1
|
Luo Y, Peng Z, Tang J, Wang D, Tao S, Liu J. Study on the synthesis and biological activity of kojic acid triazol thiosemicarbazide Schiff base derivatives. J Enzyme Inhib Med Chem 2025; 40:2475071. [PMID: 40197056 PMCID: PMC11983575 DOI: 10.1080/14756366.2025.2475071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 02/23/2025] [Accepted: 02/27/2025] [Indexed: 04/09/2025] Open
Abstract
A series of kojic acid triazol thiosemicarbazide Schiff base derivatives were designed and synthesised. Evaluation on the inhibition of tyrosinase activity showed that these compounds possessed potent inhibit tyrosinase activity, and the compound 6w (IC50 = 0.94 μM) exhibited the best inhibitory effect. Preliminary structure-activity relationships indicate that steric hindrance, halogen atom radius, and electron donating ability of functional groups have some impact on the inhibition of tyrosinase activity. Inhibition mechanism showed that compound 6w is a non-competitive mixed inhibitor, and this result was further confirmed by molecular docking. The fluorescence quenching mode of compound 6w is dynamic quenching, and interacts with tyrosinase by changing the amide structure of tyrosinase. Compound 6w has some anti-browning effect. Compound 6p had the strongest DPPH radical scavenging activity (IC50 = 10.53 ± 0.014 μM), and compound 6w showed the best ABTS scavenging activity (IC50 = 3.03 ± 0.009 μM).
Collapse
Affiliation(s)
- Yayuan Luo
- School of Food and Chemical Engineering, Shaoyang University, Shaoyang, People’s Republic of China
| | - Zhiyong Peng
- Chengda Pharmaceuticals Co., Ltd., Jiaxing, People’s Republic of China
| | - Junyuan Tang
- School of Food and Chemical Engineering, Shaoyang University, Shaoyang, People’s Republic of China
| | - Dahan Wang
- School of Food and Chemical Engineering, Shaoyang University, Shaoyang, People’s Republic of China
| | - Sheng Tao
- School of Food and Chemical Engineering, Shaoyang University, Shaoyang, People’s Republic of China
| | - Jinbing Liu
- School of Food and Chemical Engineering, Shaoyang University, Shaoyang, People’s Republic of China
| |
Collapse
|
2
|
Wu B, Yao C, Wang H, Dai H, Tian B, Li D, Xu J, Cheng H, Xu F, Sun D, Wang C. Ellagic acid-protein nano-complex inhibits tumor growth by reducing the intratumor bacteria and inhibiting histamine production. Biomaterials 2025; 317:123078. [PMID: 39753083 DOI: 10.1016/j.biomaterials.2024.123078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 12/25/2024] [Accepted: 12/30/2024] [Indexed: 02/04/2025]
Abstract
In recent years, there has been growing interest in understanding the role of bacteria within tumors and their potential as targets for cancer therapy. In this work, we developed an ellagic acid (EA) - endogenous protein (eP) nanocomposite (eP-EA) to target tumors by EPR (enhanced permeability and retention), kill bacteria within tumors to regulate anti-tumor immune responses. The potential mechanism of eP-EA treatment is associated with the reduced abundance and diversity of microorganisms within the tumor, culminating with an altered metabolism within the Tumor microenvironment (TME). Among them, the metabolite histamine that contributes to tumor progression, is significantly reduced in the TME after eP-EA treatment. We show that one possible mechanism by which these microbes promote tumor growth is through the production of histamine. This work suggests that the ellagic acid (EA)-protein nano complex can enhance cancer immunotherapy by targeting the intratumoral bacteria and reduce their production of histamine, delineating the potential relationship between intratumor bacteria and their impact on tumors. Our work suggests that the EA-protein nano complex can enhance cancer immunotherapy by targeting the intratumoral bacteria, suggesting the role of bacterial metabolites in contributing to tumor progression.
Collapse
Affiliation(s)
- Bingbing Wu
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu, 215123, China
| | - Chenlu Yao
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu, 215123, China
| | - Heng Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu, 215123, China
| | - Huaxing Dai
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu, 215123, China
| | - Bo Tian
- The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215004, China
| | - Dongxiao Li
- The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215004, China
| | - Jialu Xu
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu, 215123, China
| | - Haibo Cheng
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine in Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Fang Xu
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu, 215123, China.
| | - Dongdong Sun
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine in Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Chao Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu, 215123, China.
