1
|
Mérida DM, Rey-García J, Moreno-Franco B, Guallar-Castillón P. Acrylamide Exposure and Cardiovascular Risk: A Systematic Review. Nutrients 2024; 16:4279. [PMID: 39770901 PMCID: PMC11677207 DOI: 10.3390/nu16244279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 12/02/2024] [Accepted: 12/03/2024] [Indexed: 01/30/2025] Open
Abstract
Background/Objectives: Acrylamide is a food contaminant formed during high-temperature cooking processes, leading to unintentional human exposure. Diet is the primary source for non-smokers, with potatoes, cereals, and coffee being the main contributors. While animal studies have demonstrated that acrylamide is neurotoxic, genotoxic, mutagenic, and cardiotoxic, its effects on human cardiovascular health remain poorly understood. This study aimed to evaluate the association between acrylamide exposure and cardiovascular risk. Methods: A comprehensive literature search was conducted across four databases without restrictions on publication year or language (last search: 1 July 2024). The risk of bias was assessed using the Joanna Briggs Institute critical appraisal tools. Results: In total, 28 studies were included, predominantly from the US NHANES sample and with cross-sectional designs. Higher acrylamide exposure was associated with an increased risk of cardiovascular mortality but was inversely associated with glucose and lipid levels, as well as key cardiovascular risk factors such as diabetes, obesity, and metabolic syndrome. Conversely, glycidamide-acrylamide's most reactive metabolite-was positively associated with elevated glucose and lipid levels, higher systolic blood pressure, and increased obesity prevalence. Conclusions: These findings suggest that the adverse cardiovascular effects of acrylamide may be mediated by its conversion to glycidamide. Further research is necessary to fully elucidate the impact of acrylamide on cardiovascular health. Meanwhile, public health efforts should continue to focus on mitigation strategies within the food industry and raising public awareness about exposure.
Collapse
Affiliation(s)
- Diana María Mérida
- Department of Preventive Medicine and Public Health, School of Medicine, Universidad Autónoma de Madrid, 28029 Madrid, Spain
- Department of Pharmacoepidemiology and Biostatistics, Fundación Teófilo Hernando, 28290 Las Rozas de Madrid, Spain
- CIBERESP (CIBER of Epidemiology and Public Health), 28029 Madrid, Spain
| | - Jimena Rey-García
- Department of Internal Medicine, Hospital Universitario Rey Juan Carlos, IIS-FJD, 28933 Móstoles, Spain
| | - Belén Moreno-Franco
- Instituto de Investigación Sanitaria Aragón, Hospital Universitario Miguel Servet, 50009 Zaragoza, Spain
- Department of Preventive Medicine and Public Health, Universidad de Zaragoza, 50009 Zaragoza, Spain
- CIBERCV (CIBER of Cardiovascular Diseases), 28029 Madrid, Spain
| | - Pilar Guallar-Castillón
- Department of Preventive Medicine and Public Health, School of Medicine, Universidad Autónoma de Madrid, 28029 Madrid, Spain
- CIBERESP (CIBER of Epidemiology and Public Health), 28029 Madrid, Spain
- IMDEA-Food Institute, CEI UAM+CSIC, Carretera de Cantoblanco 8, 28049 Madrid, Spain
| |
Collapse
|
2
|
Wan X, Liu X, Ao Y, Zhang L, Zhuang P, Jiao J, Zhang Y. Associations between cooking method of food and type 2 diabetes risk: A prospective analysis focusing on cooking method transitioning. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 360:124662. [PMID: 39097261 DOI: 10.1016/j.envpol.2024.124662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/02/2024] [Accepted: 08/01/2024] [Indexed: 08/05/2024]
Abstract
Cooking process for food significantly impacts household air and increases exposure to endocrine disruptors such as acrylamide, consequently affecting human health. In the past 30 years, the transformation of cooking methods to high-temperature thermal processing has occurred widely in China. Yet the transition of cooking methods on the onset of type 2 diabetes (T2D) remains unclear, which may hinder health-based Sustainable Development Goals. We aimed to estimate the associations between dietary intake with different cooking methods and T2D risk. We included 14,745 participants (>20 y) from the China Health and Nutrition Survey (1991-2015). Food consumption was calculated using three consecutive 24-h dietary recalls combined with both individual participant level and household food inventory. Cooking methods, including boiling, steaming, baking, griddling, stir-frying, deep-frying, and raw eating, were also recorded. The consumption of baked/griddled and deep-fried foods was positively associated with 39% and 35% higher of T2D risk by comparing the highest with the lowest category of food consumption, respectively. The use of unhealthy cooking methods for processing foods including baked/griddled and deep-fried foods was attributable for 15 million T2D cases of the total T2D burden in 2011, resulting in a medical cost of $2.7 billion and was expected to be attributable for 39 million T2D cases in 2030, producing a medical cost of $223.8 billion. Replacing one serving of deep-fried foods and baked/griddle foods with boiled/steamed foods was related to 50% and 20% lower risk of T2D, respectively. Our findings recommend healthy driven cooking methods for daily diet for nourishing sustainable T2D prevention in China.
Collapse
Affiliation(s)
- Xuzhi Wan
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xiaohui Liu
- Department of Endocrinology, The Second Affiliated Hospital, Department of Nutrition, School of Public Health, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yang Ao
- Department of Endocrinology, The Second Affiliated Hospital, Department of Nutrition, School of Public Health, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Lange Zhang
- Department of Endocrinology, The Second Affiliated Hospital, Department of Nutrition, School of Public Health, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Pan Zhuang
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jingjing Jiao
- Department of Endocrinology, The Second Affiliated Hospital, Department of Nutrition, School of Public Health, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yu Zhang
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang, China.
| |
Collapse
|
3
|
Chen X, Tu Q, Zhao W, Lin X, Chen Z, Li B, Zhang Y. 5-Hydroxymethylfurfural mediated developmental toxicity in Drosophila melanogaster. Food Chem Toxicol 2024; 189:114738. [PMID: 38754806 DOI: 10.1016/j.fct.2024.114738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 05/03/2024] [Accepted: 05/13/2024] [Indexed: 05/18/2024]
Abstract
5-hydroxymethylfurfural is a common byproduct in food. However, its effect on growth and development remains incompletely understood. This study investigated the developmental toxicity of 5-HMF to Drosophila larvae. The growth and development of Drosophila melanogaster fed with 5-50 mM 5-HMF was monitored, and its possible mechanism was explored. It was found that 5-HMF prolonged the developmental cycle of Drosophila melanogaster (25 mM and 50 mM). After 5-HMF intake, the level of reactive oxygen species in the third instar larvae increased by 1.23-1.40 fold, which increased the level of malondialdehyde and caused changes in antioxidant enzymes. Moreover, the nuclear factor erythroid-2 related factor 2 antioxidant signaling pathway and the expression of heat shock protein genes were affected. At the same time, 5-HMF disrupted the glucose and lipid metabolism in the third instar larvae, influencing the expression level of key genes in the insulin signal pathway. Furthermore, 5-HMF led to intestinal oxidative stress, and up-regulated the expression of the pro-apoptotic gene, consequently impacting intestinal health. In short, 5-HMF causes oxidative stress, disturbs glucose and lipid metabolism and induces intestinal damage, damaging related signaling pathways, and ultimately affecting the development of Drosophila melanogaster.
Collapse
Affiliation(s)
- Xunlin Chen
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou, 510642, China
| | - Qinghui Tu
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou, 510642, China
| | - Wenzheng Zhao
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou, 510642, China
| | - Xiaorong Lin
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou, 510642, China
| | - Zhongzheng Chen
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou, 510642, China
| | - Bin Li
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou, 510642, China
| | - Yuanyuan Zhang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
4
|
Yue Z, Zhao F, Guo Y, Zhang Y, Chen Y, He L, Li L. Lactobacillus reuteri JCM 1112 ameliorates chronic acrylamide-induced glucose metabolism disorder via the bile acid-TGR5-GLP-1 axis and modulates intestinal oxidative stress in mice. Food Funct 2024; 15:6450-6458. [PMID: 38804210 DOI: 10.1039/d4fo01061b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Acrylamide (AA) is a toxic food contaminant that has been reported to cause glucose metabolism disorders (GMD) at high doses. However, it is unclear whether chronic low-dose AA can induce GMD and whether probiotics can alleviate AA-induced GMD. Here, C57BL/6N mice were orally administered with 5 mg per kg bw AA for 10 weeks, followed by another 3 weeks of glucagon-like peptide-1 (GLP-1) analogue (dulaglutide) treatment. Chronic low-dose AA exposure increased the blood glucose level and decreased serum insulin and GLP-1 levels, whereas dulaglutide treatment decreased the blood glucose level and increased the serum insulin level in AA-exposed mice. Then, mice were administered with AA or AA + INT-777 (Takeda G-protein-coupled receptor 5 (TGR5) agonist) for 10 weeks. INT-777 treatment reversed AA-induced downregulation of ileal TGR5 and proglucagon (PG) gene expression and decreased the serum GLP-1 level. These findings indicated that chronic low-dose AA induced GMD via inhibiting the TGR5-GLP-1 axis. Finally, mice were administered with AA for 10 weeks, followed by another 3 weeks of Lactobacillus reuteri JCM 1112 supplementation. L. reuteri supplementation significantly increased serum glucose, insulin and GLP-1 levels, upregulated ileal TGR5 and PG gene expression, and effectively restored the imbalance of bile acid (BA) metabolism in AA-exposed mice, demonstrating that L. reuteri ameliorates chronic AA-induced GMD via the BA-TGR5-GLP-1 axis. In addition, L. reuteri significantly enhanced ileal superoxide dismutase and catalase activities and total antioxidant capacity, thereby preventing chronic AA-induced oxidative stress. Our research provides new insights into the GMD toxicity of chronic low-dose AA and confirms the role of probiotics in alleviating AA-induced GMD.
