1
|
Islam MS, Antu UB, Akter R, Hossain MS, Ahmed S, Roy TK, Ismail Z, Idris AM. Preliminary Assessment of Essential and Potentially Toxic Elements in the Most Common Spices in a Developing Country: Health Hazard Implication. Biol Trace Elem Res 2025:10.1007/s12011-025-04625-x. [PMID: 40316790 DOI: 10.1007/s12011-025-04625-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2025] [Accepted: 04/11/2025] [Indexed: 05/04/2025]
Abstract
In the current study, total concentrations of essential and potentially toxic elements (Ba, Ca, K, P, Na, Mg, Cr, Ni, Cu, Fe, Mn, Zn, As, Cd, and Pb) in the most common nine spices (Nigella sativa, Capsicum annum, Piper guineense, Capsicum carvi, Elettaria cardamomum, Zingiber officinale, Piper nigrum, Cinnamomum verum, and Curcuma longa) of fields and markets of Bogra district (Bangladesh) were determined using inductively coupled plasma mass spectrometry following acid digestion. The findings of the study indicate a good source of essential elements like Ca, K, Na, P, Mg Fe, Zn, and Mn in spices. The average concentrations of K, P, Ca, Mg, Na, Fe, Ba, Cu, Mn, Zn, Ni, Cr, As, Pb, and Cd in spices were 697, 190, 168, 112, 97.2, 7.35, 6.29, 4.36, 4.21, 3.91, 2.99, 0.81, 0.17, 0.08, and 0.03 mg/kg, respectively. The concentrations of Cr, Cu, and Pb were higher than the recommended level (0.5, 4.5, and 0.1 for Cr, Cu and Pb), which indicates that people would experience potential risks from spices. The daily intake values of all the metals were lower than the maximum tolerable daily intake (MTDI). Considering child exposure group, total target hazard quotient (THQ) values for all studied elements from a single spice or all examined spices exceeded the threshold value (THQ > 1.0), indicating that the children posed a potential non-cancer risk to the potentially toxic elements. Consumption of Piper guineense, Nigella sativa, Cinnamomum verum, and Curcuma longa may pose carcinogenic health risk due to an incremental lifetime cancer risk (ƩTR) value higher than 10-4.
Collapse
Affiliation(s)
- Md Saiful Islam
- Department of Soil Science, Patuakhali Science and Technology University, Dumki, Patuakhali, 8602, Bangladesh.
- East Coast Environmental Research Institute (ESERI), Universiti Sultan Zainal Abidin, Gong Badak Campus, 21300, Kuala Nerus Terengganu, Malaysia.
| | - Uttam Biswas Antu
- Department of Soil Science, Patuakhali Science and Technology University, Dumki, Patuakhali, 8602, Bangladesh
| | - Ruma Akter
- Department of Soil Science, Patuakhali Science and Technology University, Dumki, Patuakhali, 8602, Bangladesh
| | - Md Shifat Hossain
- Department of Soil Science, Patuakhali Science and Technology University, Dumki, Patuakhali, 8602, Bangladesh
| | - Sujat Ahmed
- Department of Agronomy, Bangla Agricultural University, Sher-E, Dhaka, 1207, Bangladesh
| | - Tusar Kanti Roy
- Department of Agricultural Chemistry, Khulna Agricultural University, Khulna, 9100, Bangladesh
| | - Zulhilmi Ismail
- Centre for River and Coastal Engineering (CRCE), Universiti Teknologi Malaysia (UTM), 81310, Johor Bahru, Malaysia.
- Department of Water & Environmental Engineering, Faculty of Civil Engineering, Universiti Teknologi Malaysia (UTM), 81310, Bahru, Johor, Malaysia.
| | - Abubakr M Idris
- Department of Chemistry, College of Science, King Khalid University, 62529, Abha, Saudi Arabia.
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, 62529, Abha, Saudi Arabia.
