques MJ, Ferreira EB, Oh WY, Shahidi F, Hellström J, Almeida LA, Novaes RD, Granato D, Azevedo L. Ellagitannins from jabuticaba (Myrciaria jaboticaba) seeds attenuated inflammation, oxidative stress, aberrant crypt foci, and modulated gut microbiota in rats with 1,2 dimethyl hydrazine-induced colon carcinogenesis. Food Chem Toxicol 2021; 154:112287. [PMID: 34058233 DOI: 10.1016/j.fct.2021.112287] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/04/2021] [Accepted: 05/17/2021] [Indexed: 12/13/2022]
Abstract
Since dietary factors are thought to be responsible for high colon cancer risk, we investigated the chemopreventive effect of jabuticaba seed extract (LJE) by administering yogurt with or without LJE against 1,2 dimethyl hydrazine (DMH)-induced colon carcinogenesis in rats. Results showed that LJE contained a total phenolic content of 57.16 g/100 g of seed extract in which 7.67 and 10.09 g/100 g represented total flavonoids and ellagitannins, respectively. LJE protected DNA and human LDL against induced in vitro oxidation, which was associated with the ellagitannin content and with the free-radical scavenging and reducing capacities. LJE alone had a non-clastogenicity/aneugenicity property, but in combination with cisplatin, it enhanced the chromosome aberrations in cancer cells. In colon cancer-induced rats, yogurt with or without LJE caused a reduction in pro-inflammatory parameters, decreased the RNA expression of antiapoptotic cytokines and increased the expression of proapoptotic cytokines. Moreover, LJE attenuated colon cancer initiation and progression by decreasing aberrant crypt foci and LJE recovered the gut microbiome. Together, this evidence suggests that LJE provides chemopreventive protection against colon cancer development by reducing inflammation and increasing proapoptotic pathways.
Collapse
Affiliation(s)
| | - Marina Fidelis
- Food Processing and Quality, Innovative Food System, Production Systems Unit, Natural Resources Institute Finland (Luke), Latokartanonkaari 9, 00790, Helsinki, Finland
| | | | - Lais Quellen Feitoza
- Faculty of Nutrition, Federal University of Alfenas, Rua Gabriel Monteiro da Silva, 714, 37130-000, Alfenas, Brazil
| | - Marcos José Marques
- Institute of Biomedical Sciences, Federal University of Alfenas, Rua Gabriel Monteiro da Silva, 714, 37130-000, Alfenas, Brazil
| | - Eric Batista Ferreira
- Institute of Exact Sciences, Federal University of Alfenas, Rua Gabriel Monteiro da Silva, 714, 37130-000, Alfenas, Brazil
| | - Won Young Oh
- Department of Biochemistry, Memorial University of Newfoundland, St. John's, NL A1B 3X9, Canada
| | - Fereidoon Shahidi
- Department of Biochemistry, Memorial University of Newfoundland, St. John's, NL A1B 3X9, Canada
| | - Jarkko Hellström
- Food Processing and Quality, Innovative Food System, Production Systems Unit, Natural Resources Institute Finland (Luke), Latokartanonkaari 9, 00790, Helsinki, Finland
| | - Leonardo Augusto Almeida
- Department of Microbiology and Immunology, Federal University of Alfenas, Rua Gabriel Monteiro da Silva, 714, 37130-000, Alfenas, Brazil
| | - Rômulo Dias Novaes
- Institute of Biomedical Sciences, Federal University of Alfenas, Rua Gabriel Monteiro da Silva, 714, 37130-000, Alfenas, Brazil
| | - Daniel Granato
- Food Processing and Quality, Innovative Food System, Production Systems Unit, Natural Resources Institute Finland (Luke), Latokartanonkaari 9, 00790, Helsinki, Finland.