Collapse
Affiliation(s)
- Zonghao Yue
- College of Life Sciences and Agronomy, Zhoukou Normal University, Zhoukou 466001, China.
| | - Feiyue Zhao
- College of Life Sciences and Agronomy, Zhoukou Normal University, Zhoukou 466001, China.
| | - Yuqi Guo
- College of Life Sciences and Agronomy, Zhoukou Normal University, Zhoukou 466001, China.
| | - Yidan Zhang
- College of Life Sciences and Agronomy, Zhoukou Normal University, Zhoukou 466001, China.
| | - Yanjuan Chen
- School of Mechanical and Electrical Engineering, Zhoukou Normal University, Zhoukou 466001, China
| | - Le He
- College of Life Sciences and Agronomy, Zhoukou Normal University, Zhoukou 466001, China.
| | - Lili Li
- College of Life Sciences and Agronomy, Zhoukou Normal University, Zhoukou 466001, China.
| |
Collapse
|
5
|
Han S, Xie M, Cheng S, Han Y, Li P, Guo J. Associations between specific volatile organic chemical exposures and cardiovascular disease risks: insights from NHANES. Front Public Health 2024; 12:1378444. [PMID: 38846604 PMCID: PMC11153666 DOI: 10.3389/fpubh.2024.1378444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 05/06/2024] [Indexed: 06/09/2024] Open
Abstract
Introduction An increasing body of research has demonstrated a correlation between pollutants from the environment and the development of cardiovascular diseases (CVD). However, the impact of volatile organic chemicals (VOC) on CVD remains unknown and needs further investigation. Objectives This study assessed whether exposure to VOC was associated with CVD in the general population. Methods A cross-sectional analysis was conducted utilizing data from five survey cycles (2005-2006, 2011-2012, 2013-2014, 2015-2016, and 2017-2018) of the National Health and Nutrition Examination Survey (NHANES) program. We analyzed the association between urinary VOC metabolites (VOCs) and participants by multiple logistic regression models, further Bayesian Kernel Machine Regression (BKMR) models and Weighted Quantile Sum (WQS) regression were performed for mixture exposure analysis. Results Total VOCs were found to be positively linked with CVD in multivariable-adjusted models (p for trend = 0.025), independent of established CVD risk variables, such as hypertension, diabetes, drinking and smoking, and total cholesterol levels. Compared with the reference quartile of total VOCs levels, the multivariable-adjusted odds ratios in increasing quartiles were 1.01 [95% confidence interval (CI): 0.78-1.31], 1.26 (95% CI: 1.05-1.21) and 1.75 (95% CI: 1.36-1.64) for total CVD. Similar positive associations were found when considering individual VOCs, including AAMA, CEMA, CYMA, 2HPMA, 3HPMA, IPM3 and MHBMA3 (acrolein, acrylamide, acrylonitrile, propylene oxide, isoprene, and 1,3-butadiene). In BKMR analysis, the overall effect of a mixture is significantly related to VOCs when all chemicals reach or exceed the 75th percentile. Moreover, in the WQS models, the most influential VOCs were found to be CEMA (40.30%), DHBMA (21.00%), and AMCC (19.70%). Conclusion The results of our study indicated that VOC was all found to have a significant association with CVD when comparing results from different models. These findings hold significant potential for public health implications and offer valuable insights for future research directions.
Collapse
Affiliation(s)
- Shaojie Han
- The First Clinical Medical College, Jinan University, Guangzhou, China
- Department of Cardiology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Min Xie
- Department of Cardiology, Seventh People’s Hospital of Chengdu, Chengdu, China
| | - Siyuan Cheng
- The First Clinical Medical College, Jinan University, Guangzhou, China
- Department of Cardiology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Yuchen Han
- The First Clinical Medical College, Jinan University, Guangzhou, China
- Department of Cardiology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Panpan Li
- The First Clinical Medical College, Jinan University, Guangzhou, China
- Department of Cardiology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Jun Guo
- The First Clinical Medical College, Jinan University, Guangzhou, China
- Department of Cardiology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| |
Collapse
|
6
|
Guo Y, Zhao T, Yao X, Ji H, Luo Y, Okeke ES, Mao G, Feng W, Chen Y, Ding Y, Wu X, Yang L. Acrylamide-Aggravated Liver Injury by Activating Endoplasmic Reticulum Stress in Female Mice with Diabetes. Chem Res Toxicol 2024; 37:731-743. [PMID: 38634348 DOI: 10.1021/acs.chemrestox.4c00016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Abstract
Acrylamide (ACR) is a common industrial contaminant with endocrine-disrupting toxicity. Numerous studies have indicated that females and diabetics are more sensitive to environmental contaminants. However, it remains unknown whether female diabetics are susceptible to ACR-induced toxicity and its potential mechanisms. Thus, the female ACR-exposure diabetic Balb/c mice model was established to address these issues. Results showed that ACR could induce liver injury in normal mice and cause more serious inflammatory cell infiltration, hepatocyte volume increase, and fusion in diabetic mice liver. Meanwhile, ACR could lead to exacerbation of diabetic symptoms in diabetic mice by disturbing the glucose and lipid metabolism in the liver, which mainly manifests as the accumulation of liver glycogen and liver lipids, the reduction of the activity/content of glycolytic and metabolizing enzyme as well as pentose phosphatase, upregulation of the gene expression in fatty acid transporter and gluconeogenesis, and downregulation of the gene expression in fatty acid synthesis and metabolism. Moreover, ACR exposure could induce oxidative stress, inflammation, and endoplasmic reticulum stress in the liver by a decrease in hepatic antioxidant enzyme activity and antioxidant content, an increase in inflammatory factor levels, and a change in the related protein expression of endoplasmic reticulum stress (ERS) and apoptosis-related pathways in diabetic mice. Statistical analysis results revealed that ACR-induced liver injury was highly correlated with inflammation and oxidative stress, and ERS and diabetic mice had a higher risk of liver injury than normal mice. Overall results suggested that female diabetic mice easily suffer from ACR-induced toxicity, and the reason was that ACR could induce further damage to the liver by worsening the condition of inflammation, oxidative stress, and ERS in the liver.
Collapse
Affiliation(s)
- Yuchao Guo
- School of Chemistry and Chemical Engineering, Jiangsu University, Xuefu Rd. 301, Zhenjiang 212013, China
| | - Ting Zhao
- School of Chemistry and Chemical Engineering, Jiangsu University, Xuefu Rd. 301, Zhenjiang 212013, China
| | - Xiongyi Yao
- School of Chemistry and Chemical Engineering, Jiangsu University, Xuefu Rd. 301, Zhenjiang 212013, China
| | - Hongchen Ji
- School of Chemistry and Chemical Engineering, Jiangsu University, Xuefu Rd. 301, Zhenjiang 212013, China
| | - Yingbiao Luo
- School of Chemistry and Chemical Engineering, Jiangsu University, Xuefu Rd. 301, Zhenjiang 212013, China
| | - Emmanuel Sunday Okeke
- School of the Environment, Jiangsu University, Xuefu Rd. 301, Zhenjiang 212013 Jiangsu, China
- Department of Biochemistry, Faculty of Biological Sciences & Natural Science Unit, School of General Studies, University of Nigeria, Nsukka, Enugu State 410001, Nigeria
| | - Guanghua Mao
- School of the Environment, Jiangsu University, Xuefu Rd. 301, Zhenjiang 212013 Jiangsu, China
| | - Weiwei Feng
- School of the Environment, Jiangsu University, Xuefu Rd. 301, Zhenjiang 212013 Jiangsu, China
| | - Yao Chen
- School of the Environment, Jiangsu University, Xuefu Rd. 301, Zhenjiang 212013 Jiangsu, China
| | - Yangyang Ding
- School of the Environment, Jiangsu University, Xuefu Rd. 301, Zhenjiang 212013 Jiangsu, China
| | - Xiangyang Wu
- School of the Environment, Jiangsu University, Xuefu Rd. 301, Zhenjiang 212013 Jiangsu, China
| | - Liuqing Yang
- School of Chemistry and Chemical Engineering, Jiangsu University, Xuefu Rd. 301, Zhenjiang 212013, China
| |
Collapse
|
7
|
Guo Y, Mao H, Gong D, Zhang N, Gu D, Okeke ES, Feng W, Chen Y, Mao G, Zhao T, Yang L. Differential susceptibility of BRL cells with/without insulin resistance and the role of endoplasmic reticulum stress signaling pathway in response to acrylamide-exposure toxicity effects in vitro. Toxicology 2024; 504:153800. [PMID: 38604440 DOI: 10.1016/j.tox.2024.153800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 03/30/2024] [Accepted: 04/08/2024] [Indexed: 04/13/2024]
Abstract
Acrylamide (ACR) is an endogenous food contaminant, high levels of ACR have been detected in a large number of foods, causing widespread concern. Since different organism states respond differently to the toxic effects of pollutants, this study establishes an insulin-resistant BRL cell model to explore the differential susceptibility of BRL cells with/without insulin resistance in response to acrylamide-exposure (0.0002, 0.02, or 1 mM) toxicity effects and its mechanism. The results showed that ACR exposure decreased glucose uptake and increased intracellular lipid levels by promoting the expression of fatty acid synthesis, transport, and gluconeogenesis genes and inhibiting the expression of fatty acid metabolism genes, thereby further exacerbating disorders of gluconeogenesis and lipid metabolism in insulin-resistant BRL cells. Simultaneously, its exposure also exacerbated BRL cells with/without insulin-resistant damage. Meanwhile, insulin resistance significantly raised susceptibility to BRL cell response to ACR-induced toxicity. Furthermore, ACR exposure further activated the endoplasmic reticulum stress (ERS) signaling pathway (promoting phosphorylation of PERK, eIF-2α, and IRE-1α) and the apoptosis signaling pathway (activating Caspase-3 and increasing the Bax/Bcl-2 ratio) in BRL cells with insulin-resistant, which were also attenuated after ROS scavenging or ERS signaling pathway blockade. Overall results suggested that ACR evokes a severer toxicity effect on BRL cells with insulin resistance through the overactivation of the ERS signaling pathway.