| |
Collapse
|
3
|
Nerlekar N, Patil P, Khot S, Kulkarni A, Dandge P, Berde A, Kamane S, Ghatage P, Dandge P. Cold maceration extraction of wild fruit Terminalia bellirica (Gaertn.) Roxb.: exploring its bioactives for biomedical applications. Prep Biochem Biotechnol 2024; 54:982-1000. [PMID: 38349742 DOI: 10.1080/10826068.2024.2313632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2024]
Abstract
Terminalia bellirica (T. bellirica) (Gaertn.) Roxb. is a well-known traditional medicinal plants that show promising treatment because of fewer side effects in humans. In the present study, the total phenol, flavonoid, condensed and hydrolyzable tannins extracted and analyzed from cold macerated (CM) T. bellirica (Gaertn.) Roxb. fruit (TBF) and leaves (TBL) extract with the identification of bioactive compounds using GC-MS/MS technique. The highest amount of bioactive content was found in ethanolic extract than toluene. Current experimental data of TBF extract shows the maximum and significant biological activity like free radical scavenging activity against DPPH and FRAP assays with IC50 values of 51.07 ± 0.52 μg/ml and 63.14 ± 0.59 μg/ml respectively. However, IC50 cytotoxicity values of TBF extract on MCF-7 cells for 24 hrs was found to be 6.34 ± 0.72 μg/ml. Minimum inhibitory concentration (MIC) for infectious pathogens Escherichia coli and Bacillus cereus was >12.5 μg/ml and >100 μg/ml respectively, however, anti-inflammatory activity was demonstrated as an IC50 value of 509.1 ± 1.72 μg/ml. Cold macerated fruit extract revealed threatening inhibitory potential against the α-amylase and α-glucosidase enzymes, with IC50 of 50.98 ± 0.23 μg/ml and 46.70 ± 1.38 μg/ml respectively. Finally, the outcome of this study showed that T. bellirica (Gaertn.) Roxb. fruit extract could be an effective source of bioactives with efficient biomedical properties.
Collapse
Affiliation(s)
- Nisha Nerlekar
- Department of Biochemistry, Shivaji University, Kolhapur, India
| | - Pradnya Patil
- Department of Chemistry, Shivaji University, Kolhapur, India
| | - Suraj Khot
- Department of Chemistry, Shivaji University, Kolhapur, India
| | - Arati Kulkarni
- Department of Biochemistry, Shivaji University, Kolhapur, India
| | - Prafull Dandge
- Department of Chemistry, Shivaji University, Kolhapur, India
| | - Ajinkya Berde
- Department of Botany, Shivaji University, Kolhapur, India
| | - Shubham Kamane
- School of Earth Sciences, SRTM University, Nanded, India
| | | | - Padma Dandge
- Department of Biochemistry, Shivaji University, Kolhapur, India
| |
Collapse
|
4
|
Azeem K, Abdulhameed HT, Hussain A, Amir S, Parveen M, Patel R, Abid M. A Comprehensive Multispectroscopic and Computational Analysis of the Interaction between Plant-Based Antiplasmodial Compounds and Bovine Serum Albumin. ACS OMEGA 2024; 9:5576-5591. [PMID: 38343956 PMCID: PMC10851409 DOI: 10.1021/acsomega.3c07630] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/02/2025]
Affiliation(s)
- Kashish Azeem
- Medicinal Chemistry Laboratory, Department of Biosciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
- Center for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Haider Thaer Abdulhameed
- Medicinal Chemistry Laboratory, Department of Biosciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Afzal Hussain
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Samira Amir
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mehtab Parveen
- Division of Organic Synthesis, Department of Chemistry, Aligarh Muslim University, Aligarh 202002, India
| | - Rajan Patel
- Center for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Mohammad Abid
- Medicinal Chemistry Laboratory, Department of Biosciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| |
Collapse
|
5
|
Shahraki S, Delarami HS, Razmara Z, Heidari A. Tracking the binding site of anticancer drug fluxoridin with Fe-related proteins to achieve intelligent drug delivery. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 306:123569. [PMID: 37925954 DOI: 10.1016/j.saa.2023.123569] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 10/01/2023] [Accepted: 10/20/2023] [Indexed: 11/07/2023]
Abstract
In cancer cells that need a lot of iron for growth and metastasis, halo-transferrin (TF-containing iron) enters the cell with the help of the transferrin receptor 1 (TFR1) protein. If the anticancer drug can bind to the iron site by interacting with apo-transferrin (iron-free FT), it can enter the cancer cell by the same mechanism. Two iron-related proteins, Bovine liver catalase (BLC) and apo-Transferrin (TF), that are important in cancer patients were selected and their interaction with the anti-cancer drug Floxuridine (FUDR) was investigated. Here, the protective role of FUDR was evaluated by several variables such as drug concentration, interaction time, and temperature-induced degradation of enzyme function. The results showed that the protective effect of the FUDR is greater in high concentrations (in 5 × 10-5 M:1.78 % and 2.59 % after 24 and 48 h). The interaction of the FUDR with both proteins can reduce the intensity of the fluorescence emission by a static mechanism. The binding strength of the FUDR with both proteins was almost similar and with the order of 104 M-1 (Kb = 3.90 ± 0.41 × 104 M-1 for BLC-FUDR and 5.01 ± 0.36 × 104 M-1 for TF-FUDR at 310 K). The thermodynamic calculations (in agreement with the docking results) indicated that FUDR-protein complex formation was exothermic and the main binding forces in the binding process were van der Waals interactions and hydrogen bonds. Both fluorophores tryptophan (Trp) and tyrosine (Tyr) of both proteins had significant roles in fluorescence quenching and the interaction process, the polarity of their microenvironment changed. CD results showed that the secondary structure changes of TF are slightly more than BLC. Molecular docking showed that the binding of the FUDR to TF is very close to the Fe-specific site and is placed in the cavity among the wrapping domain, N-Terminal arm, and β-barrel in BLC.
