1
|
Jiang K, Bai Y, Hou R, Chen G, Liu L, Ciftci ON, Farag MA, Liu L. Advances in dietary polyphenols: Regulation of inflammatory bowel disease (IBD) via bile acid metabolism and the gut-brain axis. Food Chem 2025; 472:142932. [PMID: 39862607 DOI: 10.1016/j.foodchem.2025.142932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 12/24/2024] [Accepted: 01/14/2025] [Indexed: 01/27/2025]
Abstract
Dietary polyphenols represent a diverse group of plant-derived compounds known for their extensive biological activities, offering significant promise in the prevention and treatment of various chronic illnesses. Despite their potential, advancements in their research have been curtailed by challenges in structural analysis and limitations in existing research models. This review marks a pioneering exploration into how bile acids, gut microbiota, and the gut-brain axis serve as conduits through which dietary polyphenols can exert therapeutic effects on Inflammatory Bowel Disease (IBD). This review enriches understanding of their biological functions and addresses common obstacles in the study of natural polyphenols. It provides a comprehensive examination of the role of dietary polyphenols in modulating bile acid metabolism and mitigating IBD, covering aspects such as polyphenols, bile acid metabolism, oxidative stress, inflammation, and the nervous system. This work opens new vistas in appreciating the full spectrum of polyphenol benefits, laying the groundwork for future explorations in this domain.
Collapse
Affiliation(s)
- Kexin Jiang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food Science and Engineering, Ningbo University, Ningbo, Zhejiang, China
| | - Yinuo Bai
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food Science and Engineering, Ningbo University, Ningbo, Zhejiang, China
| | - Ruyan Hou
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Food Nutrition and Safety, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China
| | - Guijie Chen
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Food Nutrition and Safety, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China
| | - Lingyi Liu
- Department of food science and technology, University of Nebraska, Lincoln 68588, NE, USA
| | - Ozan N Ciftci
- Department of food science and technology, University of Nebraska, Lincoln 68588, NE, USA
| | - Mohamed A Farag
- Pharmacognosy department, faculty of Pharmacy, Cairo University, 11562, Egypt
| | - Lianliang Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food Science and Engineering, Ningbo University, Ningbo, Zhejiang, China.
| |
Collapse
|
2
|
Wang L, Tang C, Zhang Q, Pan Q. Ferroptosis as a molecular target of epigallocatechin gallate in diseases. Arch Physiol Biochem 2025; 131:156-168. [PMID: 39264116 DOI: 10.1080/13813455.2024.2401892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/24/2024] [Accepted: 09/02/2024] [Indexed: 09/13/2024]
Abstract
CONTEXT Ferroptosis is a novel form of cell death characterised by iron overload and lipid peroxidation. It is closely associated with many diseases, including cardiovascular diseases, tumours, and neurological diseases. The use of natural chemicals to modulate ferroptosis is of great concern because of the critical role ferroptosis plays in disease. The main active ingredient in green tea is epigallocatechin gallate (EGCG), which is the most abundant catechin in green tea. EGCG shows a wide range of biological and therapeutic effects in various diseases, including anti-inflammatory, antioxidant, anticancer, and cardioprotective. OBJECTIVE The purpose of this article is to summarise the existing information on the relationship between EGCG and ferroptosis. METHODS Articles related to EGCG and ferroptosis were searched in PubMed and Web of Science databases, and the literature was analysed. RESULTS AND CONCLUSION EGCG could improve ferroptosis-related diseases and affect the development of ferroptosis by regulating the nuclear factor erythroid 2-related factor 2, autophagy, microRNA, signal transducer and activator of transcription 1, and protein kinase D1 signalling pathways.
Collapse
Affiliation(s)
- Lili Wang
- Wuhan Wuchang Hospital, Affiliated to Wuhan University of Science and Technology, Wuhan, China
| | - Chunlian Tang
- Wuhan Wuchang Hospital, Affiliated to Wuhan University of Science and Technology, Wuhan, China
- Medical College of Wuhan University of Science and Technology, Wuhan, China
| | - Qizhi Zhang
- Medical College of Wuhan University of Science and Technology, Wuhan, China
| | - Qun Pan
- Wuhan Wuchang Hospital, Affiliated to Wuhan University of Science and Technology, Wuhan, China
| |
Collapse
|
3
|
Esmaeili Z, Shavali Gilani P, Khosravani M, Motamedi M, Maleknejad S, Adabi M, Sadighara P. Nanotechnology-driven EGCG: bridging antioxidant and therapeutic roles in metabolic and cancer pathways. Nanomedicine (Lond) 2025; 20:621-636. [PMID: 39924937 PMCID: PMC11881875 DOI: 10.1080/17435889.2025.2462521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 01/31/2025] [Indexed: 02/11/2025] Open
Abstract
Epigallocatechin-3-gallate (EGCG), the primary polyphenol in green tea, is renowned for its potent antioxidant properties. EGCG interacts with various cellular targets, inhibiting cancer cell proliferation through apoptosis and cell cycle arrest induction, while also modulating metabolic pathways. Studies have demonstrated its potential in addressing cancer development, obesity, and diabetes. Given the rising prevalence of metabolic diseases and cancers, EGCG is increasingly recognized as a promising therapeutic agent. This review provides a comprehensive overview of the latest findings on the effects of both free and nano-encapsulated EGCG on mechanisms involved in the management and prevention of hyperlipidemia, diabetes, and gastrointestinal (GI) cancers. The review highlights EGCG role in modulating key signaling pathways, enhancing bioavailability through nano-formulations, and its potential applications in clinical settings.
Collapse
Affiliation(s)
- Zahra Esmaeili
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Parisa Shavali Gilani
- Department of Environmental Health Engineering, Division of Food Safety and Hygiene, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Masood Khosravani
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Maral Motamedi
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Shokofeh Maleknejad
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Mahdi Adabi
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Food Microbiology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Parisa Sadighara
- Department of Environmental Health Engineering, Division of Food Safety and Hygiene, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
4
|
Chuang YT, Yen CY, Tang JY, Chang FR, Tsai YH, Wu KC, Chien TM, Chang HW. Protein phosphatase 2A modulation and connection with miRNAs and natural products. ENVIRONMENTAL TOXICOLOGY 2024; 39:3612-3627. [PMID: 38491812 DOI: 10.1002/tox.24199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 01/28/2024] [Accepted: 02/10/2024] [Indexed: 03/18/2024]
Abstract
Protein phosphatase 2A (PP2A), a heterotrimeric holoenzyme (scaffolding, catalytic, and regulatory subunits), regulates dephosphorylation for more than half of serine/threonine phosphosites and exhibits diverse cellular functions. Although several studies on natural products and miRNAs have emphasized their impacts on PP2A regulation, their connections lack systemic organization. Moreover, only part of the PP2A family has been investigated. This review focuses on the PP2A-modulating effects of natural products and miRNAs' interactions with potential PP2A targets in cancer and non-cancer cells. PP2A-modulating natural products and miRNAs were retrieved through a literature search. Utilizing the miRDB database, potential PP2A targets of these PP2A-modulating miRNAs for the whole set (17 members) of the PP2A family were retrieved. Finally, PP2A-modulating natural products and miRNAs were linked via a literature search. This review provides systemic directions for assessing natural products and miRNAs relating to the PP2A-modulating functions in cancer and disease treatments.
Collapse
Affiliation(s)
- Ya-Ting Chuang
- Department of Biomedical Science and Environmental Biology, PhD Program in Life Sciences, College of Life Science, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ching-Yu Yen
- School of Dentistry, Taipei Medical University, Taipei, Taiwan
- Department of Oral and Maxillofacial Surgery, Chi-Mei Medical Center, Tainan, Taiwan
| | - Jen-Yang Tang
- School of Post-Baccalaureate Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Radiation Oncology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Fang-Rong Chang
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yi-Hong Tsai
- Department of Pharmacy and Master Program, College of Pharmacy and Health Care, Tajen University, Pingtung, Taiwan
| | - Kuo-Chuan Wu
- Department of Computer Science and Information Engineering, National Pingtung University, Pingtung, Taiwan
| | - Tsu-Ming Chien
- Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Hsueh-Wei Chang
- Department of Biomedical Science and Environmental Biology, PhD Program in Life Sciences, College of Life Science, Kaohsiung Medical University, Kaohsiung, Taiwan
- Center for Cancer Research, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| |
Collapse
|
5
|
Chen S, Yi J, Kang Q, Song M, Raubenheimer D, Lu J. Identification of a Novel Peptide with Alcohol Dehydrogenase Activating Ability from Ethanol-Induced Lactococcus lactis: A Combined In Silico Prediction and In Vivo Validation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:5746-5756. [PMID: 38450489 DOI: 10.1021/acs.jafc.3c07632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
Alcohol dehydrogenase (ADH) is a crucial rate-limiting enzyme in alcohol metabolism. Our previous research found that ethanol-induced intracellular extracts of Lactococcus lactis (L. lactis) could enhance alcohol metabolism in mice, but the responsible compounds remain unidentified. The study aimed to screen potential ADH-activating peptides from ethanol-induced L. lactis using virtual screening and molecular docking calculation. Among them, the pentapeptide FAPEG might bind to ADH through hydrophobic interaction and hydrogen bonds, then enhancing ADH activity. Spectroscopy analysis further investigated the peptide-enzyme interaction between FAPEG and ADH, including changes in the amino acid residue microenvironment and secondary structural alterations. Furthermore, FAPEG could protect against alcoholic liver injury (ALI) in mice by reducing blood alcohol concentration, enhancing the activity of antioxidant and alcohol metabolism enzymes, and attenuating alcohol-induced hepatotoxicity, which was related to the activation of the Nrf2/keap1/HO-1 signaling pathway. The study provided preliminary evidence that the generation of ADH-activating peptides in ethanol-induced L. lactis has the potential in preventing ALI in mice using in silico prediction and in vivo validation approaches.