| |
Collapse
|
2
|
Apaza Ticona L, Martínez Noguerón A, Sánchez Sánchez-Corral J, Montoto Lozano N, Ortega Domenech M. Anti-Inflammatory, Antibacterial, Anti-Biofilm, and Anti-Quorum Sensing Activities of the Diterpenes Isolated from Clinopodium bolivianum. Pharmaceutics 2024; 16:1094. [PMID: 39204439 PMCID: PMC11360483 DOI: 10.3390/pharmaceutics16081094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/11/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024] Open
Abstract
This study reports for the first time the isolation of four diterpenoid compounds: 15-Hydroxy-12-oxo-abietic acid (1), 12α-hydroxyabietic acid (2), (-)-Jolkinolide E (3), and 15-Hydroxydehydroabietic acid (4) from Clinopodium bolivianum (C. bolivianum). The findings demonstrate that both the dichloromethane/methanol (DCMECB) extract of C. bolivianum and the isolated compounds exhibit significant anti-inflammatory (inhibition of NF-κB activation), antibacterial (primarily against Gram-positive bacteria), and anti-biofilm (primarily against Gram-negative bacteria) activities. Among the isolated diterpenes, compounds 3 and 4 showed notable anti-inflammatory effects, with IC50 values of 17.98 μM and 23.96 μM for compound 3, and 10.79 μM and 17.37 μM for compound 4, in the HBEC3-KT and MRC-5 cell lines. Regarding their antibacterial activity, compounds 3 and 4 were particularly effective, with MIC values of 0.53-1.09 μM and 2.06-4.06 μM, respectively, against the S. pneumoniae and S. aureus Gram-positive bacteria. Additionally, these compounds demonstrated significant anti-biofilm and anti-quorum sensing activities, especially against Gram-negative bacteria (H. influenzae and L. pneumophila). We also explain how compound 3 (BIC = 1.50-2.07 μM, Anti-QS = 0.31-0.64 μM) interferes with quorum sensing due to its structural homology with AHLs, while compound 4 (BIC = 4.65-7.15 μM, Anti-QS = 1.21-2.39 μM) destabilises bacterial membranes due to the presence and position of its hydroxyl groups. These results support the traditional use of C. bolivianum against respiratory infections caused by both Gram-positive and Gram-negative bacteria. Furthermore, given the increasing antibiotic resistance and biofilm formation by these bacteria, there is a pressing need for the development of new, more active compounds. In this context, compounds 3 and 4 isolated from C. bolivianum offer promising potential for the development of a library of new, more potent, and selective drugs.
Collapse
Affiliation(s)
- Luis Apaza Ticona
- Organic Chemistry Unit, Department of Chemistry in Pharmaceutical Sciences, Faculty of Pharmacy, University Complutense of Madrid, Plza. Ramón y Cajal s/n, 28040 Madrid, Spain
- Department of Organic Chemistry, Faculty of Sciences, University Autónoma of Madrid, Cantoblanco, 28049 Madrid, Spain
| | - Ana Martínez Noguerón
- Organic Chemistry Unit, Department of Chemistry in Pharmaceutical Sciences, Faculty of Pharmacy, University Complutense of Madrid, Plza. Ramón y Cajal s/n, 28040 Madrid, Spain
| | - Javier Sánchez Sánchez-Corral
- Department of Organic Chemistry, Faculty of Sciences, University Autónoma of Madrid, Cantoblanco, 28049 Madrid, Spain
| | - Natalia Montoto Lozano
- Organic Chemistry Unit, Department of Chemistry in Pharmaceutical Sciences, Faculty of Pharmacy, University Complutense of Madrid, Plza. Ramón y Cajal s/n, 28040 Madrid, Spain
| | | |
Collapse
|
3
|
Ahmed KAA, Jabbar AAJ, M Raouf MMH, Al-Qaaneh AM, Mothana RA, Alanzi AR, Abdullah FO, Abdulla MA, Hasson S, Zainel MA. Wood calamint ameliorates ethanol-induced stomach injury in rats by augmentation of hsp/bax and inflammatory mechanisms. J Mol Histol 2024; 55:567-579. [PMID: 38888815 DOI: 10.1007/s10735-024-10211-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 06/03/2024] [Indexed: 06/20/2024]
Abstract
Clinopodium menthifolium (wood calamint) is a folkloric medicinal plant ingested as a treatment for many human disorders including gastric disorders. Our study evaluates the anti-ulcer potentials of Clinopodium menthifolium ethanol extracts (CMEE) in induced gastric ulcers in rats. Thirty Dawley male rats were divided into 5 groups: normal and ulcer controls, treated orally with Tween 20%; reference rats treated with Omeprazole 20 mg/kg, and the remaining two groups received 250 and 500 mg/kg CMEE for 2 weeks. After that, food was taken away for 24 h, and then, rats received ethanol-induced gastric ulceration (except normal control), 80% (1 ml/rat). After anesthetization and sacrificing, the ulcer index, mucus content, and other ulcer measurements were obtained from dissected rat stomachs. Stomach tissues were also analyzed by different histology procedures and homogenized stomach tissues were assessed for their antioxidant contents. The toxicity trial showed the absence of any toxic signs in rats supplemented with 2 and 5 g/kg of CMEE. The gastroprotective results showed a significantly lower ulcer index and higher gastric mucin content in CMEE-ingested rats compared to ulcer controls. Furthermore, CMEE treatments significantly increased the intensity of periodic acid Schiff stained (PAS), HSP 70 protein, and down-regulation of Bax protein expression in the stomach epithelium. Rats supplemented with 500 mg/kg revealed noticeable changes in their serum inflammatory cytokines along with positive regulations of antioxidant enzymes. The outcomes provide a scientific backup behind the gastroprotective potential effect of CMEE that could serve as a natural resource against peptic ulcers.