Collapse
Affiliation(s)
- Yuchao Guo
- School of Chemistry and Chemical Engineering, Jiangsu University, Xuefu Rd. 301, Zhenjiang 212013, China
| | - Houlin Mao
- School of Chemistry and Chemical Engineering, Jiangsu University, Xuefu Rd. 301, Zhenjiang 212013, China
| | - Danni Gong
- School of Chemistry and Chemical Engineering, Jiangsu University, Xuefu Rd. 301, Zhenjiang 212013, China
| | - Nuo Zhang
- School of Chemistry and Chemical Engineering, Jiangsu University, Xuefu Rd. 301, Zhenjiang 212013, China
| | - Dandan Gu
- School of Chemistry and Chemical Engineering, Jiangsu University, Xuefu Rd. 301, Zhenjiang 212013, China
| | - Emmanuel Sunday Okeke
- School of the Environment, Jiangsu University, Xuefu Rd. 301, Zhenjiang, Jiangsu 212013, China; Department of Biochemistry, Faculty of Biological Science & Natural Science Unit, School of General Studies, University of Nigeria, Nsukka, Enugu 410001, Nigeria
| | - Weiwei Feng
- School of the Environment, Jiangsu University, Xuefu Rd. 301, Zhenjiang, Jiangsu 212013, China
| | - Yao Chen
- School of the Environment, Jiangsu University, Xuefu Rd. 301, Zhenjiang, Jiangsu 212013, China
| | - Guanghua Mao
- School of the Environment, Jiangsu University, Xuefu Rd. 301, Zhenjiang, Jiangsu 212013, China
| | - Ting Zhao
- School of Chemistry and Chemical Engineering, Jiangsu University, Xuefu Rd. 301, Zhenjiang 212013, China.
| | - Liuqing Yang
- School of Chemistry and Chemical Engineering, Jiangsu University, Xuefu Rd. 301, Zhenjiang 212013, China.
| |
Collapse
|
8
|
Buyukdere Y, Akyol A. From a toxin to an obesogen: a review of potential obesogenic roles of acrylamide with a mechanistic approach. Nutr Rev 2023; 82:128-142. [PMID: 37155834 PMCID: PMC10711450 DOI: 10.1093/nutrit/nuad041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023] Open
Abstract
Obesity and obesity-related disorders such as cancer, type 2 diabetes, and fatty liver have become a global health problem. It is well known that the primary cause of obesity is positive energy balance. In addition, obesity is the consequence of complex gene and environment interactions that result in excess calorie intake being stored as fat. However, it has been revealed that there are other factors contributing to the worsening of obesity. The presence of nontraditional risk factors, such as environmental endocrine-disrupting chemicals, has recently been associated with obesity and comorbidities caused by obesity. The aim of this review was to examine the evidence and potential mechanisms for acrylamide having endocrine-disrupting properties contributing to obesity and obesity-related comorbidities. Recent studies have suggested that exposure to environmental endocrine-disrupting obesogens may be a risk factor contributing to the current obesity epidemic, and that one of these obesogens is acrylamide, an environmental and industrial compound produced by food processing, particularly the processing of foods such as potato chips, and coffee. In addition to the known harmful effects of acrylamide in humans and experimental animals, such as neurotoxicity, genotoxicity, and carcinogenicity, acrylamide also has an obesogenic effect. It has been shown in the literature to a limited extent that acrylamide may disrupt energy metabolism, lipid metabolism, adipogenesis, adipocyte differentiation, and various signaling pathways, and may exacerbate the disturbances in metabolic and biochemical parameters observed as a result of obesity. Acrylamide exerts its main potential obesogenic effects through body weight increase, worsening of the levels of obesity-related blood biomarkers, and induction of adipocyte differentiation and adipogenesis. Additional mechanisms may be discovered. Further experimental studies and prospective cohorts are needed, both to supplement existing knowledge about acrylamide and its effects, and to clarify its established relationship with obesity and its comorbidities.
Collapse
Affiliation(s)
- Yucel Buyukdere
- are with the Department of Nutrition and Dietetics, Hacettepe University, Ankara, Turkey
| | - Asli Akyol
- are with the Department of Nutrition and Dietetics, Hacettepe University, Ankara, Turkey
| |
Collapse
|
9
|
Wan X, Liu X, Zhang L, Zhuang P, Jiao J, Zhang Y. Potato consumption, polygenic scores, and incident type 2 diabetes: An observational study. Food Res Int 2023; 170:112936. [PMID: 37316042 DOI: 10.1016/j.foodres.2023.112936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 02/21/2023] [Accepted: 05/01/2023] [Indexed: 06/16/2023]
Abstract
Whether the consumption of different processed potatoes is detrimental to type 2 diabetes (T2D) is highly debated. This study aimed to assess the relations between potato consumption and the risk of T2D and whether the relationship was modified by the genetic predisposition to T2D. We included 174,665 participants from the UK Biobank at baseline. Potato consumption was evaluated using the 24-hour dietary questionnaire. The genetic risk score (GRS) was calculated based on 424 variants associated with T2D. After adjustment for demographic, lifestyle, and dietary factors, the consumption of total potatoes was significantly and positively associated with T2D risk [hazard ratio (HR) comparing two or more servings/day with non-consumers was 1.28 (95% CI: 1.13-1.45)]. HRs (95% CIs) of T2D for each 1-SD increment in boiled/baked potatoes, mashed potatoes, and fried potatoes were 1.02 (0.99-1.05), 1.05 (1.02-1.08), and 1.05 (1.02-1.09), respectively. There were no significant interactions between the consumption of total or different processed potatoes and overall GRS on T2D risk. Theoretically, replacing one serving/day of total potatoes with the same amount of non-starchy vegetables was related to a 12% (95% CI: 0.84-0.91) lower T2D risk. These results showed the positive associations of the consumption of total potatoes, mashed potatoes or fried potatoes and genetic risk with higher incident T2D. An unhealthy potato-based diet is associated with higher diabetes risk regardless of genetic risk.
Collapse
Affiliation(s)
- Xuzhi Wan
- Zhejiang Key Laboratory for Agro-Food Processing, Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang, China; Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xiaohui Liu
- Department of Nutrition, School of Public Health, Department of Endocrinology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Lange Zhang
- Department of Nutrition, School of Public Health, Department of Endocrinology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Pan Zhuang
- Zhejiang Key Laboratory for Agro-Food Processing, Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang, China; Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jingjing Jiao
- Department of Nutrition, School of Public Health, Department of Endocrinology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| | - Yu Zhang
- Zhejiang Key Laboratory for Agro-Food Processing, Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang, China; Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| |
Collapse
|
10
|
Milanović M, Milošević N, Milić N, Stojanoska MM, Petri E, Filipović JM. Food contaminants and potential risk of diabetes development: A narrative review. World J Diabetes 2023; 14:705-723. [PMID: 37383596 PMCID: PMC10294057 DOI: 10.4239/wjd.v14.i6.705] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 03/03/2023] [Accepted: 04/13/2023] [Indexed: 06/14/2023] Open
Abstract
The number of people diagnosed with diabetes continues to increase, especially among younger populations. Apart from genetic predisposition and lifestyle, there is increasing scientific and public concern that environmental agents may also contribute to diabetes. Food contamination by chemical substances that originate from packaging materials, or are the result of chemical reactions during food processing, is generally recognized as a worldwide problem with potential health hazards. Phthalates, bisphenol A (BPA) and acrylamide (AA) have been the focus of attention in recent years, due to the numerous adverse health effects associated with their exposure. This paper summarizes the available data about the association between phthalates, BPA and AA exposure and diabetes. Although their mechanism of action has not been fully clarified, in vitro, in vivo and epidemiological studies have made significant progress toward identifying the potential roles of phthalates, BPA and AA in diabetes development and progression. These chemicals interfere with multiple signaling pathways involved in glucose and lipid homeostasis and can aggravate the symptoms of diabetes. Especially concerning are the effects of exposure during early stages and the gestational period. Well-designed prospective studies are needed in order to better establish prevention strategies against the harmful effects of these food contaminants.