Collapse
Affiliation(s)
- Sisi Chen
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
- Physical Education College, Zhengzhou University, Zhengzhou 450001, China
- Food Laboratory of Zhongyuan, Luohe 462300, China
| | - Juanjuan Yi
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
- Food Laboratory of Zhongyuan, Luohe 462300, China
| | - Qiaozhen Kang
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Mo Song
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - David Raubenheimer
- Charles Perkins Centre, University of Sydney, Sydney 2006, New South Wales, Australia
| | - Jike Lu
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
- Food Laboratory of Zhongyuan, Luohe 462300, China
| |
Collapse
|
6
|
Tang JY, Chuang YT, Shiau JP, Yen CY, Chang FR, Tsai YH, Farooqi AA, Chang HW. Connection between Radiation-Regulating Functions of Natural Products and miRNAs Targeting Radiomodulation and Exosome Biogenesis. Int J Mol Sci 2023; 24:12449. [PMID: 37569824 PMCID: PMC10419287 DOI: 10.3390/ijms241512449] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 07/29/2023] [Accepted: 08/02/2023] [Indexed: 08/13/2023] Open
Abstract
Exosomes are cell-derived membranous structures primarily involved in the delivery of the payload to the recipient cells, and they play central roles in carcinogenesis and metastasis. Radiotherapy is a common cancer treatment that occasionally generates exosomal miRNA-associated modulation to regulate the therapeutic anticancer function and side effects. Combining radiotherapy and natural products may modulate the radioprotective and radiosensitizing responses of non-cancer and cancer cells, but there is a knowledge gap regarding the connection of this combined treatment with exosomal miRNAs and their downstream targets for radiation and exosome biogenesis. This review focuses on radioprotective natural products in terms of their impacts on exosomal miRNAs to target radiation-modulating and exosome biogenesis (secretion and assembly) genes. Several natural products have individually demonstrated radioprotective and miRNA-modulating effects. However, the impact of natural-product-modulated miRNAs on radiation response and exosome biogenesis remains unclear. In this review, by searching through PubMed/Google Scholar, available reports on potential functions that show radioprotection for non-cancer tissues and radiosensitization for cancer among these natural-product-modulated miRNAs were assessed. Next, by accessing the miRNA database (miRDB), the predicted targets of the radiation- and exosome biogenesis-modulating genes from the Gene Ontology database (MGI) were retrieved bioinformatically based on these miRNAs. Moreover, the target-centric analysis showed that several natural products share the same miRNAs and targets to regulate radiation response and exosome biogenesis. As a result, the miRNA-radiomodulation (radioprotection and radiosensitization)-exosome biogenesis axis in regard to natural-product-mediated radiotherapeutic effects is well organized. This review focuses on natural products and their regulating effects on miRNAs to assess the potential impacts of radiomodulation and exosome biogenesis for both the radiosensitization of cancer cells and the radioprotection of non-cancer cells.
Collapse
Affiliation(s)
- Jen-Yang Tang
- School of Post-Baccalaureate Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
- Department of Radiation Oncology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Ya-Ting Chuang
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
- Department of Biomedical Science and Environmental Biology, PhD Program in Life Sciences, College of Life Science, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Jun-Ping Shiau
- Division of Breast Oncology and Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
| | - Ching-Yu Yen
- School of Dentistry, Taipei Medical University, Taipei 11031, Taiwan;
- Department of Oral and Maxillofacial Surgery, Chi-Mei Medical Center, Tainan 71004, Taiwan
| | - Fang-Rong Chang
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (F.-R.C.); (Y.-H.T.)
| | - Yi-Hong Tsai
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (F.-R.C.); (Y.-H.T.)
| | - Ammad Ahmad Farooqi
- Institute of Biomedical and Genetic Engineering (IBGE), Islamabad 54000, Pakistan
| | - Hsueh-Wei Chang
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
- Department of Biomedical Science and Environmental Biology, PhD Program in Life Sciences, College of Life Science, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Center for Cancer Research, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
| |
Collapse
|
7
|
Zhang Y, Huang Y, Li Z, Wu H, Zou B, Xu Y. Exploring Natural Products as Radioprotective Agents for Cancer Therapy: Mechanisms, Challenges, and Opportunities. Cancers (Basel) 2023; 15:3585. [PMID: 37509245 PMCID: PMC10377328 DOI: 10.3390/cancers15143585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 07/04/2023] [Accepted: 07/09/2023] [Indexed: 07/30/2023] Open
Abstract
Radiotherapy is an important cancer treatment. However, in addition to killing tumor cells, radiotherapy causes damage to the surrounding cells and is toxic to normal tissues. Therefore, an effective radioprotective agent that prevents the deleterious effects of ionizing radiation is required. Numerous synthetic substances have been shown to have clear radioprotective effects. However, most of these have not been translated for use in clinical applications due to their high toxicity and side effects. Many medicinal plants have been shown to exhibit various biological activities, including antioxidant, anti-inflammatory, and anticancer activities. In recent years, new agents obtained from natural products have been investigated by radioprotection researchers, due to their abundance of sources, high efficiency, and low toxicity. In this review, we summarize the mechanisms underlying the radioprotective effects of natural products, including ROS scavenging, promotion of DNA damage repair, anti-inflammatory effects, and the inhibition of cell death signaling pathways. In addition, we systematically review natural products with radioprotective properties, including polyphenols, polysaccharides, alkaloids, and saponins. Specifically, we discuss the polyphenols apigenin, genistein, epigallocatechin gallate, quercetin, resveratrol, and curcumin; the polysaccharides astragalus, schisandra, and Hohenbuehelia serotina; the saponins ginsenosides and acanthopanax senticosus; and the alkaloids matrine, ligustrazine, and β-carboline. However, further optimization through structural modification, improved extraction and purification methods, and clinical trials are needed before clinical translation. With a deeper understanding of the radioprotective mechanisms involved and the development of high-throughput screening methods, natural products could become promising novel radioprotective agents.
Collapse
Affiliation(s)
- Yi Zhang
- Division of Thoracic Oncology, Cancer Center, Department of Radiation Oncology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Ying Huang
- College of Management, Sichuan Agricultural University, Chengdu 611130, China
| | - Zheng Li
- Division of Thoracic Oncology, Cancer Center, Department of Radiation Oncology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Hanyou Wu
- Zhongshan Ophthalmic Center, State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-sen University, Guangzhou 510060, China
| | - Bingwen Zou
- Division of Thoracic Oncology, Cancer Center, Department of Radiation Oncology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yong Xu
- Division of Thoracic Oncology, Cancer Center, Department of Radiation Oncology, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
8
|
Zou Y, Shi H, Lin H, Wang X, Wang G, Gao Y, Yi F, Yin Y, Li D, Li M. The abrogation of GRP78 sensitizes liver cancer cells to lysionotin by enhancing ER stress-mediated pro-apoptotic pathway. Cell Stress Chaperones 2023; 28:409-422. [PMID: 37326827 PMCID: PMC10352479 DOI: 10.1007/s12192-023-01358-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/14/2023] [Accepted: 06/02/2023] [Indexed: 06/17/2023] Open
Abstract
Glucose-regulated protein 78 (GRP78) is frequently and highly expressed in various human malignancies and protects cancer cells against apoptosis induced by multifarious stresses, particularly endoplasmic reticulum stress (ER stress). The inhibition of GRP78 expression or activity could enhance apoptosis induced by anti-tumor drugs or compounds. Herein, we will evaluate the efficacy of lysionotin in the treatment of human liver cancer as well as the molecular mechanism. Moreover, we will examine whether inhibition of GRP78 enhanced the sensitivity of hepatocellular carcinoma cells to lysionotin. We found that lysionotin significantly suppressed proliferation and induced apoptosis of liver cancer cells. TEM showed that lysionotin-treated liver cancer cells showed an extensively distended and dilated endoplasmic reticulum lumen. Meanwhile, the levels of the ER stress hallmark GRP78 and UPR hallmarks (e.g., IRE1α and CHOP) were significantly increased in response to lysionotin treatment in liver cancer cells. Moreover, the reactive oxygen species (ROS) scavenger NAC and caspase-3 inhibitor Ac-DEVD-CHO visibly attenuated the induction of GRP78 and attenuated the decrease in cell viability induced by lysionotin. More importantly, the knockdown of GRP78 expression by siRNAs or treatment with EGCG, both induced remarkable increase in lysionotin-induced PARP and pro-caspase-3 cleavage and JNK phosphorylation. In addition, knockdown of GRP78 expression by siRNA or suppression GRP78 activity by EGCG both significantly improved the effectiveness of lysionotin. These data indicated that pro-survival GRP78 induction may contribute to lysionotin resistance. The combination of EGCG and lysionotin is suggested to represent a novel approach in cancer chemo-prevention and therapeutics.