Collapse
Affiliation(s)
- Khaled Abdul-Aziz Ahmed
- Department of Medical Laboratory Sciences, Faculty of Allied Medical Sciences, Al-Ahliyya Amman University, Amman, 19328, Jordan
| | - Ahmed A J Jabbar
- Department of Medical Laboratory Technology, Erbil Technical Health and Medical College, Erbil Polytechnic University, Erbil, 44001, Iraq.
| | - Mohammed M Hussein M Raouf
- Department of Biomedical Sciences, College of Science, Cihan University-Erbil, Kurdistan,, Kurdistan Region, Iraq
| | - Ayman M Al-Qaaneh
- Department of Allied Health Sciences, Al-Balqa Applied University (BAU), Al-Salt, 19117, Jordan
| | - Ramzi A Mothana
- Department of Pharmacognosy, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh, 11451, Saudi Arabia
| | - Abdullah R Alanzi
- Department of Pharmacognosy, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh, 11451, Saudi Arabia
| | - Fuad Othman Abdullah
- Department of Chemistry, College of Science, Salahaddin University-Erbil, Erbil, Kurdistan Region, Iraq
| | - Mahmood Ameen Abdulla
- Department of Medical Analysis, Faculty of Applied Science, Tishk International University, Erbil, Iraq
| | - Sidgi Hasson
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, L3 3AF, UK
| | | |
Collapse
|
4
|
Zheng L, Guo H, Zhu M, Xie L, Jin J, Korma SA, Jin Q, Wang X, Cacciotti I. Intrinsic properties and extrinsic factors of food matrix system affecting the effectiveness of essential oils in foods: a comprehensive review. Crit Rev Food Sci Nutr 2024; 64:7363-7396. [PMID: 36861257 DOI: 10.1080/10408398.2023.2184767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
Abstract
Essential oils (EOs) have been proved as natural food preservatives because of their effective and wide-spectrum antimicrobial activity. They have been extensively explored for potential applications in food industry, and substantial progresses have been achieved. However well EOs perform in antibacterial tests in vitro, it has generally been found that a higher level of EOs is needed to achieve the same effect in foods. Nevertheless, this unsimilar effect has not been clearly quantified and elaborated, as well as the underlying mechanisms. This review highlights the influence of intrinsic properties (e.g., oils and fats, carbohydrates, proteins, pH, physical structure, water, and salt) and extrinsic factors (e.g., temperature, bacteria characteristics, and packaging in vacuum/gas/air) of food matrix systems on EOs action. Controversy findings and possible mechanism hypotheses are also systematically discussed. Furthermore, the organoleptic aspects of EOs in foods and promising strategies to address this hurdle are reviewed. Finally, some considerations about the EOs safety are presented, as well as the future trends and research prospects of EOs applications in foods. The present review aims to fill the evidenced gap, providing a comprehensive overview about the influence of the intrinsic and extrinsic factors of food matrix systems to efficiently orientate EOs applications.
Collapse
Affiliation(s)
- Liyou Zheng
- School of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, Anhui, P. R. China
| | - Hongyan Guo
- School of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, Anhui, P. R. China
| | - Miaomiao Zhu
- School of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, Anhui, P. R. China
| | - Liangliang Xie
- School of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, Anhui, P. R. China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, National Engineering Research Center for Functional Food, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, P. R. China
| | - Jun Jin
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, National Engineering Research Center for Functional Food, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, P. R. China
| | - Sameh A Korma
- Department of Food Science, Faculty of Agriculture, Zagazig University, Zagazig, Sharkia, Egypt
- School of Food Science and Engineering, South China University of Technology, Guangzhou, Guangdong, P. R. China
| | - Qingzhe Jin
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, National Engineering Research Center for Functional Food, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, P. R. China
| | - Xingguo Wang
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, National Engineering Research Center for Functional Food, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, P. R. China
| | - Ilaria Cacciotti
- Department of Engineering, INSTM RU, University of Rome "Niccolò Cusano", Roma, Italy
| |
Collapse
|
5
|
Stavrakeva K, Metodieva K, Benina M, Bivolarska A, Dimov I, Choneva M, Kokova V, Alseekh S, Ivanova V, Vatov E, Gechev T, Mladenova T, Mladenov R, Todorov K, Stoyanov P, Gyuzeleva D, Popova M, Apostolova E. Metabolic Composition of Methanolic Extract of the Balkan Endemic Species Micromeria frivaldszkyana (Degen) Velen and Its Anti-Inflammatory Effect on Male Wistar Rats. Int J Mol Sci 2024; 25:5396. [PMID: 38791434 PMCID: PMC11121417 DOI: 10.3390/ijms25105396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 04/30/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024] Open
