1
|
Kuşi M, Becer E, Vatansever HS. Basic approach on the protective effects of hesperidin and naringin in Alzheimer's disease. Nutr Neurosci 2025; 28:550-562. [PMID: 39225173 DOI: 10.1080/1028415x.2024.2397136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
OBJECTIVES Alzheimer's disease (AD) is a neurodegenerative disease characterized by cognitive impairment. This situation imposes a great burden on individuals, both economically and socially. Today, an effective method for treating the disease and protective approach to tau accumulation has not been developed yet. Studies have been conducted on the effects of hesperidin and naringin flavonoids found in citrus fruits on many diseases. METHODS In this review, the pathophysiology of AD is defined, and the effects of hesperidin and naringin on these factors are summarized. RESULTS Studies have shown that both components may potentially affect AD due to their antioxidative and anti-inflammatory properties. Based on these effects of the components, it has been shown that they may have ameliorative effects on Aβ, α-synuclein aggregation, tau pathology, and cognitive functions in the pathophysiology of AD. DISCUSSION There are studies suggesting that hesperidin and naringin may be effective in the prevention/treatment of AD. When these studies are examined, it is seen that more studies should be conducted on the subject.
Collapse
Affiliation(s)
- Müjgan Kuşi
- Faculty of Health Sciences, Department of Nutrition and Dietetics, Near East University, Nicosia, North Cyprus via Mersin 10, Turkey
- Research Center for Science, Technology and Engineering (BILTEM), Near East University, Nicosia, North Cyprus via Mersin 10, Turkey
| | - Eda Becer
- Faculty of Pharmacy, Eastern Mediterranean University, Famagusta, North Cyprus via Mersin 10, Turkey
| | - Hafize Seda Vatansever
- DESAM Institute, Near East University, Nicosia, North Cyprus via Mersin 10, Turkey
- Faculty of Medicine, Department of Histology and Embryology, Manisa Celal Bayar University, Manisa, Turkey
| |
Collapse
|
2
|
Zeb S, Ding Z, Haleem A, Yu R, Zhao Y, Liu Z, Liu Y. Flexible chitosan-graphene oxide-based biomacroporous cryogel via grafting cryopolymerization for selective recovery of myricetin from food sample. Int J Biol Macromol 2025; 299:140085. [PMID: 39842575 DOI: 10.1016/j.ijbiomac.2025.140085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 12/20/2024] [Accepted: 01/17/2025] [Indexed: 01/24/2025]
Abstract
Myricetin has a significant role in pharmacology, specifically in traditional Chinese medicine. The most intriguing pharmacological action of myricetin consists of its multi-pathway anticancer effects. Therefore, rapid and selective isolation of myricetin from garlic and apple juices has notable pharmacological benefits. Chitosan-graphene oxide-based biomacroporous cryogel are highly efficient and environmentally friendly materials for adsorption. The current study involved the synthesis of chitosan-graphene oxide-based biomacroporous cryogel sorbent for the selective recovery of myricetin. The characterization investigation utilizing SEM, XRD, EDS and FTIR demonstrated the successful synthesis of a chitosan-graphene oxide-based biomacroporous cryogel. Additionally, XPS effectively revealed the interaction of functional groups on the biomacroporous cryogel sorbent with myricetin. The maximum adsorption capacity for myricetin, under optimized conditions, was 167 mg g-1 in 60 min. The equilibrium adsorption capacity was achieved at neutral pH with optimal parameters, and the Freundlich isotherm model was followed. The pseudo-second-order model presented better descriptions of the adsorption process. In addition, the chitosan-graphene oxide-based biomacroporous cryogel exhibited remarkable selectivity: due to involvement of two primary factors: the number of hydroxyl-groups and the fact that the extra hydroxyl group at position 5' in ring B allows for a more noticeable transfer of the unshared electron pair from oxygen to the π system of the B ring. The adsorption of myricetin decreases to 2 % after three consecutive cycles, indicating the significant reusability of chitosan-graphene oxide-based biomacroporous cryogel. Additionally, the chitosan-graphene oxide based-biomacroporous cryogel that was produced has been utilized after one month and shown a comprehensive shelf-life. Typical adsorption mechanisms include hydrogen bonding and demonstrates significant potential for the efficient and specific isolation of myricetin in complex mixtures. Furthermore, the chitosan-graphene oxide-based biomacroporous cryogel demonstrated a significant rise in recovery of myricetin flavonoid in real samples of garlic and apple juices, rising from 99.66 % to 114.29 %.
Collapse
Affiliation(s)
- Shakeel Zeb
- School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Zhiwei Ding
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Abdul Haleem
- Ningbo Institute of Digital Twin, Eastern Institute of Technology, Ningbo 315200, China
| | - Rongpeng Yu
- School of Materials Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, China; School of Metallurgy Engineering, Jiangsu University of Science and Technology, Zhangjiagang, Jiangsu 215600, China
| | - Yingli Zhao
- School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Zhanchao Liu
- School of Materials Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, China
| | - Yan Liu
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
3
|
Alhalmi A, Amin S, Ralli T, Ali KS, Kohli K. Therapeutic role of naringin in cancer: molecular pathways, synergy with other agents, and nanocarrier innovations. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:3595-3615. [PMID: 39614898 DOI: 10.1007/s00210-024-03672-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 11/24/2024] [Indexed: 04/10/2025]
Abstract
Naringin, a flavanone glycoside found abundantly in citrus fruits, is well-known for its various pharmacological properties, particularly its significant anticancer effects. Research, both in vitro and in vivo, has shown that naringin is effective against several types of cancer, including liver, breast, thyroid, prostate, colon, bladder, cervical, lung, ovarian, brain, melanoma, and leukemia. Its anticancer properties are mediated through multiple mechanisms, such as apoptosis induction, inhibition of cell proliferation, cell cycle arrest, and suppression of angiogenesis, metastasis, and invasion, all while exhibiting minimal toxicity and adverse effects. Naringin's molecular mechanisms involve the modulation of essential signaling pathways, including PI3K/Akt/mTOR, FAK/MMPs, FAK/bads, FAKp-Try397, IKKs/IB/NF-κB, JNK, ERK, β-catenin, p21CIPI/WAFI, and p38-MAPK. Additionally, it targets several signaling proteins, such as Bax, TNF-α, Zeb1, Bcl-2, caspases, VEGF, COX-2, VCAM-1, and interleukins, contributing to its wide-ranging antitumor effects. The remarkable therapeutic potential of naringin, along with its favorable safety profile, highlights its promise as a candidate for cancer treatment. This comprehensive review examines the molecular mechanisms behind naringin's chemopreventive and anticancer effects, including its pharmacokinetics and bioavailability. Furthermore, it discusses advancements in nanocarrier technologies designed to enhance these characteristics and explores the synergistic benefits of combining naringin with other anticancer agents, focusing on improved therapeutic efficacy and drug bioavailability.
Collapse
Affiliation(s)
- Abdulsalam Alhalmi
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
- Department of Pharmaceutics, Faculty of Pharmacy, University of Aden, Aden, Yemen
| | - Saima Amin
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Tanya Ralli
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
- School of Pharmacy, COER University, Roorkee, 247667, India
| | - Khaled Saeed Ali
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Aden, Aden, Yemen
| | - Kanchan Kohli
- Faculty of Pharmacy, Lloyd Institute of Management and Technology, Greater Noida, 201308, India.
- Department of Pharmaceutical Sciences, Gurugram University, Haryana, 122003, India.
| |
Collapse
|
4
|
Pu Y, Xu Y, Zhuo Z, Xiao H, Xu X. Investigating the therapeutic potential of naringin in MK-801-induced schizophrenia model: focus on cognitive impairment and miR-25-3p-regulated pathways. Int J Neurosci 2025:1-14. [PMID: 40083156 DOI: 10.1080/00207454.2025.2478825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 02/22/2025] [Accepted: 03/08/2025] [Indexed: 03/16/2025]
Abstract
AIM The aim of this study was to assess the ameliorative effects of naringin (NR) on cognitive impairment in schizophrenia(SZ) from multiple perspectives using behavioral, histopathological and molecular biological approaches. MATERIALS AND METHODS SZ models were established in rats via acute intraperitoneal injection of MK-801 in all groups except the control group, which received saline. Cognitive function was assessed using the Morris water maze test 21 days after prophylactic NR administration. Subsequently, Serum interleukin-6 (IL-6) and homocysteine (HCY) levels were quantified using enzyme-linked immunosorbent assay (ELISA), and hippocampal neuronal and synaptic structures were observed via microscopy. Molecular detection was performed using real-time reverse transcription polymerase chain reaction (RT-qPCR) and western blotting (WB) to assess the expression levels of molecules related to the microRNA-25-3p/salt inducible kinase 1/CREB regulated transcription coactivator 2/cAMP responsive element binding protein 1 (miR-25-3p/SIK1/CRTC2/CREB1) pathway, thereby elucidating the mechanism by which NR ameliorates cognitive impairment in SZ. RESULTS NR was found to mitigate cognitive decline in learning and memory induced by MK-801. It lowered serum levels of IL-6 and HCY, reduced neuronal damage in the CA1 region of the hippocampus, increased the thickness of postsynaptic dense material, decreased the distance between synaptic gaps, decreased the expression of SIK1, and elevated the expression of miR-25-3p, CRTC2 and CREB1 in the hippocampus. CONCLUSION NR may protect neurons in the CA1 region of the hippocampus and enhance synaptic plasticity by regulating the miR-25-3p/SIK1/CRTC2/CREB1 signaling pathway, thereby promoting cognitive improvement.
Collapse
Affiliation(s)
- Yuxin Pu
- Department of Postgraduate, Jiangxi University of Traditional Chinese Medicine (TCM), Nanchang, Jiangxi Province, China
- Jiangxi Provincial Engineering Research Center of Development and Evaluation of TCM classic prescriptions, Jiangxi University of Traditional Chinese Medicine(TCM), Nanchang, Jiangxi Province, China
| | - Yiyong Xu
- Department of Postgraduate, Jiangxi University of Traditional Chinese Medicine (TCM), Nanchang, Jiangxi Province, China
- Jiangxi Provincial Engineering Research Center of Development and Evaluation of TCM classic prescriptions, Jiangxi University of Traditional Chinese Medicine(TCM), Nanchang, Jiangxi Province, China
| | - Zushun Zhuo
- Department of Postgraduate, Jiangxi University of Traditional Chinese Medicine (TCM), Nanchang, Jiangxi Province, China
- Jiangxi Provincial Engineering Research Center of Development and Evaluation of TCM classic prescriptions, Jiangxi University of Traditional Chinese Medicine(TCM), Nanchang, Jiangxi Province, China
| | - Huizhong Xiao
- Department of Postgraduate, Jiangxi University of Traditional Chinese Medicine (TCM), Nanchang, Jiangxi Province, China
- Jiangxi Provincial Engineering Research Center of Development and Evaluation of TCM classic prescriptions, Jiangxi University of Traditional Chinese Medicine(TCM), Nanchang, Jiangxi Province, China
| | - Xinyi Xu
- Department of Postgraduate, Jiangxi University of Traditional Chinese Medicine (TCM), Nanchang, Jiangxi Province, China
- Jiangxi Provincial Engineering Research Center of Development and Evaluation of TCM classic prescriptions, Jiangxi University of Traditional Chinese Medicine(TCM), Nanchang, Jiangxi Province, China
| |
Collapse
|
5
|
Alijani B, Edalatmanesh MA, Aghababa H. The Effect of Naringin on Cognitive-Behavioral Functions, CREB/BDNF Signaling, Cholinergic Activity, and Neuronal Density in the Hippocampus of an MSG-Induced Obesity Rat Model. Neurotox Res 2025; 43:11. [PMID: 40016546 DOI: 10.1007/s12640-025-00733-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 02/09/2025] [Accepted: 02/23/2025] [Indexed: 03/01/2025]
Abstract
The global rise in obesity and overweight over the past few decades has led to numerous associated disorders, including cognitive deficits. This study evaluate investigates the effects of Naringin (Nar) on memory and learning, anxiety-like behaviors, brain-derived neurotrophic factor (BDNF), cAMP responsive element binding protein (CREB), acetylcholinesterase (AChE) activity, and neuronal density in the CA₁/CA₃ subfields of the hippocampus in an MSG-induced obese obesity rat model. Forty-eight male Wistar rat pups were randomly divided into four groups: Control, MSG, MSG + Nar50, and MSG + Nar100. MSG (4 g/kg BW) was administered subcutaneously in the cervical region from PND 2 to PND10, while Nar (50 mg/kg BW and 100 mg/kg BW) was administered orally from PND30 to PND42. After the treatment period, cognitive (working memory and passive avoidance) and anxiety-related tests (elevated plus maze and novelty-suppressed feeding test) were performed. Subsequently, hippocampal protein level of BDNF and CREB/BDNF gene expression, AChE activity and neuronal density in the CA₁ and CA₃ regions of the hippocampus were measured. Relative to the MSG group, the Nar-treated rats demonstrated improvements in spatial working memory, reduced anxiety-related behaviors, elevated hippocampal CREB and BDNF genes and BDNF protein levels, and reduced AChE activity. Additionally, Nar treatment increased neuronal density in the CA₁/CA₃ subfields of the hippocampus. These findings suggest that Nar enhances cognitive function and mitigates anxiety in MSG-induced obese rats by modulating CREB/BDNF signaling pathway, inhibiting AChE, and exerting neuroprotective effects in the hippocampus.
Collapse
Affiliation(s)
- Bahareh Alijani
- Department of Biology, Shiraz Branch, Islamic Azad University, Shiraz, Iran
| | | | - Heydar Aghababa
- Department of Biology, Arsanjan Branch, Islamic Azad University, Arsanjan, Iran
| |
Collapse
|
6
|
Nemati S, Edalatmanesh MA, Forouzanfar M. The effect of Naringin on cognitive function, oxidative stress, cholinergic activity, CREB/BDNF signaling and hippocampal cell damage in offspring rats with utero-placental insufficiency-induced intrauterine growth restriction. Brain Res 2025; 1849:149448. [PMID: 39761747 DOI: 10.1016/j.brainres.2025.149448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 12/20/2024] [Accepted: 01/03/2025] [Indexed: 01/12/2025]
Abstract
Intrauterine growth restriction (IUGR) induced by utero-placental insufficiency (UPI) results in delayed neural development and impaired brain growth. This study investigates the effects of Naringin (Nar) on memory, learning, cholinergic activity, oxidative stress markers, hippocampal CREB/BDNF signal pathway and cell damage in offspring of rats exposed to UPI. Twenty pregnant Wistar rats were randomly assigned to four groups: control, sham surgery, UPI + NS (UPI + normal saline as a vehicle), and UPI + Nar (UPI + Nar at 100 mg/kg/day). UPI was induced by permanently occluding the uterine anterior vessels on embryonic day (ED) 18. Naringin or saline was administered orally from ED15 to ED21. Behavioral assessments of offspring, including working memory, avoidance learning, and anxiety-like behavior, were conducted on a postnatal day (PND) 21. Subsequently, hippocampal acetylcholinesterase (AChE) activity, catalase (CAT), superoxide dismutase (SOD), total antioxidant capacity (TAC), malondialdehyde (MDA), hippocampal transcript level of cyclic AMP response element-binding protein (CREB) and brain derived neurotrophic factor (BDNF) and apoptotic neuron density in the hippocampus were evaluated. Naringin-treated rats demonstrated significant improvements in working and avoidance memory, increases in CAT, SOD, and TAC, CREB, BDNF and reductions in AChE activity, MDA levels, apoptotic neuron density, and anxiety-like behaviors compared to the UPI + NS group (p < 0.05). Naringin mitigates hippocampal cell damage, cognitive impairments, and anxiety by enhancing antioxidant defenses, modulating cholinergic activity and CREB/BDNF signaling in the brains of UPI-exposed offspring.