Collapse
Affiliation(s)
- Ying Zou
- Yantai Key Laboratory of Pharmacology of Traditional Chinese Medicine in Tumor Metabolism, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, 264003, Shandong, People's Republic of China
| | - Hewen Shi
- Yantai Key Laboratory of Pharmacology of Traditional Chinese Medicine in Tumor Metabolism, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, 264003, Shandong, People's Republic of China
| | - Haiyan Lin
- Yantai Key Laboratory of Pharmacology of Traditional Chinese Medicine in Tumor Metabolism, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, 264003, Shandong, People's Republic of China
| | - Xiaoxue Wang
- Yantai Key Laboratory of Pharmacology of Traditional Chinese Medicine in Tumor Metabolism, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, 264003, Shandong, People's Republic of China
| | - Guoli Wang
- Yantai Key Laboratory of Pharmacology of Traditional Chinese Medicine in Tumor Metabolism, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, 264003, Shandong, People's Republic of China
| | - Yijia Gao
- School of Basic Medical Sciences, Binzhou Medical University, Yantai, 264003, China
| | - Fan Yi
- School of Basic Medical Sciences, Binzhou Medical University, Yantai, 264003, China
| | - Yancun Yin
- School of Basic Medical Sciences, Binzhou Medical University, Yantai, 264003, China.
| | - Defang Li
- Yantai Key Laboratory of Pharmacology of Traditional Chinese Medicine in Tumor Metabolism, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, 264003, Shandong, People's Republic of China.
- Collaborative innovation platform for modernization and industrialization of regional characteristic traditional Chinese medicine, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, 264003, Shandong, People's Republic of China.
| | - Minjing Li
- Yantai Key Laboratory of Pharmacology of Traditional Chinese Medicine in Tumor Metabolism, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, 264003, Shandong, People's Republic of China.
- Collaborative innovation platform for modernization and industrialization of regional characteristic traditional Chinese medicine, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, 264003, Shandong, People's Republic of China.
| |
Collapse
|
9
|
Yin JY, Lu XT, Hou ML, Cao T, Tian Z. Sirtuin1-p53: a potential axis for cancer therapy. Biochem Pharmacol 2023; 212:115543. [PMID: 37037265 DOI: 10.1016/j.bcp.2023.115543] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 03/31/2023] [Accepted: 04/03/2023] [Indexed: 04/12/2023]
Abstract
Sirtuin1 (SIRT1) is a conserved nicotinamide adenine dinucleotide (NAD+)-dependent histone deacetylase that plays key roles in a range of cellular events, including the maintenance of genome stability, gene regulation, cell proliferation, and apoptosis. P53 is one of the most studied tumor suppressors and the first identified non-histone target of SIRT1. SIRT1 deacetylates p53 in a NAD+-dependent manner and inhibits its transcriptional activity, thus exerting action on a series of pathways related to tissue homeostasis and various pathological states. The SIRT1-p53 axis is thought to play a central role in tumorigenesis. Although SIRT1 was initially identified as a tumor promoter, evidence now indicates that SIRT1 may also act as a tumor suppressor. This seemingly contradictory evidence indicates that the functionality of SIRT1 may be dictated by different cell types and intracellular localization patterns. In this review, we summarize recent evidence relating to the interactions between SIRT1 and p53 and discuss the relative roles of these two molecules with regards to cancer-associated cellular events. We also provide an overview of current knowledge of SIRT1-p53 signaling in tumorigenesis. Given the vital role of the SIRT1-p53 pathway, targeting this axis may provide promising strategies for the treatment of cancer.
Collapse
Affiliation(s)
- Jia-Yi Yin
- College of Pharmaceutical Sciences, Southwest University, Chongqing, China
| | - Xin-Tong Lu
- College of Pharmaceutical Sciences, Southwest University, Chongqing, China
| | - Meng-Ling Hou
- College of Pharmaceutical Sciences, Southwest University, Chongqing, China
| | - Ting Cao
- College of Pharmaceutical Sciences, Southwest University, Chongqing, China
| | - Zhen Tian
- College of Pharmaceutical Sciences, Southwest University, Chongqing, China.
| |
Collapse
|
10
|
Zhou YJ, Tang Y, Liu SJ, Zeng PH, Qu L, Jing QC, Yin WJ. Radiation-induced liver disease: beyond DNA damage. Cell Cycle 2023; 22:506-526. [PMID: 36214587 PMCID: PMC9928481 DOI: 10.1080/15384101.2022.2131163] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/05/2022] [Accepted: 09/08/2022] [Indexed: 11/03/2022] Open
Abstract
Radiation-induced liver disease (RILD), also known as radiation hepatitis, is a serious side effect of radiotherapy (RT) for hepatocellular carcinoma. The therapeutic dose of RT can damage normal liver tissue, and the toxicity that accumulates around the irradiated liver tissue is related to numerous physiological and pathological processes. RILD may restrict treatment use or eventually deteriorate into liver fibrosis. However, the research on the mechanism of radiation-induced liver injury has seen little progress compared with that on radiation injury in other tissues, and no targeted clinical pharmacological treatment for RILD exists. The DNA damage response caused by ionizing radiation plays an important role in the pathogenesis and development of RILD. Therefore, in this review, we systematically summarize the molecular and cellular mechanisms involved in RILD. Such an analysis is essential for preventing the occurrence and development of RILD and further exploring the potential treatment of this disease.
Collapse
Affiliation(s)
- Ying Jie Zhou
- Department of Clinical Laboratory Medicine, Institution of microbiology and infectious diseases, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Yun Tang
- Department of Clinical Laboratory Medicine, Institution of microbiology and infectious diseases, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Si Jian Liu
- Department of Clinical Laboratory Medicine, Institution of microbiology and infectious diseases, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Peng Hui Zeng
- Department of Clinical Laboratory Medicine, Institution of microbiology and infectious diseases, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Li Qu
- Department of Clinical Laboratory Medicine, Institution of microbiology and infectious diseases, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Qian Cheng Jing
- The Affiliated Changsha Central Hospital, Department of Otolaryngology Head and Neck Surgery,Hengyang Medical School, University of South China, Changsha, Hunan, China
- Institute of Otolaryngology Head and Neck Surgery, Hengyang Medical School, University of South China, Changsha, Hunan, China
| | - Wen Jun Yin
- Department of Clinical Laboratory Medicine, Institution of microbiology and infectious diseases, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- Department of Clinical Laboratory, Changsha Central Hospital, University of South China, Changsha, Hunan, China
| |
Collapse
|
11
|
Costa AR, Duarte AC, Costa-Brito AR, Gonçalves I, Santos CRA. Bitter taste signaling in cancer. Life Sci 2023; 315:121363. [PMID: 36610638 DOI: 10.1016/j.lfs.2022.121363] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/21/2022] [Accepted: 12/30/2022] [Indexed: 01/06/2023]
Abstract
Pharmacoresistance of cancer cells to many drugs used in chemotherapy remains a major challenge for the treatment of cancer. Multidrug resistance transporters, especially ATP-binding cassette (ABC) transporters, are a major cause of cancer drug resistance since they translocate a broad range of drug compounds across the cell membrane, extruding them out of the cells. The regulation of ABC transporters by bitter taste receptors (TAS2Rs), which might be activated by specific bitter tasting compounds, was described in several types of cells/organs, becoming a potential target for cancer therapy. TAS2Rs expression has been reported in many organs and several types of cancer, like breast, ovarian, prostate, and colorectal cancers, where their activation was shown to be involved in various biological actions (cell survival, apoptosis, molecular transport, among others). Moreover, many TAS2Rs' ligands, such as flavonoids and alkaloids, with well-recognized beneficial properties, including several anticancer effects, have been reported as potential adjuvants in cancer therapies. In this review, we discuss the potential therapeutic role of TAS2Rs and bitter tasting compounds in different types of cancer as a possible way to circumvent chemoresistance.