Abstract
Extracts from medicinal plants are widely used in the treatment and prevention of different diseases. Micromeria frivaldszkyana is a Balkan endemic species with reported antioxidant and antimicrobial characteristics; however, its phytochemical composition is not well defined. Here, we examined the metabolome of M. frivaldszkyana by chromatography-mass spectrometry (GC-MS), ultra-performance liquid chromatography-mass spectrometry (UPLC-MS-MS), and inductively coupled plasma mass spectrometry (ICP-MS). Amino acids, organic acids, sugars, and sugar alcohols were the primary metabolites with the highest levels in the plant extract. Detailed analysis of the sugar content identified high levels of sucrose, glucose, mannose, and fructose. Lipids are primary plant metabolites, and the analysis revealed triacylglycerols as the most abundant lipid group. Potassium (K), magnesium (Mg), zinc (Zn), and calcium (Ca) were the elements with the highest content. The results showed linarin, 3-caffeoil-quinic acid, and rosmarinic acid, as well as a number of polyphenols, as the most abundant secondary metabolites. Among the flavonoids and polyphenols with a high presence were eupatorin, kaempferol, and apigenin-compounds widely known for their bioactive properties. Further, the acute toxicity and potential anti-inflammatory activity of the methanolic extract were evaluated in Wistar rats. No toxic effects were registered after a single oral application of the extract in doses of between 200 and 5000 mg/kg bw. A fourteen-day pre-treatment with methanolic extract of M. frivaldszkyana in doses of 250, 400, and 500 mg/kg bw induced anti-inflammatory activity in the 1st, 2nd, and 3rd hours after carrageenan injection in a model of rat paw edema. This effect was also present in the 4th hour only in the group treated with a dose of 500 mg/kg. In conclusion, M. frivaldszkyana extract is particularly rich in linarin, rosmarinic acid, and flavonoids (eupatorin, kaempferol, and apigenin). Its methanolic extract induced no toxicity in male Wistar rats after oral application in doses of up to 5000 mg/kg bw. Additionally, treatment with the methanolic extract for 14 days revealed anti-inflammatory potential in a model of rat paw edema on the 1st, 2nd, and 3rd hours after the carrageenan injection. These results show the anti-inflammatory potential of the plant, which might be considered for further exploration and eventual application as a phytotherapeutic agent.
Collapse
Affiliation(s)
- Kristina Stavrakeva
- Department of Pharmacology, Toxicology, and Pharmacotherapy, Faculty of Pharmacy, Medical University of Plovdiv, Vasil Aprilov Str. 15A, 4002 Plovdiv, Bulgaria; (K.S.); (V.K.)
| | - Kalina Metodieva
- Department of Medical Biochemistry, Faculty of Pharmacy, Medical University of Plovdiv, Vasil Aprilov Str. 15A, 4002 Plovdiv, Bulgaria; (K.M.); (A.B.); (I.D.); (M.C.)
| | - Maria Benina
- Center of Plant Systems Biology and Biotechnology, 14, Sveti Knyaz Boris I Pokrastitel, Str., 4023 Plovdiv, Bulgaria; (M.B.); (S.A.); (V.I.); (E.V.); (T.G.)
| | - Anelia Bivolarska
- Department of Medical Biochemistry, Faculty of Pharmacy, Medical University of Plovdiv, Vasil Aprilov Str. 15A, 4002 Plovdiv, Bulgaria; (K.M.); (A.B.); (I.D.); (M.C.)
| | - Ivica Dimov
- Department of Medical Biochemistry, Faculty of Pharmacy, Medical University of Plovdiv, Vasil Aprilov Str. 15A, 4002 Plovdiv, Bulgaria; (K.M.); (A.B.); (I.D.); (M.C.)
| | - Mariya Choneva
- Department of Medical Biochemistry, Faculty of Pharmacy, Medical University of Plovdiv, Vasil Aprilov Str. 15A, 4002 Plovdiv, Bulgaria; (K.M.); (A.B.); (I.D.); (M.C.)
| | - Vesela Kokova
- Department of Pharmacology, Toxicology, and Pharmacotherapy, Faculty of Pharmacy, Medical University of Plovdiv, Vasil Aprilov Str. 15A, 4002 Plovdiv, Bulgaria; (K.S.); (V.K.)
| | - Saleh Alseekh
- Center of Plant Systems Biology and Biotechnology, 14, Sveti Knyaz Boris I Pokrastitel, Str., 4023 Plovdiv, Bulgaria; (M.B.); (S.A.); (V.I.); (E.V.); (T.G.)
- Max Planck Institute of Molecular Plant Physiology, 1 Am Muehlenberg, 14476 Potsdam, Germany
| | - Valentina Ivanova
- Center of Plant Systems Biology and Biotechnology, 14, Sveti Knyaz Boris I Pokrastitel, Str., 4023 Plovdiv, Bulgaria; (M.B.); (S.A.); (V.I.); (E.V.); (T.G.)
| | - Emil Vatov
- Center of Plant Systems Biology and Biotechnology, 14, Sveti Knyaz Boris I Pokrastitel, Str., 4023 Plovdiv, Bulgaria; (M.B.); (S.A.); (V.I.); (E.V.); (T.G.)
| | - Tsanko Gechev
- Center of Plant Systems Biology and Biotechnology, 14, Sveti Knyaz Boris I Pokrastitel, Str., 4023 Plovdiv, Bulgaria; (M.B.); (S.A.); (V.I.); (E.V.); (T.G.)
| | - Tsvetelina Mladenova
- Department of Botany and Biological Education, Faculty of Biology, University of Plovdiv “Paisii Hilendarski”, 24 Tsar Assen Str., 4000 Plovdiv, Bulgaria; (T.M.); (R.M.); (K.T.); (P.S.); (D.G.)
| | - Rumen Mladenov
- Department of Botany and Biological Education, Faculty of Biology, University of Plovdiv “Paisii Hilendarski”, 24 Tsar Assen Str., 4000 Plovdiv, Bulgaria; (T.M.); (R.M.); (K.T.); (P.S.); (D.G.)