| | - Luciana Azevedo
- Faculty of Nutrition, Federal University of Alfenas, Rua Gabriel Monteiro da Silva, 714, 37130-000, Alfenas, Brazil
| |
Collapse
|
25
|
Chen J, Xu B, Sun J, Jiang X, Bai W. Anthocyanin supplement as a dietary strategy in cancer prevention and management: A comprehensive review. Crit Rev Food Sci Nutr 2021; 62:7242-7254. [PMID: 33872094 DOI: 10.1080/10408398.2021.1913092] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Anthocyanins are natural pigments proven to be beneficial in the vast majority of health problems with no side effects. In this review, the latest progress on the cancer prevention and management of anthocyanins in treating cancers ranked in the top 5 of incidence and mortality was summarized, and the interaction and corresponding mechanisms were established based on a systematic review of electronic libraries. Several studies have revealed that anthocyanins have positive impact on human health with anti-cancer capacity. This review aimed to accumulate the evidence on the anti-cancer effects of anthocyanins, corresponding mechanisms and limitation of anthocyanins on cancer prevention and management. Notably, this review updated the latest studies on cancer prevention and management of anthocyanins and also inputted the future perspectives and the demanding questions for the possible contribution of anthocyanins as anti-cancer adjuvant.
Collapse
Affiliation(s)
- Jiali Chen
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection, Jinan University, Guangzhou, China
| | - Baojun Xu
- Food Science and Technology Program, BNU-HKBU United International College, Zhuhai, China
| | - Jianxia Sun
- Faculty of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, PR China
| | - Xinwei Jiang
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection, Jinan University, Guangzhou, China
| | - Weibin Bai
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection, Jinan University, Guangzhou, China
| |
Collapse
|
26
|
Tumor suppressor gene DLC1: Its modifications, interactive molecules, and potential prospects for clinical cancer application. Int J Biol Macromol 2021; 182:264-275. [PMID: 33836193 DOI: 10.1016/j.ijbiomac.2021.04.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 04/02/2021] [Accepted: 04/04/2021] [Indexed: 12/12/2022]
Abstract
Deleted in liver cancer 1 (DLC1) is a recognized tumor suppressor gene that negatively regulates Rho family proteins by hydrolyzing the active GTP-bound state to its inactive GDP-bound state. Active Rho proteins play a positive role in tumorigenesis. Numerous in vitro and in vivo experiments have shown that DLC1 is downregulated or inactivated in various solid tumors, which may be due to the following five reasons: genomic deletion, epigenetic modification and ubiquitin-dependent proteasomal degradation may cause DLC1 underexpression; phosphorylation at the post-translation level may cause DLC1 inactivation; and failure to localize at focal adhesions (FAs) may prevent DLC1 from exerting full activity. All of the causes could be attributed to molecular binding. Experimental evidence suggests that direct or indirect targeting of DLC1 is feasible for cancer treatment. Therefore, elucidating the interaction of DLC1 with its binding partners might provide novel targeted therapies for cancer. In this review, we summarized the binding partners of DLC1 at both the gene and protein levels and expounded a variety of anticancer drugs targeting DLC1 to provide information about DLC1 as a cancer diagnostic indicator or therapeutic target.
Collapse
|
27
|
Bars-Cortina D, Sakhawat A, Piñol-Felis C, Motilva MJ. Chemopreventive effects of anthocyanins on colorectal and breast cancer: A review. Semin Cancer Biol 2021; 81:241-258. [DOI: 10.1016/j.semcancer.2020.12.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 12/10/2020] [Accepted: 12/11/2020] [Indexed: 02/06/2023]
|
28
|
Schulz M, Gonzaga LV, Costa ACO, Fett R. Antioxidant and juçara fruits (Euterpe edulis Martius): Potential applications in toxicology. Toxicology 2021. [DOI: 10.1016/b978-0-12-819092-0.00032-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
29
|
Zheng T, Zhang Q, Su KX, Liu SM. Transcriptome and metabolome analyses reveal the regulation of peel coloration in green, red Chinese prickly ash ( Zanthoxylum L.). FOOD CHEMISTRY. MOLECULAR SCIENCES 2020; 1:100004. [PMID: 35415618 PMCID: PMC8991852 DOI: 10.1016/j.fochms.2020.100004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 10/14/2020] [Accepted: 10/17/2020] [Indexed: 01/08/2023]
Abstract
Peel colour is an important external economic characteristic of Chinese prickly ash cultivars (Zanthoxylum bungeanum Maxim.). To gain insight into their coloration mechanisms, we performed an integrated analysis of green and red peels using combined metabolomic and transcriptomic analyses. Pelargonin-O-hexoside-O-rhamnoside-O-hexoside, pelargonidin 3,5-diglucoside, peonidin O-hexoside, cyanidin O-syringic acid and peonidin 3-O-glucoside were found to be the key anthocyanins. Transcriptome data indicated that the anthocyanidin synthase genes and UDP-glucose flavonoid 3-O-glucosytransferase genes were significantly increased to promote the redness of the peels. In addition, we discussed the role of R2R3-MYB transcription factors in coloration, of which the c80935 and c226097 genes may be the key regulatory factors for anthocyanin biosynthesis. Generally, this is the first study to identify and reveal the main anthocyanins in Chinese prickly ash peels during different developmental periods. The results of this research lay the foundation for understanding the regulation of coloration in Chinese prickly ash peels.