Collapse
Affiliation(s)
| | | | - Zohreh Razmara
- Department of Chemistry, University of Zabol, Zabol, Iran
| | - Ameneh Heidari
- Department of Chemistry, University of Zabol, Zabol, Iran
| |
Collapse
|
6
|
Huang X, Cui Y, Shi L, Yang S, Qiu X, Hao G, Zhao Y, Liu S, Liu Z, Weng W, Ren Z. Structural properties and emulsification of myofibrillar proteins from hairtail (Trichiurus haumela) at different salt ions. Int J Biol Macromol 2023; 253:127598. [PMID: 37879582 DOI: 10.1016/j.ijbiomac.2023.127598] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/17/2023] [Accepted: 10/19/2023] [Indexed: 10/27/2023]
Abstract
The structural properties and emulsification of myofibrillar proteins (MPs) are susceptibly affected by salt ions. The effect of different salt ions on the structural properties and emulsification of MPs from hairtail (Trichiurus haumela) remains unclear. Hairtail MPs were analyzed under different ion treatments of Na+, K+, Ca2+ and Mg2+. MPs at K+ and Na+ treatment showed a similar trend on salt effect due to the unfolding of proteins under salt ions. However, the excessive electrostatic effect of divalent ions could enhance protein aggregation, especially at Ca2+ and Mg2+. The β-sheet of MPs at different salt ions interconverted with α-helix and random coil at ionic strengths from 0.1 mol/L to 1.0 mol/L. The surface hydrophobicity and active sulfhydryl content of MPs increased with the improvement of ionic strengths at 0-0.8 mol/L. Under Ca2+ and Mg2+ treatments, the turbidity of MPs was low compared to that under the treatment of Na+ and K+. Additionally, the emulsification of hairtail MPs treated with different ions was improved at an ionic strength of 0.6 mol/L. This study can contribute to using salts in constructing fish protein-based emulsions for manufacturing emulsified surimi products and promoting the development and utilization of hairtail proteins.
Collapse
Affiliation(s)
- Xianglan Huang
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Yaqing Cui
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Linfan Shi
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China; Engineering Research Center of the Modern Technology for Eel Industry, Ministry of Education, China
| | - Shen Yang
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Xujian Qiu
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Gengxin Hao
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Yongqiang Zhao
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of The People's Republic of China, National R&D Center for Aquatic Product Processing, South China Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
| | - Shuji Liu
- Fisheries Research Institute of Fujian, Key Laboratory of Cultivation and High-value Utilization of Marine Organisms in Fujian Province, Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resource, Xiamen 361013, China
| | - Zhiyu Liu
- Fisheries Research Institute of Fujian, Key Laboratory of Cultivation and High-value Utilization of Marine Organisms in Fujian Province, Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resource, Xiamen 361013, China
| | - Wuyin Weng
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China; Engineering Research Center of the Modern Technology for Eel Industry, Ministry of Education, China.
| | - Zhongyang Ren
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China; Engineering Research Center of the Modern Technology for Eel Industry, Ministry of Education, China.
| |
Collapse
|
7
|
Chen J, Zhang Z, Li H, Tang H. Exploring the effect of a series of flavonoids on tyrosinase using integrated enzyme kinetics, multispectroscopic, and molecular modelling analyses. Int J Biol Macromol 2023; 252:126451. [PMID: 37619686 DOI: 10.1016/j.ijbiomac.2023.126451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 08/07/2023] [Accepted: 08/20/2023] [Indexed: 08/26/2023]
Abstract
The control of food browning can be achieved by inhibiting tyrosinase (TY) activity, but current studies on the interaction of flavonoids as potent inhibitors with TY are inadequate. Herein, the effect of a library of flavonoids on TY was investigated using enzyme kinetics, multispectroscopic methods, and molecular modelling. Some flavonoids including 4, 8, 10, 17, 18, 28, 30, 33, and 34 exhibited potent TY inhibitory activity, with compound 10 demonstrating reversible inhibition in a mixed-competitive manner. Ultraviolet-visible spectral changes confirmed the formation of flavonoid-TY complexes. Fluorescence quenching analysis suggested effective intrinsic fluorescence quenching by flavonoids through static quenching with the ground-state complex formation. Synchronous fluorescence spectra showed the microenvironment change around the fluorophores induced by flavonoids. ANS-binding fluorescence assay indicated TY's surface hydrophobicity change by flavonoids and highlighted the change in secondary structure conformation, which was further confirmed by Fourier-transform infrared spectra. Molecular modelling results helped visualize the preferred binding conformation at the active site of TY, and demonstrated the important role of hydrophobic interaction and hydrogen bonding in stabilizing the flavonoid-TY complexes. These findings prove that diverse flavonoid structures distinctly impact their binding behavior on TY and contribute to understanding flavonoids' potential as TY inhibitors in controlling food browning.
Collapse
Affiliation(s)
- Jin Chen
- College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu 241000, PR China
| | - Zhuangwei Zhang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry & Chemical Engineering, Nanjing University, Nanjing 210023, PR China
| | - Huihui Li
- College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu 241000, PR China
| | - Hongjin Tang
- College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu 241000, PR China.