Collapse
Affiliation(s)
- Samireh Nemati
- Department of Biology, Shiraz Branch, Islamic Azad University, Shiraz, Iran
| | | | - Mohsen Forouzanfar
- Department of Biology, Marvdasht Branch, Islamic Azad University, Marvdasht, Iran
| |
Collapse
|
7
|
Tu W, Xu F, Li J, Tian X, Cao L, Wang L, Qu Y. Studying targeted oxidation in diabetic cognitive dysfunction based on scientometrics analysis: research progress of natural product approaches. Front Endocrinol (Lausanne) 2024; 15:1445750. [PMID: 39758348 PMCID: PMC11695123 DOI: 10.3389/fendo.2024.1445750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Accepted: 11/12/2024] [Indexed: 01/07/2025] Open
Abstract
PURPOSE The aim is to provide new insights for researchers studying the pathogenesis of diabetic cognitive dysfunction and promoting the wider use of natural products in their treatment. METHOD First, the Web of Science Core Collection was selected as the data source for a computerized literature search on oxidative stress and diabetic cognitive dysfunction (DCD). Next, Biblimetrix and VOSviewer performed statistical analysis focusing on publication countries, institutions, authors, research hotspots, and emerging directions in the field. Then, through the analysis of keywords and key articles, the forefront of the field is identified. Finally, we discussed the pathogenesis of DCD, the influence of oxidative stress on DCD and the antioxidant effect of natural products on DCD. RESULT 293 valid papers were obtained. Bibliometrics showed that oxidative stress, diabetes, Alzheimer's disease (AD), cognitive decline, insulin resistance and quercetin were the key words of the symbiotic network. CONCLUSION The antioxidant effects of natural products in improving DCD have been extensively studied in preclinical studies, providing potential for their treatment in DCD, but their evaluation in clinical trials is currently uncommon.
Collapse
Affiliation(s)
| | | | | | | | | | - Lei Wang
- School of Basic Medical Sciences, Zhejiang Chinese Medical University,
Hangzhou, China
| | - Yiqian Qu
- School of Basic Medical Sciences, Zhejiang Chinese Medical University,
Hangzhou, China
| |
Collapse
|
8
|
Ali A, Chaudhary A, Sharma A, Siddiqui N, Anurag, Parihar VK. Exploring role of citrus fruits in comorbid neurodegenerative disorders associated with psoriasis. Metab Brain Dis 2024; 40:62. [PMID: 39671136 DOI: 10.1007/s11011-024-01479-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 11/09/2024] [Indexed: 12/14/2024]
Abstract
A neurodegenerative illness is a disorder in which the brain and/or spinal cord's neurons, or nerve cells, gradually deteriorate and disappear. These illnesses often get worse with time and can seriously affect movement, cognition, and other neurological functions. Psoriasis is a long-term autoimmune skin condition marked by fast skin cell growth that results in red, elevated areas coated in silvery-white scales. It can affect several body parts, such as the elbows, knees, scalp, and lower back, and it is not communicable. The build-up of amyloid beta [Aβ] protein is linked to elevated levels of reactive oxygen species (ROS) (Kim et al. 2020). These ROS can trigger multiple pathways, including MAPK, NFkB, JAK/STAT, and interleukin 1 beta (IL-1β), ultimately playing a role in the development of neurodegenerative illnesses like Alzheimer's disease (AD) and psoriasis. People who have psoriasis are more likely to acquire AD, as psoriasis is a chronic inflammatory skin condition that is genetically connected. Because of the antioxidants and anti-inflammatory properties of citrus fruits neurodegenerative and psoriasis disease may be prevented. The neuroprotective action of bioactives in citrus fruits involves the inhibition of inflammation through the control of p38 mitogen-activated protein kinase (MAPK) and the activation of nuclear factor erythroid 2-related factor 2 (Nrf2). Due to their immunomodulatory and anti-inflammatory qualities, polyphenols may be able to control the immune response in psoriasis. We performed a thorough review in order to investigate for the first time to understand the role of citrus fruits in comorbid neurodegenerative disorders associated with psoriasis. For better understanding into the possible applications of citrus fruits in treating psoriasis and neurodegenerative disease would require additional studies focusing directly on the relationship between citrus fruits consumption in managing neurodegenerative and psoriasis disease.
Collapse
Affiliation(s)
- Adil Ali
- Department of Pharmaceutical Technology, Meerut Institute of Engineering & Technology (MIET), Meerut, 250005, India
| | - Ankit Chaudhary
- Department of Pharmaceutical Technology, Meerut Institute of Engineering & Technology (MIET), Meerut, 250005, India
| | - Alok Sharma
- Department of Pharmaceutical Technology, Meerut Institute of Engineering & Technology (MIET), Meerut, 250005, India.
| | - Nazia Siddiqui
- Department of Pharmaceutical Technology, Meerut Institute of Engineering & Technology (MIET), Meerut, 250005, India
| | - Anurag
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER) Hajipur, Hajipur, 844102, India
| | - Vipan Kumar Parihar
- Department of Pharmaceutical Technology, Meerut Institute of Engineering & Technology (MIET), Meerut, 250005, India
| |
Collapse
|
9
|
Du Y, Wang G, Liu B, Guo M, Yan X, Dou M, Yu F, Ba Y, Zhou G. Naringin alleviates fluoride-induced neurological impairment: A focus on the regulation of energy metabolism mediated by mitochondrial permeability transition pore. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:177073. [PMID: 39447898 DOI: 10.1016/j.scitotenv.2024.177073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 10/17/2024] [Accepted: 10/17/2024] [Indexed: 10/26/2024]
Abstract
The neurological impairment induced by fluoride is associated with mitochondrial dysfunction. Normal mitochondrial permeability transition pore (mPTP) opening plays a pivotal role in mitochondrial function. However, it remains unclear whether p53-dependent mPTP-related mitochondrial apoptosis is associated with fluoride-induced neurological impairment, and the alleviation of naringin on those. In vivo, NaF-treated rats had impaired learning and memory abilities, damaged hippocampal structure, and higher respiratory exchange rates (RER). In vitro, the increased apoptosis rates, excessive opening of mPTP, and decreased mitochondrial membrane potential (MMP) were observed in PC12 cells treated with NaF. The protein expressions of p53, CytoC, and cleaved caspase 3 were significantly increased in hippocampi of rats treated with 50 mg/L and 100 mg/L NaF and in 40 mg/L and 80 mg/L NaF-treated PC12 cells, while the protein expression of CypD remains stable. And the changes of p53 and CypD were also confirmed by the immunofluorescence staining in vivo. After inhibiting the expression of p53 with pifithrin-α and p53-siRNA, the decreased apoptosis rates and mPTP opening, increased MMP, and decreased protein expressions of p53, CytoC, and cleaved caspase 3 were observed in NaF-treated PC12 cells. Rats, treated with NaF and naringin, had alleviated impaired neurological function, and had lower RER than rats treated with NaF alone. And compared with those in the NaF group, the decreased apoptosis rates and mPTP opening, and increased MMP were also found in PC12 cells treated with NaF and naringin. Furthermore, hippocampi of rats and PC12 cells treated with NaF and naringin had decreased protein expressions of p53, CytoC, and cleaved caspase 3. Our results indicate that fluoride activates the p53-dependent mPTP-related mitochondrial apoptosis, which then affects energy metabolism, resulting in neurological impairment. Additionally, naringin can alleviate this damage, and further studies on the potential health benefits of naringin are needed.
Collapse
Affiliation(s)
- Yuhui Du
- Department of Environmental Health & Environment and Health Innovation Team, School of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, China; School of Water Conservancy Science and Engineering, Zhengzhou University, Zhengzhou, Henan 450001, China.
| | - Guoqing Wang
- Department of Environmental Health & Environment and Health Innovation Team, School of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, China.
| | - Bin Liu
- Department of Environmental Health & Environment and Health Innovation Team, School of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Meng Guo
- Wuhan Asia Heart Hospital, Wuhan, Hubei 430000, China
| | - Xi Yan
- Department of Neurology, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan University People's Hospital, Zhengzhou, Henan 450001, China
| | - Ming Dou
- School of Water Conservancy Science and Engineering, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Fangfang Yu
- Department of Environmental Health & Environment and Health Innovation Team, School of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, China.
| | - Yue Ba
- Department of Environmental Health & Environment and Health Innovation Team, School of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, China; National Health Commission Key Laboratory of Birth Defects Prevention, Henan Key Laboratory of Population Defects Prevention, Zhengzhou, Henan 450001, China.
| | - Guoyu Zhou
- Department of Environmental Health & Environment and Health Innovation Team, School of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, China; National Health Commission Key Laboratory of Birth Defects Prevention, Henan Key Laboratory of Population Defects Prevention, Zhengzhou, Henan 450001, China.
| |
Collapse
|
10
|
Mokhtar HI, Zaitone SA, El-Sayed K, Lashine RM, Ahmed N, Moursi SMM, Shehata SA, Aldahish AA, Helal MA, El-Kherbetawy MK, Fawzy MS, Abd El-Fadeal NM. Molecular Docking, Bioinformatic Analysis, and Experimental Verification for the Effect of Naringin on ADHD: Possible Inhibition of GSK-3β and HSP90. Pharmaceuticals (Basel) 2024; 17:1436. [PMID: 39598348 PMCID: PMC11597433 DOI: 10.3390/ph17111436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 10/16/2024] [Accepted: 10/23/2024] [Indexed: 11/29/2024] Open
Abstract
Background/Objectives: One of the most abundant and growing neurodevelopmental disorders in recent decades is attention deficit hyperactivity disorder (ADHD). Many trials have been performed on using drugs for the improvement of ADHD signs. This study aimed to detect the possible interaction of naringin with Wnt/β-catenin signaling and its putative anti-inflammatory and protective effects in the mouse ADHD model based on bioinformatic, behavioral, and molecular investigations. Furthermore, molecular docking was applied to investigate possible interactions with the GSK-3β and HSP90 proteins. Methods: Male Swiss albino mice were divided into four groups, a normal control group, monosodium glutamate (SGL) control, SGL + naringin 50 mg/kg, and SGL + naringin 100 mg/kg. The psychomotor activity of the mice was assessed using the self-grooming test, rope crawling test, and attentional set-shifting task (ASST). In addition, biochemical analyses were performed using brain samples. Results: The results of the SGL group showed prolonged grooming time (2.47-folds), a lower percentage of mice with successful crawling on the rope (only 16.6%), and a higher number of trials for compound discrimination testing in the ASST (12.83 ± 2.04 trials versus 5.5 ± 1.88 trials in the normal group). Treatment with naringin (50 or 100 mg per kg) produced significant shortening in the grooming time (31% and 27% reductions), as well as a higher percentage of mice succeeding in crawling with the rope (50% and 83%, respectively). Moreover, the ELISA assays indicated decreased dopamine levels (0.36-fold) and increased TNF-α (2.85-fold) in the SGL control group compared to the normal mice, but an improvement in dopamine level was observed in the naringin (50 or 100 mg per kg)-treated groups (1.58-fold and 1.97-fold). Similarly, the PCR test showed significant declines in the expression of the Wnt (0.36), and β-catenin (0.33) genes, but increased caspase-3 (3.54-fold) and BAX (5.36-fold) genes in the SGL group; all these parameters were improved in the naringin 50 or 100 mg/kg groups. Furthermore, molecular docking indicated possible inhibition for HSP90 and GSK-3β. Conclusions: Overall, we can conclude that naringin is a promising agent for alleviating ADHD symptoms, and further investigations are required to elucidate its mechanism of action.
Collapse
Affiliation(s)
- Hatem I. Mokhtar
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Sinai University-Kantara Branch, Ismailia 41636, Egypt;
| | - Sawsan A. Zaitone
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, University of Tabuk, Tabuk 47713, Saudi Arabia
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt
| | - Karima El-Sayed
- Medical Physiology Department, Faculty of Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Rehab M. Lashine
- Clinical Pharmacology Department, Faculty of Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Nada Ahmed
- Department of Clinical Pathology, Faculty of Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Suzan M. M. Moursi
- Medical Physiology Department, Faculty of Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Shaimaa A. Shehata
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Afaf A. Aldahish
- Department of Pharmacology, College of Pharmacy, King Khalid University, Abha 61441, Saudi Arabia;
| | - Mohamed A. Helal
- Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, October Gardens, 6th of October, Giza 12587, Egypt;
- Medicinal Chemistry Department, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt
| | | | - Manal S. Fawzy
- Department of Biochemistry, Faculty of Medicine, Northern Border University, Arar 91431, Saudi Arabia;
| | - Noha M. Abd El-Fadeal
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Suez Canal University, Ismailia 41522, Egypt
- Biochemistry Department, Ibn Sina National College for Medical Studies, Jeddah 22421, Saudi Arabia
| |
Collapse
|
11
|
Swamy RS, Kumar N, Shenoy S, Kumar N, Rao V. Effect of naringin on sodium fluoride‑induced neurobehavioral deficits in Wistar rats. Biomed Rep 2024; 20:97. [PMID: 38765862 PMCID: PMC11099606 DOI: 10.3892/br.2024.1785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 03/12/2024] [Indexed: 05/22/2024] Open
Abstract
There is a lack of treatment for the detrimental effects of fluorosis. Sodium fluoride at a concentration of 10 ppm induces stress, depression and memory impairment in adult Wistar rats. Naringin, a flavanone glycoside isolated from citrus fruits such as lemons and oranges, possesses anti-inflammatory, antioxidant and neuroprotective properties; therefore, it was used for treatment of fluoride induced toxicity in the present study. Adult Wistar rats were divided into eight groups (n=8). The normal control (NOR) group was provided with normal tap water. The sodium fluoride (FLU)10 group received water containing 10 ppm sodium fluoride for 60 days. The treatment groups (FLU10NAR100 and FLU10NAR50) received drinking water with 10 ppm sodium fluoride ad libitum along with Naringin 100 and 50 mg/kg body weight (bw) per oral gavage, respectively. The NAR100 and NAR50 groups received Naringin 100 and 50 mg/kg bw. The PRONAR100 and PRONAR50 groups received Naringin 100 and 50 mg/kg bw for the first 15 days and then subsequently received FLU10 ppm for 60 days (total of 75 days). All animals were subjected to behavioural tests consisting of the open field test (OFT), forced swim test (FST) and novel object recognition test (NORT). After euthanasia, the hippocampus and prefrontal cortex were stained with Cresyl violet. To measure the oxidative stress caused by fluoride and its effect on antioxidant levels, estimation of reduced glutathione (GSH) by Ellman's method, lipid peroxidation (LPO) measured in terms of the MDA:thiobarbituric acid reaction and catalase was performed. To evaluate the effect of fluoride on activity of acetylcholine, estimation of acetylcholinesterase (AChE) by Ellman's method was performed. In NORT and FST, significant changes (P<0.05) were present in the FLU10NAR100 and FLU10NAR50 groups compared with the FLU10 group, showing recovery from memory deficit and depression. The OFT results were insignificant. The LPO was reduced in all the other groups except the FLU10 group, with statistically significant changes. Catalase activity was significantly lower in FLU10 as compared with the NAR100, NAR50, PRONAR100 and PRONAR50 groups. GSH and AChE activities did not show significant changes as compared with the FLU10 group. The CA3 and prefrontal cortex viable and degenerated neuron count in the FLU10 group were insignificant compared with all other groups, except for the NAR100 and NAR50 groups. Thus, Naringin can be a useful drug to avoid the neurological effects of fluoride.