Collapse
Affiliation(s)
- Tao Zheng
- College of Science, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Qun Zhang
- College of Science, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Ke-Xing Su
- College of Science, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Shu-Ming Liu
- College of Science, Northwest A & F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
30
|
de Souza FG, de Araújo FF, de Paulo Farias D, Zanotto AW, Neri-Numa IA, Pastore GM. Brazilian fruits of Arecaceae family: An overview of some representatives with promising food, therapeutic and industrial applications. Food Res Int 2020; 138:109690. [PMID: 33292959 DOI: 10.1016/j.foodres.2020.109690] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 08/07/2020] [Accepted: 09/06/2020] [Indexed: 02/08/2023]
Abstract
The Arecaceae family is widely distributed and comprises about 2600 species, in which 48 of them are native to Brazil and occurs in transition biomes between the Amazon, Cerrado and Caatinga. In addition to being used as a source of food and subsistence, they are also rich in lipophilic bioactive compounds, mainly carotenoids, polyunsaturated fatty acids, tocopherols and vitamin A. Moreover, they have considerable content of phenolic compounds, fibers and minerals. Therefore, the objective of this review is to present the physical-chemical and nutritional aspects, the main bioactive compounds, the biological properties and the innovative potential of four Brazilian palm-tree fruits of the Arecaceae family. Due to the presence of bioactive compounds, these fruits have the potential to promote health and can be used to prevent chronic non-communicable diseases, such as obesity, type 2 diabetes and others. Furthermore, these raw materials and their by-products can be used in the development of new food, chemical, pharmaceutical and cosmetic products. To ensure better use of these crops, promote their commercial value, benefit family farming and contribute to the country's sustainable development, it is necessary to implement new cultivation, post-harvest and processing techniques. Investing in research to publicize their potential is equally important, mainly of the ones still little explored, such as the buritirana.
Collapse
Affiliation(s)
| | | | - David de Paulo Farias
- Department of Food Science, Faculty of Food Engineering, University of Campinas, Brazil
| | - Aline Wasem Zanotto
- Department of Food Science, Faculty of Food Engineering, University of Campinas, Brazil
| | | | - Glaucia Maria Pastore
- Department of Food Science, Faculty of Food Engineering, University of Campinas, Brazil
| |
Collapse
|
31
|
Salehi B, Sharifi-Rad J, Cappellini F, Reiner Ž, Zorzan D, Imran M, Sener B, Kilic M, El-Shazly M, Fahmy NM, Al-Sayed E, Martorell M, Tonelli C, Petroni K, Docea AO, Calina D, Maroyi A. The Therapeutic Potential of Anthocyanins: Current Approaches Based on Their Molecular Mechanism of Action. Front Pharmacol 2020; 11:1300. [PMID: 32982731 PMCID: PMC7479177 DOI: 10.3389/fphar.2020.01300] [Citation(s) in RCA: 149] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 08/05/2020] [Indexed: 12/13/2022] Open
Abstract
Anthocyanins are natural phenolic pigments with biological activity. They are well-known to have potent antioxidant and antiinflammatory activity, which explains the various biological effects reported for these substances suggesting their antidiabetic and anticancer activities, and their role in cardiovascular and neuroprotective prevention. This review aims to comprehensively analyze different studies performed on this class of compounds, their bioavailability and their therapeutic potential. An in-depth look in preclinical, in vitro and in vivo, and clinical studies indicates the preventive effects of anthocyanins on cardioprotection, neuroprotection, antiobesity as well as their antidiabetes and anticancer effects.