Collapse
Affiliation(s)
- Ana R Costa
- CICS-UBI - Health Sciences Research Centre, Universidade da Beira Interior, Covilhã, Portugal
| | - Ana C Duarte
- CICS-UBI - Health Sciences Research Centre, Universidade da Beira Interior, Covilhã, Portugal; CPIRN-IPG - Centro de Potencial e Inovação de Recursos Naturais, Instituto Politécnico da Guarda, Guarda, Portugal
| | - Ana R Costa-Brito
- CICS-UBI - Health Sciences Research Centre, Universidade da Beira Interior, Covilhã, Portugal; Research Unit for Inland Development (UDI), Polytechnic of Guarda, Guarda, Portugal
| | - Isabel Gonçalves
- CICS-UBI - Health Sciences Research Centre, Universidade da Beira Interior, Covilhã, Portugal
| | - Cecília R A Santos
- CICS-UBI - Health Sciences Research Centre, Universidade da Beira Interior, Covilhã, Portugal.
| |
Collapse
|
12
|
Zhu G, Cai J, Zhong H. TP53 signal pathway confers potential therapy target in acute myeloid leukemia. Eur J Haematol 2023; 110:480-489. [PMID: 36692074 DOI: 10.1111/ejh.13934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 01/17/2023] [Accepted: 01/19/2023] [Indexed: 01/25/2023]
Abstract
TP53 mutation is a frequent tumor suppressor mutation and a critical prognostic indicator across studies in many malignant tumors including hematologic malignancies. However, the role of TP53 and its correlative pathway in acute myeloid leukemia (AML) is enigmatic, which may provide possible emerging strategies with the potential to improve outcomes in AML. Accordingly, we focus not only on the TP53 mutation but also on the underlying mechanisms of the mutated TP53 signal pathway. While it is now generally accepted that TP53 mutations are widely associated with a dismal prognosis, resistance to chemotherapy, and high incidence of relapse and refractory AML. Hereby, the current therapeutics targeting TP53 mutant AML are summarized in this review. This will address emerging TP53-based therapeutic approaches, facilizing the TP53-targeted treatment options.
Collapse
Affiliation(s)
- Gelan Zhu
- Department of Hematology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Jiayi Cai
- Department of Hematology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Hua Zhong
- Department of Hematology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| |
Collapse
|
13
|
Chuang YT, Tang JY, Shiau JP, Yen CY, Chang FR, Yang KH, Hou MF, Farooqi AA, Chang HW. Modulating Effects of Cancer-Derived Exosomal miRNAs and Exosomal Processing by Natural Products. Cancers (Basel) 2023; 15:318. [PMID: 36612314 PMCID: PMC9818271 DOI: 10.3390/cancers15010318] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/28/2022] [Accepted: 12/29/2022] [Indexed: 01/06/2023] Open
Abstract
Cancer-derived exosomes exhibit sophisticated functions, such as proliferation, apoptosis, migration, resistance, and tumor microenvironment changes. Several clinical drugs modulate these exosome functions, but the impacts of natural products are not well understood. Exosome functions are regulated by exosome processing, such as secretion and assembly. The modulation of these exosome-processing genes can exert the anticancer and precancer effects of cancer-derived exosomes. This review focuses on the cancer-derived exosomal miRNAs that regulate exosome processing, acting on the natural-product-modulating cell functions of cancer cells. However, the role of exosomal processing has been overlooked in several studies of exosomal miRNAs and natural products. In this study, utilizing the bioinformatics database (miRDB), the exosome-processing genes of natural-product-modulated exosomal miRNAs were predicted. Consequently, several natural drugs that modulate exosome processing and exosomal miRNAs and regulate cancer cell functions are described here. This review sheds light on and improves our understanding of the modulating effects of exosomal miRNAs and their potential exosomal processing targets on anticancer treatments based on the use of natural products.
Collapse
Affiliation(s)
- Ya-Ting Chuang
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Jen-Yang Tang
- School of Post-Baccalaureate Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Radiation Oncology, Kaohsiung Medical University Hospital, Kaoshiung Medical University, Kaohsiung 80708, Taiwan
| | - Jun-Ping Shiau
- Division of Breast Oncology and Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Ching-Yu Yen
- School of Dentistry, Taipei Medical University, Taipei 11031, Taiwan
- Department of Oral and Maxillofacial Surgery, Chi-Mei Medical Center, Tainan 71004, Taiwan
| | - Fang-Rong Chang
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Kun-Han Yang
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Ming-Feng Hou
- Division of Breast Oncology and Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Biomedical Science and Environmental Biology, College of Life Science, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Ammad Ahmad Farooqi
- Institute of Biomedical and Genetic Engineering (IBGE), Islamabad 54000, Pakistan
| | - Hsueh-Wei Chang
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Biomedical Science and Environmental Biology, College of Life Science, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
- Center for Cancer Research, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| |
Collapse
|
14
|
Shao Y, Zheng C, Liu K, Xiong J, Wang X, Han M, Li L, Shi Y, Lu J, Yi J. Extraction optimization, purification, and biological properties of polysaccharide from Chinese yam peel. J Food Biochem 2022; 46:e14490. [PMID: 36288503 DOI: 10.1111/jfbc.14490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 10/04/2022] [Accepted: 10/14/2022] [Indexed: 01/14/2023]
Abstract
In this study, the Chinese yam peel polysaccharide (CYPP) was obtained under the extraction conditions optimized by the Response Surface Methodology (RSM). Further biological properties of CYPP-1 purified from CYPP were also determined. The results indicated that the optimum extraction conditions were an extraction temperature of 90.5°C, a liquid-solid ratio of 28.0 ml/g, and an extraction time of 2.94 h, along with a yield of 8.81 ± 1.48%. CYPP-1 was identified as a kind of heteropolysaccharide mostly composed of glucose and galactose (59.4:1.0). The molecular weights were two main parts of 50.5 kDa (54.77%) and 4.4 kDa (21.02%), and the triple-helix conformation was not formed in CYPP-1. Besides, CYPP-1 showed good biological properties including in vitro antioxidant activity and immunomodulatory function on RAW264.7 cells, as well as favorable hypoglycemic effect. Overall, the high-value utilization of CYPP-1 reveals a broad application prospect in the industrial production of functional foods and pharmaceuticals. PRACTICAL APPLICATIONS: Yam peel, which is discarded in large quantities during postharvest processing, results in the production of tremendous by-products and is a great waste of resources. In this study, the yield of water-soluble polysaccharide from yam peel reached 8.81 ± 1.48%. Besides, the purified CYPP-1 exhibited excellent antioxidant activity, favorable immunomodulatory function, and hypoglycemic effect. The high productivity and bioactive effects are both great merits for Chinese yam peel polysaccharide as a promising candidate for foods and medicines industrial production.
Collapse
Affiliation(s)
- Yiwen Shao
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Chaoqiang Zheng
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Keke Liu
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Jiyuan Xiong
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Xiaolong Wang
- Henan Yinfeng Biological Engineering Technology Co., LTD, Zhengzhou, China
| | - Mingyue Han
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Li Li
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Yanling Shi
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Jike Lu
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Juanjuan Yi
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
15
|
Piergentili R, Basile G, Nocella C, Carnevale R, Marinelli E, Patrone R, Zaami S. Using ncRNAs as Tools in Cancer Diagnosis and Treatment-The Way towards Personalized Medicine to Improve Patients' Health. Int J Mol Sci 2022; 23:9353. [PMID: 36012617 PMCID: PMC9409241 DOI: 10.3390/ijms23169353] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 08/14/2022] [Accepted: 08/16/2022] [Indexed: 12/06/2022] Open
Abstract
Although the first discovery of a non-coding RNA (ncRNA) dates back to 1958, only in recent years has the complexity of the transcriptome started to be elucidated. However, its components are still under investigation and their identification is one of the challenges that scientists are presently facing. In addition, their function is still far from being fully understood. The non-coding portion of the genome is indeed the largest, both quantitatively and qualitatively. A large fraction of these ncRNAs have a regulatory role either in coding mRNAs or in other ncRNAs, creating an intracellular network of crossed interactions (competing endogenous RNA networks, or ceRNET) that fine-tune the gene expression in both health and disease. The alteration of the equilibrium among such interactions can be enough to cause a transition from health to disease, but the opposite is equally true, leading to the possibility of intervening based on these mechanisms to cure human conditions. In this review, we summarize the present knowledge on these mechanisms, illustrating how they can be used for disease treatment, the current challenges and pitfalls, and the roles of environmental and lifestyle-related contributing factors, in addition to the ethical, legal, and social issues arising from their (improper) use.