Collapse
Affiliation(s)
- Ravindra Shantakumar Swamy
- Division of Anatomy, Department of Basic Medical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Nitesh Kumar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research-Hajipur, Hajipur, Bihar 844102, India
| | - Smita Shenoy
- Department of Pharmacology, Kasturba Medical College-Manipal, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Naveen Kumar
- Department of Anatomy, Ras Al Khaimah College of Medical Sciences, Ras Al Khaimah Medical and Health Sciences University, Ras Al Khaimah 11172, United Arab Emirates
| | - Vanishree Rao
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| |
Collapse
|
12
|
Mokarrami S, Jahanshahi M, Elyasi L, Badelisarkala H, Khalili M. Naringin prevents the reduction of the number of neurons and the volume of CA1 in a scopolamine-induced animal model of Alzheimer's disease (AD): a stereological study. Int J Neurosci 2024; 134:364-371. [PMID: 35861379 DOI: 10.1080/00207454.2022.2102981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 06/30/2022] [Indexed: 10/24/2022]
Affiliation(s)
- S Mokarrami
- Student Research Committee, Golestan University of Medical Sciences, Gorgan, Iran
| | - M Jahanshahi
- Department of Anatomy, Faculty of Medicine, Neuroscience Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - L Elyasi
- Department of Anatomy, Faculty of Medicine, Neuroscience Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - H Badelisarkala
- Neuroscience Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - M Khalili
- Neuroscience Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| |
Collapse
|
13
|
Nezhad Salari AM, Rasoulizadeh Z, Shabgah AG, Vakili-Ghartavol R, Sargazi G, Gholizadeh Navashenaq J. Exploring the mechanisms of kaempferol in neuroprotection: Implications for neurological disorders. Cell Biochem Funct 2024; 42:e3964. [PMID: 38439154 DOI: 10.1002/cbf.3964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 02/19/2024] [Accepted: 02/21/2024] [Indexed: 03/06/2024]
Abstract
Kaempferol, a flavonoid compound found in various fruits, vegetables, and medicinal plants, has garnered increasing attention due to its potential neuroprotective effects in neurological diseases. This research examines the existing literature concerning the involvement of kaempferol in neurological diseases, including stroke, Parkinson's disease, Alzheimer's disease, neuroblastoma/glioblastoma, spinal cord injury, neuropathic pain, and epilepsy. Numerous in vitro and in vivo investigations have illustrated that kaempferol possesses antioxidant, anti-inflammatory, and antiapoptotic properties, contributing to its neuroprotective effects. Kaempferol has been shown to modulate key signaling pathways involved in neurodegeneration and neuroinflammation, such as the PI3K/Akt, MAPK/ERK, and NF-κB pathways. Moreover, kaempferol exhibits potential therapeutic benefits by enhancing neuronal survival, attenuating oxidative stress, enhancing mitochondrial calcium channel activity, reducing neuroinflammation, promoting neurogenesis, and improving cognitive function. The evidence suggests that kaempferol holds promise as a natural compound for the prevention and treatment of neurological diseases. Further research is warranted to elucidate the underlying mechanisms of action, optimize dosage regimens, and evaluate the safety and efficacy of this intervention in human clinical trials, thereby contributing to the advancement of scientific knowledge in this field.
Collapse
Affiliation(s)
| | - Zahra Rasoulizadeh
- Student Research Committee, Bam University of Medical Sciences, Bam, Iran
| | | | - Roghayyeh Vakili-Ghartavol
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ghasem Sargazi
- Noncommunicable Diseases Research Center, Bam University of Medical Sciences, Bam, Iran
| | | |
Collapse
|
14
|
Gupta I, Adin SN, Aqil M, Mujeeb M. Nose to brain delivery of naringin loaded transniosomes for epilepsy: formulation, characterisation, blood-brain distribution and invivo pharmacodynamic evaluation. J Liposome Res 2024; 34:60-76. [PMID: 37212622 DOI: 10.1080/08982104.2023.2214619] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 04/21/2023] [Indexed: 05/23/2023]
Abstract
The current work limns the preparation of naringin-loaded transnioosomes (NRN-TN) to enhance NRN solubility, permeation and bioavailability via nasal mucosa for intranasal delivery. NRN-TN was created by the thin-film hydration technique, and with the BBD (Box-Behnken design), optimisation was carried out. NRN-TNopt was characterised for the vesicle size, PDI (Polydispersity index), zeta potential, entrapment efficiency (EE) and in vitro NRN release. For further assessment, nasal permeation study, study of Blood-brain distribution, TEM (Transmission Electron Microscopy), and CLSM (Confocal Scanning Laser Microscopy) were conducted withal. The NRN-TNopt exhibited spherical as well as sealed vesicles with a considerable small size of 151.3 nm, an EE of 75.23 percent, a PDI of 0.1257, and an in vitro release of 83.32 percent. CLSM investigation revealed that the new formulation allows for higher NRN permeation across nasal mucosa than the NRN solution. The blood-brain distribution investigation revealed that intranasally administered NRN-TN had a greater Cmax and AUC0-24 h than orally administered NRN-TN. Seizure activity and neuromuscular coordination as measured by the rotarod test, biochemical estimate of oxidative stress indicators, and histological investigations demonstrated that the NRN-TN has superior anti-epileptic potential in comparison to the standard diazepam. In addition, nasal toxicity studies demonstrate that the NRN-TN formulation is safer for intranasal administration. This study confirmed that the created TN vesicle formulation is a valuable carrier for the intranasal administration of NRN for the treatment of epilepsy.
Collapse
Affiliation(s)
- Isha Gupta
- Phytomedicine laboratory, Department of Pharmacognosy & Phytochemistry, School of Pharmaceutical Education & Research, New Delhi, India
| | - Syeda Nashvia Adin
- Phytomedicine laboratory, Department of Pharmacognosy & Phytochemistry, School of Pharmaceutical Education & Research, New Delhi, India
| | - Mohd Aqil
- Department of Pharmaceutics, School of Pharmaceutical Education & Research, New Delhi, India
| | - Mohd Mujeeb
- Phytomedicine laboratory, Department of Pharmacognosy & Phytochemistry, School of Pharmaceutical Education & Research, New Delhi, India
| |
Collapse
|
15
|
Peng Y, Qu R, Xu S, Bi H, Guo D. Regulatory mechanism and therapeutic potentials of naringin against inflammatory disorders. Heliyon 2024; 10:e24619. [PMID: 38317884 PMCID: PMC10839891 DOI: 10.1016/j.heliyon.2024.e24619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 12/02/2023] [Accepted: 01/11/2024] [Indexed: 02/07/2024] Open
Abstract
Naringin is a natural flavonoid with therapeutic properties found in citrus fruits and an active natural product from herbal plants. Naringin has become a focus of attention in recent years because of its ability to actively participate in the body's immune response and maintain the integrity of the immune barrier. This review aims to elucidate the mechanism of action and therapeutic efficacy of naringin in various inflammatory diseases and to provide a valuable reference for further research in this field. The review provided the chemical structure, bioavailability, pharmacological properties, and pharmacokinetics of naringin and found that naringin has good therapeutic potential for inflammatory diseases, exerting anti-inflammatory, anti-apoptotic, anti-oxidative stress, anti-ulcerative and detoxifying effects in the disease. Moreover, we found that the great advantage of naringin treatment is that it is safe and can even alleviate the toxic side effects associated with some of the other drugs, which may become a highlight of naringin research. Naringin, an active natural product, plays a significant role in systemic diseases' anti-inflammatory and antioxidant regulation through various signaling pathways and molecular mechanisms.
Collapse
Affiliation(s)
- Yuan Peng
- Shandong University of Traditional Chinese Medicine, Jinan, 250002, China
| | - Ruyi Qu
- Shandong University of Traditional Chinese Medicine, Jinan, 250002, China
| | - Shuqin Xu
- Shandong University of Traditional Chinese Medicine, Jinan, 250002, China
| | - Hongsheng Bi
- Affiliated Eye Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250002, China
| | - Dadong Guo
- Shandong Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Therapy of Ocular Diseases, Shandong Academy of Eye Disease Prevention and Therapy, Medical College of Optometry and Ophthalmology, Shandong University of Traditional Chinese Medicine, Jinan, 250002, China
| |
Collapse
|
16
|
Danis EG, Acar G, Dasdelen D, Solmaz M, Mogulkoc R, Baltaci AK. Naringin Affects Caspase-3, IL-1β, and HIF-1α Levels in Experimental Kidney Ischemia-Reperfusion in Rats. Curr Pharm Des 2024; 30:3339-3349. [PMID: 39229980 DOI: 10.2174/0113816128324562240816095551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/14/2024] [Accepted: 06/19/2024] [Indexed: 09/05/2024]
Abstract
BACKGROUND Microvascular dysfunction develops in tissues after Ischemia-Reperfusion (IR). The current study aimed to determine the effect of naringin supplementation on kidney caspase-3, IL-1β, and HIF-1α levels and kidney histology in rats undergoing unilateral nephrectomy and kidney-ischemia reperfusion. METHODS The study was conducted on 8-12 weeks old 40 Wistar-type male rats. Experimental renal ischemia- reperfusion and unilateral nephrectomy were performed under general anesthesia in rats. Experimental groups were formed as follows: 1-Control group, 2-Sham control + Vehicle group, 3- Renal ischemia-reperfusion (Renal I+R) + Vehicle group, 4-Renal I+R + Naringin (50 mg/kg/day) group (3 days application) group, 5-Renal I+R + Naringin (100 mg/kg/day) group (3 days supplementation). Nephrectomy in the left kidneys and the ischemia for 45 minutes and reperfusion in the right kidneys followed by 72 hours of reperfusion. Naringin was administered intraperitoneally at the beginning of the reperfusion, 24 hours and 48 hours later. At the end of the experiments, blood was first taken from the heart in animals under general anesthesia. Then, the animals were killed by cervical dislocation, and kidney tissue samples were taken. Tissues were evaluated for caspase-3, IL-1β, and HIF-1α as well as histologically. RESULTS As a result of ischemia in kidney tissues, HIF-1α decreased, while caspase-3 and IL-1β increased. IR also caused damage to the kidney tissue. However, naringin supplementation corrected the deterioration to a certain extent. CONCLUSION The results of the study showed that naringin may have protective effects on kidney damage due to anti-inflammatory and antiapoptosis mechanisms caused by unilateral nephrectomy and IR in rats.
Collapse
Affiliation(s)
- Esra Gulsum Danis
- Department of Physiology, Medical Faculty, Selcuk University, Konya, Turkey
| | - Gozde Acar
- Department of Physiology, Medical Faculty, Selcuk University, Konya, Turkey
| | - Dervis Dasdelen
- Department of Physiology, Medical Faculty, Karamanoglu Mehmetbey University, Karaman, Turkey
| | - Merve Solmaz
- Department of Histology, Medical Faculty, Selcuk University, Konya, Turkey
| | - Rasim Mogulkoc
- Department of Physiology, Medical Faculty, Selcuk University, Konya, Turkey
| | | |
Collapse
|
17
|
Akintunde JK, Falomo IM, Akinbohun OM, Erinoso SO, Ugwor E, Folayan AD, Ateate AD. Naringin corrects renal failure related to Lesch-Nyhan disease in a rat model via NOS-cAMP-PKA and BDNF/TrkB pathways. J Biochem Mol Toxicol 2024; 38:e23558. [PMID: 37865952 DOI: 10.1002/jbt.23558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 09/11/2023] [Accepted: 10/02/2023] [Indexed: 10/24/2023]
Abstract
This study explored the effect of naringin (NAR) on HGPRT1 deficiency and hyperuricemia through NOS-cAMP-PKA and BDNF/TrkB signaling pathways induced by caffeine (CAF) and KBrO3 in a rat model. Sixty-three adult male albino rats were randomly assigned into nine (n = 7) groups. Group I: control animals, Group II was treated with 100 mg/kg KBrO3 , Group III was treated with 250 mg/kg CAF, Group IV was treated with 100 mg/kg KBrO3 + 250 mg/kg CAF, Group V was administered with 100 mg/kg KBrO3 + 100 mg/kg haloperidol, Group VI was administered with 100 mg/kg KBrO3 + 50 mg/kg NAR, Group VII was administered with 500 mg/kg CAF + 50 mg/kg NAR, and Group VIII was administered with 100 mg/kg KBrO3 + 250 mg/kg CAF + 50 mg/kg NAR. Finally, group IX was treated with 50 mg/kg NAR. The exposure of rats to KBrO3 and CAF for 21 days induced renal dysfunction linked with Lesch-Nyhan disease. NAR obliterated renal dysfunction linked with Lesch-Nyhan disease by decreasing uric acid, renal malondialdehyde level, inhibiting the activities of arginase, and phosphodiesterase-51 (PDE-51) with corresponding upregulation of brain derived-neurotrophic factor and its receptor (BDNF-TrkB), Bcl11b, HGPRT1, and DARPP-32. Additionally, renal failure related to Lesch-Nyhan disease was remarkably corrected by NAR as shown by the reduced activities of AChE and enzymes of ATP hydrolysis (ATPase, AMPase, and ADA) with affiliated increase in the NO level. This study therefore validates NAR as nontoxic and effective chemotherapy against kidney-related Lesch-Nyhan disease by mitigating effects of toxic food additives and enzymes of ATP-hydrolysis via NOS-cAMP-PKA and BDNF/TrkB signaling pathways.
Collapse
Affiliation(s)
- Jacob K Akintunde
- Molecular Toxicology and Biomedical Research Group, Department of Biochemistry, College of Biosciences, Federal University of Agriculture, Abeokuta, Nigeria
| | - Idowu M Falomo
- Molecular Toxicology and Biomedical Research Group, Department of Biochemistry, College of Biosciences, Federal University of Agriculture, Abeokuta, Nigeria
| | - Oreoluwa M Akinbohun
- Molecular Toxicology and Biomedical Research Group, Department of Biochemistry, College of Biosciences, Federal University of Agriculture, Abeokuta, Nigeria
| | - S O Erinoso
- Molecular Toxicology and Biomedical Research Group, Department of Biochemistry, College of Biosciences, Federal University of Agriculture, Abeokuta, Nigeria
| | - Emmanuel Ugwor
- Molecular Toxicology and Biomedical Research Group, Department of Biochemistry, College of Biosciences, Federal University of Agriculture, Abeokuta, Nigeria
| | - Adeniyi D Folayan
- Molecular Toxicology and Biomedical Research Group, Department of Biochemistry, College of Biosciences, Federal University of Agriculture, Abeokuta, Nigeria
| | - A D Ateate
- Molecular Toxicology and Biomedical Research Group, Department of Biochemistry, College of Biosciences, Federal University of Agriculture, Abeokuta, Nigeria
| |
Collapse
|
18
|
Zhu K, Wang L, Liao T, Li W, Zhou J, You Y, Shi J. Progress in the development of TRPV1 small-molecule antagonists: Novel Strategies for pain management. Eur J Med Chem 2023; 261:115806. [PMID: 37713804 DOI: 10.1016/j.ejmech.2023.115806] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/06/2023] [Accepted: 09/07/2023] [Indexed: 09/17/2023]
Abstract
Transient receptor potential vanilloid 1 (TRPV1) channels are widely distributed in sensory nerve endings, the central nervous system, and other tissues, functioning as ion channel proteins responsive to thermal pain and chemical stimuli. In recent years, the TRPV1 receptor has garnered significant interest as a potential therapeutic approach for various pain-related disorders, particularly TRPV1 antagonists. The present review offers a comprehensive, systematic exploration of both first- and second-generation TRPV1 antagonists in the context of pain management. Antagonists are categorized and explicated according to their structural characteristics. Detailed examination of binding modes, structural features, and pharmacological activities, alongside a critical appraisal of the advantages and limitations inherent to typical compounds within each structural category, are undertaken. Detailed discussions of the binding modes, structural features, pharmacological activities, advantages, and limitations of typical compounds within each structural category offer valuable insights and guidance for the future research and development of safer, more effective, and more targeted TRPV1 antagonists.