Collapse
Affiliation(s)
- Bahare Salehi
- Noncommunicable Diseases Research Center, Bam University of Medical Sciences, Bam, Iran
- Student Research Committee, School of Medicine, Bam University of Medical Sciences, Bam, Iran
| | - Javad Sharifi-Rad
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Željko Reiner
- Department of Internal Medicine, University Hospital Centre Zagreb, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Debora Zorzan
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milano, Italy
| | - Muhammad Imran
- Faculty of Allied Health Sciences, University Institute of Diet and Nutritional Sciences, The University of Lahore, Lahore, Pakistan
| | - Bilge Sener
- Department of Pharmacognosy, Faculty of Pharmacy, Gazi University, Ankara, Turkey
| | - Mehtap Kilic
- Department of Pharmacognosy, Faculty of Pharmacy, Gazi University, Ankara, Turkey
| | - Mohamed El-Shazly
- Department of Pharmacognosy, Faculty of Pharmacy, Ain-Shams University, Cairo, Egypt
- Department of Pharmaceutical Biology, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt
| | - Nouran M. Fahmy
- Department of Pharmacognosy, Faculty of Pharmacy, Ain-Shams University, Cairo, Egypt
| | - Eman Al-Sayed
- Department of Pharmacognosy, Faculty of Pharmacy, Ain-Shams University, Cairo, Egypt
| | - Miquel Martorell
- Department of Nutrition and Dietetics, Faculty of Pharmacy, University of Concepcion, Concepcion, Chile
- Unidad de Desarrollo Tecnológico, Universidad de Concepción UDT, Concepcion, Chile
| | - Chiara Tonelli
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milano, Italy
| | - Katia Petroni
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milano, Italy
| | - Anca Oana Docea
- Department of Toxicology, University of Medicine and Pharmacy of Craiova, Craiova, Romania
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, Craiova, Romania
| | - Alfred Maroyi
- Department of Botany, University of Fort Hare, Alice, South Africa
| |
Collapse
|
32
|
de Almeida Magalhães TSS, de Oliveira Macedo PC, Converti A, Neves de Lima ÁA. The Use of Euterpe oleracea Mart. As a New Perspective for Disease Treatment and Prevention. Biomolecules 2020; 10:biom10060813. [PMID: 32466439 PMCID: PMC7356995 DOI: 10.3390/biom10060813] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 04/23/2020] [Accepted: 04/25/2020] [Indexed: 02/07/2023] Open
Abstract
Euterpe oleracea Mart. (EO), popularly known as açaí, belongs to the Arecaceae family and grows abundantly in Brazil. The fruit of this palm tree is widely used because of its anti-inflammatory and antioxidant properties. In this review, a search for literature and patent technological prospecting has been performed on the use of EO to treat and prevent diseases as well as to prepare pharmaceutical formulations. EO leaves, fruits, and oil stand out for their large number of pharmacological activities such as anti-inflammatory, antioxidant, antimicrobial, antinociceptive, anticancer, anti-atherogenic, and healing activities, protection against metabolic syndromes such as diabetes, hypertension, and hyperlipidemia, and protection of organs such as lung, kidney, liver, heart, and nervous system. While the phytochemical composition is intrinsically linked to identified biological activities, discoveries of the past decade concerning the use of this species have shown pharmacological alternatives mainly in the treatment and prevention of breast cancer and metabolic syndromes. Although studies and inventions on the use of EO though are believed to have been important in light of the pharmacological activities found, few clinical and toxicity tests have been performed. Nevertheless, with the increase of interest in EO, this species is believed to be only at the beginning of the breakthroughs in the development of promising products for the pharmaceutical industry.