- Department of Bioorganic Chemistry, Faculty of Pharmacy, Medical University of Plovdiv, Vasil Aprilov Str. 15A, 4002 Plovdiv, Bulgaria
| | - Krasimir Todorov
- Department of Botany and Biological Education, Faculty of Biology, University of Plovdiv “Paisii Hilendarski”, 24 Tsar Assen Str., 4000 Plovdiv, Bulgaria; (T.M.); (R.M.); (K.T.); (P.S.); (D.G.)
| | - Plamen Stoyanov
- Department of Botany and Biological Education, Faculty of Biology, University of Plovdiv “Paisii Hilendarski”, 24 Tsar Assen Str., 4000 Plovdiv, Bulgaria; (T.M.); (R.M.); (K.T.); (P.S.); (D.G.)
- Department of Bioorganic Chemistry, Faculty of Pharmacy, Medical University of Plovdiv, Vasil Aprilov Str. 15A, 4002 Plovdiv, Bulgaria
| | - Donika Gyuzeleva
- Department of Botany and Biological Education, Faculty of Biology, University of Plovdiv “Paisii Hilendarski”, 24 Tsar Assen Str., 4000 Plovdiv, Bulgaria; (T.M.); (R.M.); (K.T.); (P.S.); (D.G.)
| | - Mihaela Popova
- Faculty of Pharmacy, Medical University of Plovdiv, Vasil Aprilov Str. 15A, 4002 Plovdiv, Bulgaria;
| | - Elisaveta Apostolova
- Department of Pharmacology, Toxicology, and Pharmacotherapy, Faculty of Pharmacy, Medical University of Plovdiv, Vasil Aprilov Str. 15A, 4002 Plovdiv, Bulgaria; (K.S.); (V.K.)
- Research Institute, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria
| |
Collapse
|
6
|
Qureshi KA, Parvez A, Uzzaman Khan MM, Aspatwar A, Atiya A, Elhassan GO, Khan RA, Erattil Ahammed SY, Khan WU, Jaremko M. Exploring nature's hidden treasure: Unraveling the untapped phytochemical and pharmacological potentials of Clinopodium vulgare L. - A hidden gem in the Lamiaceae family. Heliyon 2024; 10:e24781. [PMID: 38312627 PMCID: PMC10834805 DOI: 10.1016/j.heliyon.2024.e24781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 01/13/2024] [Accepted: 01/15/2024] [Indexed: 02/06/2024] Open
Abstract
Folk medicine, rooted in historical practice, has long been used for medicinal purposes, emphasizing the need to ensure the safety, quality, and efficacy of herbal medicines. This imperative has grown over time, prompting collaborative efforts to document historical records and preserve invaluable knowledge of medicinal plants. The Lamiaceae (Labiatae) family, renowned for its rich assortment of medicinal plants characterized by high concentrations of volatile oils, stands out in this regard. This review focuses on Clinopodium vulgare (C. vulgare) L., commonly known as wild basil or basil thyme, a significant species within the Lamiaceae family found across diverse global regions. C. vulgare boasts a storied history of application in treating various ailments, such as gastric ulcers, diabetes, and inflammation, dating back to ancient times. Rigorous research has substantiated its pharmacological properties, revealing its antioxidant, antiviral, antibacterial, anti-inflammatory, anticancer, antihypertensive, and enzyme-inhibitory effects. This comprehensive review provides an insightful overview of the Lamiaceae family, elucidates the extraction methods employed to obtain medicinal compounds, explores the phytoconstituents present in C. vulgare, and systematically details its diverse pharmacological properties. Additionally, the review delves into considerations of toxicity. By synthesizing this wealth of information, this study opens avenues for the potential therapeutic applications of C. vulgare. The practical value of this research lies in its contribution to the understanding of medicinal plants, mainly focusing on the pharmacological potential of C. vulgare. This exploration enriches our knowledge of traditional medicine and paves the way for innovative therapeutic approaches, offering promising prospects for future drug development. As the demand for natural remedies continues to increase, this work provides a valuable resource for researchers, practitioners, and stakeholders in herbal medicine and pharmacology.