Collapse
Affiliation(s)
- Kun Zhu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China
| | - Lin Wang
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China; State Key Laboratory of Biotherapy, Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - TingTing Liao
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China
| | - Wen Li
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China
| | - Jing Zhou
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China
| | - Yaodong You
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China; TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Chengdu, 610072, China.
| | - Jianyou Shi
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China; State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| |
Collapse
|
19
|
Ganesh P, Suresh V, Narasimhan MK, Sabarathinam S. A narrative review on Naringin and Naringenin as a possible bioenhancer in various drug-delivery formulations. Ther Deliv 2023; 14:763-774. [PMID: 38088094 DOI: 10.4155/tde-2023-0086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2023] Open
Abstract
Naringenin belongs to the flavanones and is mainly found in fruits (grapefruit and oranges) and vegetables. Naringenin exhibits lipid-lowering and insulin-like characteristics and is used to treat osteoporosis, cancer and cardiovascular disorders. Their incorporation into drug formulations offers several advantages, including enhanced solubility, improved bioavailability and targeted delivery. Naringin-based formulations are beneficial in cancer, for example controlling breast and prostate cancer by inhibition of CYP19. Naringin suppresses the PI3K/AKT signalling pathway, it triggers autophagy, which effectively halts the proliferation of gastric cancer cells. Naringin and naringenin co-administration or pre-administration has enhanced the target drug's potency and produced a synergistic effect. This published study demonstrates the potential applications of Naringin and Naringenin as recognized bio-enhancers.
Collapse
Affiliation(s)
- Pradeepti Ganesh
- Department of Genetic Engineering, College of Engineering & Technology, SRM Institute of Science & Technology, Kattankulathur, Chennai, Tamil Nadu-603203, India
| | - Vanishree Suresh
- Department of Genetic Engineering, College of Engineering & Technology, SRM Institute of Science & Technology, Kattankulathur, Chennai, Tamil Nadu-603203, India
| | - Manoj Kumar Narasimhan
- Department of Genetic Engineering, College of Engineering & Technology, SRM Institute of Science & Technology, Kattankulathur, Chennai, Tamil Nadu-603203, India
| | - Sarvesh Sabarathinam
- Drug Testing Laboratory, Interdisciplinary Institute of Indian system of Medicine (IIISM), SRM Institute of Science & Technology, Kattankulathur, Chennai, Tamil Nadu-603203, India
| |
Collapse
|
20
|
Yang R, Wei L, Wang J, Huang S, Mo P, Chen Q, Zheng P, Chen J, Zhang S, Chen J. Chemical characterization and metabolic profiling of Xiao-Er-An-Shen Decoction by UPLC-QTOF/MS. Front Pharmacol 2023; 14:1219866. [PMID: 38027020 PMCID: PMC10652787 DOI: 10.3389/fphar.2023.1219866] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 10/17/2023] [Indexed: 12/01/2023] Open
Abstract
Background: Xiao-Er-An-Shen decoction (XEASD), a TCM formula composed of sixteen Chinese medicinal herbs, has been used to alleviate tic disorders (TD) in clinical practice for many years. However, the chemical basis underlying the therapeutic effects of XEASD in the treatment of TD remains unknown. Purpose: The present study aimed to determine the major chemical components of XEASD and its prototype compounds and metabolites in mice biological samples. Methods: The chemical constituents in XEASD were identified using ultra-high Performance liquid chromatography coupled with quadrupole time-of-flight tandem mass spectrometry (UPLC-Q-TOF-MS/MS). Following this, XEASD was orally administered to mice, and samples of plasma, urine, feces, bile, and tissue were collected in order to identify effective compounds for the prevention or treatment of TD. Result: Of the total 184 compounds identified to be discriminated in the XEASD, comprising 44 flavonoids, 26 phenylpropanoids, 16 coumarins, 16 triterpenoids, 14 amino acids, 13 organic acids, 13 alkaloids, 13 ketones, 10 cyclic enol ether terpenes, 7 citrullines, 3 steroids, and 5 anthraquinones, and others. Furthermore, we summarized 54 prototype components and 78 metabolic products of XEASD, measured with biological samples, by estimating metabolic principal components, with four prototype compounds detected in plasma, 58 prototypes discriminated in urine, and 40 prototypes identified in feces. These results indicate that the Oroxylin A glucuronide from Citri reticulatae pericarpium (CRP) is a major compound with potential therapeutic effects identified in brain, while operating positive effect in inhibiting oxidative stress in vitro. Conclusion: In summary, our work delineates the chemical basis underlying the complexity of XEASD, providing insights into the therapeutic and metabolic pathways for TD. Various types of chemicals were explored in XEASD, including flavonoids, phenylpropanoids, coumarins, organic acids, triterpenoid saponins, and so on. This study can promote the further pharmacokinetic and pharmacological evaluation of XEASD.
Collapse
Affiliation(s)
- Ruipei Yang
- Shenzhen Key Laboratory of Hospital Chinese Medicine Preparation, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, China
- School of Medicine, Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, China
- KMHD GeneTech Co., Ltd., Shenzhen, Guangdong, China
| | - Lifang Wei
- Shenzhen Key Laboratory of Hospital Chinese Medicine Preparation, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, China
| | - Jie Wang
- Shenzhen People’s Hospital, Shenzhen, Guangdong, China
| | - Shiying Huang
- Shenzhen Key Laboratory of Hospital Chinese Medicine Preparation, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, China
| | - Pingli Mo
- Shenzhen Key Laboratory of Hospital Chinese Medicine Preparation, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, China
| | - Qiugu Chen
- Shenzhen Key Laboratory of Hospital Chinese Medicine Preparation, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, China
| | - Ping Zheng
- Shenzhen Key Laboratory of Hospital Chinese Medicine Preparation, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, China
| | - Jihang Chen
- School of Medicine, Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, China
| | - Shangbin Zhang
- Shenzhen Key Laboratory of Hospital Chinese Medicine Preparation, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, China
| | - Jianping Chen
- Shenzhen Key Laboratory of Hospital Chinese Medicine Preparation, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, China
| |
Collapse
|
21
|
Ajtony Z, Sik B, Csuti A. Examining the Naringin Content and Sensory Characteristics of Functional Chocolate Fortified with Grapefruit Peel Extract. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2023; 78:533-538. [PMID: 37594558 PMCID: PMC10495487 DOI: 10.1007/s11130-023-01091-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/30/2023] [Indexed: 08/19/2023]
Abstract
Grapefruit peel contains a high concentration of naringin- a potent antioxidant with strong bioactive properties. In this study, a new type of functional chocolate fortified with grapefruit peel extract and different concentrations of aqueous methanol and ethanol were evaluated as extraction solvents. A new high-performance liquid chromatography (HPLC) method to analyze the naringin content of the fortified chocolates was developed with a recovery of 107% ± 3.1% and repeatability below 3.5%. A sensory evaluation was conducted to assess the preference for the chocolates among individuals who self-described a preference for bitter flavors. No significant preference was observed in the cases of astringency and aftertaste while the increased bitterness proved to be favorable. However, taste, flavor and overall acceptability were regarded somewhat less favorably. While chocolate proved to be a satisfactory carrier for naringin and had several enjoyable characteristics, further research may focus on improving the organoleptic properties of chocolates fortified by naringin.
Collapse
Affiliation(s)
- Zsolt Ajtony
- Department of Food Science, Albert Casimir Faculty at Mosonmagyaróvár, Széchenyi István University, 15-17 Lucsony Street, Mosonmagyaróvár, 9200, Hungary
| | - Beatrix Sik
- Department of Food Science, Albert Casimir Faculty at Mosonmagyaróvár, Széchenyi István University, 15-17 Lucsony Street, Mosonmagyaróvár, 9200, Hungary.
| | - Aron Csuti
- Department of Food Science, Albert Casimir Faculty at Mosonmagyaróvár, Széchenyi István University, 15-17 Lucsony Street, Mosonmagyaróvár, 9200, Hungary
| |
Collapse
|
22
|
Muñoz AL, Cuéllar AF, Arévalo G, Santamaría BD, Rodríguez AK, Buendia-Atencio C, Reyes Chaparro A, Tenorio Barajas AY, Segura NA, Bello F, Suárez AI, Rangel HR, Losada-Barragán M. Antiviral activity of myricetin glycosylated compounds isolated from Marcetia taxifolia against chikungunya virus. EXCLI JOURNAL 2023; 22:716-731. [PMID: 37662709 PMCID: PMC10471840 DOI: 10.17179/excli2023-6242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 07/20/2023] [Indexed: 09/05/2023]
Abstract
The chikungunya virus (CHIKV) has produced epidemic outbreaks of significant public health impact. The clinical symptoms of this disease are fever, polyarthralgia, and skin rash, generally self-limiting, although patients may develop a chronic disabling condition or suffer lethal complications. Unfortunately, there is no specific treatment or vaccine available. Thus, the search for effective therapies to control CHIKV infection is an urgent need. This study evaluated the antiviral activity of flavonoids isolated from Marcetia taxifolia by in vitro and in silico analysis. Cytotoxicity of compounds was determined by MTT assay and viral load was assessed in cell substrates supernatants by plaque-forming and RT-qPCR assays. Selected molecules were analyzed by molecular docking assays. Myricetin 3-rhamnoside (MR) and myricetin 3-(6-rhamnosylgalactoside) (MRG) were tested for antiviral assays and analyzed by the TCID50 method and RT-qPCR. MR exhibited dose-dependent antiviral activity, reducing viral titer at concentrations of 150-18.8 μg/mL by at least 1-log. Similarly, MRG showed a significant decrease in viral titer at concentrations of 37.5, 9.4, and 2.3 μg/mL. RT-qPCR analysis also displayed a substantial reduction of CHIKV RNA for both flavonoids. Furthermore, molecular docking of the selected flavonoids proposed the nsP3 macrodomain as a possible target of action. Our study reveals that MR and MRG could be considered promising anti-CHIKV therapeutic agents. Molecular modeling studies showed MR and MRG ligands with a high affinity for the N-terminal region of the nsP3 macrodomain, postulating them as a potential target of action for the CHIKV control.
Collapse
Affiliation(s)
- Ana Luisa Muñoz
- Faculty of Science, Universidad Antonio Nariño (UAN), Bogotá 110231, Colombia
| | | | - Gabriela Arévalo
- Faculty of Science, Universidad Antonio Nariño (UAN), Bogotá 110231, Colombia
| | | | - Anny K. Rodríguez
- Faculty of Science, Universidad Antonio Nariño (UAN), Bogotá 110231, Colombia
| | | | - Andrés Reyes Chaparro
- Escuela Nacional de Ciencias Biológicas (ENCB), Departamento de Morfología, del Instituto Politécnico Nacional (IPN), Mexico
| | - Aldo Yair Tenorio Barajas
- Facultad de Ciencias Físicomatemáticas, Benemérita Universidad Autónoma de Puebla C.U. Puebla, Puebla, Mexico
| | - Nidya Alexandra Segura
- Faculty of Science, Universidad Pedagógica y Tecnológica de Colombia, Tunja 150003, Colombia
| | - Felio Bello
- Faculty of Agricultural and Livestock Sciences, Program of Veterinary Medicine, Universidad de La Salle, Bogotá 110141, Colombia
| | - Alírica I. Suárez
- Natural Products Laboratory, Faculty of Pharmacy, Universidad Central de Venezuela, Caracas, Venezuela
| | - Héctor R. Rangel
- Molecular Virology Laboratory, Instituto Venezolano de Investigaciones Científicas, Caracas, Venezuela
| | | |
Collapse
|
23
|
Shilpa VS, Shams R, Dash KK, Pandey VK, Dar AH, Ayaz Mukarram S, Harsányi E, Kovács B. Phytochemical Properties, Extraction, and Pharmacological Benefits of Naringin: A Review. Molecules 2023; 28:5623. [PMID: 37570594 PMCID: PMC10419872 DOI: 10.3390/molecules28155623] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 07/15/2023] [Accepted: 07/19/2023] [Indexed: 08/13/2023] Open
Abstract
This review describes the various innovative approaches implemented for naringin extraction as well as the recent developments in the field. Naringin was assessed in terms of its structure, chemical composition, and potential food sources. How naringin works pharmacologically was discussed, including its potential as an anti-diabetic, anti-inflammatory, and hepatoprotective substance. Citrus flavonoids are crucial herbal additives that have a huge spectrum of organic activities. Naringin is a nutritional flavanone glycoside that has been shown to be effective in the treatment of a few chronic disorders associated with ageing. Citrus fruits contain a common flavone glycoside that has specific pharmacological and biological properties. Naringin, a flavone glycoside with a range of intriguing characteristics, is abundant in citrus fruits. Naringin has been shown to have a variety of biological, medicinal, and pharmacological effects. Naringin is hydrolyzed into rhamnose and prunin by the naringinase, which also possesses l-rhamnosidase activity. D-glucosidase subsequently catalyzes the hydrolysis of prunin into glucose and naringenin. Naringin is known for having anti-inflammatory, antioxidant, and tumor-fighting effects. Numerous test animals and cell lines have been used to correlate naringin exposure to asthma, hyperlipidemia, diabetes, cancer, hyperthyroidism, and osteoporosis. This study focused on the many documented actions of naringin in in-vitro and in-vivo experimental and preclinical investigations, as well as its prospective therapeutic advantages, utilizing the information that is presently accessible in the literature. In addition to its pharmacokinetic characteristics, naringin's structure, distribution, different extraction methods, and potential use in the cosmetic, food, pharmaceutical, and animal feed sectors were discussed.
Collapse
Affiliation(s)
- VS Shilpa
- Department of Food Technology & Nutrition, Lovely Professional University, Phagwara 144001, Punjab, India
| | - Rafeeya Shams
- Department of Food Technology & Nutrition, Lovely Professional University, Phagwara 144001, Punjab, India
| | - Kshirod Kumar Dash
- Department of Food Processing Technology, Ghani Khan Choudhury Institute of Engineering and Technology Malda, Malda 732141, West Bengal, India
| | - Vinay Kumar Pandey
- Department of Bioengineering, Integral University, Lucknow 226026, Uttar Pradesh, India
- Department of Biotechnology, Axis Institute of Higher Education, Kanpur 209402, Uttar Pradesh, India
| | - Aamir Hussain Dar
- Department of Food Technology, Islamic University of Science and Technology, Awantipora 192122, Kashmir, India
| | - Shaikh Ayaz Mukarram
- Faculty of Agriculture, Food Science and Environmental Management Institute of Food Science, University of Debrecen, 4032 Debrecen, Hungary
| | - Endre Harsányi
- Faculty of Agriculture, Food Science and Environmental Management, Institute of Land Utilization, Engineering and Precision Technology, University of Debrecen, 4032 Debrecen, Hungary
| | - Béla Kovács
- Faculty of Agriculture, Food Science and Environmental Management Institute of Food Science, University of Debrecen, 4032 Debrecen, Hungary
| |
Collapse
|
24
|
Hanna DMF, Youshia J, Fahmy SF, George MY. Nose to brain delivery of naringin-loaded chitosan nanoparticles for potential use in oxaliplatin-induced chemobrain in rats: impact on oxidative stress, cGAS/STING and HMGB1/RAGE/TLR2/MYD88 inflammatory axes. Expert Opin Drug Deliv 2023; 20:1859-1873. [PMID: 37357778 DOI: 10.1080/17425247.2023.2228685] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 05/26/2023] [Indexed: 06/27/2023]
Abstract
OBJECTIVES Oxaliplatin induces chemobrain in cancer patients/survivors. Nutraceutical naringin has antioxidant and anti-inflammatory properties with low oral bioavailability. Our aim was to formulate naringin in chitosan nanoparticles for nose to brain delivery and assess its neuroprotective effect against oxaliplatin-induced chemobrain in rats. METHODS Naringin chitosan nanoparticles were prepared by ionic gelation. Rats were administered oral naringin (80 mg/kg), intranasal naringin (0.3 mg/kg) or intranasal naringin-loaded chitosan nanoparticles (0.3 mg/kg). Naringin's neuroprotective efficacy was assessed based on behavioral tests, histopathology, and measuring oxidative stress and inflammatory markers. RESULTS Selected nanoparticles formulation showed drug loading of 5%, size of 150 nm and were cationic. Intranasal naringin administration enhanced memory function, inhibited hippocampal acetylcholinesterase activity, and corrected oxaliplatin-induced histological changes. Moreover, it reduced malondialdehyde and elevated reduced glutathione hippocampal levels. Furthermore, it decreased levels of inflammatory markers: NF-kB and TNF-α by 1.25-fold. Upstream to this inflammatory status, intranasal naringin downregulated the hippocampal protein levels of two pathways: cGAS/STING and HMGB1/RAGE/TLR2/MYD88. CONCLUSION Intranasal naringin-loaded chitosan nanoparticles showed superior amelioration of oxaliplatin-induced chemobrain in rats at a dose 267-fold lower to that administered orally. The potential involvement of cGAS/STING and HMGB1/RAGE/TLR2/MYD88 pathways in the mechanistic process of either oxaliplatin-induced chemobrain or naringin-mediated neuroprotection was evidenced.