Collapse
Affiliation(s)
- Thalita Sévia Soares de Almeida Magalhães
- Department of Pharmacy, Laboratório Escola de Farmácia Industrial, Federal University of Rio Grande do Norte, Natal RN 59012-570, Brazil; (T.S.S.d.A.M.); (P.C.d.O.M.)
| | - Pollyana Cristina de Oliveira Macedo
- Department of Pharmacy, Laboratório Escola de Farmácia Industrial, Federal University of Rio Grande do Norte, Natal RN 59012-570, Brazil; (T.S.S.d.A.M.); (P.C.d.O.M.)
| | - Attilio Converti
- Department of Civil, Chemical and Environmental Engineering, Pole of Chemical Engineering, Genoa University, I-16145 Genoa, Italy;
| | - Ádley Antonini Neves de Lima
- Department of Pharmacy, Laboratório Escola de Farmácia Industrial, Federal University of Rio Grande do Norte, Natal RN 59012-570, Brazil; (T.S.S.d.A.M.); (P.C.d.O.M.)
- Correspondence: ; Tel.: +55-(84)-99928-8864
| |
Collapse
|
33
|
Fakhri S, Khodamorady M, Naseri M, Farzaei MH, Khan H. The ameliorating effects of anthocyanins on the cross-linked signaling pathways of cancer dysregulated metabolism. Pharmacol Res 2020; 159:104895. [PMID: 32422342 DOI: 10.1016/j.phrs.2020.104895] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 04/13/2020] [Accepted: 05/05/2020] [Indexed: 12/25/2022]
Abstract
Cancer cells underlie the dysregulated metabolism of carbohydrate, lipid and protein and thereby, employ interconnected cross-linked signaling pathways to supply adequate energy for growth and related biosynthetic procedures. In the present study, a comprehensive review of cancer metabolism and anthocyanin's effect was conducted using the existing electronic databases, including Medline, PubMed, Scopus, and Web of Science, as well as related articles in the field. Such keywords as "cancer", and "cancer metabolism" in the title/abstract/keyword and all the "anthocyanins" in the whole text were used. Data were collected without time restriction until February 2020. The results indicated the involvement of several signaling pathways, including inflammatory PI3K/Akt/mTOR pathway, Bax/Bcl-2/caspases as apoptosis modulators, and NF-κB/Nrf2 as oxidative stress mediators in the cancer dysregulated metabolism. Compelling studies have shown that targeting these pathways, as critical hallmarks of cancer, plays a critical role in combating cancer dysregulated metabolism. The complexity of cancer metabolism signaling pathways, along with toxicity, high costs, and resistance to conventional drugs urge the need to investigate novel multi-target agents. Increasing evidence has introduced plant-derived secondary metabolites as hopeful anticancer candidates which target multiple dysregulated cross-linked pathways of cancer metabolism. Amongst these metabolites, anthocyanins have demonstrated positive anticancer effects by targeting inflammation, oxidative stress, and apoptotic signaling pathways. The current study revealed the cross-linked signaling pathways of cancer metabolism, as well as the promising pharmacological mechanisms of anthocyanins in targeting the aforementioned signaling mediators. To overcome the pharmacokinetic limitations of anthocyanins in cancer treatment, their interactions with gut microbiota and the need to develop related nano-formulations were also considered.
Collapse
Affiliation(s)
- Sajad Fakhri
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran.
| | - Minoo Khodamorady
- Department of Organic Chemistry, Faculty of Chemistry, Razi University, Kermanshah, 67149-67346, Iran.
| | - Maryam Naseri
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran.
| | - Mohammad Hosein Farzaei
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran.
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University Mardan, 23200, Pakistan.