| |
Collapse
|
8
|
Jahmidi-Azizi N, Oliva R, Winter R. Alcohol-Induced Conformation Changes and Thermodynamic Signatures in the Binding of Polyphenols to Proline-Rich Salivary Proteins. Chemistry 2023; 29:e202302384. [PMID: 37695254 DOI: 10.1002/chem.202302384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/09/2023] [Accepted: 09/11/2023] [Indexed: 09/12/2023]
Abstract
The first contact of polyphenols (tannins) with the human body occurs in the mouth, where they are known to interact with proline-rich proteins (PRPs). These interactions are important at a sensory level, especially for the development of astringency, but affect also various other biochemical processes. Employing thermodynamic measurements, fluorescence and CD spectroscopy, we investigated the binding process of the prototypical polyphenol ellagic acid (EA) to different IB-PRPs and BSA, also in the presence of ethanol, which is known to influence tannin-protein interactions. Binding of EA to BSA and the small peptide IB7-14 is weak, but very strong to IB9-37. The differences in binding strength and stoichiometry are due to differences in the binding motifs, which also lead to differences in the thermodynamic signatures of the binding process. EA binding to BSA is enthalpy-driven, whereas binding to both IB7-14 and IB9-37 is entropy-driven. The presence of 10 vol.% EtOH, as present in wines, increases the binding constant of EA with BSA and IB7-14 drastically, but not that with IB9-37; however, it changes the binding stoichiometry. These differences can be attributed to the effect of EtOH on the conformation dynamics of the proteins and to changes in hydration properties in alcoholic solution.
Collapse
Affiliation(s)
- Nisrine Jahmidi-Azizi
- Physical Chemistry I - Biophysical Chemistry, Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn Street 4a, 44227, Dortmund, Germany
| | - Rosario Oliva
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia 4, 80126, Naples, Italy
| | - Roland Winter
- Physical Chemistry I - Biophysical Chemistry, Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn Street 4a, 44227, Dortmund, Germany
| |
Collapse
|
9
|
Ma RH, Wang W, Hou CP, Man YF, Ni ZJ, Thakur K, Zhang JG, Wei ZJ. Structural characterization and stability of glycated bovine serum albumin-kaempferol nanocomplexes. Food Chem 2023; 415:135778. [PMID: 36854244 DOI: 10.1016/j.foodchem.2023.135778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/02/2023] [Accepted: 02/20/2023] [Indexed: 02/24/2023]
Abstract
Kaempferol (Kae), a flavonoid is endowed with various functions. However, due to its poor water solubility and stability, its application in the food and pharmaceutical fields remains elusive. Emerging reports have emphasized the importance of bovine serum albumin (BSA), and glycosylated BSA (GBSA) prepared in the nature deep eutectic solvent system as drug delivery system carriers. In our study, ultraviolet and fluorescence spectra revealed the higher interactions of BSA and GBSA with Kae. Through analysis of Z-average diameter, zeta-potential, polydispersity index (PDI), encapsulation efficiency (EE), loading capacity (LC) of BSA-Kae nanocomplexes (NPs) and GBSA-Kae NPs, GBSA-Kae NPs showed a higher absolute value of zeta-potential and lower PDI, while its EE and LC were also higher. Structural characterization and stability analysis revealed that GBSA-Kae NPs had more stable properties. This study laid the theoretical foundation for improving the solubility and stability of Kae during its delivery and transport.
Collapse
Affiliation(s)
- Run-Hui Ma
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China; School of Biological Science and Engineering, Ningxia Key Laboratory for the Development and Application of Microbial Resources in Extreme Environments, North Minzu University, Yinchuan 750021, China
| | - Wei Wang
- School of Biological Science and Engineering, Ningxia Key Laboratory for the Development and Application of Microbial Resources in Extreme Environments, North Minzu University, Yinchuan 750021, China.
| | - Cai-Ping Hou
- School of Biological Science and Engineering, Ningxia Key Laboratory for the Development and Application of Microbial Resources in Extreme Environments, North Minzu University, Yinchuan 750021, China
| | - Yi-Fei Man
- School of Biological Science and Engineering, Ningxia Key Laboratory for the Development and Application of Microbial Resources in Extreme Environments, North Minzu University, Yinchuan 750021, China
| | - Zhi-Jing Ni
- School of Biological Science and Engineering, Ningxia Key Laboratory for the Development and Application of Microbial Resources in Extreme Environments, North Minzu University, Yinchuan 750021, China
| | - Kiran Thakur
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China; School of Biological Science and Engineering, Ningxia Key Laboratory for the Development and Application of Microbial Resources in Extreme Environments, North Minzu University, Yinchuan 750021, China.
| | - Jian-Guo Zhang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China; School of Biological Science and Engineering, Ningxia Key Laboratory for the Development and Application of Microbial Resources in Extreme Environments, North Minzu University, Yinchuan 750021, China.
| | - Zhao-Jun Wei
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China; School of Biological Science and Engineering, Ningxia Key Laboratory for the Development and Application of Microbial Resources in Extreme Environments, North Minzu University, Yinchuan 750021, China.