Collapse
Affiliation(s)
- Diana M F Hanna
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - John Youshia
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Sarah Farid Fahmy
- Department of Clinical Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Mina Y George
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| |
Collapse
|
25
|
Zhong Y, Li X, Xie J, Zhang Y, Li H, Zheng D. Network pharmacology combined with molecular docking and experimental validation to reveal the pharmacological mechanism of naringin against renal fibrosis. Open Med (Wars) 2023; 18:20230736. [PMID: 37305520 PMCID: PMC10251165 DOI: 10.1515/med-2023-0736] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 05/18/2023] [Accepted: 05/22/2023] [Indexed: 06/13/2023] Open
Abstract
To explore the pharmacological mechanism of naringin (NRG) in renal fibrosis (RF) based on network pharmacology combined with molecular docking and experimental validation. We used databases to screen for the targets of NRG and RF. The "drug-disease network" was established using Cytoscape. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses of targets were performed using Metascape, and molecular docking was performed using Schrödinger. We established an RF model in both mice and cells to validate the results of network pharmacology. After screening the database, we identified 222 common targets of NRG and RF and established a target network. Molecular docking showed that the target AKT had a good interaction with NRG. We found that the phosphatidylinositol 3-kinase (PI3K)/AKT signaling pathway was enriched by multiple targets and served as a target for experimental validation through GO and KEGG. The results revealed that NRG ameliorated renal dysfunction, reduced the release of inflammatory cytokines, decreased the expression of α-SMA, collagen I, and Fn, and recovered the expression of E-cad by inhibiting the PI3K/AKT signaling pathway. Our study used pharmacological analysis to predict the targets and mechanisms of NRG against RF. Furthermore, experiments proved that NRG inhibited RF effectively by targeting the PI3K/AKT signaling pathway.
Collapse
Affiliation(s)
- Yanan Zhong
- Department of Nephrology, The Affiliated Huai’an Hospital of Xuzhou Medical University and Huai’an Second People’s Hospital, Huai’an, China
| | - Xiang Li
- Department of Nephrology, The Affiliated Huai’an Hospital of Xuzhou Medical University and Huai’an Second People’s Hospital, Huai’an, China
| | - Juan Xie
- Department of Nephrology, The Affiliated Huai’an Hospital of Xuzhou Medical University and Huai’an Second People’s Hospital, Huai’an, China
| | - Yiyuan Zhang
- Department of Nephrology, The Affiliated Huai’an Hospital of Xuzhou Medical University and Huai’an Second People’s Hospital, Huai’an, China
| | - Hailun Li
- Department of Nephrology, The Affiliated Huai’an Hospital of Xuzhou Medical University and Huai’an Second People’s Hospital, Huai’an, China
| | - Donghui Zheng
- Department of Nephrology, The Affiliated Huai’an Hospital of Xuzhou Medical University and Huai’an Second People’s Hospital, Huai’an, China
| |
Collapse
|
26
|
Swamy RS, Kumar N, Shenoy S, Cheruku SP, Rao V, Kumar N, Kumar S, Ravichandiran V. Neuroprotective effect by naringin against fluorosis-induced neurodegeneration in adult Wistar rats. Neuroreport 2023; 34:449-456. [PMID: 37161984 DOI: 10.1097/wnr.0000000000001908] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Fluorosis is widespread in several areas of the world and including India leading to dental and skeletal fluorosis as well as neurological manifestations. With a limited number of treatment options available, we have tried to address the issue with a nutraceutical such as naringin which is an alkaloid derived from the citrus fruit. Naringin is a potent antioxidant and has neuroprotective action which can counteract the redox imbalance induced by sodium fluoride ingestion. Neurological effects of fluorosis were evaluated in Wistar rats by open field test (OFT) and novel object recognition test (NORT) along with lipid peroxidation (LPO) and glutathione estimation in brain homogenate and cresyl violet staining of CA3 neurons in the hippocampus. Animals were divided into groups namely, normal, vehicle, fluoride, naringin 100 mg/kg bd.wt group and fluoride with naringin (FLU-NAR) group. Fluorosis was induced by providing 100 ppm of sodium fluoride ad libitum in drinking water for 30 days and prophylactic treatment of naringin for 15 days per oral. OFT, NORT and forced swim test showed significant (P ≤ 0.05) changes in the FLU-NAR group as compared to the fluoride group indicating behavioral changes in the fluoride group and positive changes in the FLU-NAR group with attenuation of stress, fear, hyperactivity and memory impairment. The decrease in LPO and increase in glutathione levels in the treatment group compared to the fluoride group were supported by histological improvement as compared to the fluoride group. Prophylactic treatment of naringin showed its possible neuroprotective effect, thus giving an alternative treatment strategy to deal with neurological manifestations of fluorosis.
Collapse
Affiliation(s)
- Ravindra Shantakumar Swamy
- Division of Anatomy, Department of Basic Medical Sciences (DBMS), Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, India
| | - Naveen Kumar
- Department of Anatomy, RAK College of Medical Sciences, RAK Medical and Health Sciences University (RAKMHSU), Ras Al Khaimah, UAE
| | - Smita Shenoy
- Department of Pharmacology, Kasturba medical college, Manipal Academy of Higher Education
| | - Sri Pragnya Cheruku
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka
| | - Vanishree Rao
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka
| | - Nitesh Kumar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Hajipur (NIPER-H), Hajipur, India
| | - Sachindra Kumar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Hajipur (NIPER-H), Hajipur, India
| | - Velayutham Ravichandiran
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Hajipur (NIPER-H), Hajipur, India
| |
Collapse
|
27
|
Adetunji JA, Fasae KD, Awe AI, Paimo OK, Adegoke AM, Akintunde JK, Sekhoacha MP. The protective roles of citrus flavonoids, naringenin, and naringin on endothelial cell dysfunction in diseases. Heliyon 2023; 9:e17166. [PMID: 37484296 PMCID: PMC10361329 DOI: 10.1016/j.heliyon.2023.e17166] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 06/06/2023] [Accepted: 06/08/2023] [Indexed: 07/25/2023] Open
Abstract
The endothelial cells (ECs) make up the inner lining of blood vessels, acting as a barrier separating the blood and the tissues in several organs. ECs maintain endothelium integrity by controlling the constriction and relaxation of the vasculature, blood fluidity, adhesion, and migration. These actions of ECs are efficiently coordinated via an intricate signaling network connecting receptors, and a wide range of cellular macromolecules. ECs are naturally quiescent i.e.; they are not stimulated and do not proliferate. Upon infection or disease, ECs become activated, and this alteration is pivotal in the pathogenesis of a spectrum of human neurological, cardiovascular, diabetic, cancerous, and viral diseases. Considering the central position that ECs play in disease pathogenesis, therapeutic options have been targeted at improving ECs integrity, assembly, functioning, and health. The dietary intake of flavonoids present in citrus fruits has been associated with a reduced risk of endothelium dysfunction. Naringenin (NGN) and Naringin (NAR), major flavonoids in grapefruit, tomatoes, and oranges possess anti-inflammatory, antioxidant properties, and cell survival potentials, which improve the health of the vascular endothelium. In this review, we provide a comprehensive summary and present the advances in understanding of the mechanisms through which NGN and NAR modulate the biomarkers of vascular dysfunction and protect the endothelium against unresolved inflammation, oxidative stress, atherosclerosis, and angiogenesis. We also provide perspectives and suggest further studies that will help assess the efficacy of citrus flavonoids in the therapeutics of human vascular diseases.
Collapse
Affiliation(s)
- Joy A. Adetunji
- Nutritional and Industrial Biochemistry Unit, Department of Biochemistry, College of Medicine, University of Ibadan, Nigeria
| | - Kehinde D. Fasae
- Department of Biomedical and Diagnostic Sciences, University of Tennessee, Knoxville, USA
| | - Ayobami I. Awe
- Department of Biology, The Catholic University of America, Washington DC, USA
| | - Oluwatomiwa K. Paimo
- Department of Biochemistry, College of Biosciences, Federal University of Agriculture, Abeokuta, Nigeria
| | - Ayodeji M. Adegoke
- Department of Pharmacology, University of the Free State, P.O. Box 339, Bloemfontein 9300, South Africa
- Cancer Research and Molecular Biology Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, 200005, Nigeria
| | - Jacob K. Akintunde
- Department of Biochemistry, College of Biosciences, Federal University of Agriculture, Abeokuta, Nigeria
| | - Mamello P. Sekhoacha
- Department of Pharmacology, University of the Free State, P.O. Box 339, Bloemfontein 9300, South Africa
| |
Collapse
|
28
|
Yi X, Dong M, Guo N, Tian J, Lei P, Wang S, Yang Y, Shi Y. Flavonoids improve type 2 diabetes mellitus and its complications: a review. Front Nutr 2023; 10:1192131. [PMID: 37324738 PMCID: PMC10265523 DOI: 10.3389/fnut.2023.1192131] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 05/15/2023] [Indexed: 06/17/2023] Open
Abstract
The prevalence of type 2 diabetes mellitus (T2DM) is increasing every year. Medications are currently the most common therapy for T2DM. However, these medications have certain adverse effects. In order to find safe and effective ways to improve this disease, researchers have discovered that some natural products can decrease blood sugar. Flavonoids are one of the most essential low molecular weight phenolic chemicals in the plant world, which widely exist in plant roots, stems, leaves, flowers, and fruits. They possess a variety of biological activities, including organ protection, hypoglycemic, lipid-lowering, anti-oxidative and anti-inflammatory effects. Some natural flavonoids ameliorate T2DM and its complications through anti-oxidation, anti-inflammatory action, glucose and lipid metabolism regulation, insulin resistance management, etc. Hence, this review aims at demonstrating the potential benefits of flavonoids in T2DM and its complications. This laid the foundation for the development of novel hypoglycemic medications from flavonoids.
Collapse
Affiliation(s)
- Xinrui Yi
- College of Traditional Chinese Medicine, Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Mosi Dong
- College of Traditional Chinese Medicine, Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Naifei Guo
- College of Traditional Chinese Medicine, Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Jinlong Tian
- Food Science College, Shenyang Agricultural University, Shenyang, China
| | - Ping Lei
- College of Traditional Chinese Medicine, Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Song Wang
- Liaoning Shengqi Haotian Biomedical Technology Co., Ltd., Liaoning, Shenyang, China
| | - Yufeng Yang
- College of Traditional Chinese Medicine, Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Yan Shi
- College of Traditional Chinese Medicine, Liaoning University of Traditional Chinese Medicine, Shenyang, China
| |
Collapse
|
29
|
Naringin: Nanotechnological Strategies for Potential Pharmaceutical Applications. Pharmaceutics 2023; 15:pharmaceutics15030863. [PMID: 36986723 PMCID: PMC10054771 DOI: 10.3390/pharmaceutics15030863] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 03/02/2023] [Accepted: 03/03/2023] [Indexed: 03/11/2023] Open
Abstract
Polyphenols comprise a number of natural substances, such as flavonoids, that show interesting biological effects. Among these substances is naringin, a naturally occurring flavanone glycoside found in citrus fruits and Chinese medicinal herbs. Several studies have shown that naringin has numerous biological properties, including cardioprotective, cholesterol-lowering, anti-Alzheimer’s, nephroprotective, antiageing, antihyperglycemic, antiosteoporotic and gastroprotective, anti-inflammatory, antioxidant, antiapoptotic, anticancer and antiulcer effects. Despite its multiple benefits, the clinical application of naringin is severely restricted due to its susceptibility to oxidation, poor water solubility, and dissolution rate. In addition, naringin shows instability at acidic pH, is enzymatically metabolized by β-glycosidase in the stomach and is degraded in the bloodstream when administered intravenously. These limitations, however, have been overcome thanks to the development of naringin nanoformulations. This review summarizes recent research carried out on strategies designed to improve naringin’s bioactivity for potential therapeutic applications.
Collapse
|
30
|
Naringin Protects against Tau Hyperphosphorylation in A β 25-35-Injured PC12 Cells through Modulation of ER, PI3K/AKT, and GSK-3 β Signaling Pathways. Behav Neurol 2023; 2023:1857330. [PMID: 36844418 PMCID: PMC9946756 DOI: 10.1155/2023/1857330] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 06/08/2022] [Accepted: 12/26/2022] [Indexed: 02/17/2023] Open
Abstract
Alzheimer's disease (AD) is the most common form of dementia and a significant social and economic burden. Estrogens can exert neuroprotective effects and may contribute to the prevention, attenuation, or even delay in the onset of AD; however, long-term estrogen therapy is associated with harmful side effects. Thus, estrogen alternatives are of interest for countering AD. Naringin, a phytoestrogen, is a key active ingredient in the traditional Chinese medicine Drynaria. Naringin is known to protect against nerve injury induced by amyloid beta-protein (Aβ) 25-35, but the underlying mechanisms of this protection are unclear. To investigate the mechanisms of naringin neuroprotection, we observed the protective effect on Aβ 25-35-injured C57BL/6J mice's learning and memory ability and hippocampal neurons. Then, an Aβ 25-35 injury model was established with adrenal phaeochromocytoma (PC12) cells. We examined the effect of naringin treatment on Aβ 25-35-injured PC12 cells and its relationship with estrogen receptor (ER), phosphatidylinositol 3-kinase/protein kinase B (PI3K/AKT), and glycogen synthase kinase (GSK)-3β signaling pathways. Estradiol (E2) was used as a positive control for neuroprotection. Naringin treatment resulted in improved learning and memory ability, the morphology of hippocampal neurons, increased cell viability, and reduced apoptosis. We next examined the expression of ERβ, p-AKT (Ser473, Thr308), AKT, p-GSK-3β (Ser9), GSK-3β, p-Tau (Thr231, Ser396), and Tau in PC12 cells treated with Aβ 25-35 and either naringin or E2, with and without inhibitors of the ER, PI3K/AKT, and GSK-3β pathways. Our results demonstrated that naringin inhibits Aβ 25-35-induced Tau hyperphosphorylation by modulating the ER, PI3K/AKT, and GSK-3β signaling pathways. Furthermore, the neuroprotective effects of naringin were comparable to those of E2 in all treatment groups. Thus, our results have furthered our understanding of naringin's neuroprotective mechanisms and indicate that naringin may comprise a viable alternative to estrogen therapy.