Collapse
Affiliation(s)
- Roberto Piergentili
- Institute of Molecular Biology and Pathology, Italian National Research Council (CNR-IBPM), 00185 Rome, Italy
| | - Giuseppe Basile
- Trauma Unit and Emergency Department, IRCCS Galeazzi Orthopedics Institute, 20161 Milan, Italy
- Head of Legal Medicine Unit, Clinical Institute San Siro, 20148 Milan, Italy
| | - Cristina Nocella
- Department of Clinical Internal, Anaesthesiological and Cardiovascular Sciences, “Sapienza” University of Rome, Viale del Policlinico, 155, 00161 Rome, Italy
| | - Roberto Carnevale
- Department of Medico-Surgical Sciences and Biotechnologies, “Sapienza” University of Rome, 04100 Latina, Italy
- Mediterranea Cardiocentro-Napoli, Via Orazio, 80122 Naples, Italy
| | - Enrico Marinelli
- Department of Medico-Surgical Sciences and Biotechnologies, “Sapienza” University of Rome, 04100 Latina, Italy
| | - Renato Patrone
- PhD ICTH, University of Federico II, HPB Department INT F. Pascale IRCCS of Naples, Via Mariano Semmola, 80131 Naples, Italy
| | - Simona Zaami
- Department of Anatomical, Histological, Forensic and Orthopedic Sciences, Section of Forensic Medicine, “Sapienza” University of Rome, 00161 Rome, Italy
| |
Collapse
|
16
|
Zheng C, Shao Y, Hao L, Shi Y, Zhu J, Zhao C, Jiang Q, Yi J, Lu J. Extraction, characterization and biological activities of a polysaccharide from
Poria cocos
peels. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Chaoqiang Zheng
- School of Life Sciences Zhengzhou University Zhengzhou Henan China
| | - Yiwen Shao
- School of Life Sciences Zhengzhou University Zhengzhou Henan China
| | - Limin Hao
- Institute of Quartermaster Engineering and Technology Academy of Military Sciences PLA China,Beijing 100010 China
| | - Yanling Shi
- School of Life Sciences Zhengzhou University Zhengzhou Henan China
| | - Jiaqing Zhu
- School of Life Sciences Zhengzhou University Zhengzhou Henan China
| | - Changcheng Zhao
- School of Life Sciences Zhengzhou University Zhengzhou Henan China
| | - Qingwu Jiang
- Anhui Jinzhai Qiaokang Pharmaceutical Co., Ltd, Liuan Anhui China
| | - Juanjuan Yi
- School of Life Sciences Zhengzhou University Zhengzhou Henan China
| | - Jike Lu
- School of Life Sciences Zhengzhou University Zhengzhou Henan China
| |
Collapse
|
17
|
Dietary Phytochemicals Targeting Nrf2 to Enhance the Radiosensitivity of Cancer. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:7848811. [PMID: 35368867 PMCID: PMC8967572 DOI: 10.1155/2022/7848811] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 02/18/2022] [Accepted: 03/11/2022] [Indexed: 12/15/2022]
Abstract
Nowadays, cancer has become the second leading cause of death worldwide. Radiotherapy (RT) is the mainstay in management of carcinoma; however, overcoming radioresistance remains a great challenge to successfully treat cancer. Nrf2 is a key transcription factor that is responsible for maintaining cellular redox homeostasis. Activation of Nrf2 signaling pathway could upregulate multifarious antioxidant and detoxifying enzymes, further scavenging excessive reactive oxygen species (ROS). Despite its cytoprotective roles in normal cells, it could also alleviate oxidative stress and DNA damage caused by RT in cancer cells, thus promoting cancer cell survival. Accumulating evidence indicates that overactivation of Nrf2 is associated with radioresistance; therefore, targeting Nrf2 is a promising strategy to enhance radiosensitivity. Dietary phytochemicals coming from natural products are characterized by low cost, low toxicity, and general availability. Numerous phytochemicals are reported to regulate Nrf2 and intensify the killing capability of RT through diverse mechanisms, including promoting oxidative stress, proapoptosis, and proautophagy as well as inhibiting Nrf2-mediated cytoprotective genes expression. This review summarizes recent advances in radiosensitizing effects of dietary phytochemicals by targeting Nrf2 and discusses the underlying mechanisms, including N6-methyladenosine (m6A) modification of Nrf2 mediated by phytochemicals in cancer.
Collapse
|
18
|
Hosseini M, Baghaei K, Hajivalili M, Zali MR, Ebtekar M, Amani D. The anti-tumor effects of CT-26 derived exosomes enriched by MicroRNA-34a on murine model of colorectal cancer. Life Sci 2022; 290:120234. [PMID: 34953890 DOI: 10.1016/j.lfs.2021.120234] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 12/01/2021] [Accepted: 12/09/2021] [Indexed: 12/19/2022]
Abstract
AIMS As conventional therapeutics failed to provide satisfied outcomes against one of the most prevalent cancers, colorectal cancer (CRC), we purposed to implicate MicroRNA (miR)-34a, as a major tumor suppressor, to be delivered by tumor-derived exosomes (TEXs) and investigated its anti-tumor functions in-vivo. MAIN METHODS TEXs were isolated from CT-26 cell line and loaded with miR-34a mimic. Then, mice bearing CRC were treated with miR-34a-enriched TEX (TEX-miR-34a) and then examined for the relative tumor-suppressive impacts of the TEX as well as its potential in promoting an anti-tumor immune response. KEY FINDINGS TEX-miR-34a significantly reduced tumor size and prolonged survival of mice bearing CRC. TEX-miR-34a was able to diminish gene expressions related to invasion, angiogenesis and immune evasion. It was also capable of inducing T cell polarization toward CD8+ T subsets among tumor-infiltrating lymphocytes, draining lymph nodes (DLNs) and spleen cells. Moreover, cytotoxic T cells were professionally induced in mice receiving TEX-miR-34a and the secretion of interleukin (IL)-6, IL-17A and tumor necrosis factor (TGF)-β was reduced in DLNs. However, the enhanced levels of interferon-γ were evaluated in DLN and spleen displaying the polarization of anti-tumor immune responses. Interestingly, mice receiving TEX alone showed a noticeable reduction in certain oncogenic gene expressions as well as IL-17A secretion in DLNs. SIGNIFICANCE TEX-miR-34a demonstrated the potential to induce beneficial anti-tumor immune responses and TEXs, aside from the delivery function of miRNA, revealed certain anti-tumor beneficial characteristics which could introduce TEX-miR-34a as a promising approach in CRC combination therapies.
Collapse
Affiliation(s)
- Maryam Hosseini
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran; Pediatric Cell and Gene Therapy Research Center, Gene, Cell & Tissue Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Kaveh Baghaei
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahsa Hajivalili
- Department of Immunology, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Zali
- Gastroenterology and Liver Disease Research Center, Research Institute for Gastroenterology and Liver Disease, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Masoumeh Ebtekar
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Davar Amani
- Department of Immunology, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
19
|
Shao Y, Kang Q, Zhu J, Zhao C, Hao L, Huang J, Lu J, Jia S, Yi J. Antioxidant properties and digestion behaviors of polysaccharides from Chinese yam fermented by Saccharomyces boulardii. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112752] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
20
|
Li X, Yi J, Zhu J, Zhao C, Cui Y, Shi Y, Hao L, Lu J. Protective effect of coix seed seedling extract on 60 Co-γ radiation-induced oxidative stress in mice. J Food Sci 2021; 87:438-449. [PMID: 34919269 DOI: 10.1111/1750-3841.15991] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 10/25/2021] [Accepted: 11/03/2021] [Indexed: 11/26/2022]
Abstract
Exposure to ionizing radiation (IR) can cause oxidative damage to human body, leading to various diseases and even death. In this study, the potential radioprotective effect of coix seed seedling extract (CSS-E) was studied through a model of 60 Co-γ radiation-induced oxidative stress in mice. Overall radioprotective effect of CSS-E against radiation-induced damage was evaluated by biochemical analysis and histopathological analysis. The results showed that CSS-E could significantly reduce the IR-induced damage to the hematopoietic system. CSS-E-M (200 mg/kg BW) pretreatment could increase the activities of superoxide dismutase in serum, liver, and spleen increased by 31.68%, 45.10%, and 56.67%, respectively, and the glutathione peroxidase levels in serum, liver, and spleen of mice were improved by 19.17%, 41.97%, and 130.56%, respectively. Meanwhile, the glutathione levels of serum, liver, and spleen in CSS-E-M group were increased by 17.10%, 35.06%, and 40.71%, respectively. The contents of MDA in different tissues and serum could be reduced by CSS-E-M treatment to the normal level. Moreover, CSS-E could markedly reduce the activities of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) in radiation mice, among which CSS-E-M group showed maximum restoration with decreased AST and ALT levels by 20.13% and 32.76% as compared against IR group. In conclusion, these results indicated that CSS-E could be used as a potential natural radioprotectant against IR-induced damage.
Collapse
Affiliation(s)
- Xue Li
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Juanjuan Yi
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Jiaqing Zhu
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Changcheng Zhao
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Yan Cui
- Institute of Quartermaster Engineering and Technology, Academy of Military Sciences PLA China, Beijing, China
| | - Yanling Shi
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Limin Hao
- Institute of Quartermaster Engineering and Technology, Academy of Military Sciences PLA China, Beijing, China
| | - Jike Lu
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
21
|
Fatima N, Baqri SSR, Bhattacharya A, Koney NKK, Husain K, Abbas A, Ansari RA. Role of Flavonoids as Epigenetic Modulators in Cancer Prevention and Therapy. Front Genet 2021; 12:758733. [PMID: 34858475 PMCID: PMC8630677 DOI: 10.3389/fgene.2021.758733] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Accepted: 10/26/2021] [Indexed: 12/16/2022] Open
Abstract
Epigenetic regulation involves reversible changes in histones and DNA modifications that can be inherited without any changes in the DNA sequence. Dysregulation of normal epigenetic processes can lead to aberrant gene expression as observed in many diseases, notably cancer. Recent insights into the mechanisms of DNA methylation, histone modifications, and non-coding RNAs involved in altered gene expression profiles of tumor cells have caused a paradigm shift in the diagnostic and therapeutic approaches towards cancer. There has been a surge in search for compounds that could modulate the altered epigenetic landscape of tumor cells, and to exploit their therapeutic potential against cancers. Flavonoids are naturally occurring phenol compounds which are abundantly found among phytochemicals and have potentials to modulate epigenetic processes. Knowledge of the precise flavonoid-mediated epigenetic alterations is needed for the development of epigenetics drugs and combinatorial therapeutic approaches against cancers. This review is aimed to comprehensively explore the epigenetic modulations of flavonoids and their anti-tumor activities.