| |
Collapse
|
10
|
Interaction, bioaccessibility and stability of bovine serum albumin-gamma-oryzanol complex: Spectroscopic and computational approaches. Food Chem 2023; 402:134493. [DOI: 10.1016/j.foodchem.2022.134493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 08/15/2022] [Accepted: 09/29/2022] [Indexed: 01/30/2023]
|
11
|
Ray D, Rajkumar Singh I, Bhatta A, Das A, Chakrabarty S, Mitra S. Modulation of drug binding ability and augmented enzymatic activity of lysozyme stabilized in presence of surface-active ionic liquids. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
12
|
Liu H, Ma Y, Li X, Gu J, Dong D. Interaction mechanism of benzophenone-type UV filters on bovine serum albumin: Insights from structure-affinity relationship. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2022; 57:1037-1046. [PMID: 36416057 DOI: 10.1080/10934529.2022.2148992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/25/2022] [Accepted: 10/28/2022] [Indexed: 06/16/2023]
Abstract
Benzophenone (BP)-type UV filters can cause structural changes of carrier protein in plasma. The binding process of five BP-type UV filters with bovine serum albumin (BSA) was investigated by multiple characterization methods, along with their structure-affinity relationship involving the structure of the five BP-type UV filters and their binding affinity for BSA. The BP-type UV filters investigated bound to BSA spontaneously, and altered conformation of BSA. The binding constants and number of binding sites between BP-type UV filters and BSA were 103-106 M-1 and 0.82-1.26, respectively. These BP-type UV filters and BSA interacted with the same binding forces and went through the similar binding process, suggesting that the benzophenone skeleton structure was primarily responsible for the BP-type UV filters and BSA binding, and changes in the structure of the BSA. The BP-type UV filters with hydroxyl substituent (BP-1 and BP-9) and non-polar molecules (BP-6) had a high affinity for binding BSA and had a greater impact on BSA conformation.
Collapse
Affiliation(s)
- Hongrui Liu
- College of Chemistry and Chemical Engineering, Bohai University, Jinzhou, PR China
| | - Yanxuan Ma
- College of Chemistry and Chemical Engineering, Bohai University, Jinzhou, PR China
| | - Xiang Li
- Shenyang Photosensitive Chemical Research Institute Co. Ltd., Shenyang, PR China
| | - Jiali Gu
- College of Chemistry and Chemical Engineering, Bohai University, Jinzhou, PR China
| | - Dianbo Dong
- Liaoning Academy of Environmental Sciences, Shenyang, PR China
| |
Collapse
|
13
|
Xue P, Zhang G, Zhao H, Wang W, Zhang J, Ren L. Serum albumin complexed with ellagic acid from pomegranate peel and its metabolite urolithin B. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101618] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
14
|
Huang X, Huang M, Yong L, Jia D, Miao W, Yi Z, Liu H. Study on Spectral Method and Computational Simulation of Chlorinated Bisphenol Compound and Thyroxine‐Binding Globulin. ChemistrySelect 2022. [DOI: 10.1002/slct.202104376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Xiaomei Huang
- College of Chemistry and Bioengineering Guilin University of Technology Guilin 541004 China
| | - Muwei Huang
- College of Chemistry and Bioengineering Guilin University of Technology Guilin 541004 China
| | - Li Yong
- College of Chemistry and Bioengineering Guilin University of Technology Guilin 541004 China
| | - Dan Jia
- College of Chemistry and Bioengineering Guilin University of Technology Guilin 541004 China
| | - Wangli Miao
- College of Chemistry and Bioengineering Guilin University of Technology Guilin 541004 China
| | - Zhongsheng Yi
- College of Chemistry and Bioengineering Guilin University of Technology Guilin 541004 China
| | - Hongyan Liu
- College of Chemistry and Bioengineering Guilin University of Technology Guilin 541004 China
| |
Collapse
|
15
|
Design and characterization of ellagic acid-loaded zein nanoparticles and their effect on the antioxidant and antibacterial activities. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116915] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
16
|
Singh IR, Yesylevskyy SO, Mitra S. Dietary polyphenols inhibit plasma protein arabinosylation: Biomolecular interaction of genistein and ellagic acid with serum albumins. Biophys Chem 2021; 277:106651. [PMID: 34217110 DOI: 10.1016/j.bpc.2021.106651] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 06/22/2021] [Accepted: 06/22/2021] [Indexed: 01/08/2023]
Abstract
The mode of interaction of polyphenolic compounds like genistein (GTN) and ellagic acid (EGA) with human and bovine serum albumin (HSA and BSA, respectively) was found to differ significantly. Stern-Volmer (SV) analysis of the fluorescence quenching data revealed that the binding strength of EGA (1.9 ± 0.09 × 105 M-1) to HSA is about one order of magnitude higher than GTN (2.24 ± 0.06 × 104 M-1). While the static quenching of HSA fluorescence was found to proceed through simple Stern-Volmer (SV) mechanism, a quenching sphere-of-action model was indispensable for BSA. Temperature dependent fluorescence along with a series of other biophysical experiments and ensemble docking calculation revealed that EGA and GTN bind to the serum proteins primarily through the entropy driven process. The α-helical content and the microenvironment near Trp residue of HSA and BSA did not show any appreciable change due to the binding of either GTN or EGA. Interestingly, both GTN and EGA were found to inhibit the formation of advanced glycated end (AGE) product of serum proteins up to the extent of 70-90% within 12-24 h. Relatively moderate binding propensity along with the anti-glycation ability of the polyphenols confirmed that GTN and EGA can be used either as an alternative or towards development of suitable drugs in the prevention of many diabetic-related complications.