Collapse
Affiliation(s)
- Maja Milanović
- Department of Pharmacy, Faculty of Medicine, University of Novi Sad, Novi Sad 21000, Serbia
| | - Nataša Milošević
- Department of Pharmacy, Faculty of Medicine, University of Novi Sad, Novi Sad 21000, Serbia
| | - Nataša Milić
- Department of Pharmacy, Faculty of Medicine, University of Novi Sad, Novi Sad 21000, Serbia
| | - Milica Medić Stojanoska
- Faculty of Medicine, Clinic for Endocrinology, Diabetes and Metabolic Diseases, University Clinical Center of Vojvodina, University of Novi Sad, Novi Sad 21000, Serbia
| | - Edward Petri
- Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, Novi Sad 21000, Serbia
| | - Jelena Marković Filipović
- Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, Novi Sad 21000, Serbia
| |
Collapse
|
11
|
El-Houseiny W, AbdelMageed M, Abd-Elhakim YM, Abdel-Warith AWA, Younis EM, Abd-Allah NA, Davies SJ, El-Kholy MS, Ahmed SA. The effect of dietary Crataegus Sinaica on the growth performance, immune responses, hemato-biochemical and oxidative stress indices, tissues architecture, and resistance to Aeromonas sobria infection of acrylamide-exposed Clarias gariepinus. AQUACULTURE REPORTS 2023; 30:101576. [DOI: 10.1016/j.aqrep.2023.101576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
12
|
Chen S, Wan Y, Qian X, Wang A, Mahai G, Li Y, Xu S, Xia W. Urinary metabolites of multiple volatile organic compounds, oxidative stress biomarkers, and gestational diabetes mellitus: Association analyses. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 875:162370. [PMID: 36842580 DOI: 10.1016/j.scitotenv.2023.162370] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 02/17/2023] [Accepted: 02/17/2023] [Indexed: 06/18/2023]
Abstract
Volatile organic compounds are ubiquitous in the environment, which may cause various adverse health effects. The objectives of this study were to investigate associations of single and mixture of urinary metabolites of volatile organic compounds (mVOCs) with gestational diabetes mellitus (GDM) risk, and examine the possible role of oxidative stress in the associations. This nested case-control study included 454 GDM cases and 454 healthy controls matched by maternal age and infant sex. Urinary concentrations of twenty-one mVOCs and three oxidative stress biomarkers (including 8-OHdG, 8-OHG, and HNEMA), in early pregnancy were measured. Analyses using logistic regression model showed that an interquartile range increase in urinary concentrations of six individual mVOCs (ATCA, BPMA, CEMA, 3HPMA, MU, and TGA) were significantly associated with increased odds of GDM by 19-27%. Weighted quantile sum regression analyses showed that in each quartile increment of the mixture of mVOCs, the odds of GDM increased by 39% (95% CI: 16%, 67%), with 2-aminothiazoline-4-carboxylic acid weighted the most in the associations (weight: 25%). Furthermore, significant associations of the oxidative stress biomarkers with both GDM and certain mVOCs were observed. These results suggested that certain urinary mVOCs (correspondingly, the parent VOCs such as 1-bromopropane, cyanide, and benzene should be concerned as priority ones for regulation and policy making) in early pregnancy were significantly associated with elevated GDM incidence, and the associations were potentially related with oxidative stress biomarkers.
Collapse
Affiliation(s)
- Silan Chen
- Key Laboratory of Environment and Health (HUST), Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China.
| | - Yanjian Wan
- Institute of Environmental Health, Wuhan Centers for Disease Control & Prevention, Wuhan, Hubei 430024, PR China.
| | - Xi Qian
- Key Laboratory of Environment and Health (HUST), Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China.
| | - Aizhen Wang
- Key Laboratory of Environment and Health (HUST), Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China.
| | - Gaga Mahai
- Key Laboratory of Environment and Health (HUST), Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China.
| | - Yuanyuan Li
- Key Laboratory of Environment and Health (HUST), Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China.
| | - Shunqing Xu
- Key Laboratory of Environment and Health (HUST), Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China.
| | - Wei Xia
- Key Laboratory of Environment and Health (HUST), Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China.
| |
Collapse
|
13
|
Gündüz D, Çetin H, Dönmez AÇ. Investigation of the effects of swimming exercises in rats given acrylamide. Morphologie 2023; 107:228-237. [PMID: 36481219 DOI: 10.1016/j.morpho.2022.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 11/14/2022] [Accepted: 11/19/2022] [Indexed: 05/14/2023]
Abstract
BACKGROUND Acrylamide is a toxic substance used in industrial and laboratory processes. Acrylamide exposure has a toxic effect on many systems. Protective mechanisms should be developed against the effects caused by acrylamide. OBJECTIVE In our study, we investigated whether exercise has a protective effect against the changes that acrylamide will cause in pancreas. METHODS 32 adult Sprague-Dawley male rats were used. Control group was given only saline. Exercise group was applied swimming exercise for 1hour daily for 4 weeks. Acrylamide group was given 50mg/kg acrylamide by gavage for 4 weeks. Acrylamide+exercise group was applied 50mg/kg acrylamide for 4 weeks and swimming exercise for 1hour daily. After the experiment, fasting blood glucose and oral glucose tolerance test measurements were performed. Then, blood and pancreas samples were taken. RESULTS Acrylamide exposure caused an increase in fasting blood glucose and oral glucose tolerance, a decrease in insulin levels and oxidative stress in acrylamide group. In exercise group, these values were similar to control group and no significant change was observed in acrylamide+exercise group. While there was an increase in the number of alpha cells in acrylamide group compared to the other groups, here was a decrease in the number of beta cells compared to control group. CONCLUSION We can say that acrylamide causes changes in the islets of Langerhans by affecting alpha and beta cell numbers. The protective effect of exercise on beta and alpha cell mass was not statistically significant in the acrylamide+exercise group. When the results were examined, the decrease in oxidative stress and the higher number of beta and alpha cells in the acrylamide+exercise group compared to the acrylamide group suggested that 4 weeks of swimming exercise may have an effect on acrylamide exposure.
Collapse
Affiliation(s)
- D Gündüz
- Malatya Turgut Ozal University, Faculty of Medicine, Department of Histology and Embryology, 44210 Malatya, Turkey.
| | - H Çetin
- Pamukkale University, Faculty of Medicine, Department of Histology and Embryology, Denizli, Turkey.
| | - A Ç Dönmez
- Pamukkale University, Faculty of Medicine, Department of Medical Biochemistry, Denizli, Turkey.
| |
Collapse
|
14
|
Fan M, Xu X, Lang W, Wang W, Wang X, Xin A, Zhou F, Ding Z, Ye X, Zhu B. Toxicity, formation, contamination, determination and mitigation of acrylamide in thermally processed plant-based foods and herbal medicines: A review. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 260:115059. [PMID: 37257344 DOI: 10.1016/j.ecoenv.2023.115059] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 05/19/2023] [Accepted: 05/21/2023] [Indexed: 06/02/2023]
Abstract
Thermal processing is one of the important techniques for most of the plant-based food and herb medicines before consumption and application in order to meet the specific requirement. The plant and herbs are rich in amino acids and reducing sugars, and thermal processing may lead to Maillard reaction, resulting as a high risk of acrylamide pollution. Acrylamide, an organic pollutant that can be absorbed by the body through the respiratory tract, digestive tract, skin and mucous membranes, has potential carcinogenicity, neurological, genetic, reproductive and developmental toxicity. Therefore, it is significant to conduct pollution determination and risk assessment for quality assurance and security of medication. This review demonstrates state-of-the-art research of acrylamide focusing on the toxicity, formation, contamination, determination, and mitigation in taking food and herb medicine, to provide reference for scientific processing and ensure the security of consumers.
Collapse
Affiliation(s)
- Min Fan
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310000, PR China; Wenshui Center for Disease Control and Prevention, Luliang City, Shanxi Province 032100 PR China
| | - Xiaoying Xu
- Zhejiang Institute for Food and Drug Control, Hangzhou, Zhejiang 310000, PR China
| | - Wenjun Lang
- Zhejiang Institute for Food and Drug Control, Hangzhou, Zhejiang 310000, PR China
| | - Wenjing Wang
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310000, PR China
| | - Xinyu Wang
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310000, PR China
| | - Angjun Xin
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310000, PR China
| | - Fangmei Zhou
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310000, PR China
| | - Zhishan Ding
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310000, PR China
| | - Xiaoqing Ye
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310000, PR China.
| | - Bingqi Zhu
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310000, PR China.
| |
Collapse
|
15
|
Hosseini-Esfahani F, Beheshti N, Nematollahi A, Koochakpoor G, Verij-Kazemi S, Mirmiran P, Azizi F. The association between dietary acrylamide intake and the risk of type 2 diabetes incidence in the Tehran lipid and glucose study. Sci Rep 2023; 13:8235. [PMID: 37217800 PMCID: PMC10203125 DOI: 10.1038/s41598-023-35493-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Accepted: 05/18/2023] [Indexed: 05/24/2023] Open
Abstract
This study aimed at investigating the association of acrylamide consumption with the incidence of type 2 diabetes (T2D) in adults. The 6022 subjects of the Tehran lipid and glucose study participants were selected. The acrylamide content of food items were summed and computed cumulatively across follow up surveys. Multivariable Cox proportional hazard regression analyses were performed to estimate the hazards ratio (HR) and 95% confidence interval (CI) of incident T2D. This study was done on men and women, respectively aged 41.5 ± 14.1 and 39.2 ± 13.0 years. The mean ± SD of dietary acrylamide intake was 57.0 ± 46.8 µg/day. Acrylamide intake was not associated with the incidence of T2D after adjusting for confounding variables. In women, a higher acrylamide intake was positively associated with T2D [HR (CI) for Q4: 1.13 (1.01-1.27), P trend: 0.03] after adjusting for confounding factors. Our results demonstrated that dietary intake of acrylamide was associated with an increased risk of T2D in women.