Collapse
|
31
|
Li C, Tang Y, Ye Y, Zuo M, Lu Q. Potential of natural flavonols and flavanones in the treatment of ulcerative colitis. Front Pharmacol 2023; 14:1120616. [PMID: 36937890 PMCID: PMC10020211 DOI: 10.3389/fphar.2023.1120616] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 02/15/2023] [Indexed: 03/06/2023] Open
Abstract
Ulcerative colitis (UC) is an inflammatory bowel disease generally characterized by chronic, persistent, recurrent, and non-specific ulcers of the intestine. Its main clinical manifestations include abdominal pain, diarrhea, and bloody stools. This disease is difficult to cure and even carries the risk of canceration. It has been listed as a modern refractory disease by the World Health Organization. Though a large amount of drugs are available for the inhibition of UC, the conventional treatment such as aminosalicylic acids, glucocorticoids, immunosuppressors, and biological agents possess certain limitations and serious side effects. Therefore, it is urgently needed for safe and effective drugs of UC, and natural-derived flavonols and flavanones showed tremendous potential. The present study concentrated on the progress of natural-derived flavonols and flavanones from edible and pharmaceutical plants for the remedy of UC over the last two decades. The potential pharmaceutical of natural-derived flavonols and flavanones against UC were closely connected with the modulation of gut microflora, gut barrier function, inflammatory reactions, oxidative stress, and apoptosis. The excellent efficacy and safety of natural flavonols and flavanones make them prospective drug candidates for UC suppression.
Collapse
Affiliation(s)
- Cailan Li
- Department of Pharmacology, Zunyi Medical University, Zhuhai Campus, Zhuhai, China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
- Key Laboratory of Basic Pharmacology of Guizhou Province and School of Pharmacy, Zunyi Medical University, Zunyi, China
| | - Ying Tang
- Department of Pharmacology, Zunyi Medical University, Zhuhai Campus, Zhuhai, China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
- Key Laboratory of Basic Pharmacology of Guizhou Province and School of Pharmacy, Zunyi Medical University, Zunyi, China
| | - Yonghao Ye
- Zhuhai Resproly Pharmaceutical Technology Company Limited, Zhuhai, China
| | - Manhua Zuo
- Department of Nursing, Zunyi Medical University, Zhuhai Campus, Zhuhai, China
| | - Qiang Lu
- Department of Pharmaceutical Sciences, Zunyi Medical University, Zhuhai Campus, Zhuhai, China
- *Correspondence: Qiang Lu,
| |
Collapse
|
32
|
Emran TB, Islam F, Nath N, Sutradhar H, Das R, Mitra S, Alshahrani MM, Alhasaniah AH, Sharma R. Naringin and Naringenin Polyphenols in Neurological Diseases: Understandings from a Therapeutic Viewpoint. Life (Basel) 2022; 13:99. [PMID: 36676048 PMCID: PMC9867091 DOI: 10.3390/life13010099] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/21/2022] [Accepted: 12/22/2022] [Indexed: 01/01/2023] Open
Abstract
The glycosides of two flavonoids, naringin and naringenin, are found in various citrus fruits, bergamots, tomatoes, and other fruits. These phytochemicals are associated with multiple biological functions, including neuroprotective, antioxidant, anticancer, antiviral, antibacterial, anti-inflammatory, antiadipogenic, and cardioprotective effects. The higher glutathione/oxidized glutathione ratio in 3-NP-induced rats is attributed to the ability of naringin to reduce hydroxyl radical, hydroperoxide, and nitrite. However, although progress has been made in treating these diseases, there are still global concerns about how to obtain a solution. Thus, natural compounds can provide a promising strategy for treating many neurological conditions. Possible therapeutics for neurodegenerative disorders include naringin and naringenin polyphenols. New experimental evidence shows that these polyphenols exert a wide range of pharmacological activity; particular attention was paid to neurodegenerative diseases such as Alzheimer's and Parkinson's diseases, as well as other neurological conditions such as anxiety, depression, schizophrenia, and chronic hyperglycemic peripheral neuropathy. Several preliminary investigations have shown promising evidence of neuroprotection. The main objective of this review was to reflect on developments in understanding the molecular mechanisms underlying the development of naringin and naringenin as potential neuroprotective medications. Furthermore, the configuration relationships between naringin and naringenin are discussed, as well as their plant sources and extraction methods.
Collapse
Affiliation(s)
- Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong 4381, Bangladesh
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
| | - Fahadul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
| | - Nikhil Nath
- Department of Pharmacy, International Islamic University Chittagong, Chittagong 4318, Bangladesh
| | - Hriday Sutradhar
- Department of Pharmacy, International Islamic University Chittagong, Chittagong 4318, Bangladesh
| | - Rajib Das
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh
| | - Saikat Mitra
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh
| | - Mohammed Merae Alshahrani
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Najran University, P.O. Box 1988, Najran 61441, Saudi Arabia
| | - Abdulaziz Hassan Alhasaniah
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Najran University, P.O. Box 1988, Najran 61441, Saudi Arabia
| | - Rohit Sharma
- Department of Rasa Shastra and Bhaishajya Kalpana, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| |
Collapse
|
33
|
Gai J, Xing J, Wang Y, Lei J, Zhang C, Zhang J, Tang J. Exploration of potential targets and mechanisms of Naringenin in treating autism spectrum disorder via network pharmacology and molecular docking. Medicine (Baltimore) 2022; 101:e31787. [PMID: 36401485 PMCID: PMC9678605 DOI: 10.1097/md.0000000000031787] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 10/24/2022] [Indexed: 12/03/2022] Open
Abstract
Naringenin (NR) is a kind of flavonoid which plays a great role in the treatment of autism spectrum disorder (ASD). However, the underlying mechanism of NR in treating ASD still remains unclear. This study used network pharmacology and molecular docking to examine the potential targets and pharmacological mechanism of NR on ASD. Targets related to NR were screened from Traditional Chinese Medicine System Pharmacology Database and Analysis Platform (TCMSP), Encyclopedia of Traditional Chinese Medicine Database (ETCM), Traditional Chinese Medicine Integrated Database (TCMID), PharmaMapper database, and targets related to ASD were screened from Online Mendelian Inheritance In Man (OMIM), Disgenet, GeneCards, Therapeutic Target Database (TTD), Drugbank, and ETCM. Screened of the intersected gene targets. Then, we used the protein-protein interaction (PPI) networks to construct a PPI network and used Network Analyzer plug-in to perform topological analysis to screen out the core target. We used Metascape platform to perform gene ontology (GO) functional enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis, and used Chem draw, Pymol, AutoDock 1.5.6 software for molecular docking verification with core targets. A total of 149 targets of NR and 1594 potential targets of ASD were screened, and 43 intersected targets and 8 key targets were obtained and screened. A total of 176 GO items were obtained by GO enrichment analysis (P < .05), 153 entries on biological process (BP), 12 entries on BP and 11entries on cell composition (CC) were included. A total of 100 signaling pathways were obtained by KEGG pathway enrichment screening (P < .05).The pathways that are closely related to the pathogenesis of ASD are estrogen signaling, thyroid hormone signaling pathway, prolactin signaling pathway, and endocrine resistance pathway. Molecular docking results showed that NR had the best docking activity with the core target CASP3, and had good binding ability with AKT1, ESR1, ACTB and MAPK3. Taken together, our findings support that NR exerts therapeutic effects on ASD with multi-target, and multi-pathway characteristics, which provides a preliminary theoretical basis for clinical trials. The mechanism of anti-oxidative stress response, anti-apoptosis, regulation of cell growth and metabolism, anti-inflammatory, balance hormone levels may be important for the therapeutic effect.
Collapse
Affiliation(s)
- Jialin Gai
- School of Rehabilitation Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Jinxiao Xing
- School of Rehabilitation Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Yangyang Wang
- College of Rehabilitation Medicine, Weifang Medical University, Weifang, Shandong, China
| | - Junfang Lei
- School of Rehabilitation Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Chengdong Zhang
- College of Rehabilitation Medicine, Weifang Medical University, Weifang, Shandong, China
| | - Jinfei Zhang
- School of Rehabilitation Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Jiqin Tang
- School of Rehabilitation Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| |
Collapse
|
34
|
Ares AM, Bernal J, Janvier A, Toribio L. CHIRAL AND ACHIRAL SEPARATION OF TEN FLAVANONES USING SUPERCRITICAL FLUID CHROMATOGRAPHY. APPLICATION TO BEE POLLEN ANALYSIS. J Chromatogr A 2022; 1685:463633. [DOI: 10.1016/j.chroma.2022.463633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 10/28/2022] [Accepted: 10/30/2022] [Indexed: 11/06/2022]
|
35
|
Tang W, Wei Y, Lu W, Chen D, Ye Q, Zhang C, Chen Y, Xiao C. Fabrication, characterization of carboxymethyl konjac glucomannan/ovalbumin-naringin nanoparticles with improving in vitro bioaccessibility. Food Chem X 2022; 16:100477. [PMID: 36277870 PMCID: PMC9583030 DOI: 10.1016/j.fochx.2022.100477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 09/20/2022] [Accepted: 10/12/2022] [Indexed: 11/25/2022] Open
Abstract
Naringin is potential functional and therapeutic ingredient, has low bioavailability because of poor aqueous solubility. In this study, an ovalbumin (OVA)-carboxymethyl konjac glucomannan (CKGM) nano-delivery system was developed to enhance the bioavailability of naringin. The effects of proportion (OVA: CKGM), pH and naringin concentration were studied on the formation, encapsulation efficiency (EE) and bioaccessibility of OVA/CKGM-Naringin nanoparticles (OVA/CKGM-Naringin NPs). Its morphology and size were viewed by Scanning Electron Microscope (SEM) and Transmission Electron Microscopy (TEM). The cross-linkage between OVA and CKGM was verified by Fourier Transform Infrared Spectroscopy (FTIR) and Fluorescence Intensity analysis. The size of OVA/CKGM-Naringin NPs were 463.83 ± 18.50 nm (Polydispersity Index-PDI, 0.42 ± 0.05). It indicated that 2:1 of OVA: CKGM, pH 3 and 7 mg/mL of naringin concentration were optimized processing parameters of OVA/CKGM-Naringin NPs with EE (97.90 ± 2.97 %) and remarkably improved bioaccessibility (85.01 ± 2.52 %). The OVA/CKGM-Naringin NPs was energy efficiently prepared and verified as an ideal carrier of naringin.
Collapse
Affiliation(s)
- Weimin Tang
- National Engineering Research Center for Optical Instruments, College of Optical Science and Engineering, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang 310052, China,State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang 310021, China
| | - Yanjun Wei
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang 310021, China
| | - Wenjing Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang 310021, China
| | - Di Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang 310021, China
| | - Qin Ye
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang 310021, China
| | - Cen Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang 310021, China
| | - Yufeng Chen
- National Engineering Research Center for Optical Instruments, College of Optical Science and Engineering, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang 310052, China,College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China,Corresponding authors at: State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang 310021, China. National Engineering Research Center for Optical Instruments, College of Optical Science and Engineering; College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang 310052, China.
| | - Chaogeng Xiao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang 310021, China,Corresponding authors at: State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang 310021, China. National Engineering Research Center for Optical Instruments, College of Optical Science and Engineering; College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang 310052, China.
| |
Collapse
|
36
|
Pang M, Peng R, Wang Y, Zhu Y, Wang P, Moussian B, Su Y, Liu X, Ming D. Molecular understanding of the translational models and the therapeutic potential natural products of Parkinson's disease. Biomed Pharmacother 2022; 155:113718. [PMID: 36152409 DOI: 10.1016/j.biopha.2022.113718] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/09/2022] [Accepted: 09/19/2022] [Indexed: 11/02/2022] Open
Abstract
Parkinson's disease is the second most prevalent neurodegenerative disease after Alzheimer's disease, mostly happened in the elder population and the prevalence gradually increased with age. Parkinson's disease is a movement disorder that severely affects patients' daily life. The mechanism of Parkinson's disease still remains unknown, however, studies already proved that the damage or absence of dopaminergic neurons located in the substantia nigra and the decreased dopamine in the striatum are significantly related to Parkinson's disease. To date, the mainstream treatment of Parkinson's disease has been achieved by alleviating its associated morbid symptoms, such as the use of levodopa, carbidopa, dopamine receptor agonists, monoamine oxidase type B inhibitors, anticholinergic drugs, etc. However, strong side effects, even toxicity, have been reported after using these drugs, with reduced effectiveness over time. Plant compounds have shown good therapeutic effects in neurodegenerative diseases as a less toxic treatment. In this review, we have compiled several natural plant compounds and classified the currently reported compounds for therapeutic use based on their structural parent nuclei and constituent elements. We wish to inspire new ideas for the treatment of Parkinson's disease by summarizing their mechanisms.
Collapse
Affiliation(s)
- Meijun Pang
- Academy of Medical Engineering and Translational Medicine, Tianjin University, 92 Weijin Road, Nankai District, 300072 Tianjin, China
| | - Rui Peng
- Academy of Medical Engineering and Translational Medicine, Tianjin University, 92 Weijin Road, Nankai District, 300072 Tianjin, China
| | - Yiwen Wang
- School of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Road, Nankai District, 300072 Tianjin, China
| | - Yi Zhu
- School of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Road, Nankai District, 300072 Tianjin, China
| | - Peng Wang
- Academy of Medical Engineering and Translational Medicine, Tianjin University, 92 Weijin Road, Nankai District, 300072 Tianjin, China
| | - Bernard Moussian
- Animal Genetics, Interfaculty Institute of Cell Biology, University of Tübingen, Auf der Morgenstelle 15, 72076 Tübingen, Germany; Université Côte d'Azur, INRAE, CNRS, Institut Sophia Agrobiotech, 06903 Sophia Antipolis Cedex, France
| | - Yanfang Su
- School of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Road, Nankai District, 300072 Tianjin, China
| | - Xiuyun Liu
- Academy of Medical Engineering and Translational Medicine, Tianjin University, 92 Weijin Road, Nankai District, 300072 Tianjin, China; Department of Biomedical Engineering, College of Precision Instruments and Optoelectronics Engineering, Tianjin University, 300072, China.
| | - Dong Ming
- Academy of Medical Engineering and Translational Medicine, Tianjin University, 92 Weijin Road, Nankai District, 300072 Tianjin, China.
| |
Collapse
|
37
|
Zheng Y, Li R, Fan X. Targeting Oxidative Stress in Intracerebral Hemorrhage: Prospects of the Natural Products Approach. Antioxidants (Basel) 2022; 11:1811. [PMID: 36139885 PMCID: PMC9495708 DOI: 10.3390/antiox11091811] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/05/2022] [Accepted: 09/06/2022] [Indexed: 11/17/2022] Open
Abstract
Intracerebral hemorrhage (ICH), the second most common subtype of stroke, remains a significant cause of morbidity and mortality worldwide. The pathological mechanism of ICH is very complex, and it has been demonstrated that oxidative stress (OS) plays an important role in the pathogenesis of ICH. Previous studies have shown that OS is a therapeutic target after ICH, and antioxidants have also achieved some benefits in the treatment of ICH. This review aimed to explore the promise of natural products therapy to target OS in ICH. We searched PubMed using the keywords "oxidative stress in intracerebral hemorrhage" and "natural products in intracerebral hemorrhage". Numerous animal and cell studies on ICH have demonstrated the potent antioxidant properties of natural products, including polyphenols and phenolic compounds, terpenoids, alkaloids, etc. In summary, natural products such as antioxidants offer the possibility of treatment of OS after ICH. However, researchers still have a long way to go to apply these natural products for the treatment of ICH more widely in the clinic.