Collapse
Affiliation(s)
- Kamal Ahmad Qureshi
- Department of Pharmaceutics, Unaizah College of Pharmacy, Qassim University, Unaizah, 51911, Saudi Arabia
- Faculty of Medicine and Health Technology, Tampere University, Kauppi Campus, Tampere, 33520, Finland
| | - Adil Parvez
- NextGen Life Sciences Pvt. Ltd., New Delhi, 110092, India
| | - Mohd Masih Uzzaman Khan
- Department of Pharmaceutical Chemistry and Pharmacognosy, Unaizah College of Pharmacy, Qassim University, Unaizah, 51911, Saudi Arabia
| | - Ashok Aspatwar
- Faculty of Medicine and Health Technology, Tampere University, Kauppi Campus, Tampere, 33520, Finland
| | - Akhtar Atiya
- Department of Pharmacognosy, College of Pharmacy, King Khalid University (KKU), Guraiger, Abha, 62529, Saudi Arabia
| | - Gamal Osman Elhassan
- Department of Pharmaceutics, Unaizah College of Pharmacy, Qassim University, Unaizah, 51911, Saudi Arabia
| | - Riyaz Ahmed Khan
- Department of Pharmaceutics, Unaizah College of Pharmacy, Qassim University, Unaizah, 51911, Saudi Arabia
| | - Shakkeela Yusuf Erattil Ahammed
- Department of Pharmaceutical Chemistry and Pharmacognosy, Unaizah College of Pharmacy, Qassim University, Unaizah, 51911, Saudi Arabia
| | - Wasi Uzzaman Khan
- Department of Pharmacology, School of Pharmaceutical Education and Research (SPER), Jamia Hamdard, New Delhi, 110062, India
| | - Mariusz Jaremko
- Division of Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955, Saudi Arabia
| |
Collapse
|
7
|
Zheleva-Dimitrova D, Voynikov Y, Gevrenova R, Balabanova V. A Comprehensive Phytochemical Analysis of Sideritis scardica Infusion Using Orbitrap UHPLC-HRMS. Molecules 2023; 29:204. [PMID: 38202787 PMCID: PMC10780595 DOI: 10.3390/molecules29010204] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 12/22/2023] [Accepted: 12/27/2023] [Indexed: 01/12/2024] Open
Abstract
Sideritis scardica Griseb, also known as "mountain tea" and "Olympus tea" (Lamiaceae family) is an endemic plant from the mountainous regions of the Balkan Peninsula. In this study, we focused on an in-depth phytochemical analysis of S. scardica infusion using ultra-high-performance liquid chromatography hyphenated with high-resolution mass spectrometry (UHPLC-HRMS). Quantitative determination of the main secondary metabolites was carried out by UHPLC-HRMS analyses using the external standard method. The results revealed more than 100 metabolites, including five sugar acids and saccharides, 21 carboxylic, hydroxybenzoic, hydroxycinnamic acids, and derivatives, 15 acylquinic acids, 10 phenylpropanoid glycosides, four iridoid glycosides, 28 flavonoids, seven fatty acids, and four organosulfur compounds. Furthermore, a dereplication and fragmentation patterns of five caffeic acids oligomers and four acylhexaric acids was performed for the first time in S. scardica. Regarding the quantitative analysis, the phenylethanoid verbascoside (53) (151.54 ± 10.86 mg/g lyophilized infusion, li), the glycosides of isoscutellarein (78) (151.70 ± 14.78 mg/g li), methylisoscutelarein (82) (107.4 ± 9.07 mg/g li), and hypolaetin (79) (78.33 ± 3.29 mg/g li), as well as caffeic acid (20) (87.25 ± 6.54 mg/g li), were found to be the major compounds in S. scardica infusion. The performed state-of-the-art phytochemical analysis of S. scardica provides additional knowledge for the chemical constituents and usage of this valuable medicinal plant.
Collapse
Affiliation(s)
- Dimitrina Zheleva-Dimitrova
- Department of Pharmacognosy, Faculty of Pharmacy, Medical University of Sofia, 1000 Sofia, Bulgaria; (R.G.); (V.B.)
| | - Yulian Voynikov
- Department of Chemistry, Faculty of Pharmacy, Medical University of Sofia, 1000 Sofia, Bulgaria;
| | - Reneta Gevrenova
- Department of Pharmacognosy, Faculty of Pharmacy, Medical University of Sofia, 1000 Sofia, Bulgaria; (R.G.); (V.B.)
| | - Vessela Balabanova
- Department of Pharmacognosy, Faculty of Pharmacy, Medical University of Sofia, 1000 Sofia, Bulgaria; (R.G.); (V.B.)
| |
Collapse
|
8
|
Sławińska N, Kluska M, Moniuszko-Szajwaj B, Stochmal A, Woźniak K, Olas B. New Aspect of Composition and Biological Properties of Glechoma hederacea L. Herb: Detailed Phytochemical Analysis and Evaluation of Antioxidant, Anticoagulant Activity and Toxicity in Selected Human Cells and Plasma In Vitro. Nutrients 2023; 15:nu15071671. [PMID: 37049509 PMCID: PMC10096585 DOI: 10.3390/nu15071671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 03/24/2023] [Accepted: 03/27/2023] [Indexed: 03/31/2023] Open
Abstract
It is known that phenolic compounds can alleviate the negative impact of oxidative stress and modulate hemostasis. However, the effect of extracts and phenolics from Glechoma hederacea L. on the biomarkers of these processes is not well documented. The aim of our study was to investigate the in vitro protective effects of one extract and three fractions (20, 60, and 85% fraction) from G. hederacea L. on oxidative stress and hemostasis. Phytochemical analysis showed that aerial parts of G. hederacea L. are rich in both phenolic acids (such as rosmarinic acid, neochlorogenic acid, and chlorogenic acid) and flavonoids (mainly rutin and glycoside derivatives of apigenin, quercetin, and luteolin). We observed that the 85% fraction (at three concentrations: 5, 10, and 50 μg/mL) inhibited protein carbonylation. Moreover, the extract and 85% fraction (at the concentration of 50 μg/mL) could reduce lipid peroxidation. All fractions and the extract were very effective at decreasing H2O2-induced DNA damage in PBM cells. The 85% fraction had the strongest protective potential against DNA oxidative damage. We also observed that the extract and fractions decreased PBM cell viability to a maximum of 65% after 24 h incubation. Our results indicate that the 85% fraction showed the strongest antioxidant potential. The main component of the 85% fraction was apigenin (26.17 ± 1.44 mg/g), which is most likely responsible for its strong antioxidant properties.