Collapse
Affiliation(s)
- Firoozeh Hosseini-Esfahani
- Nutrition and Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Niloofar Beheshti
- Nutrition and Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amene Nematollahi
- Department of Food Safety and Hygiene, School of Health, Fasa University of Medical Sciences, Fasa, Iran
| | | | - Soheil Verij-Kazemi
- Nutrition and Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Parvin Mirmiran
- Nutrition and Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Fereidoon Azizi
- Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
16
|
Yan F, Wang L, Zhao L, Wang C, Lu Q, Liu R. Acrylamide in food: Occurrence, metabolism, molecular toxicity mechanism and detoxification by phytochemicals. Food Chem Toxicol 2023; 175:113696. [PMID: 36870671 DOI: 10.1016/j.fct.2023.113696] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 01/16/2023] [Accepted: 02/25/2023] [Indexed: 03/06/2023]
Abstract
Acrylamide (ACR) is a common pollutant formed during food thermal processing such as frying, baking and roasting. ACR and its metabolites can cause various negative effects on organisms. To date, there have been some reviews summarizing the formation, absorption, detection and prevention of ACR, but there is no systematic summary on the mechanism of ACR-induced toxicity. In the past five years, the molecular mechanism for ACR-induced toxicity has been further explored and the detoxification of ACR by phytochemicals has been partly achieved. This review summarizes the ACR level in foods and its metabolic pathways, as well as highlights the mechanisms underlying ACR-induced toxicity and ACR detoxification by phytochemicals. It appears that oxidative stress, inflammation, apoptosis, autophagy, biochemical metabolism and gut microbiota disturbance are involved in various ACR-induced toxicities. In addition, the effects and possible action mechanisms of phytochemicals, including polyphenols, quinones, alkaloids, terpenoids, as well as vitamins and their analogs on ACR-induced toxicities are also discussed. This review provides potential therapeutic targets and strategies for addressing various ACR-induced toxicities in the future.
Collapse
Affiliation(s)
- Fangfang Yan
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China; Department of Pharmaceutical Sciences, University of Vienna, Vienna, Austria
| | - Li Wang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Li Zhao
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China; College of Food Science and Engineering, Shanxi Agricultural University, Jinzhong, China
| | - Chengming Wang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Qun Lu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China; Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, Wuhan, China; Key Laboratory of Urban Agriculture in Central China, Ministry of Agriculture and Rural Affairs, China
| | - Rui Liu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China; Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, Wuhan, China; Key Laboratory of Urban Agriculture in Central China, Ministry of Agriculture and Rural Affairs, China.
| |
Collapse
|
17
|
Wan X, Zhu F, Zhuang P, Liu X, Zhang L, Jia W, Jiao J, Xu C, Zhang Y. Associations of Hemoglobin Adducts of Acrylamide and Glycidamide with Prevalent Metabolic Syndrome in a Nationwide Population-Based Study. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:8755-8766. [PMID: 35796657 DOI: 10.1021/acs.jafc.2c03016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Environmental and dietary exposures to acrylamide (AA) have been linked with various metabolic-related outcomes, but the results are mixed. However, the association between long-term exposure to AA and the prevalence of metabolic syndrome (MetS) remains unknown. In this study, we aimed to assess the relationship between hemoglobin adducts of AA, biomarkers of internal exposure to AA, and MetS prevalence among a U.S. nationwide population. MetS patients were defined by meeting three or more of the following five characteristics: elevated blood pressure, high fasting glucose, abdominal obesity, hypertriglyceridemia, and lower high-density lipoprotein cholesterol (HDL-C). Multivariate-adjusted logistic regression models and restricted cubic spline models were used to analyze the associations between AA hemoglobin biomarkers and MetS prevalence. A total of 1552 MetS cases were documented. After adjustment for the potential confounders, the odds ratios (95% confidence intervals) of MetS prevalence in the highest quartile of AA hemoglobin biomarkers were 0.60 (0.40-0.89), 1.26 (0.84-1.89), 0.93 (0.71-1.21), and 1.61 (1.18-2.20) for HbAA, HbGA, the sum of HbAA and HbGA (HbAA + HbGA), and the ratio of HbGA to HbAA (HbGA/HbAA), compared with the lowest quartile, respectively. HbAA was significantly and inversely associated with blood pressure, fasting glucose, abdominal obesity, hypertriglyceridemia, and low HDL-C, while the HbGA/HbAA ratio was also positively associated with abdominal obesity, hypertriglyceridemia, and low HDL-C. The restricted cubic spline models revealed a positive relationship between the HbGA/HbAA ratio and the prevalence of MetS, while the HbAA level was inversely associated with MetS prevalence. Our current findings provided epidemiological evidence that HbAA and the HbGA/HbAA ratio were significantly associated with MetS prevalence among general U.S. adults. Further studies should be conducted to examine the association between internal exposure to AA and MetS prevalence.
Collapse
Affiliation(s)
- Xuzhi Wan
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University; Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, Zhejiang, China
| | - Fanghuan Zhu
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University; Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, Zhejiang, China
| | - Pan Zhuang
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University; Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, Zhejiang, China
| | - Xiaohui Liu
- Department of Nutrition, School of Public Health, Department of Clinical Nutrition of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, Zhejiang, China
| | - Lange Zhang
- Department of Nutrition, School of Public Health, Department of Clinical Nutrition of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, Zhejiang, China
| | - Wei Jia
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University; Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, Zhejiang, China
| | - Jingjing Jiao
- Department of Nutrition, School of Public Health, Department of Clinical Nutrition of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, Zhejiang, China
| | - Chengfu Xu
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang, China
| | - Yu Zhang
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University; Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, Zhejiang, China
- Ningbo Research Institute, Zhejiang University, Ningbo 315100, Zhejiang, China
- Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, Zhejiang, China
| |
Collapse
|
18
|
Wu H, Sun X, Jiang H, Hu C, Xu J, Sun C, Wei W, Han T, Jiang W. The Association Between Exposure to Acrylamide and Mortalities of Cardiovascular Disease and All-Cause Among People With Hyperglycemia. Front Cardiovasc Med 2022; 9:930135. [PMID: 35924219 PMCID: PMC9339995 DOI: 10.3389/fcvm.2022.930135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 06/17/2022] [Indexed: 12/08/2022] Open
Abstract
BackgroundAcrylamide is a common environmental volatile organic compound that humans are frequently exposed to in their daily lives. However, whether exposure to acrylamide is associated with long-term survival in patients with hyperglycemia remains largely unknown.Methods and ResultsA total of 3,601 hyperglycemic people were recruited in this study, including 1,247 people with diabetes and 2,354 people with pre-diabetes, who enrolled in the National Health and Nutrition Examination survey (2003–2004, 2005–2006, and 2013–2014). The acrylamide exposure was measured by the serum hemoglobin adduct of acrylamide (HbAA) and glycidamide (HbGA), and the ratio of HbAA and HbGA (HbAA/HbGA) was calculated, which were all categorized into quintiles. The National Death Index was used to identify the participants' death information until 2015. Cox proportional hazards (CPHs) regression models were performed to examine the survival relationship between these biomarkers and mortality. During the 28,652 person-year follow-up, 268 deaths due to the cardiovascular disease (CVD) were documented. After adjustment for multiple confounders, compared with participants in the lowest quintile of HbAA/HbGA, the participants in the highest quintile were more likely to die due to CVD (hazard ratio [HR] = 1.61, 95% CI: 1.09–2.39) and all-cause (HR = 1.59, 95% CI: 1.25–2.01). Moreover, subgroup analysis showed that the highest quintile of HbAA/HbGA in the people with diabetes or pre-diabetes was related to mortalities risk of CVD (HRdiabetes = 1.92, 95% CI: 1.11–3.31; HRpre−diabetes = 1.78, 95% CI: 1.01–3.14) and all-cause mortality (HRdiabetes = 1.81, 95% CI: 1.27–2.58; HRpre−diabetes = 1.59, 95% CI: 1.14–2.20). Additionally, no significant association between the levels of HbAA or HbGA and CVD mortality was observed among people with diabetes or pre-diabetes.ConclusionHigher levels of HbAA/HbGA are associated with greater mortalities of CVD and all-cause among hyperglycemic people.