| |
Collapse
|
34
|
Shen M, Liu K, Liang Y, Liu G, Sang J, Li C. Extraction optimization and purification of anthocyanins from Lycium ruthenicum Murr. and evaluation of tyrosinase inhibitory activity of the anthocyanins. J Food Sci 2020; 85:696-706. [PMID: 32043592 DOI: 10.1111/1750-3841.15037] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 12/10/2019] [Accepted: 12/15/2019] [Indexed: 01/23/2023]
Abstract
The aim of this study was to extract and purify anthocyanins from Lycium ruthenicum Murr. and evaluate their tyrosinase inhibitory activity. Response surface methodology was devoted to optimize enzyme-assisted extraction of anthocyanins from L. ruthenicum dried fruits. Extraction at 38 °C for 37 min using water-containing pectinase (52.04 mg/100 g dried fruit) rendered an anthocyanin extraction yield of 19.51 ± 0.21 mg/g. The purified anthocyanins were separated from the extract by macroporous resin XDA-6. Antioxidant tests in vitro suggested that the extract and the purified anthocyanins exhibited a potent 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging capacity, 2,2-azino-bis-3-ethylbenzothiazoline-6-sulfonic acid (ABTS) radical scavenging capacity, hydroxyl radical scavenging capacity, superoxide radical scavenging capacity, and total reducing power. Thirteen anthocyanins from L. ruthenicum dried fruits were analyzed by HPLC-MS. Moreover, the purified anthocyanins had inhibitory effect on tyrosinase monophenolase (IC50 = 1.483 ± 0.058 mg/mL), and the type of inhibition was competitive inhibition (Ki = 39.83 ± 1.4 mg/mL). The maximum inhibitory activity of the purified anthocyanins (3.00 mg/mL) on tyrosinase diphenolase was 42.16 ± 0.77%, and the type of inhibition was anticompetitive inhibition (Kis = 2.387 ± 0.10 mg/mL). PRACTICAL APPLICATION: The anthocyanins from L. ruthenicum dried fruits can be used as tyrosinase inhibitors in medicine, cosmetics, and food preservation industries.
Collapse
Affiliation(s)
- Meilun Shen
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, Natl. Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal Univ., Xi'an, Shaanxi, 710062, China
| | - Kang Liu
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, Natl. Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal Univ., Xi'an, Shaanxi, 710062, China
| | - Yefei Liang
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, Natl. Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal Univ., Xi'an, Shaanxi, 710062, China
| | - Guangxin Liu
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, Natl. Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal Univ., Xi'an, Shaanxi, 710062, China
| | - Jie Sang
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, Natl. Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal Univ., Xi'an, Shaanxi, 710062, China
| | - Cuiqin Li
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, Natl. Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal Univ., Xi'an, Shaanxi, 710062, China
| |
Collapse
|
35
|
Extraction of Anthocyanins and Total Phenolic Compounds from Açai (Euterpe oleracea Mart.) Using an Experimental Design Methodology. Part 1: Pressurized Liquid Extraction. AGRONOMY-BASEL 2020. [DOI: 10.3390/agronomy10020183] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Currently, açai is one of the most important fruits present in the world. Several studies have demonstrated its high content in phenolic compounds and anthocyanins. Both of them are responsible of interesting properties of the fruit such as anti-inflammatory, antioxidant or anticancer. In the present study, two optimized pressurized liquid extraction (PLE) methods have been developed for the extraction of anthocyanins and total phenolic compounds from açai. A full factorial design (Box–Behnken design) with six variables (solvent composition (25–75% methanol-in-water), temperature (50–100 °C), pressure (100–200 atm), purge time (30–90 s), pH (2–7) and flushing (50–150%)) were employed. The percentage of methanol in the extraction solvent was proven to be the most significant variable for the extraction of anthocyanins. In the case of total phenolic compounds, the extraction temperature was the most influential variable. The developed methods showed high precision, with relative standard deviations (RSD) of less than 5%. The applicability of the methods was successfully evaluated in real samples. In conclusion, two rapid and reliable PLE extraction methods to be used for laboratories and industries to determine anthocyanins and total phenolic compounds in açai and its derived products were developed in this work.