Collapse
Affiliation(s)
| | - Semen O Yesylevskyy
- Department of Physics of Biological Systems, Institute of Physics of the National Academy of Sciences of Ukraine, Prospect Nauky 46, 03028 Kyiv, Ukraine
| | - Sivaprasad Mitra
- Department of Chemistry, North-Eastern Hill University, Shillong 793 022, India.
| |
Collapse
|
17
|
Liao X, Zhu C, Huang D, Wen X, Zhang SL, Shen Y. Profiling the interaction of a novel toxic pyruvate dehydrogenase kinase inhibitor with human serum albumin. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 256:119733. [PMID: 33827040 DOI: 10.1016/j.saa.2021.119733] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 03/16/2021] [Accepted: 03/18/2021] [Indexed: 06/12/2023]
Abstract
To discover novel pyruvate dehydrogenase kinase (PDK) inhibitors, a new compound 2,2-dichloro-1-(4-((4-isopropylphenyl)amino)-3-nitrophenyl)ethan-1-one, namely XB-1 was identified, which inhibited PDK activity with a half maximal inhibitory concentration (IC50) value of 337.0 nM, and reduced A549 cell proliferation with a half maximal effective concentration (EC50) value of 330.0 nM. However, the compound appears to exhibit a negligible selectivity between cancer cell and normal one, indicating a potential toxicity existed for the compound. Herein, the interaction of the toxic XB-1 to human serum albumin (HSA) was firstly explored by spectroscopic approaches with the aim to reduce/avoid the toxicity of PDK inhibitors in the next hit-to-lead campaign. In detail, it was found that the XB-1 could effectively bind to HSA mainly via hydrogen bond interaction in PBS buffer (pH = 7.4, 10.0 mM), resulting in the formation of HSA-XB-1 complex. The negative value of ΔG showed that the binding of XB-1 to HSA is a spontaneous process. The result from site-selective binding assay suggested that the XB-1 bound to the site I of HSA by competing with warfarin, which was perfect in agreement with the molecular docking method. The results of this paper may offer a valuable theoretical basis to study the toxicity of biofunctional molecules and may offer thoughts about how to avoid/reduce toxicity for a small molecule.
Collapse
Affiliation(s)
- Xianjiu Liao
- West Guangxi Key Laboratory for Prevention and Treatment of High-Incidence Diseases, Youjiang Medical University for Nationalities, Baise 533000, China
| | - Chunlei Zhu
- School of Food & Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Ding Huang
- School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Xiaoqing Wen
- West Guangxi Key Laboratory for Prevention and Treatment of High-Incidence Diseases, Youjiang Medical University for Nationalities, Baise 533000, China
| | - Shao-Lin Zhang
- School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China.
| | - Yizhong Shen
- School of Food & Biological Engineering, Hefei University of Technology, Hefei 230009, China.
| |
Collapse
|
18
|
Liao X, Zhu C, Zhang H, Li X, Wen X, Zhang SL, Shen Y. Investigation on the binding of cyanobacterial metabolite calothrixin A with human serum albumin for evaluating its potential toxicology. Food Chem Toxicol 2021; 155:112396. [PMID: 34245828 DOI: 10.1016/j.fct.2021.112396] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 06/29/2021] [Accepted: 07/06/2021] [Indexed: 01/04/2023]
Abstract
Calothrixin A (CLA), as a carbazole-1,4-quinone alkaloid with unique indolo [3,2-j] phenanthridine framework, is a natural metabolite from the Calothrix cyanobacteria. Since the interaction to the functional serum albumins may play an important role in estimating its potential physiological or toxicological effects in vivo, we here explored the binding information of CLA with human serum albumin (HSA) by multi-spectroscopic experiments and computational approaches. The molecular docking results showed that there was one binding site of CLA to the site I (subdomain IIA) of HSA, causing the spontaneous formation of the ground state complex of CLA-HSA through the integration of hydrogen bond, hydrophobic interaction, and electrostatic interaction. Moreover, CLA could effectively trigger the change of HSA's secondary structure because of an obvious decrease of α-helical content in HSA. Taking into consideration of the crucial role of HSA to transport extraneous functional small molecules in vivo, this study may provide a worthy theoretical basis to evaluate the in vivo toxicity of CLA, aiming to reduce/avoid the potential toxic side effects of CLA in the next hit-to-lead campaign.
Collapse
Affiliation(s)
- Xianjiu Liao
- West Guangxi Key Laboratory for Prevention and Treatment of High-Incidence Diseases, Youjiang Medical University for Nationalities, Baise, 533000, China
| | - Chunlei Zhu
- School of Food & Biological Engineering, Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei, 230009, China
| | - Haiyan Zhang
- Beijing Institute of Technology, Zhuhai Beijing Institute of Technology, Zhuhai, Guangdong, 519088, China
| | - Xuemin Li
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, China
| | - Xiaoqing Wen
- West Guangxi Key Laboratory for Prevention and Treatment of High-Incidence Diseases, Youjiang Medical University for Nationalities, Baise, 533000, China
| | - Shao-Lin Zhang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, China.
| | - Yizhong Shen
- School of Food & Biological Engineering, Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei, 230009, China.