Collapse
Affiliation(s)
- Huanyu Wu
- National Key Discipline, Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Harbin, China
| | - Xinyi Sun
- National Key Discipline, Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Harbin, China
| | - Hongyan Jiang
- National Key Discipline, Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Harbin, China
| | - Cong Hu
- National Key Discipline, Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Harbin, China
| | - Jiaxu Xu
- National Key Discipline, Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Harbin, China
| | - Changhao Sun
- National Key Discipline, Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Harbin, China
| | - Wei Wei
- National Key Discipline, Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Harbin, China
- Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin, China
- *Correspondence: Wei Wei
| | - Tianshu Han
- National Key Discipline, Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Harbin, China
- Tianshu Han
| | - Wenbo Jiang
- National Key Discipline, Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Harbin, China
- Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- Wenbo Jiang
| |
Collapse
|
19
|
Marković Filipović J, Karan J, Ivelja I, Matavulj M, Stošić M. Acrylamide and Potential Risk of Diabetes Mellitus: Effects on Human Population, Glucose Metabolism and Beta-Cell Toxicity. Int J Mol Sci 2022; 23:6112. [PMID: 35682790 PMCID: PMC9181725 DOI: 10.3390/ijms23116112] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/20/2022] [Accepted: 05/21/2022] [Indexed: 02/07/2023] Open
Abstract
Diabetes mellitus is a frequent endocrine disorder characterized by hyperglycemia. Acrylamide (AA) is food contaminant formed during the high-temperature processing of food rich in carbohydrates and low in proteins. Recent human epidemiological studies have shown a potential association between AA exposure and the prevalence of diabetes in the general population. In male rats, AA treatment promoted pancreatic islet remodeling, which was determined by alpha-cell expansion and beta-cell reduction, while in female rats AA caused hyperglycemia and histopathological changes in pancreatic islets. In vitro and in vivo rodent model systems have revealed that AA induces oxidative stress in beta cells and that AA impairs glucose metabolism and the insulin signaling pathway. Animal studies have shown that diabetic rodents are more sensitive to acrylamide and that AA aggravates the diabetic state. In this review, we provide an overview of human epidemiological studies that examined the relation between AA exposure and glucose disorders. In addition, the effects of AA treatment on pancreatic islet structure, beta-cell function and glucose metabolism in animal models are comprehensively analyzed with an emphasis on sex-related responses. Furthermore, oxidative stress as a putative mechanism of AA-induced toxicity in beta cells is explored. Finally, we discuss the effects of AA on diabetics in a rodent model system.
Collapse
Affiliation(s)
- Jelena Marković Filipović
- Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 2, 21000 Novi Sad, Serbia; (J.K.); (I.I.); (M.M.)
| | - Jelena Karan
- Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 2, 21000 Novi Sad, Serbia; (J.K.); (I.I.); (M.M.)
| | - Ivana Ivelja
- Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 2, 21000 Novi Sad, Serbia; (J.K.); (I.I.); (M.M.)
| | - Milica Matavulj
- Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 2, 21000 Novi Sad, Serbia; (J.K.); (I.I.); (M.M.)
| | - Milena Stošić
- Department of Environmental Engineering and Occupational Safety and Health, Faculty of Technical Science, University of Novi Sad, Trg Dositeja Obradovića 6, 21000 Novi Sad, Serbia;
| |
Collapse
|
20
|
Quan W, Lin Y, Xue C, Cheng Y, Luo J, Lou A, Zeng M, He Z, Shen Q, Chen J. Metabolic perturbations and health impact from exposure to a combination of multiple harmful Maillard reaction products on Sprague-Dawley rats. Food Funct 2022; 13:5515-5527. [PMID: 35522130 DOI: 10.1039/d2fo00143h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The present study aimed to investigate the metabolic perturbations and health impact of the co-accumulation of Maillard reaction products (MRPs), including acrylamide, harmane, and Nε-(carboxymethyl)lysine (CML), via serum biochemical and histopathological examinations as well as metabolomic analysis. Sprague-Dawley rats were treated with acrylamide (2 mg per kg body weight [bw]), harmane (1 mg per kg bw), CML (2 mg per kg bw), and combinations of these MRPs. Harmane did not cause adverse effects on the health of rats, whereas acrylamide and CML resulted in significantly (P < 0.05) decreased insulin sensitivity (HOMA-IR > 1), increased oxidative stress levels, and pathological injuries to the pancreas, liver, and gastrocnemius. Owing to the antioxidant and anti-diabetic activities of harmane, the effects of the combination of the MRPs on oxidative stress levels, blood glucose metabolism, and pathological injuries to the pancreas and gastrocnemius were relieved. However, new health problems, including pathological injury of the kidneys and increased cancer risk, were observed. Metabolomic analysis revealed that this may be related to the effects of MRPs on the arginine biosynthesis pathway, which resulted in the abnormal metabolism of fumaric acid and the tricarboxylic acid cycle. These results indicated that the mechanisms of the combined effect of MRPs and their effects on health cannot be predicted from the effects of individual MRPs.
Collapse
Affiliation(s)
- Wei Quan
- College of Food Science and Technology, Hunan Agricultural University, Changsha, Hunan 410128, China. .,State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China.
| | - Yong Lin
- National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Chaoyi Xue
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China.
| | - Yong Cheng
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China.
| | - Jie Luo
- College of Food Science and Technology, Hunan Agricultural University, Changsha, Hunan 410128, China.
| | - Aihua Lou
- College of Food Science and Technology, Hunan Agricultural University, Changsha, Hunan 410128, China.
| | - Maomao Zeng
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China.
| | - Zhiyong He
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China.
| | - Qingwu Shen
- College of Food Science and Technology, Hunan Agricultural University, Changsha, Hunan 410128, China.
| | - Jie Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China. .,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, China
| |
Collapse
|
21
|
Hypoglycemic effects of black brick tea with fungal growth in hyperglycemic mice model. FOOD SCIENCE AND HUMAN WELLNESS 2022. [DOI: 10.1016/j.fshw.2021.12.028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
22
|
Acrylamide induced glucose metabolism disorder in rats involves gut microbiota dysbiosis and changed bile acids metabolism. Food Res Int 2022; 157:111405. [DOI: 10.1016/j.foodres.2022.111405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 05/05/2022] [Accepted: 05/21/2022] [Indexed: 11/18/2022]
|
23
|
Quan W, Li M, Jiao Y, Zeng M, He Z, Shen Q, Chen J. Effect of Dietary Exposure to Acrylamide on Diabetes-Associated Cognitive Dysfunction from the Perspectives of Oxidative Damage, Neuroinflammation, and Metabolic Disorders. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:4445-4456. [PMID: 35364817 DOI: 10.1021/acs.jafc.2c00662] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Acrylamide is a toxic compound that is produced widely during food processing, but whether the daily dietary consumption of acrylamide can impair the cognitive dysfunction in diabetic individuals and the potential underlying mechanisms are unknown. The aim of the present study was to observe the changes in cognitive and memory performance caused by chronic acrylamide exposure and to evaluate its influence on the brain morphology, oxidative damage, neuroinflammation, and brain metabolic disturbance. Goto-Kakizaki (GK) rats, a rat model of diabetes, were orally administered acrylamide at 1 mg/kg body weight for 8 weeks. The results of the novel object recognition and Y-maze tests showed that the consumption of acrylamide significantly aggravated diabetes-associated cognitive dysfunction in GK rats. Acrylamide increased reactive oxygen species and malondialdehyde formation and reduced glutathione levels, catalase, and total antioxidant capacity activity, which caused a succession of events associated with oxidative damage, including glial cell activation. After the activation of astrocytes and microglia, related cytokines, including interleukin-1β, interleukin-6, tumor necrosis factor-α, and lipopolysaccharide, were released, amyloid β-protein was accumulated, brain-derived neurotrophic factor was decreased, and the expression of caspase-3 and caspase-9 was increased, which aggravated neuroinflammation. Furthermore, there was perturbation of some important metabolites, including glutamic acid, citric acid, pyruvic acid, lactate, and sphinganine, and their related glucose, amino acid, and energy metabolism pathways in the brain. This work helps to demonstrate the effect of consumption of acrylamide in the daily diet on diabetes-associated cognitive dysfunction and its underlying mechanisms.