Collapse
|
36
|
Valente MDCDC, Nascimento RA, Santana EB, Ribeiro NFDP, Costa CML, Faria LJG. Spray drying of extract from
Euterpe oleracea
Mart.: Optimization of process and characterization of the açaí powder. J FOOD PROCESS ENG 2019. [DOI: 10.1111/jfpe.13253] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
| | - Rafael A. Nascimento
- Natural Resources Engineering PRODERNA/ITEC/UFPAFederal University of Para Belém Brazil
| | - Elza B. Santana
- Post‐graduation of Chemical Engineering PPGEQ/ITEC/UFPAFederal University of Para Belém Brazil
| | | | - Cristiane M. L. Costa
- Faculty of Chemical Engineering FEQ/ITEC/UFPAFederal University of Para Belém Brazil
| | - Lênio J. G. Faria
- Faculty of Chemical Engineering FEQ/ITEC/UFPAFederal University of Para Belém Brazil
| |
Collapse
|
37
|
Zhuang H, Lou Q, Liu H, Han H, Wang Q, Tang Z, Ma Y, Wang H. Differential Regulation of Anthocyanins in Green and Purple Turnips Revealed by Combined De Novo Transcriptome and Metabolome Analysis. Int J Mol Sci 2019; 20:E4387. [PMID: 31500111 PMCID: PMC6769466 DOI: 10.3390/ijms20184387] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Revised: 08/30/2019] [Accepted: 08/31/2019] [Indexed: 01/20/2023] Open
Abstract
Purple turnip Brassica rapa ssp. rapa is highly appreciated by consumers but the metabolites and molecular mechanisms underlying the root skin pigmentation remain open to study. Herein, we analyzed the anthocyanin composition in purple turnip (PT) and green turnip (GT) at five developmental stages. A total of 21 anthocyanins were detected and classified into the six major anthocynanin aglycones. Distinctly, PT contains 20 times higher levels of anthocyanins than GT, which explain the difference in the root skin pigmentation. We further sequenced the transcriptomes and analyzed the differentially expressed genes between the two turnips. We found that PT essentially diverts dihydroflavonols to the biosynthesis of anthocyanins over flavonols biosynthesis by strongly down-regulating one flavonol synthase gene, while strikingly up-regulating dihydroflavonol 4-reductase (DFR), anthocyanidin synthase and UDP-glucose: flavonoid-3-O-glucosyltransferase genes as compared to GT. Moreover, a nonsense mutation identified in the coding sequence of the DFR gene may lead to a nonfunctional protein, adding another hurdle to the accumulation of anthocyanin in GT. We also uncovered several key members of MYB, bHLH and WRKY families as the putative main drivers of transcriptional changes between the two turnips. Overall, this study provides new tools for modifying anthocyanin content and improving turnip nutritional quality.
Collapse
Affiliation(s)
- Hongmei Zhuang
- Institute of Horticultural Crops, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China.
| | - Qian Lou
- College of Horticulture, Northwest A & F University, Yangling 712100, China.
| | - Huifang Liu
- Institute of Horticultural Crops, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China.
| | - Hongwei Han
- Institute of Horticultural Crops, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China.
| | - Qiang Wang
- Institute of Horticultural Crops, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China.
| | - Zhonghua Tang
- Key Laboratory of Plant Ecology, Northeast Forestry University, Harbin 150040, China.
- Institute of Genetic Resources, Xinjiang Academy of Agricultural Science, Urumqi 830091, China.
| | - Yanming Ma
- Institute of Genetic Resources, Xinjiang Academy of Agricultural Science, Urumqi 830091, China.
| | - Hao Wang
- Institute of Horticultural Crops, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China.