Collapse
Affiliation(s)
| | | | - Xiang Fan
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| |
Collapse
|
38
|
Zeng X, Zheng Y, He Y, Zhang J, Peng W, Su W. Microbial Metabolism of Naringin and the Impact on Antioxidant Capacity. Nutrients 2022; 14:nu14183765. [PMID: 36145140 PMCID: PMC9502552 DOI: 10.3390/nu14183765] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 09/06/2022] [Accepted: 09/08/2022] [Indexed: 11/26/2022] Open
Abstract
Naringin is a dietary flavonoid glycoside with broad bioactivities, and it has been found to undergo extensive microbial metabolism in human gut. Microbial metabolites are believed to play an important role in the overall bioactivity of naringin. However, knowledge is scarce about its microbial metabolism in laboratory rats, which are the most commonly used animal model for naringin-related biomedical studies. Herein, we profiled the microbial metabolism of naringin in rat by an in vitro anaerobic fermentation combined with LC-MS/MS methods. A total of 35 microbial metabolites were identified, and corresponding metabolic pathways were proposed. Naringin and its metabolites were further quantified in fermentation samples. Rhoifolin, neoeriocitrin, neohesperidin, naringenin, methylated naringin, and hydroxylated naringin were detected as the primary microbial metabolites. Moreover, antioxidant capacity assays suggested that fermentation-associated microbial metabolites exhibited higher antioxidant activity than original naringin. Obtained results contribute to a more comprehensive understanding of the microbial metabolism and antioxidant capacity of naringin.
Collapse
|
39
|
Liaqat H, Parveen A, Kim SY. Neuroprotective Natural Products’ Regulatory Effects on Depression via Gut–Brain Axis Targeting Tryptophan. Nutrients 2022; 14:nu14163270. [PMID: 36014776 PMCID: PMC9413544 DOI: 10.3390/nu14163270] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/08/2022] [Accepted: 08/08/2022] [Indexed: 11/23/2022] Open
Abstract
L-tryptophan (Trp) contributes to regulating bilateral communication of the gut–brain axis. It undergoes three major metabolic pathways, which lead to formation of kynurenine, serotonin (5-HT), and indole derivatives (under the control of the microbiota). Metabolites from the principal Trp pathway, kynurenic acid and quinolinic acid, exhibit neuroprotective activity, while picolinic acid exhibits antioxidant activity, and 5-HT modulates appetite, sleep cycle, and pain. Abnormality in Trp plays crucial roles in diseases, including depression, colitis, ulcer, and gut microbiota-related dysfunctions. To address these diseases, the use of natural products could be a favorable alternative because they are a rich source of compounds that can modulate the activity of Trp and combat various diseases through modulating different signaling pathways, including the gut microbiota, kynurenine pathway, and serotonin pathway. Alterations in the signaling cascade pathways via different phytochemicals may help us explore the deep relationships of the gut–brain axis to study neuroprotection. This review highlights the roles of natural products and their metabolites targeting Trp in different diseases. Additionally, the role of Trp metabolites in the regulation of neuroprotective and gastroprotective activities is discussed. This study compiles the literature on novel, potent neuroprotective agents and their action mechanisms in the gut–brain axis and proposes prospective future studies to identify more pharmaceuticals based on signaling pathways targeting Trp.
Collapse
Affiliation(s)
- Humna Liaqat
- Department of Animal Science, Biotechnical Faculty, University of Ljubljana, Groblje 3, 1230 Domzale, Slovenia
| | - Amna Parveen
- College of Pharmacy, Gachon University Medical Campus, No. 191, Hambakmoero, Yeonsu-gu, Incheon 21936, Korea
- Correspondence: or (A.P.); (S.Y.K.)
| | - Sun Yeou Kim
- College of Pharmacy, Gachon University Medical Campus, No. 191, Hambakmoero, Yeonsu-gu, Incheon 21936, Korea
- Correspondence: or (A.P.); (S.Y.K.)
| |
Collapse
|
40
|
Gao ZR, Feng YZ, Zhao YQ, Zhao J, Zhou YH, Ye Q, Chen Y, Tan L, Zhang SH, Feng Y, Hu J, Ou-Yang ZY, Dusenge MA, Guo Y. Traditional Chinese medicine promotes bone regeneration in bone tissue engineering. Chin Med 2022; 17:86. [PMID: 35858928 PMCID: PMC9297608 DOI: 10.1186/s13020-022-00640-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 06/30/2022] [Indexed: 11/10/2022] Open
Abstract
Bone tissue engineering (BTE) is a promising method for the repair of difficult-to-heal bone tissue damage by providing three-dimensional structures for cell attachment, proliferation, and differentiation. Traditional Chinese medicine (TCM) has been introduced as an effective global medical program by the World Health Organization, comprising intricate components, and promoting bone regeneration by regulating multiple mechanisms and targets. This study outlines the potential therapeutic capabilities of TCM combined with BTE in bone regeneration. The effective active components promoting bone regeneration can be generally divided into flavonoids, alkaloids, glycosides, terpenoids, and polyphenols, among others. The chemical structures of the monomers, their sources, efficacy, and mechanisms are described. We summarize the use of compounds and medicinal parts of TCM to stimulate bone regeneration. Finally, the limitations and prospects of applying TCM in BTE are introduced, providing a direction for further development of novel and potential TCM.
Collapse
Affiliation(s)
- Zheng-Rong Gao
- Department of Stomatology, The Second Xiangya Hospital, Central South University, 139 Renmin Middle Road, Changsha, 410011, Hunan, China
| | - Yun-Zhi Feng
- Department of Stomatology, The Second Xiangya Hospital, Central South University, 139 Renmin Middle Road, Changsha, 410011, Hunan, China
| | - Ya-Qiong Zhao
- Department of Stomatology, The Second Xiangya Hospital, Central South University, 139 Renmin Middle Road, Changsha, 410011, Hunan, China
| | - Jie Zhao
- Department of Stomatology, The Second Xiangya Hospital, Central South University, 139 Renmin Middle Road, Changsha, 410011, Hunan, China
| | - Ying-Hui Zhou
- Department of Endocrinology and Metabolism, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, National Clinical Research Center for Metabolic Disease, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Qin Ye
- Department of Stomatology, The Second Xiangya Hospital, Central South University, 139 Renmin Middle Road, Changsha, 410011, Hunan, China
| | - Yun Chen
- Department of Stomatology, The Second Xiangya Hospital, Central South University, 139 Renmin Middle Road, Changsha, 410011, Hunan, China
| | - Li Tan
- Department of Stomatology, The Second Xiangya Hospital, Central South University, 139 Renmin Middle Road, Changsha, 410011, Hunan, China
| | - Shao-Hui Zhang
- Department of Stomatology, The Second Xiangya Hospital, Central South University, 139 Renmin Middle Road, Changsha, 410011, Hunan, China
| | - Yao Feng
- Department of Stomatology, The Second Xiangya Hospital, Central South University, 139 Renmin Middle Road, Changsha, 410011, Hunan, China
| | - Jing Hu
- Department of Stomatology, The Second Xiangya Hospital, Central South University, 139 Renmin Middle Road, Changsha, 410011, Hunan, China
| | - Ze-Yue Ou-Yang
- Department of Stomatology, The Second Xiangya Hospital, Central South University, 139 Renmin Middle Road, Changsha, 410011, Hunan, China
| | - Marie Aimee Dusenge
- Department of Stomatology, The Second Xiangya Hospital, Central South University, 139 Renmin Middle Road, Changsha, 410011, Hunan, China
| | - Yue Guo
- Department of Stomatology, The Second Xiangya Hospital, Central South University, 139 Renmin Middle Road, Changsha, 410011, Hunan, China.
| |
Collapse
|
41
|
Csuti A, Sik B, Ajtony Z. Measurement of Naringin from Citrus Fruits by High-Performance Liquid Chromatography - a Review. Crit Rev Anal Chem 2022; 54:473-486. [PMID: 35658668 DOI: 10.1080/10408347.2022.2082241] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Naringin is a flavonoid found primarily in citrus species with especially high concentrations being present in grapefruit (Citrus paradisi), bitter orange (Citrus aurantium), and pomelo (Citrus grandis). Because of its many positive effects on human health, naringin has been the focus of increasing attention in recent years. Recently, conventional extraction methods have been commonly replaced with unconventional methods, such as ultrasound-assisted extraction (UAE) and other, more eco-friendly extraction methods requiring little-to-no environmentally harmful solvents or significantly less energy. Naringin analysis is most commonly done via high-performance liquid chromatography (HPLC), and ultrahigh-performance liquid chromatography (UHPLC) coupled with a mass spectrometer (MS) or a photodiode array (DAD) detector. The aim of this review is to provide an overview of recent trends developments in the extraction, sample preparation, and liquid chromatographic analysis of the compound originating from citrus fruits or their products.
Collapse
Affiliation(s)
- Aron Csuti
- Department of Food Science, Széchenyi István University, 15 Lucsony Str, Mosonmagyaróvár, 9200, Hungary
| | - Beatrix Sik
- Department of Food Science, Széchenyi István University, 15 Lucsony Str, Mosonmagyaróvár, 9200, Hungary
| | - Zsolt Ajtony
- Department of Food Science, Széchenyi István University, 15 Lucsony Str, Mosonmagyaróvár, 9200, Hungary
| |
Collapse
|
42
|
Tang G, Pi L, Guo H, Hu Z, Zhou C, Hu Q, Peng H, Xiao Z, Zhang Z, Wang M, Peng T, Huang J, Liang S, Li G. Naringin Relieves Diabetic Cardiac Autonomic Neuropathy Mediated by P2Y14 Receptor in Superior Cervical Ganglion. Front Pharmacol 2022; 13:873090. [PMID: 35529431 PMCID: PMC9068893 DOI: 10.3389/fphar.2022.873090] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 03/23/2022] [Indexed: 12/30/2022] Open
Abstract
Diabetes mellitus (DM), an emerging chronic epidemic, contributes to mortality and morbidity around the world. Diabetic cardiac autonomic neuropathy (DCAN) is one of the most common complications associated with DM. Previous studies have shown that satellite glial cells (SGCs) in the superior cervical ganglia (SCG) play an indispensable role in DCAN progression. In addition, it has been shown that purinergic neurotransmitters, as well as metabotropic GPCRs, are involved in the pathophysiological process of DCAN. Furthermore, one traditional Chinese medicine, naringin may potently alleviate the effects of DCAN. Ferroptosis may be involved in DCAN progression. However, the role of naringin in DCAN as well as its detailed mechanism requires further investigation. In this research, we attempted to identify the effect and relevant mechanism of naringin in DCAN mitigation. We observed that compared with those of normal subjects, there were significantly elevated expression levels of P2Y14 and IL-1β in diabetic rats, both of which were remarkably diminished by treatment with either P2Y14 shRNA or naringin. In addition, abnormalities in blood pressure (BP), heart rate (HR), heart rate variability (HRV), sympathetic nerve discharge (SND), and cardiac structure in the diabetic model can also be partially returned to normal through the use of those treatments. Furthermore, a reduced expression of NRF2 and GPX4, as well as an elevated level of ROS, were detected in diabetic cases, which can also be improved with those treatments. Our results showed that naringin can effectively relieve DCAN mediated by the P2Y14 receptor of SGCs in the SCG. Moreover, the NRF2/GPX4 pathway involved in ferroptosis may become one of the principal mechanisms participating in DCAN progression, which can be modulated by P2Y14-targeted naringin and thus relieve DCAN. Hopefully, our research can supply one novel therapeutic target and provide a brilliant perspective for the treatment of DCAN.
Collapse
Affiliation(s)
- Gan Tang
- Queen Mary School, Medical School of Nanchang University, Nanchang, China
| | - Lingzhi Pi
- School of Basic Medicine, Medical School of Nanchang University, Nanchang, China
| | - Hongmin Guo
- Department of Physiology, Medical School of Nanchang University, Nanchang, China
| | - Zihui Hu
- Department of Physiology, Medical School of Nanchang University, Nanchang, China
| | - Congfa Zhou
- Department of Anatomy, Medical School of Nanchang University, Nanchang, China
| | - Qixing Hu
- Department of Physiology, Medical School of Nanchang University, Nanchang, China
| | - Hao Peng
- School of Basic Medicine, Medical School of Nanchang University, Nanchang, China
| | - Zehao Xiao
- Queen Mary School, Medical School of Nanchang University, Nanchang, China
| | - Zhihua Zhang
- Queen Mary School, Medical School of Nanchang University, Nanchang, China
| | - Miaomiao Wang
- Queen Mary School, Medical School of Nanchang University, Nanchang, China
| | - Taotao Peng
- School of Basic Medicine, Medical School of Nanchang University, Nanchang, China
| | - Jiaqi Huang
- Queen Mary School, Medical School of Nanchang University, Nanchang, China
| | - Shangdong Liang
- Department of Physiology, Medical School of Nanchang University, Nanchang, China
| | - Guilin Li
- Department of Physiology, Medical School of Nanchang University, Nanchang, China
- *Correspondence: Guilin Li,
| |
Collapse
|
43
|
Guo X, Ji Q, Wu M, Ma W. Naringin attenuates acute myocardial ischemia-reperfusion injury via miR- 126/GSK-3β/β-catenin signaling pathway. Acta Cir Bras 2022; 37:e370102. [PMID: 35416858 PMCID: PMC9000977 DOI: 10.1590/acb370102] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 11/06/2021] [Indexed: 01/03/2023] Open
Abstract
Introduction: Myocardial ischemia-reperfusion (I/R) injury is one of the mechanisms
contributing to the high mortality rate of acute myocardial infarction. Purpose: This study intended to study the role of naringin in cardiac I/R injury. Methods: AC16 cells (human cardiomyocyte cell line) were subjected to oxygen-glucose
deprivation/recovery (OGD/R) treatment and/or naringin pretreatment. Then,
the apoptosis was examined by flow cytometry and Western blotting. The
concentration of IL-6, IL-8 and TNF-α was measured by enzyme-linked
immunosorbent assay (ELISA) kits. How naringin influenced microRNA
expression was examined by microarrays and quantitative real-time polymerase
chain reaction (qRT-PCR). Dual luciferase reporter assay was employed to
evaluate the interaction between miR-126 and GSK-3β. The GSK-3β/β-catenin
signaling pathway was examined by Western blotting. Finally, rat myocardial
I/R model was created to examine the effects of naringin in
vivo. Results: Naringin pretreatment significantly decreased the cytokine release and
apoptosis of cardiomyocytes exposed to OGD/R. Bioinformatical analysis
revealed that naringin upregulated miR-126 expression considerably. Also, it
was found that miR-126 can bind GSK-3β and downregulate its expression,
suggesting that naringin could decrease GSK-3β activity. Next, we discovered
that naringin increased β-catenin activity in cardiomyocytes treated with
OGD/R by inhibiting GSK-3β expression. Our animal experiments showed that
naringin pre-treatment or miR-126 agomir alleviated myocardial I/R. Conclusions: Naringin preconditioning can reduce myocardial I/R injury via regulating
miR-126/GSK-3β/β-catenin signaling pathway, and this chemical can be used to
treat acute myocardial infarction.
Collapse
Affiliation(s)
| | | | - Mei Wu
- Shandong University, China
| | | |
Collapse
|
44
|
Kaur R, Sood A, Lang DK, Bhatia S, Al-Harrasi A, Aleya L, Behl T. Potential of flavonoids as anti-Alzheimer's agents: bench to bedside. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:26063-26077. [PMID: 35067880 DOI: 10.1007/s11356-021-18165-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Accepted: 12/13/2021] [Indexed: 06/14/2023]
Abstract
Developing therapies for neurodegenerative diseases are challenging because of the presence of blood-brain barrier and Alzheimer being one of the commonest and uprising neurodegenerative disorders possess the need for developing novel therapies. Alzheimer's is attributed to be the sixth leading cause of death in the USA and the number of cases is estimated to be increased from 58 million in 2021 to 88 million by 2050. Natural drugs have benefits of being cost-effective, widely available, fewer side effects, and immuno-booster can be useful in managing Alzheimer. Flavonoids can slow the neuronal degeneration as they have shown activity in central nervous system and are able to cross the blood-brain barrier. These can be easily extracted from fruits, vegetable, and plants. In Alzheimer disease, flavonoids scavenges the reactive oxygen species and reduces the production of amyloid beta protein. Agents from sub-classes of flavonoids such as flavanones, flavanols, flavones, flavonols, anthocyanins, and isoflavones having pharmacological action in treating Alzheimer disease are discussed in this review.