| |
Collapse
|
19
|
Meng D, Zhou H, Xu J, Zhang S. Studies on the interaction of salicylic acid and its monohydroxy substituted derivatives with bovine serum albumin. Chem Phys 2021. [DOI: 10.1016/j.chemphys.2021.111182] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
20
|
Antioxidant, anti-inflammatory and hepatoprotective activities of Terminalia bellirica and its bioactive component ellagic acid against diclofenac induced oxidative stress and hepatotoxicity. Toxicol Rep 2020; 8:44-52. [PMID: 33391996 PMCID: PMC7772792 DOI: 10.1016/j.toxrep.2020.12.010] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 11/07/2020] [Accepted: 12/10/2020] [Indexed: 12/19/2022] Open
Abstract
Long term usage and overdose of diclofenac (DCF), an anti-inflammatory drug is known to cause oxidative stress and liver injury. The present study reports the antioxidant, anti-inflammatory and hepatoprotective activities of Terminalia bellirica (Tb) fruit aqueous and ethyl acetate extracts and its bioactive compound ellagic acid (EA) against DCF-induced toxicity. in vitro antioxidant activities were measured by ABTS and FRAP assays while anti‐inflammatory activity was assessed by the albumin denaturation method. The adverse effects of DCF and hepatoprotective potential of Tb extracts and EA were assessed in serum and liver tissue of rats after oral administration for 21 days. Silymarin was used as standard hepatoprptective agent for comparison. Hepatic markers analyzed in serum included ALP, GPT, GOT, LDH, γ-glutamyl transferase, total protein, creatinine, and uric acid while superoxide dismutase (SOD) and catalase (CAT) were analyzed in liver tissue. The EA exhibited superior ABTS radical scavenging, FRAP, and anti-inflammatory activities as compared to fruit extracts. DCF treatment led to rise in the levels of most of the serum hepatic markers with decline in total serum protein as well as SOD and CAT in liver tissue. The supplementation of extracts, EA and silymarin in DCF treated rats significantly reduced the adverse effects of DCF on serum and tissue markers. Histopathology of the liver indicated that extracts and EA significantly decreased the degree of liver fibrosis. The hepatoprotective ability of EA was comparable to the silymarin but activity of Tb fruit extracts was little lower. Among fruit extracts ethyl acetate extract exhibited better activity than aqueous extract. The results revealed that ellagic acid and T. bellirica fruit extracts have potential to mitigate oxidative stress and hepatotoxicity produced by long term use of diclofenac.
Collapse
|
21
|
Xue P, Zhang G, Zhang J, Ren L. Interaction of flavonoids with serum albumin: A review. Curr Protein Pept Sci 2020; 22:CPPS-EPUB-111278. [PMID: 33167830 DOI: 10.2174/1389203721666201109112220] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 09/23/2020] [Accepted: 10/02/2020] [Indexed: 11/22/2022]
Abstract
Flavonoids are plant products abundant in every day diet and claimed to be beneficial for human health. After absorption, flavonoids are transported by the serum albumin (SA), the most abundant carrier blood protein, through formation of flavonoids-SA complex. This review deals with the current state of knowledge on flavonoids-SA complex over the past 10 years, mainly involved multi-spectroscopic techniques and molecular dynamics simulation studies to explore the binding mechanism, thermodynamics and structural aspects of flavonoids binding to SA. Especially, the novel method, capillary electrophoresis, high performance affinity chromatography approach, native mass spectrometry and microscale thermophoresis used in characterization of the interaction between flavonoids and SA as well as flavonoid-based fluorescent probe for SA measurement are also included in this review.
Collapse
Affiliation(s)
- Peiyu Xue
- School of Biology and Food Engineering, Anyang Institute of Technology, Anyang 455000. China
| | - Guangjie Zhang
- School of Biology and Food Engineering, Anyang Institute of Technology, Anyang 455000. China
| | - Jie Zhang
- College of Food Science and Engineering, Jilin University, Changchun 130062. China
| | - Li Ren
- College of Food Science and Engineering, Jilin University, Changchun 130062. China
| |
Collapse
|
22
|
Zhang L, Liu Y, Hu X, Xu M, Wang Y. Studies on interactions of pentagalloyl glucose, ellagic acid and gallic acid with bovine serum albumin: A spectroscopic analysis. Food Chem 2020; 324:126872. [DOI: 10.1016/j.foodchem.2020.126872] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 04/10/2020] [Accepted: 04/18/2020] [Indexed: 01/09/2023]
|
23
|
Zhang J, Gao X, Huang J, Wang H. Probing the Interaction between Human Serum Albumin and 9-Hydroxyphenanthrene: A Spectroscopic and Molecular Docking Study. ACS OMEGA 2020; 5:16833-16840. [PMID: 32685852 PMCID: PMC7364716 DOI: 10.1021/acsomega.0c02031] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 06/22/2020] [Indexed: 05/10/2023]
Abstract
9-Hydroxyphenanthrene (9-OHPhe), the representative hydroxyl metabolite of phenanthrene, has generated increasing concern as it is potentially hazardous to organisms. Herein, multispectroscopic and molecular docking techniques were applied to investigate the molecular interaction of human serum albumin (HSA) with 9-hydroxyphenanthrene (9-OHPhe) under simulated physiological conditions. Steady-state fluorescence and time-resolved fluorescence spectral analysis showed that 9-OHPhe quenched HSA fluorescence through a mixed static and dynamic process. HSA can bind with 9-OHPhe to form a 1:1 complex, with binding constants of 1.28 × 105, 1.36 × 105, and 1.26 × 105 L·mol-1 at 298.15, 303.15, and 308.15 K, respectively. The strong binding between HSA and 9-OHPhe is spontaneous and entropy-driven. Molecular docking indicated that the optimal binding site of 9-OHPhe with HSA was located in the IA subdomain of HSA. Thermodynamic analysis and molecular docking results suggested that hydrophobic interactions and hydrogen bond force dominated the binding process of HSA with 9-OHPhe. Specifically, 9-OHPhe formed hydrophobic interactions with LEU134, LEU139, ILE142, LEU154, PHE157, ALA158, and TYR161 and formed a 1.86 Å hydrogen bond with LEU135. Circular dichroism spectral analysis showed that the α-helical content of HSA decreased from 52.3 to 50.9% after adding 9-OHPhe with a ratio of 1:1. The obtained results are hoped to provide basic data for understanding the potential effects of the hydroxyl metabolites of PAHs on functional biomacromolecules.