| |
Collapse
|
38
|
dos Reis SO, da Luz TC, da Silva Couto CVM, Dalbó J, Nunes LDC, Martins MC, Silva PI, da Silva AMA, Trivilin LO. Juçara (Euterpe edulis Mart.) Supplementation Reduces Aberrant Crypt Foci and Increases SOD1 Expression in the Colorectal Mucosa of Carcinogenesis-Induced Rats. Nutr Cancer 2019; 72:610-619. [DOI: 10.1080/01635581.2019.1649437] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
| | | | | | - Juliana Dalbó
- Federal University of Espírito Santo, Alegre, Brazil
| | | | | | | | | | | |
Collapse
|
39
|
Medic N, Tramer F, Passamonti S. Anthocyanins in Colorectal Cancer Prevention. A Systematic Review of the Literature in Search of Molecular Oncotargets. Front Pharmacol 2019; 10:675. [PMID: 31281255 PMCID: PMC6597886 DOI: 10.3389/fphar.2019.00675] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 05/23/2019] [Indexed: 12/24/2022] Open
Abstract
Background: Colorectal cancer (CRC) is the malignant process that surges in the terminal part of gastrointestinal tract when adenomatous polyps convert to neoplastic cells able to infiltrate the submucosa. Despite the constant progress in applying preventive measures (screening, colonoscopy) and developing new cures (surgical and chemotherapy), CRC is still one of the leading causes of cancer death worldwide. The importance of natural dietary components in CRC prevention has been recognized. Defining the precise role of the diet and its particular molecular moieties in CRC prevention is of constant scientific interest years behind. Anthocyanins (AC), phenolic phytochemicals present in pigmented plants and vegetables, have been reported to have some role in counteracting CRC carcinogenesis. Nonetheless, evidence coming out the pre-clinical, clinical, and epidemiological studies is still controversial. This review is addressing the need to better comprehend the causes of missing data and discrepancies in investigations on the role of dietary AC in modulating CRC carcinogenesis. Methods: We have analyzed the scientific literature, available in PubMed database, according to PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) statement methodology for systematic reviews. Subsequently, two selection strategies, with their screening and eligibility criteria, were applied to retain research articles reporting in vitro and in vivo studies aimed at exploring the molecular mechanisms underlying the observed effects of AC in CRC prevention. Results: From the pool of 82 identified publications, we selected 19 articles reporting experimental or observational data on the effect of AC-enriched diets in CRC prevention in humans or murine species. Furthermore, we selected 10 articles reporting about molecular mechanisms of action of pure AC in CRC experimental models. Conclusions: The major outcome of this review is that AC showed essentially no effect in human studies, whereas AC-enriched diets proved to be effective in experimental murine models of CRC. In cell culture tests, AC showed to interfere with cell signaling pathways related to cell growth and differentiation, apoptosis, oxygen stress, and inflammation response. Further molecular characterizations are required to include AC in the panel of disease-modifying agents.
Collapse
|
40
|
Afshari K, Haddadi NS, Haj-Mirzaian A, Farzaei MH, Rohani MM, Akramian F, Naseri R, Sureda A, Ghanaatian N, Abdolghaffari AH. Natural flavonoids for the prevention of colon cancer: A comprehensive review of preclinical and clinical studies. J Cell Physiol 2019; 234:21519-21546. [PMID: 31087338 DOI: 10.1002/jcp.28777] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 04/07/2019] [Accepted: 04/11/2019] [Indexed: 12/18/2022]
Abstract
Flavonoids comprise a group of natural polyphenols consisting of more than 5,000 subtypes mostly existing in fruits and vegetables. Flavonoids consumption could potentially attenuate the incidence and recurrence risk of colorectal cancers through their antiperoxidative, antioxidant, and anti-inflammatory effects. In addition, these compounds regulate the mitochondrial function, balance the bacterial flora and promote the apoptosis process in cancerous cells. However, some previous data failed to show the effectiveness of flavonoids in reducing the risk of colorectal cancer. In this study, we have reviewed the efficacy of different flavonoids subtypes on the risk of colon cancer and molecular mechanisms involved in this process in both clinical and animal studies. In addition, we tried to elucidate the potential synergy between these compounds and current colorectal cancer treatments.
Collapse
Affiliation(s)
- Khashayar Afshari
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Nazgol-Sadat Haddadi
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Arvin Haj-Mirzaian
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Hosein Farzaei
- Pharmaceutical Sciences Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran.,Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mohammad Mojtaba Rohani
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Freshteh Akramian
- Department of Pharmacology, Pharmaceutical Sciences Branch, Islamic Azad University, Tehran, Iran
| | - Rozita Naseri
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Antoni Sureda
- Research Group on Community Nutrition and Oxidative Stress, University of the Balearic Islands, Palma de Mallorca, Spain.,CIBEROBN (Physiopathology of Obesity and Nutrition, CB12/03/30038), Instituto de Salud Carlos III, Madrid, Spain
| | - Negar Ghanaatian
- Department of Pharmacology, Pharmaceutical Sciences Branch, Islamic Azad University, Tehran, Iran
| | - Amir Hossein Abdolghaffari
- Pharmaceutical Sciences Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran.,Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Tehran, Iran.,Department of Toxicology and Pharmacology, Faculty of Pharmacy and Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences, Tehran, Iran.,Gastrointestinal Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| |
Collapse
|