Collapse
Affiliation(s)
- Wei Quan
- College of Food Science and Technology, Hunan Agricultural University, Changsha, Hunan 410128, China
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Maiquan Li
- College of Food Science and Technology, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Ye Jiao
- School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha 410114, China
| | - Maomao Zeng
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Zhiyong He
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Qingwu Shen
- College of Food Science and Technology, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Jie Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, China
| |
Collapse
|
24
|
Wang F, Fan B, Chen C, Zhang W. Acrylamide causes neurotoxicity by inhibiting glycolysis and causing the accumulation of carbonyl compounds in BV2 microglial cells. Food Chem Toxicol 2022; 163:112982. [DOI: 10.1016/j.fct.2022.112982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 03/26/2022] [Accepted: 03/30/2022] [Indexed: 10/18/2022]
|
25
|
Zhao CY, Hu LL, Xing CH, Lu X, Sun SC, Wei YX, Ren YP. Acrylamide Exposure Destroys the Distribution and Functions of Organelles in Mouse Oocytes. Front Cell Dev Biol 2022; 10:834964. [PMID: 35295848 PMCID: PMC8918731 DOI: 10.3389/fcell.2022.834964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 02/09/2022] [Indexed: 11/13/2022] Open
Abstract
Acrylamide (ACR) is a common industrial ingredient which is also found in foods that are cooked at high temperatures. ACR has been shown to have multiple toxicities including reproductive toxicity. Previous studies reported that ACR caused oocyte maturation defects through the induction of apoptosis and oxidative stress. In the present study, we showed that ACR exposure affected oocyte organelle functions, which might be the reason for oocyte toxicity. We found that exposure to 5 mM ACR reduced oocyte maturation. ACR caused abnormal mitochondrial distribution away from spindle periphery and reduced mitochondrial membrane potential. Further analysis showed that ACR exposure reduced the fluorescence intensity of Rps3 and abnormal distribution of the endoplasmic reticulum, indicating that ACR affected protein synthesis and modification in mouse oocytes. We found the negative effects of ACR on the distribution of the Golgi apparatus; in addition, fluorescence intensity of vesicle transporter Rab8A decreased, suggesting the decrease in protein transport capacity of oocytes. Furthermore, the simultaneous increase in lysosomes and LAMP2 fluorescence intensity was also observed, suggesting that ACR affected protein degradation in oocytes. In conclusion, our results indicated that ACR exposure disrupted the distribution and functions of organelles, which further affected oocyte developmental competence in mice.
Collapse
Affiliation(s)
- Chao-Ying Zhao
- College of Basic Medical Sciences, Zunyi Medical University, Zunyi, China
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Lin-Lin Hu
- Reproductive Medicine Center, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Chun-Hua Xing
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Xiang Lu
- College of Basic Medical Sciences, Zunyi Medical University, Zunyi, China
| | - Shao-Chen Sun
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
- *Correspondence: Shao-Chen Sun, ; Yu-Xia Wei, ; Yan-Ping Ren,
| | - Yu-Xia Wei
- Reproductive Medicine Center, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
- *Correspondence: Shao-Chen Sun, ; Yu-Xia Wei, ; Yan-Ping Ren,
| | - Yan-Ping Ren
- College of Basic Medical Sciences, Zunyi Medical University, Zunyi, China
- *Correspondence: Shao-Chen Sun, ; Yu-Xia Wei, ; Yan-Ping Ren,
| |
Collapse
|
26
|
Zhao T, Guo Y, Ji H, Mao G, Feng W, Chen Y, Wu X, Yang L. Short-term exposure to acrylamide exacerbated metabolic disorders and increased metabolic toxicity susceptibility on adult male mice with diabetes. Toxicol Lett 2021; 356:41-53. [PMID: 34896238 DOI: 10.1016/j.toxlet.2021.12.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 10/20/2021] [Accepted: 12/06/2021] [Indexed: 02/09/2023]
Abstract
Diabetes mellitus is a common endocrine metabolic disorder, and previous studies have shown that diabetics are more sensitive to the toxic environmental contaminants. Acrylamide (ACR) is both an industrially multipurpose compound and a common endogenous food contaminant to which people are frequently exposed and at high risk. However, the toxicity of ACR on diabetes hasn't attracted much attention. In this study, both healthy mice and diabetic mice received ACR administration orally to investigate the ACR-induced metabolic toxicity, mechanism and susceptibility to ACR toxicity in adult diabetic male mice. The results showed that ACR significantly increased FBG level and decreased bodyweight, serum lipid and liver lipid biomarkers (TC, TG, LDL-C, HDL-C) levels as well as expression of lipid and glucose metabolism-related genes in diabetic mice, indicating that ACR can exacerbate metabolic disorders of glucose and lipid in diabetic male mice. Moreover, ACR exposure significantly increased levels of MDA and COX-2), decreased GSH level and antioxidant enzyme activity (SOD, GSH-PX and CAT) by downregulating expression of Nrf2 and Keap1 in diabetic mice. Factorial analysis showed ACR had a more significant disturbance in diabetic mice compared with healthy mice. Our results indicated that ACR exposure can cause oxidative stress and inflammatory damage, which can exacerbate abnormal glucose and lipid metabolism. This work helps to elucidate the effects and underlying mechanisms of ACR-induced metabolic toxicity in adults with diabetes.
Collapse
Affiliation(s)
- Ting Zhao
- School of Chemistry and Chemical Engineering, Jiangsu University, Xuefu Rd. 301, Zhenjiang 212013, China
| | - Yuchao Guo
- School of Chemistry and Chemical Engineering, Jiangsu University, Xuefu Rd. 301, Zhenjiang 212013, China
| | - Hongchen Ji
- School of Chemistry and Chemical Engineering, Jiangsu University, Xuefu Rd. 301, Zhenjiang 212013, China
| | - Guanghua Mao
- School of the Environment, Jiangsu University, Xuefu Rd. 301, Zhenjiang 212013, Jiangsu, China
| | - Weiwei Feng
- School of the Environment, Jiangsu University, Xuefu Rd. 301, Zhenjiang 212013, Jiangsu, China
| | - Yao Chen
- School of the Environment, Jiangsu University, Xuefu Rd. 301, Zhenjiang 212013, Jiangsu, China
| | - Xiangyang Wu
- School of the Environment, Jiangsu University, Xuefu Rd. 301, Zhenjiang 212013, Jiangsu, China
| | - Liuqing Yang
- School of Chemistry and Chemical Engineering, Jiangsu University, Xuefu Rd. 301, Zhenjiang 212013, China.
| |
Collapse
|
27
|
Hung CC, Cheng YW, Chen WL, Fang WH. Negative Association between Acrylamide Exposure and Metabolic Syndrome Markers in Adult Population. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph182211949. [PMID: 34831705 PMCID: PMC8624217 DOI: 10.3390/ijerph182211949] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/07/2021] [Accepted: 11/09/2021] [Indexed: 02/07/2023]
Abstract
Metabolic syndrome encompasses multiple conditions that increase the risk of cardiovascular disease, and exposure to environmental chemicals can cause metabolic syndrome. This cross-sectional study analyzed data from the US National Health and Nutrition Examination Survey (2003-2006) on 4318 adult participants to assess the association between acrylamide (AA) exposure and metabolic syndrome. Concentrations of hemoglobin-adducted AA (HbAA) and hemoglobin-adducted glycidamide (HbGA) were evaluated. Metabolic syndrome markers related to HbAA and HbGA and the effect of exposure to AA and GA on the prevalence of metabolic syndrome were studied by ANOVA and multivariate logistic regression analyses, respectively. HbAA concentration inversely correlated with the number of metabolic syndrome markers (p < 0.05). An increased HbAA concentration was noted with reduced high triglyceride and low high-density lipoprotein cholesterol levels in the adjusted model (p < 0.05). High fasting plasma glucose level significantly correlated with HbGA concentration in the adjusted model. In conclusion, AA exposure alters metabolic syndrome markers in adults. Additional clinical and animal studies will clarify the role of AA exposure at different stages in the progression of metabolic syndrome-related diseases.
Collapse
Affiliation(s)
- Chun-Chi Hung
- Department of Orthopaedic Surgery, Tri-Service General Hospital, Taipei 114, Taiwan;
- School of Medicine, National Defense Medical Center, Taipei 114, Taiwan;
| | - Yung-Wen Cheng
- School of Medicine, National Defense Medical Center, Taipei 114, Taiwan;
- Division of Family Medicine, Department of Family and Community Medicine, Tri-Service General Hospital, Taipei 114, Taiwan
| | - Wei-Liang Chen
- School of Medicine, National Defense Medical Center, Taipei 114, Taiwan;
- Division of Family Medicine, Department of Family and Community Medicine, Tri-Service General Hospital, Taipei 114, Taiwan
- Division of Geriatric Medicine, Department of Family and Community Medicine, Tri-Service General Hospital, Taipei 114, Taiwan
- Department of Biochemistry, National Defense Medical Center, Taipei 114, Taiwan
- Correspondence: (W.-L.C.); (W.-H.F.); Tel.: +886-2-87923100 (ext. 12322) (W.-L.C.); +886-2-87923311 (ext. 16567) (W.-H.F.); Fax: +886-2-87923147 (W.-L.C.); +886-2-87927057 (W.-H.F.)
| | - Wen-Hui Fang
- School of Medicine, National Defense Medical Center, Taipei 114, Taiwan;
- Division of Family Medicine, Department of Family and Community Medicine, Tri-Service General Hospital, Taipei 114, Taiwan
- Correspondence: (W.-L.C.); (W.-H.F.); Tel.: +886-2-87923100 (ext. 12322) (W.-L.C.); +886-2-87923311 (ext. 16567) (W.-H.F.); Fax: +886-2-87923147 (W.-L.C.); +886-2-87927057 (W.-H.F.)
| |
Collapse
|
28
|
Multi-omics based strategy for toxicity analysis of acrylamide in Saccharomyces cerevisiae model. Chem Biol Interact 2021; 349:109682. [PMID: 34610338 DOI: 10.1016/j.cbi.2021.109682] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 09/17/2021] [Accepted: 09/29/2021] [Indexed: 12/08/2022]
Abstract
Although the toxicity of acrylamide (ACR) has been extensively investigated in different experimental models, its perturbations to multiple nodes of the cellular signaling network have not been systematically associated. In this study, changes at different omics layers in ACR exposed Saccharomyces cerevisiae cells were monitored using a multi-omics strategy. The results of the analysis highlighted the impairment of oxidative-reductive balance, energy metabolism, lipid metabolism, nucleotide metabolism, and ribosome function in yeast cells. Response to acute ACR damage, glutathione synthesis was upregulated, the process of protein degradation was accelerated, and the autophagy flux was initiated. Meanwhile, yeast upregulates gene expression levels of enzymes in carbohydrate metabolism and speeds up the oxidation process of fatty acids to compensate for energy depletion. Importantly, the multi-omics strategy captures features that have rarely been addressed in previous studies on the toxicology of ACR, including blocked de novo nucleotide synthesis, decreased levels of metabolic enzyme cofactors thiamine and D-biotin, increased intracellular concentrations of neurotoxic N-methyl d-aspartic acid and l-glutamic acid, and release of death mediators ceramide. The ACR perturbation network constructed in this work and the discovery of new damage features provide a theoretical basis for subsequent point-to-point toxicological studies.