Collapse
Affiliation(s)
- Rajwinder Kaur
- Chitkara College of Pharmacy, Chitkara University Punjab, Rajpura, India
| | - Ankita Sood
- Chitkara College of Pharmacy, Chitkara University Punjab, Rajpura, India
| | | | - Saurabh Bhatia
- Natural & Medical Sciences Research Centre, University of Nizwa, Nizwa, Oman
- School of Health Science, University of Petroleum and Energy Studies, Dehradun, Uttarakhand, India
| | - Ahmed Al-Harrasi
- Natural & Medical Sciences Research Centre, University of Nizwa, Nizwa, Oman
| | - Lotfi Aleya
- Chrono-Environment Laboratory, UMR CNRS 6249, Bourgogne Franche-Comté University, Besançon, France
| | - Tapan Behl
- Chitkara College of Pharmacy, Chitkara University Punjab, Rajpura, India.
| |
Collapse
|
45
|
Šudomová M, Berchová-Bímová K, Mazurakova A, Šamec D, Kubatka P, Hassan STS. Flavonoids Target Human Herpesviruses That Infect the Nervous System: Mechanisms of Action and Therapeutic Insights. Viruses 2022; 14:v14030592. [PMID: 35336999 PMCID: PMC8949561 DOI: 10.3390/v14030592] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 03/08/2022] [Accepted: 03/11/2022] [Indexed: 12/12/2022] Open
Abstract
Human herpesviruses (HHVs) are large DNA viruses with highly infectious characteristics. HHVs can induce lytic and latent infections in their host, and most of these viruses are neurotropic, with the capacity to generate severe and chronic neurological diseases of the peripheral nervous system (PNS) and central nervous system (CNS). Treatment of HHV infections based on strategies that include natural products-derived drugs is one of the most rapidly developing fields of modern medicine. Therefore, in this paper, we lend insights into the recent advances that have been achieved during the past five years in utilizing flavonoids as promising natural drugs for the treatment of HHVs infections of the nervous system such as alpha-herpesviruses (herpes simplex virus type 1, type 2, and varicella-zoster virus), beta-herpesviruses (human cytomegalovirus), and gamma-herpesviruses (Epstein–Barr virus and Kaposi sarcoma-associated herpesvirus). The neurological complications associated with infections induced by the reviewed herpesviruses are emphasized. Additionally, this work covers all possible mechanisms and pathways by which flavonoids induce promising therapeutic actions against the above-mentioned herpesviruses.
Collapse
Affiliation(s)
- Miroslava Šudomová
- Museum of Literature in Moravia, Klášter 1, 664 61 Rajhrad, Czech Republic;
| | - Kateřina Berchová-Bímová
- Department of Applied Ecology, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 16500 Prague, Czech Republic;
| | - Alena Mazurakova
- Department of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia;
| | - Dunja Šamec
- Department of Food Technology, University Center Koprivnica, University North, Trga Dr. Žarka Dolinara 1, 48 000 Koprivnica, Croatia;
| | - Peter Kubatka
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia;
| | - Sherif T. S. Hassan
- Department of Applied Ecology, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 16500 Prague, Czech Republic;
- Correspondence: ; Tel.: +420-774-630-604
| |
Collapse
|
46
|
Naringin Inhibits Apoptosis Induced by Cyclic Stretch in Rat Annular Cells and Partially Attenuates Disc Degeneration by Inhibiting the ROS/NF-κB Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:6179444. [PMID: 35251479 PMCID: PMC8890877 DOI: 10.1155/2022/6179444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 12/16/2021] [Accepted: 01/28/2022] [Indexed: 12/02/2022]
Abstract
Oxidative stress and apoptosis play important roles in the pathogenesis of various degenerative diseases. Previous studies have shown that naringin can exert therapeutic effects in multiple degenerative diseases by resisting oxidative stress and inhibiting apoptosis. Although naringin is effective in treating degenerative disc disease, the underlying mechanism remains unclear. This study is aimed at investigating the effects of naringin on oxidative stress, apoptosis, and intervertebral disc degeneration (IVDD) induced by cyclic stretch and the underlying mechanisms in vitro and in vivo. Abnormal cyclic stretch was applied to rat annulus fibrosus cells, which were then treated with naringin, to observe the effects of naringin on apoptosis, oxidative stress, mitochondrial function, and the nuclear factor- (NF-) κB signaling pathway. Subsequently, a rat model of IVDD induced by dynamic and static imbalance was established to evaluate the effects of naringin on the degree of degeneration (using imaging and histology), apoptosis, and oxidative stress in the serum and the intervertebral disc. Naringin inhibited the cyclic stretch-induced apoptosis of annulus fibrosus cells, reduced oxidative stress, improved mitochondrial function, enhanced the antioxidant capacity, and suppressed the activation of the NF-κB signaling pathway. Additionally, it reduced the degree of IVDD (evaluated using magnetic resonance imaging) and the level of oxidative stress and inhibited apoptosis and p-P65 expression in the intervertebral discs of rats. Thus, naringin can inhibit cyclic stretch-induced apoptosis and delay IVDD, and the underlying mechanism may be related to the inhibition of oxidative stress and activation of the NF-κB signaling pathway. Naringin may be an effective drug for treating degenerative disc disease.
Collapse
|
47
|
A Rapid LC-MS/MS Method for Simultaneous Determination of Ten Flavonoid Metabolites of Naringin in Rat Urine and Its Application to an Excretion Study. Foods 2022; 11:foods11030316. [PMID: 35159467 PMCID: PMC8834102 DOI: 10.3390/foods11030316] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/18/2022] [Accepted: 01/21/2022] [Indexed: 12/28/2022] Open
Abstract
Naringin is a dietary flavonoid glycoside with multiple bioactivities. It has been involved in numerous metabolism and excretion studies, and its metabolic properties are clear. However, information concerning the excretion profile of its original metabolites are still scarce, and few methods for simultaneous determination of multiple original metabolites of naringin in biological samples have been reported so far. In this study, a rapid and sensitive method for simultaneous determination of ten flavonoid metabolites of naringin in rat urine was developed with an UHPLC-Q-Trap-MS/MS system. One-step protein precipitation method with acetonitrile was used to extract analytes. A rapid chromatographic separation within 11 min was performed on an ACQUITY UPLC® BEH C18 column (2.1 mm × 50 mm, 1.7 μm) using gradient elution with a mobile phase of water and methanol, both with 0.1% formic acid (v/v). MS/MS detection was conducted in negative ion mode and multiple reactions monitoring scanning mode. The analytical method was fully validated and successfully applied to monitor the excretion profiles of naringin in rat urine. Quantitative results revealed the visible individual difference and low urinary recovery of flavonoid metabolites in the excretion of naringin, which may be helpful for further study to understand the in vivo behavior and action mechanism of naringin.
Collapse
|
48
|
Wang W, Liu Q, Liang X, Kang Q, Wang Z. Protective role of naringin loaded solid nanoparticles against aflatoxin B1 induced hepatocellular carcinoma. Chem Biol Interact 2022; 351:109711. [PMID: 34717916 DOI: 10.1016/j.cbi.2021.109711] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 10/02/2021] [Accepted: 10/20/2021] [Indexed: 11/22/2022]
Abstract
This study examines the hepatoprotective activity of naringin loaded solid nanoparticles (NRG-SLNs) and compared with free naringin (FNRG) against aflatoxin B1 (AFB1) induced hepatocellular carcinoma. The liver's self-healing ability was studied using a self-recovery group that received no therapy. Following AFB1 therapy, rats were given NRG-SLNs produced using the ion-gelation technique. Histology, serum injury indicators, oxidative stress biomarkers, a pro-inflammatory response biomarker, and tumor indicators were used to evaluate the liver tumor and its responsiveness to therapy. At a dosage of 6.18 mg/kg BW, NRG-SLNs (128 ± 4 nm) provided substantially greater hepatoprotection than free NRG. The actions of NRG-SLNs were equivalent to those of silymarin (SILY), which was given at a dosage of 20 mg/kg BW. The lack of regeneration potential of liver tissue after the damage was verified by the self-recovery group. NRG's efficiency in treating hepatic cancer was increased by using SLN's approach. The increased impact is most likely due to: a) enhanced oral bioavailability, b) the regulated and sustained action of enclosed NRG, and c) a decrease in discomfort and toxicity if any after orally administered. NRG-SLNs may be considered as a therapeutic option for hepatic ailments as effectiveness post-induction of liver carcinoma, is demonstrated presently.
Collapse
Affiliation(s)
- Wei Wang
- Department of Hepatobiliary Surgery, Daping Hospital (Army Medical Center), Third Military Medical University (Army medical university), Chongqing 400042, China
| | - Qiyu Liu
- Department of General Surgery, Ganmei Affiliated Hospital of Kunming Medical University, The First People's Hospital of Kunming, Kunming, 650031, China
| | - Xianchun Liang
- Department of Hepatobiliary Surgery, Daping Hospital (Army Medical Center), Third Military Medical University (Army medical university), Chongqing 400042, China
| | - Qi Kang
- Department of Surgical Oncology, The First Peoples Hospital of Lanzhou, Lanzhou, 730050, China
| | - Zinian Wang
- Department of Surgical Oncology, The First Peoples Hospital of Lanzhou, Lanzhou, 730050, China.
| |
Collapse
|
49
|
Eom S, Lee BB, Lee S, Park Y, Yeom HD, Kim TH, Nam SH, Lee JH. Antioxidative and Analgesic Effects of Naringin through Selective Inhibition of Transient Receptor Potential Vanilloid Member 1. Antioxidants (Basel) 2021; 11:64. [PMID: 35052566 PMCID: PMC8773328 DOI: 10.3390/antiox11010064] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 12/26/2021] [Accepted: 12/27/2021] [Indexed: 01/02/2023] Open
Abstract
Transient receptor potential vanilloid member 1 (TRPV1) is activated in response to capsaicin, protons, temperature, and free reactive oxygen species (ROS) released from inflammatory molecules after exposure to harmful stimuli. The expression level of TRPV1 is elevated in the dorsal root ganglion, and its activation through capsaicin and ROS mediates neuropathic pain in mice. Its expression is high in peripheral and central nervous systems. Although pain is a response evolved for survival, many studies have been conducted to develop analgesics, but no clear results have been reported. Here, we found that naringin selectively inhibited capsaicin-stimulated inward currents in Xenopus oocytes using a two-electrode voltage clamp. The results of this study showed that naringin has an IC50 value of 33.3 μM on TRPV1. The amino acid residues D471 and N628 of TRPV1 were involved in its binding to naringin. Our study bridged the gap between the pain suppression effect of TRPV1 and the preventive effect of naringin on neuropathic pain and oxidation. Naringin had the same characteristics as a model selective antagonist, which is claimed to be ideal for the development of analgesics targeting TRPV1. Thus, this study suggests the applicability of naringin as a novel analgesic candidate through antioxidative and analgesic effects of naringin.
Collapse
Affiliation(s)
- Sanung Eom
- Department of Biotechnology, Chonnam National University, Gwangju 61186, Korea; (S.E.); (S.L.); (Y.P.); (H.D.Y.)
| | - Bo-Bae Lee
- Fruit Research Institute of Jeollanamdo Agricultural Research and Extension Services, Haenam, Naju 59021, Korea;
| | - Shinhui Lee
- Department of Biotechnology, Chonnam National University, Gwangju 61186, Korea; (S.E.); (S.L.); (Y.P.); (H.D.Y.)
| | - Youngseo Park
- Department of Biotechnology, Chonnam National University, Gwangju 61186, Korea; (S.E.); (S.L.); (Y.P.); (H.D.Y.)
| | - Hye Duck Yeom
- Department of Biotechnology, Chonnam National University, Gwangju 61186, Korea; (S.E.); (S.L.); (Y.P.); (H.D.Y.)
| | - Tae-Hwan Kim
- Department of Animal Science, Chonnam National University, Gwangju 61186, Korea;
| | - Seung-Hee Nam
- Institute of Agricultural Science and Technology, Chonnam National University, Gwangju 61186, Korea
| | - Junho H. Lee
- Department of Biotechnology, Chonnam National University, Gwangju 61186, Korea; (S.E.); (S.L.); (Y.P.); (H.D.Y.)
| |
Collapse
|
50
|
Elsawy H, Alzahrani AM, Alfwuaires M, Abdel-Moneim AM, Khalil M. Nephroprotective effect of naringin in methotrexate induced renal toxicity in male rats. Biomed Pharmacother 2021; 143:112180. [PMID: 34536756 DOI: 10.1016/j.biopha.2021.112180] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 09/04/2021] [Accepted: 09/07/2021] [Indexed: 12/20/2022] Open
Abstract
The current work aims to study the nephroprotective potential of naringin (NG), a flavanone derived from citrus fruits, in methotrexate (MTX)-induced renal toxicity. Thirty male rats were divided into five groups; control group (IP saline), MTX group (IP single dose, 20 mg/kg), and three groups co-treated with MTX and naringin (IP daily dose; 20, 40, and 80 mg/kg, respectively). Kidney tissues were used to investigate renal function, oxidative stress, lipid peroxidation, and caspase-3 activity. Biochemical cytokine analysis was performed in addition to ultrastructural examinations of kidney tissue. When compared to the MTX-treated rats, MTX+NG significantly reduced the levels of urea, creatinine, MDA, NO, TNFα, IL-6, and caspase-3 activity. A significant increase in the levels of the antioxidant enzymes and GSH were also noted. Additionally, naringin ameliorated the apparent ultrastructural changes observed in the glomeruli and renal tubules of MTX-intoxicated rats. Noticeable structural improvements of glomerular lesions, proximal, and distal convoluted tubular epithelium were observed in MTX+NG treated animals, including podocytes with regular foot processes, perfectly organized filtration barrier, no signs of GBM thickening, organized brush border, and normal architecture of microvilli. Naringin (80 mg/kg) had the maximum amelioration effect. To the best of our knowledge, this is the first study to investigate the ultrastructural manifestations of naringin and/or MTX on the kidney of rats. Taken all, naringin has a potent therapeutic effect and can be used in adjuvant therapy to prevent MTX-induced nephrotoxicity. Nevertheless, the molecular mechanism underlying the nephroprotective capacity of naringin needs further investigation.
Collapse
Affiliation(s)
- Hany Elsawy
- Department of Chemistry, College of Science, King Faisal University, P.O. Box 400, Al-Ahsa 31982, Saudi Arabia; Department of Chemistry, Faculty of Science, Tanta University, Tanta, Egypt.
| | - Abdullah M Alzahrani
- Department of Biological Sciences, College of Science, King Faisal University, P.O. Box 400, 31982 Al-Ahsa, Saudi Arabia.
| | - Manal Alfwuaires
- Department of Biological Sciences, College of Science, King Faisal University, P.O. Box 400, 31982 Al-Ahsa, Saudi Arabia.
| | - Ashraf M Abdel-Moneim
- Department of Biological Sciences, College of Science, King Faisal University, P.O. Box 400, 31982 Al-Ahsa, Saudi Arabia; Department of Zoology, Faculty of Science, Alexandria University, Alexandria, Egypt.
| | - Mahmoud Khalil
- Department of Zoology, Faculty of Science, Alexandria University, Alexandria, Egypt; Department of Biological Sciences, Faculty of Science, Beirut Arab University, Lebanon.
| |
Collapse
|