Collapse
Affiliation(s)
- Nishat Fatima
- Department of Chemistry, Shia Postgraduate College, Lucknow, India
| | | | - Atrayee Bhattacharya
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, United States
| | - Nii Koney-Kwaku Koney
- Department of Anatomy, University of Ghana Medical School, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Kazim Husain
- Department of Molecular Medicine, University of South Florida, Tampa, FL, United States
| | - Ata Abbas
- Division of Hematology and Oncology, Department of Medicine, Case Western Reserve University, Cleveland, OH, United States.,Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH, United States
| | - Rais A Ansari
- Department of Pharmaceutical Sciences, Nova Southeastern University, Fort Lauderdale, FL, United States
| |
Collapse
|
22
|
Shah D, Gandhi M, Kumar A, Cruz-Martins N, Sharma R, Nair S. Current insights into epigenetics, noncoding RNA interactome and clinical pharmacokinetics of dietary polyphenols in cancer chemoprevention. Crit Rev Food Sci Nutr 2021; 63:1755-1791. [PMID: 34433338 DOI: 10.1080/10408398.2021.1968786] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Several studies have reported the health-beneficial effects of dietary phytochemicals, namely polyphenols, to prevent various diseases, including cancer. Polyphenols, like (-)-epigallocatechin-3-gallate (EGCG) from green tea, curcumin from turmeric, and ellagic acid from pomegranate are known to act by modulating antioxidant, anti-inflammatory and apoptotic signal transduction pathways in the tumor milieu. The evolving literature underscores the role of epigenetic regulation of genes associated with cancer by these polyphenols, primarily via non-coding RNAs (ncRNAs), such as microRNAs (miRNA) and long noncoding RNA (lncRNA). However, there is little clarity on the exact role(s) played by these ncRNAs and their interactions with other ncRNAs, or with their protein targets, in response to modulation by these dietary polyphenols. Here, we review ncRNA interactions and functional networks of the complex ncRNA interactome with their targets in preclinical studies along with the role of epigenetics as well as key aspects of pharmacokinetics and phytochemistry of dietary polyphenols. We also summarize the current state of clinical trials with these dietary polyphenols. Taken together, this synthetic review provides insights into the molecular aspects underlying the anticancer chemopreventive effects of dietary polyphenols as well as summarizes data on novel biomarkers modulated by these polyphenols for preventive or therapeutic purposes in various types of cancer.
Collapse
Affiliation(s)
| | | | - Arun Kumar
- Division of Radiation Biosciences, Institute of Nuclear Medicine and Allied Sciences, Defence Research and Development Organization, Timarpur Delhi, India
| | - Natália Cruz-Martins
- Faculty of Medicine, University of Porto, Porto, Portugal.,Institute for research and Innovation in Health (i3S), University of Porto, Porto, Portugal.,Institute of Research and Advanced Training in Health Sciences and Technologies (CESPU), Gandra PRD, Portugal
| | - Rohit Sharma
- Department of Rasa Shastra and Bhaishajya Kalpana, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | | |
Collapse
|
23
|
Hao R, Song X, Sun-Waterhouse D, Tan X, Li F, Li D. MiR-34a/Sirt1/p53 signaling pathway contributes to cadmium-induced nephrotoxicity: A preclinical study in mice. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 282:117029. [PMID: 33823310 DOI: 10.1016/j.envpol.2021.117029] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 03/08/2021] [Accepted: 03/24/2021] [Indexed: 06/12/2023]
Abstract
Cadmium (Cd), as an environmental pollutant, can lead to nephrotoxicity. However, its nephrotoxicological mechanisms have not been fully elucidated. In this study, Cd (1.5 mg/kg body weight, gavaged for 4 weeks) was found to induce the renal damage in mice, based on indicators including Cd concentration, kidney index, serum creatinine and blood urea nitrogen levels, pro-inflammatory cytokines and their mRNA expressions, levels of Bcl-2, Bax and caspase9, and histopathological changes of the kidneys. Furthermore, Cd-caused detrimental changes through inducing inflammation and apoptosis via the miR-34a/Sirt1/p53 axis. This is the first report on the role of miR-34a/Sirt1/p53 axis in regulating Cd-caused apoptosis and nephrotoxicity in mice. The findings obtained in this study provide new insights into miRNA-based regulation of heavy metal induced-nephrotoxicity.
Collapse
Affiliation(s)
- Rili Hao
- College of Food Science and Engineering, Shandong Agricultural University, Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, Taian, 271018, China
| | - Xinyu Song
- College of Food Science and Engineering, Shandong Agricultural University, Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, Taian, 271018, China
| | - Dongxiao Sun-Waterhouse
- College of Food Science and Engineering, Shandong Agricultural University, Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, Taian, 271018, China; School of Chemical Sciences, The University of Auckland, Auckland, New Zealand
| | - Xintong Tan
- College of Food Science and Engineering, Shandong Agricultural University, Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, Taian, 271018, China
| | - Feng Li
- College of Food Science and Engineering, Shandong Agricultural University, Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, Taian, 271018, China
| | - Dapeng Li
- College of Food Science and Engineering, Shandong Agricultural University, Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, Taian, 271018, China.
| |
Collapse
|
24
|
Suo K, Chen S, Li X, Liu X, Yi J, Zhu J, Lu L, Hao L, Kang Q, Lu J. Radioprotective effect of radiation-induced Lactococcus lactis cell-free extract against 60Coγ injury in mice. J Dairy Sci 2021; 104:9532-9542. [PMID: 34218913 DOI: 10.3168/jds.2021-20291] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 05/07/2021] [Indexed: 01/27/2023]
Abstract
Ionizing radiation (IR) is widely used in the diagnosis and treatment of various cancers. However, IR can cause damage to human health by producing reactive oxygen species. Lactococcus lactis is a type of microorganism that is beneficial to human health and has a strong antioxidant capacity. In this study, the protective effect of normal and IR-induced L. lactis IL1403 cell-free extracts (CFE and IR-CFE, respectively) against oxidative damage in vitro and the radioprotective effect of IR-CFE in vivo was evaluated using 60Coγ-induced oxidative damage model in mice. Results showed that IR-CFE exhibited a stronger oxidative damage-protective effect than CFE for L. lactis IL1403 under H2O2 in vitro. Moreover, IR-CFE also showed strong radioprotective effect on hepatocyte cells (AML-12) under radiation condition, and the effect was better than that of CFE. Animal experiment indicated that IR-CFE could reduce the IR-induced damage to the hematopoietic system by increasing the number of white blood cells and red blood cells in peripheral blood of irradiated mice. It was also observed that IR-CFE could markedly alleviate the 60Coγ-induced oxidative stress via increasing the activities of superoxide dismutase and glutathione peroxidase, enhancing the levels of glutathione, and decreasing the contents of malondialdehyde in serum, liver, and spleen. In addition, IR-CFE also could reduce the activities of alanine transaminase and aspartate aminotransferase in serum, thereby reducing radiation damage to the liver. These results suggested that IR-CFE could be considered as potential candidates for natural radioprotective agents. This study provides a theoretical basis for improving the application of lactic acid bacteria.