Collapse
Affiliation(s)
- Jing Zhang
- . Tel: +86 0596-6289870. Fax:+86 0596-6288214
| | | | | | | |
Collapse
|
24
|
Cespedes-Acuña CL, Wei ZJ. X th International Symposium on Natural Products Chemistry and Applications (2019 X ISNPCA Chillan Chile). Food Chem Toxicol 2020; 140:111316. [PMID: 32246955 DOI: 10.1016/j.fct.2020.111316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Carlos L Cespedes-Acuña
- Department of Basic Sciences, Research Group in Chemistry and Biotechnology of Bioactive Natural Products, Faculty of Sciences, University of Bio-Bío, Andrés Bello, Avenue, Chillan, Chile.
| | - Zhao-Jun Wei
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, PR China.
| |
Collapse
|
25
|
Molecular interaction of tea catechin with bovine β-lactoglobulin: A spectroscopic and in silico studies. Saudi Pharm J 2020; 28:238-245. [PMID: 32194324 PMCID: PMC7078544 DOI: 10.1016/j.jsps.2020.01.002] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 01/19/2020] [Indexed: 12/13/2022] Open
Abstract
Polyphenols has attained pronounced attention due to their beneficial values of health and found to prevent several chronic diseases. Here, we elucidated binding mechanism between frequently consumed polyphenol “tea catechin” and milk protein bovine beta-lactoglobulin (β-Lg). We investigated the conformational changes of β-Lg due to interaction with catechin using spectroscopic and in silico studies. Fluorescence quenching data (Stern-Volmer quenching constant) revealed that β-Lg interacted with catechin via dynamic quenching. Thermodynamic data revealed that the interaction between β-Lg and catechin is endothermic and spontaneously interacted mainly through hydrophobic interactions. The UV-Vis absorption and far-UV circular dichroism (CD) spectroscopy exhibited that the tertiary as well as secondary structure of β-Lg distorted after interaction with catechin. Molecular docking and simulation studies also confirm that catechin binds at the central cavity of β-Lg with high affinity (~105 M−1) and hydrophobic interactions play significant role in the formation of a stable β-Lg-catechin complex.
Collapse
|
26
|
Chen H, Zhu C, Chen F, Xu J, Jiang X, Wu Z, Ding X, Fan GC, Shen Y, Ye Y. Profiling the interaction of Al(III)-GFLX complex, a potential pollution risk, with bovine serum albumin. Food Chem Toxicol 2019; 136:111058. [PMID: 31881243 DOI: 10.1016/j.fct.2019.111058] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 12/10/2019] [Accepted: 12/16/2019] [Indexed: 12/20/2022]
Abstract
Fluoroquinolone antibiotics (FQs), a new class of pollutants that seriously threaten human health through environmental and food residues, have aroused wide public concern. However, little attention has been paid to the potential toxicity of FQs' metal complex. Here, we firstly explore the proof-of-concept study of FQs' metal complex to bind bovine serum albumin (BSA) using systematical spectroscopic approaches. In detail, we have found that the complex of Al3+ with gatifloxacin (Al(III)-GFLX complex) can effectively bind to BSA via electrostatic interaction in PBS buffer (pH = 7.4, 1×), resulting in the formation of Al(III)-GFLX-BSA complex. The negative value of ΔG shows that the binding of Al(III)-GFLX complex to BSA is a spontaneous process. Circular dichroism spectra verify that Al(III)-GFLX complex effectively triggers the conformation changes of BSA's secondary structure. It has been proved that the interaction of small molecule with serum albumin has a significant effect on their in vivo biological effects such as absorption, distribution, metabolism, and excretion, and etc. Therefore, the results of this paper may offer a valuable theoretical basis for establishing safety standards of FQs' metal complex to ensure food and environmental health.
Collapse
Affiliation(s)
- Hua Chen
- Engineering Research Center of Bio-Process, Ministry of Education, School of Food & Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Chunlei Zhu
- Engineering Research Center of Bio-Process, Ministry of Education, School of Food & Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Feng Chen
- Engineering Research Center of Bio-Process, Ministry of Education, School of Food & Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Jingjing Xu
- Engineering Research Center of Bio-Process, Ministry of Education, School of Food & Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Xiuting Jiang
- Engineering Research Center of Bio-Process, Ministry of Education, School of Food & Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Zeyu Wu
- Engineering Research Center of Bio-Process, Ministry of Education, School of Food & Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Xiaowei Ding
- Engineering Research Center of Bio-Process, Ministry of Education, School of Food & Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Gao-Chao Fan
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Yizhong Shen
- Engineering Research Center of Bio-Process, Ministry of Education, School of Food & Biological Engineering, Hefei University of Technology, Hefei, 230009, China; Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan, 430062, China.
| | - Yingwang Ye
- Engineering Research Center of Bio-Process, Ministry of Education, School of Food & Biological Engineering, Hefei University of Technology, Hefei, 230009, China.
| |
Collapse
|