Collapse
Affiliation(s)
- Natalia Sławińska
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Łódź, Poland
| | - Magdalena Kluska
- Department of Molecular Genetics, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Łódź, Poland
| | - Barbara Moniuszko-Szajwaj
- Department of Biochemistry and Crop Quality, Institute of Soil Science and Plant Cultivation, State Research Institute, 24-100 Puławy, Poland
| | - Anna Stochmal
- Department of Biochemistry and Crop Quality, Institute of Soil Science and Plant Cultivation, State Research Institute, 24-100 Puławy, Poland
| | - Katarzyna Woźniak
- Department of Molecular Genetics, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Łódź, Poland
| | - Beata Olas
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Łódź, Poland
- Correspondence:
| |
Collapse
|
9
|
Marak CC, Marak BN, Singh VP, Gurusubramanian G, Roy VK. Phytochemical analysis, in silico study and toxicity profile of Cycas pectinata Buch.-Ham seed in mice. Drug Chem Toxicol 2023; 46:330-342. [PMID: 35114863 DOI: 10.1080/01480545.2022.2033258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Fruit of Cycas pectinata Buch.-Ham has been used as medicine by the local community in some parts of the north eastern state of India. Despite its uses for different purposes, the safety assessment study has not been conducted. Therefore, we have evaluated the acute and the sub-acute toxicity of methanolic extract of C. pectinata fruit (CPFE) in a mice model via oral route of administration. Phytochemicals analysis was carried out by liquid chromatography-mass spectroscopy (LC-MS), nuclear magnetic resonance (NMR), and Fourier-transform infrared spectroscopy (FTIR). The acute toxicity study was performed at a single dose of 1000, 3000 and 5000 mg/kg and the sub-acute toxicity study at a dose of 100, 300 and 500 mg/kg was administered daily for 28 days. The calculated Lethal dose 50 (LD50) of CPFE was found to be 4000 mg/kg. Both acute and sub-acute studies showed that 5000 mg/kg and 500 mg/kg dose was toxic to the mice. The results of acute toxicity showed CPFE could have a mild toxic effect on the kidney at a dose of 3000 and 5000 mg/kg, as some deteriorated changes in the kidney along with increase creatinine levels were observed. Acute toxicity also showed an increase in white blood cells (WBC) at a dose of 3000 mg/kg.However, sub-acute toxicity studies do not show any detrimental effects on liver, kidney and hematological parameters. Thus, it can be suggested that CPFE at a dose of 100 and 300 mg/kg would be safe for consumption. The phytochemicals analysis by LC-MS, NMR and FTIR showed the presence of 32 major chemical compounds with certain biological activity like anti-neoplastic, antioxidant, and possible modulator of steroid metabolism (cholesterol antagonist and agonist of testosterone 17β-dehydrogenase) as predicted by PASS analysis.
Collapse
Affiliation(s)
| | - Brilliant N Marak
- Department of Industrial Chemistry, Mizoram University, Aizawl, India
| | - Ved Prakash Singh
- Department of Industrial Chemistry, Mizoram University, Aizawl, India
| | | | | |
Collapse
|
10
|
Bektašević M, Politeo O, Roje M, Jurin M. Polyphenol Composition, Anticholinesterase and Antioxidant Potential of the Extracts of Clinopodium vulgare L. Chem Biodivers 2022; 19:e202101002. [PMID: 35357745 DOI: 10.1002/cbdv.202101002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 03/29/2022] [Indexed: 11/11/2022]
Abstract
Clinopidium vulgare L. (wild basil, Lamiaceae) is a well-known medicinal plant used in the traditional medicine in many countries. Medicinal plants present potential sources of bioactive compounds. Many of them are rich in polyphenol compounds that show biological potential in terms of protecting biological molecules from oxidation and in inhibition of cholinesterase enzymes, which may be significant in the treatment of diseases related to oxidative stress. In this work, we examined the chemical composition of Clinopodium vulgare L. hot water and methanol extract using spectroscopic and HPLC/DAD techniques. Using DPPH and FRAP methods the antioxidant activity was analyzed. The ability to protect proteins and lipids from oxidation was also determined as well as the ability of extracts to inhibit cholinesterase enzymes using Ellman's method. Analyzed extracts were rich in polyphenol compounds. Among 16 identified and quantified phenolic compounds dominant were: rosmarinic (26.63 and 34.21 mg/g) and ellagic acid (23.11 and 29.31 mg/g) of hot water and methanol extract, respectively. They show good antioxidant activity and good potential in protecting lipids from oxidation. The ability of extracts to inhibit enzyme acetylcholinesterase was weak, while inhibition of the butyrylcholinesterase was missing. Extracts show prooxidant activity in terms of protecting proteins from oxidation.