Collapse
Affiliation(s)
- Keke Suo
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Sisi Chen
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Xue Li
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Xin Liu
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Juanjuan Yi
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Jiaqing Zhu
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Laizheng Lu
- Zhengzhou Mindtek Biological Technology Co. Ltd., Zhengzhou, Henan 450001, China
| | - Limin Hao
- Institute of Quartermaster Engineering and Technology, Academy of Military Sciences PLA China, Beijing 100010, China.
| | - Qiaozhen Kang
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Jike Lu
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China.
| |
Collapse
|
25
|
Zhu W, Zhao Y, Zhang S, Li X, Xing L, Zhao H, Yu J. Evaluation of Epigallocatechin-3-Gallate as a Radioprotective Agent During Radiotherapy of Lung Cancer Patients: A 5-Year Survival Analysis of a Phase 2 Study. Front Oncol 2021; 11:686950. [PMID: 34178681 PMCID: PMC8223749 DOI: 10.3389/fonc.2021.686950] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 05/10/2021] [Indexed: 11/13/2022] Open
Abstract
Background Previous analysis of the study (NCT02577393) had demonstrated the application of epigallocatechin-3-gallate (EGCG) could be safe and effective in the prevention and treatment of acute radiation esophagitis in patients with advanced lung cancer. EGCG seemed to improve the response rate of small cell lung cancer (SCLC) to radiotherapy in a subgroup analysis. This research continued to analyze the impact of EGCG application on cancer-radiation efficacy and patient survival. Methods All patients with SCLC in the NCT02577393 study were included. Patients were randomized into EGCG group or conventional therapy group as protocol. The primary endpoints of the study were radiation response rate and progression-free survival (PFS). Overall survival (OS) and the efficacy of EGCG in the treatment of esophagitis were assessed as secondary endpoints. Results A total of 83 patients with lung cancer in the NCT02577393 study were screened, and all 38 patients with SCLC were eligible for analysis. No significant differences with regard to baseline demographic and clinical characteristics were observed between the two groups. The objective response rate (ORR) was higher than that of conventionally treated patients (84.6 vs 50%, P = 0.045), while the median PFS and OS were not significantly prolonged. At data cut-off (1 January 2021), 5-year PFS was 33% with EGCG versus 9.3% with conventional treatment, and 5-year OS was 30.3% versus 33.3%, respectively. The mean adjusted esophagitis index and pain index of patients with EGCG application were lower than conventional treatment (5.15 ± 2.75 vs 7.17 ± 1.99, P = 0.030; 8.62 ± 5.04 vs 15.42 ± 5.04, P < 0.001). Conclusion The study indicates EGCG may alleviate some esophagitis-related indexes in SCLC patients exposed to ionizing radiation without reducing survival. However, this conclusion should be confirmed by further studies with large sample size.
Collapse
Affiliation(s)
- Wanqi Zhu
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin, China.,Department of Radiation Oncology, Tianjin Medical University, Tianjin, China.,Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Science, Jinan, China
| | - Yalan Zhao
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Shuyu Zhang
- Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, China
| | - Xiaolin Li
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Science, Jinan, China
| | - Ligang Xing
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Hanxi Zhao
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Science, Jinan, China
| | - Jinming Yu
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin, China.,Department of Radiation Oncology, Tianjin Medical University, Tianjin, China.,Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Science, Jinan, China
| |
Collapse
|
26
|
Radiosensitization potential of caffeic acid phenethyl ester and the long non-coding RNAs in response to 60Coγ radiation in mouse hepatoma cells. Radiat Phys Chem Oxf Engl 1993 2021. [DOI: 10.1016/j.radphyschem.2020.109326] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
27
|
Ashrafizadeh M, Zarrabi A, Hushmandi K, Hashemi F, Moghadam ER, Owrang M, Hashemi F, Makvandi P, Goharrizi MASB, Najafi M, Khan H. Lung cancer cells and their sensitivity/resistance to cisplatin chemotherapy: Role of microRNAs and upstream mediators. Cell Signal 2021; 78:109871. [PMID: 33279671 DOI: 10.1016/j.cellsig.2020.109871] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 11/24/2020] [Accepted: 12/01/2020] [Indexed: 02/07/2023]
Abstract
Cisplatin (CP) is a well-known chemotherapeutic agent with excellent clinical effects. The anti-tumor activity of CP has been demonstrated in different cancers such as breast, cervical, reproductive, lung, brain, and prostate cancers. However, resistance of cancer cells to CP chemotherapy has led to its failure in eradication of cancer cells, and subsequent death of patients with cancer. Fortunately, much effort has been put to identify molecular pathways and mechanisms involved in CP resistance/sensitivity. It seems that microRNAs (miRs) are promising candidates in mediating CP resistance/sensitivity, since they participate in different biological aspects of cells such as proliferation, migration, angiogenesis, and differentiation. In this review, we focus on miRs and their regulation in CP chemotherapy of lung cancer, as the most malignant tumor worldwide. Oncogenic miRs trigger CP resistance in lung cancer cells via targeting various pathways such as Wnt/β-catenin, Rab6, CASP2, PTEN, and Apaf-1. In contrast, onco-suppressor miRs inhibit oncogene pathways such as STAT3 to suppress CP resistance. These topics are discussed to determine the role of miRs in CP resistance/sensitivity. We also describe the upstream modulators of miRs such as lncRNAs, circRNAs, NF-κB, SOX2 and TRIM65 and their association with CP resistance/sensitivity in lung cancer cells. Finally, the effect of anti-tumor plant-derived natural compounds on miR expression during CP sensitivity of lung cancer cells is discussed.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- Faculty of Engineering and Natural Sciences, Sabanci University, Orta Mahalle, Üniversite Caddesi No. 27, Orhanlı, Tuzla 34956, Istanbul, Turkey; Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla 34956, Istanbul, Turkey
| | - Ali Zarrabi
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla 34956, Istanbul, Turkey
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology & Zoonoses, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Farid Hashemi
- Department of Comparative Biosciences, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Ebrahim Rahmani Moghadam
- Department of Anatomical Sciences, School of Medicine, Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Marzieh Owrang
- Department of Anatomical Sciences, School of Medicine, Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fardin Hashemi
- Student Research Committee, Department of Physiotherapy, Faculty of Rehabilitation, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Pooyan Makvandi
- Istituto Italiano di Tecnologia, Centre for Micro-BioRobotics, viale Rinaldo Piaggio 34, 56025 Pontedera, Pisa, Italy
| | | | - Masoud Najafi
- Medical Technology Research Center, Institute of Health Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran; Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University Mardan, 23200, Pakistan.
| |
Collapse
|
28
|
Fan X, Xiao X, Mao X, Chen D, Yu B, Wang J, Yan H. Tea bioactive components prevent carcinogenesis via anti-pathogen, anti-inflammation, and cell survival pathways. IUBMB Life 2021; 73:328-340. [PMID: 33368980 DOI: 10.1002/iub.2445] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 12/22/2020] [Accepted: 12/23/2020] [Indexed: 01/08/2023]
Abstract
Cancer seriously impairs human health and survival. Many perturbations, such as increased oxidative stress, pathogen infection, and inflammation, promote the accumulation of DNA mutations, and ultimately lead to carcinogenesis. Tea is one of the most highly consumed beverages worldwide and has been linked to improvements in human health. Tea contains many active components, including tea polyphenols, tea polysaccharides, L-theanine, tea pigments, and caffeine among other common components. Several studies have identified components in tea that can directly or indirectly reduce carcinogenesis with some being used in a clinical setting. Many previous studies, in vitro and in vivo, have focused on the mechanisms that functional components of tea utilized to protect against cancer. One particular mechanism that has been well described is an improvement in antioxidant capacity seen with tea consumption. However, other mechanisms, including anti-pathogen, anti-inflammation and alterations in cell survival pathways, are also involved. The current review focuses on these anti-cancer mechanisms. This will be beneficial for clinical utilization of tea components in preventing and treating cancer in the future.
Collapse
Affiliation(s)
- Xiangqi Fan
- Animal Nutrition Institute, Sichuan Agricultural University, Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Key Laboratory of Animal Disease-Resistant Nutrition and Feed of China Ministry of Agriculture and Rural Affairs, Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Chengdu, China
| | - Xiangjun Xiao
- Animal Nutrition Institute, Sichuan Agricultural University, Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Key Laboratory of Animal Disease-Resistant Nutrition and Feed of China Ministry of Agriculture and Rural Affairs, Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Chengdu, China
| | - Xiangbing Mao
- Animal Nutrition Institute, Sichuan Agricultural University, Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Key Laboratory of Animal Disease-Resistant Nutrition and Feed of China Ministry of Agriculture and Rural Affairs, Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Chengdu, China
| | - Daiwen Chen
- Animal Nutrition Institute, Sichuan Agricultural University, Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Key Laboratory of Animal Disease-Resistant Nutrition and Feed of China Ministry of Agriculture and Rural Affairs, Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Chengdu, China
| | - Bing Yu
- Animal Nutrition Institute, Sichuan Agricultural University, Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Key Laboratory of Animal Disease-Resistant Nutrition and Feed of China Ministry of Agriculture and Rural Affairs, Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Chengdu, China
| | - Jianping Wang
- Animal Nutrition Institute, Sichuan Agricultural University, Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Key Laboratory of Animal Disease-Resistant Nutrition and Feed of China Ministry of Agriculture and Rural Affairs, Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Chengdu, China
| | - Hui Yan
- Animal Nutrition Institute, Sichuan Agricultural University, Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Key Laboratory of Animal Disease-Resistant Nutrition and Feed of China Ministry of Agriculture and Rural Affairs, Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Chengdu, China
| |
Collapse
|
29
|
Yi J, Zhu J, Zhao C, Kang Q, Zhang X, Suo K, Cao N, Hao L, Lu J. Potential of natural products as radioprotectors and radiosensitizers: opportunities and challenges. Food Funct 2021; 12:5204-5218. [PMID: 34018510 DOI: 10.1039/d1fo00525a] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Natural products can be used as natural radiosensitizers and radioprotectors, showing promising effects in cancer treatments in combination with radiotherapy, while reducing ionizing radiation (IR) damage to normal cells/tissues. The different effects of natural products on irradiated normal and tumor cells/tissues have attracted more and more researchers' interest. Nonetheless, the clinical applications of natural products in radiotherapy are few, which may be related to their low bioavailability in the human body. Here, we displayed the radiation protection and radiation sensitization of major natural products, highlighted the related molecular mechanisms of these bioactive substances combined with radiotherapy to treat cancer, and critically reviewed their deficiency and improved measures. Lastly, several clinical trials were presented to verify the clinical application of natural products as radiosensitizers and radioprotectors. Further clinical evaluation is still needed. This review provides a reference for the utilization of natural products as radiosensitizers and radioprotectors.