Collapse
Affiliation(s)
- Mejra Bektašević
- Department of Biochemistry, Biotechnical Faculty, University of Bihać, Luke Marjanovića bb, 77000, Bihać, Bosnia and Herzegovina
| | - Olivera Politeo
- Department of Biochemistry, Faculty of Chemistry and Technology, University of Split, Ruđera Boškovića 35, 21000, Split, Croatia
| | - Marin Roje
- Department of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička cesta 54, 10000, Zagreb, Croatia
| | - Mladenka Jurin
- Division of Materials Chemistry, Ruđer Bošković Institute, Bijenička cesta 54, 10000, Zagreb, Croatia
| |
Collapse
|
11
|
Nassar-Eddin G, Zheleva-Dimitrova D, Danchev N, Vitanska-Simeonova R. Antioxidant and enzyme-inhibiting activity of lyophilized extract from Clinopodium vulgare L. (Lamiaceae). PHARMACIA 2021. [DOI: 10.3897/pharmacia.68.e61911] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Clinopodium vulgare L. (Lamiaceae) was used in the traditional Bulgarian medicine for treatment of wounds, diabetes and gastric ulcers. The aim of the present study was to evaluate the antioxidant capacity of the extract (CVE) and fractions from C. vulgare (CV) using DPPH, ABTS and FRAP methods. Enzyme inhibitory activity against acetylcholinesterase, α-glucosidase and α-amylase was also investigated. Rosmarinic acid was used as a positive control. The fraction CV3 demonstrated the highest radical scavenging activity with IC50 values of 0.02 mg/ml (DPPH) and 0.0002 mg/ml (ABTS), as well as the strongest ferric reducing potential (FRAP) of 0.89 mM TE/mg dw. The crude aqueous-methanol extract of C. vulgare also showed high activity with IC50 values of 0.05 mg/ml (DPPH), 0.04 mg/ml (ABTS) and 0.89 mM TE/mg dw (FRAP). Moreover, CV3 demonstrated moderate α-glucosidase and α-amylase inhibitory potential.
Collapse
|
12
|
de Araújo FF, de Paulo Farias D, Neri-Numa IA, Pastore GM. Polyphenols and their applications: An approach in food chemistry and innovation potential. Food Chem 2020; 338:127535. [PMID: 32798817 DOI: 10.1016/j.foodchem.2020.127535] [Citation(s) in RCA: 256] [Impact Index Per Article: 51.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 07/04/2020] [Accepted: 07/06/2020] [Indexed: 12/20/2022]
Abstract
Polyphenols are compounds naturally present in fruits and vegetables that are gaining more and more attention due to their therapeutic effects and their potential technological applications. In this review, we intend to demonstrate the importance of some phenolic compounds, addressing their biological effects and potential for applications in various industrial fields. The intake of these compounds in appropriate concentrations can present promising effects in the prevention of diseases such as diabetes, obesity, Parkinson's, Alzheimer's, and others. They can also be used to improve the physicochemical properties of starch, in the preservation of foods, as natural dyes, prebiotic ingredients, hydrogels and nanocomplexes. In addition, these compounds have potential for innovation in the most diverse technological fields, including organic fine chemistry, basic materials chemistry, pharmaceuticals, food chemistry, chemical engineering, etc.
Collapse
Affiliation(s)
- Fábio Fernandes de Araújo
- Bioflavors and Bioactive Compounds Laboratory, Department of Food Science, Faculty of Food Engineering, University of Campinas, Rua Monteiro Lobato, 80, CEP 13083-862, Campinas, SP, Brazil.
| | - David de Paulo Farias
- Bioflavors and Bioactive Compounds Laboratory, Department of Food Science, Faculty of Food Engineering, University of Campinas, Rua Monteiro Lobato, 80, CEP 13083-862, Campinas, SP, Brazil.
| | - Iramaia Angélica Neri-Numa
- Bioflavors and Bioactive Compounds Laboratory, Department of Food Science, Faculty of Food Engineering, University of Campinas, Rua Monteiro Lobato, 80, CEP 13083-862, Campinas, SP, Brazil
| | - Glaucia Maria Pastore
- Bioflavors and Bioactive Compounds Laboratory, Department of Food Science, Faculty of Food Engineering, University of Campinas, Rua Monteiro Lobato, 80, CEP 13083-862, Campinas, SP, Brazil
| |
Collapse
|