Collapse
Affiliation(s)
- Juanjuan Yi
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China.
| | - Jiaqing Zhu
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China.
| | - Changcheng Zhao
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China.
| | - Qiaozhen Kang
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China.
| | - Xiaomiao Zhang
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China.
| | - Keke Suo
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China.
| | - Nana Cao
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China.
| | - Limin Hao
- Institute of Quartermaster Engineering and Technology, Academy of Military Sciences PLA China, Beijing, 100010, China.
| | - Jike Lu
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
30
|
Protective Effects of Epigallocatechin Gallate (EGCG) on Endometrial, Breast, and Ovarian Cancers. Biomolecules 2020; 10:biom10111481. [PMID: 33113766 PMCID: PMC7694163 DOI: 10.3390/biom10111481] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 10/22/2020] [Accepted: 10/23/2020] [Indexed: 02/07/2023] Open
Abstract
Green tea and its major bioactive component, (-)-epigallocatechin gallate (EGCG), possess diverse biological properties, particularly antiproliferation, antimetastasis, and apoptosis induction. Many studies have widely investigated the anticancer and synergistic effects of EGCG due to the side effects of conventional cytotoxic agents. This review summarizes recent knowledge of underlying mechanisms of EGCG on protective roles for endometrial, breast, and ovarian cancers based on both in vitro and in vivo animal studies. EGCG has the ability to regulate many pathways, including the activation of nuclear factor erythroid 2-related factor 2 (Nrf2), inhibition of nuclear factor-κB (NF-κB), and protection against epithelial-mesenchymal transition (EMT). EGCG has also been found to interact with DNA methyltransferases (DNMTs) and histone deacetylases (HDACs), which affect epigenetic modifications. Finally, the action of EGCG may exert a suppressive effect on gynecological cancers and have beneficial effects on auxiliary therapies for known drugs. Thus, future clinical intervention studies with EGCG will be necessary to more and clear evidence for the benefit to these cancers.
Collapse
|
31
|
Li X, Wang P, Zhu J, Yi J, Ji Z, Kang Q, Hao L, Huang J, Lu J. Comparative study on the bioactive components and in vitro biological activities of three green seedlings. Food Chem 2020; 321:126716. [PMID: 32278985 DOI: 10.1016/j.foodchem.2020.126716] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 03/23/2020] [Accepted: 03/30/2020] [Indexed: 12/24/2022]
Abstract
To explore functional food ingredients from green seedlings, the bioactive components (phenolic compounds and γ-aminobutyric acid) and antioxidant activities (DPPH radical scavenging ability, ABTS radical scavenging ability and reducing power) of three green seedlings, including coix seed seedling (CSS), highland barely seedling (HBS) and naked oats seedling (NOS) cultivars were respectively measured and deeply compared. Results indicated that CSS showed the highest contents of the total polyphenol (183.35 mg/100 g), total flavonoid (348.68 mg/100 g), and γ-aminobutyric acid (54.17 mg/100 g). As expected, CSS also exerted the highest level of antioxidant activity, followed by HBS and NOS. Moreover, CSS possessed the potential of stimulating immune responses, including promoting proliferation and strengthening phagocytosis function of RAW264.7 cells. Taken together, all results suggested that the three green seedlings, especially CSS could be used as natural ingredients for functional food.
Collapse
Affiliation(s)
- Xue Li
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Pei Wang
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Jiaqing Zhu
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Juanjuan Yi
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Zhenyu Ji
- Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China.
| | - Qiaozhen Kang
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Limin Hao
- The Quartermaster Research Institute of Engineering and Technology, Academy of Military Sciences PLA China, Beijing 100010, China
| | - Jinyong Huang
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Jike Lu
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China.
| |
Collapse
|
32
|
Lai WF, Baig MMFA, Wong WT, Zhu BT. Epigallocatechin-3-gallate in functional food development: From concept to reality. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2020.04.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
33
|
Ashrafizadeh M, Farhood B, Eleojo Musa A, Taeb S, Najafi M. The interactions and communications in tumor resistance to radiotherapy: Therapy perspectives. Int Immunopharmacol 2020; 87:106807. [PMID: 32683299 DOI: 10.1016/j.intimp.2020.106807] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 06/26/2020] [Accepted: 07/10/2020] [Indexed: 12/24/2022]
Abstract
Tumor microenvironment (TME) includes a wide range of cell types including cancer cells, cells which are involved in stromal structure and immune cells (tumor suppressor and tumor promoting cells). These cells have several interactions with each other that are mainly regulated via the release of intercellular mediators. Radiotherapy can modulate these interactions via shifting secretions into inflammatory or anti-inflammatory responses. Radiotherapy also can trigger resistance of cancer (stem) cells via activation of stromal cells. The main mechanisms of tumor resistance to radiotherapy is the exhaustion of anti-tumor immunity via suppression of CD4+ T cells and apoptosis of cytotoxic CD8+ T lymphocytes (CTLs). Cancer-associated fibroblasts (CAFs), mesenchymal-derived suppressor cells (MDSCs) and regulatory T cells (Tregs) are the main suppressor of anti-tumor immunity via the release of several chemokines, cytokines and immune suppressors. In this review, we explain the main cellular and molecular interactions and secretions in TME following radiotherapy. Furthermore, the main signaling pathways and intercellular connections that can be targeted to improve therapeutic efficiency of radiotherapy will be discussed.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- Department of Basic Science, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Bagher Farhood
- Department of Medical Physics and Radiology, Faculty of Paramedical Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Ahmed Eleojo Musa
- Department of Medical Physics, Tehran University of Medical Sciences (International Campus), Tehran, Iran
| | - Shahram Taeb
- Ionizing and Non-Ionizing Radiation Protection Research Center (INIRPRC), Shiraz University of Medical Sciences, Shiraz, Iran
| | - Masoud Najafi
- Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
34
|
Cespedes-Acuña CL, Wei ZJ. X th International Symposium on Natural Products Chemistry and Applications (2019 X ISNPCA Chillan Chile). Food Chem Toxicol 2020; 140:111316. [PMID: 32246955 DOI: 10.1016/j.fct.2020.111316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Carlos L Cespedes-Acuña
- Department of Basic Sciences, Research Group in Chemistry and Biotechnology of Bioactive Natural Products, Faculty of Sciences, University of Bio-Bío, Andrés Bello, Avenue, Chillan, Chile.
| | - Zhao-Jun Wei
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, PR China.
| |
Collapse
|
35
|
Yi J, Chen C, Liu X, Kang Q, Hao L, Huang J, Lu J. Radioprotection of EGCG based on immunoregulatory effect and antioxidant activity against 60Coγ radiation-induced injury in mice. Food Chem Toxicol 2020; 135:111051. [PMID: 31837348 DOI: 10.1016/j.fct.2019.111051] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Revised: 12/02/2019] [Accepted: 12/08/2019] [Indexed: 02/02/2023]
Abstract
Excessive reactive oxygen radicals (ROS) produced by ionizing radiation (IR) can cause human body to serious oxidative damage, leading to oxidation-reduction (REDOX) system imbalance and immune system damage. Here, the radioprotection of EGCG was studied through a model of oxidative damage in 60Coγ radiation mice. Firstly, the weights and the main organs indexes of mice, including the liver index, spleen index and pancreas index, indicated preliminarily the safety and protection of EGCG. Then, the radioprotection of EGCG based on immune-regulation on radiation mice was further investigated. Results suggested that EGCG could prevent significantly the immune system damage caused by 60Coγ via increasing the immune organ index, inducing the transformation of spleen cells into T- and B-lymphocytes, and enhancing the macrophage phagocytosis, compared with model group. In addition, EGCG could also protect spleens of radiation mice from 60Coγ-induced the imbalance of REDOX system by enhancing the activities of antioxidant enzymes superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px), increasing the level of glutathione (GSH), suppressing lipid peroxidation (Malondialdehyde, MDA). The antioxidant enzymes activities of serum and livers were also increased markedly. Taken together, our results indicated that EGCG possessed the excellent potential to serve as a natural radioprotector against IR-induced damage.
Collapse
Affiliation(s)
- Juanjuan Yi
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Chen Chen
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Xin Liu
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Qiaozhen Kang
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Limin Hao
- The Quartermaster Equipment Institute, Academy of Military Sciences PLA China, Beijing, 100010, China.
| | - Jinyong Huang
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Jike Lu
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China.
| |
Collapse
|