Collapse
|
29
|
Xing X, Chun C, Xiong F, Rui-Hai L. Influence of Sargassum pallidum and the synergistic interaction mechanism of 6-gingerol and poricoic acid A on inhibiting ovalbumin glycation. Food Funct 2021; 12:9315-9326. [PMID: 34606550 DOI: 10.1039/d1fo01886h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
This study aimed to investigate the antiglycation capacity of Sargassum pallidum extract on ovalbumin (OVA) glycation, and the interaction mechanism of its active compounds, including 6-gingerol (6G) and poricoic acid A (PA). The results showed that Sargassum pallidum extract, PA and 6G had excellent suppression on the formation of fructosamine, 5-hydroxymethylfurfural (5-HMF), acrylamide and advanced glycation end products (AGEs), which was higher than aminoguanidine (AG). The combination of PA and 6G showed good synergistic effect on inhibiting the formation of AGEs. PA exhibited the strongest inhibition activity for protein glycation products, and the content of 5-HMF and acrylamide decreased from 277.44 and 10.60 μg mL-1 to 208.37 and 5.46 μg mL-1, respectively, at 30.08 × 10-5 M compared with the control group. 6G and PA quenched the fluorescence of OVA with a static mechanism, and enhanced the hydrophilic microenvironment of the tyrosine (Tyr) and tryptophan (Trp) residues. The binding of 6G and PA with OVA was spontaneous and driven by hydrogen bonds and van der Waals interactions. Molecular docking indicated that 6G and PA entered the hydrophobic cavity of OVA, and formed hydrogen bonds with Ser103, Leu101 and Thr 91. These findings suggested that Sargassum pallidum extract, PA and 6G have great potential as antiglycation inhibitors to treat diabetes complications in healthy food.
Collapse
Affiliation(s)
- Xie Xing
- SCUT-Zhuhai Institute of Modern Industrial Innovation, School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China.
| | - Chen Chun
- SCUT-Zhuhai Institute of Modern Industrial Innovation, School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China.
- Guangzhou Institute of Modern Industrial Technology, Nansha, 511458, China
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Engineering Research Center of Starch and Vegetable Protein Processing Ministry of Education, South China University of Technology, Guangzhou 510640, China
| | - Fu Xiong
- SCUT-Zhuhai Institute of Modern Industrial Innovation, School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China.
- Guangzhou Institute of Modern Industrial Technology, Nansha, 511458, China
- Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou 510640, China
| | - Liu Rui-Hai
- Department of Food Science, Stocking Hall, Cornell University, Ithaca, NY, 14853, USA
| |
Collapse
|
30
|
Liu Z, Wang J, Chen S, Xu C, Zhang Y. Associations of acrylamide with non-alcoholic fatty liver disease in American adults: a nationwide cross-sectional study. Environ Health 2021; 20:98. [PMID: 34461916 PMCID: PMC8407016 DOI: 10.1186/s12940-021-00783-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Accepted: 08/12/2021] [Indexed: 05/12/2023]
Abstract
BACKGROUND Acrylamide (AA) is a toxicant to humans, but the association between AA exposure and the risk of non-alcoholic fatty liver disease (NAFLD) remains unclear. In this study, our objective is to examine the cross-sectional association between AA exposure and the risk of NAFLD in American adults. METHODS A total of 3234 individuals who took part in the National Health and Nutrition Examination Survey (NHANES) 2003-2006 and 2013-2016 were enrolled in the study. NAFLD was diagnosed by the U.S. Fatty Liver Index. Multivariable logistic regression models were applied to estimate the association between AA and NAFLD in the whole group and the non-smoking group. RESULTS We discovered that in the whole group, serum hemoglobin adducts of AA (HbAA) were negatively associated with the prevalence of NAFLD after adjustment for various covariables (P for trend < 0.001). Compared with individuals in the lowest HbAA quartiles, the odds ratios (ORs) with 95% confidence intervals (CIs) in the highest HbAA quartiles were 0.61 (0.46-0.81) and 0.57 (0.36-0.88) in the whole group and the non-smoking group, respectively. In contrast, HbGA/HbAA showed a significantly positive correlation with the prevalence of NAFLD in both groups (P for trend < 0.001). In addition, HbGA was not significantly associated with NAFLD in the whole group or the non-smoking group. CONCLUSIONS HbAA is negatively associated with NAFLD whereas HbGA/HbAA is positively associated with NAFLD in adults in the U.S. Further studies are needed to clarify these relationships.
Collapse
Affiliation(s)
- Zhening Liu
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003 Zhejiang China
- Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058 Zhejiang China
| | - Jinghua Wang
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003 Zhejiang China
| | - Shenghui Chen
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003 Zhejiang China
| | - Chengfu Xu
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003 Zhejiang China
| | - Yu Zhang
- Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058 Zhejiang China
| |
Collapse
|
31
|
Yin G, Liao S, Gong D, Qiu H. Association of acrylamide and glycidamide haemoglobin adduct levels with diabetes mellitus in the general population. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 277:116816. [PMID: 33667748 DOI: 10.1016/j.envpol.2021.116816] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 02/05/2021] [Accepted: 02/19/2021] [Indexed: 05/26/2023]
Abstract
The frequency and duration of exposure to acrylamide (AA) from the environment and diet are associated with a range of adverse health effects. However, whether long-term AA exposure is related to diabetes mellitus (DM) remains unknown. Data from 3577 adults in the National Health and Nutrition Examination Survey (NHANES) 2005-2006 and 2013-2016 aged ≥ 20 years was analysed. The main analyses applied multivariate logistic regression and restricted cubic spline models to investigate the associations between DM and AA haemoglobin biomarkers, including haemoglobin adducts of acrylamide and glycidamide (HbAA and HbGA), the sum of HbAA and HbGA (HbAA + HbGA), and the ratio of HbGA to HbAA (HbGA/HbAA) levels. After multivariable adjustment, the odds ratios (95% confidence intervals) for DM comparing the highest with the lowest AA haemoglobin biomarker quartiles were 0.71 (0.55, 0.93), 0.92 (0.71, 1.18), 0.80 (0.62, 1.03) and 1.95 (1.51, 2.51) for HbAA, HbGA, HbAA + HbGA and HbGA/HbAA, respectively. The restricted cubic spline model demonstrated that HbAA was linearly and inversely associated with risk of DM (P for trend = 0.013), while HbGA/HbAA was nonlinearly and positively associated with the prevalence of DM (P for trend <0.001). These results support for epidemiological evidence that the HbAA and HbGA/HbAA are significantly associated with DM. Further studies are warranted to infer the causal role of AA exposure in the prevalence of DM.
Collapse
Affiliation(s)
- Guangli Yin
- Department of Geriatric, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, 210029, China
| | - Shengen Liao
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, 210029, China
| | - Dexing Gong
- Institute of Public Health, Guangdong Center for Disease Control and Prevention, Guangzhou, 510000, China
| | - Hongxia Qiu
- Department of Geriatric, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, 210029, China.
| |
Collapse
|
32
|
Shen Y, Zhao S, Liu Q, Jiang Y, Dong H, Feng W, Liu T, Xu H, Shao M. Investigation on the interaction of acrylamide with soy protein isolate: Exploring the binding mechanism in vitro. J Food Sci 2021; 86:2766-2777. [PMID: 33931852 DOI: 10.1111/1750-3841.15733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 03/05/2021] [Accepted: 03/22/2021] [Indexed: 11/27/2022]
Abstract
Acrylamide (AA), which is a carcinogen in humans, has been a research focus in terms of food risk assessment. However, few published studies have explored protein strategies to reduce the health risks of AA. The objective of this study was to investigate the binding of AA with soy protein isolate (SPI) and elucidate the binding mechanism. The results showed that AA could bind with nontreated, heat-treated, high-pressure homogenization-treated, and ultrasound-treated SPI in vitro. Fourier-transform infrared spectroscopy suggested that secondary structure of SPI changed significantly after binding with AA in the nontreated and different treated groups. Moreover, fluorescence quenching experiments suggested that the quenching of SPI by AA was static quenching and hydrogen bonds, hydrophobic interactions, and van der Waals forces were involved in this process. PRACTICAL APPLICATION: The study of SPI and AA binding could provide a new perspective for reducing the bioaccessibility of AA in human body by using protein. The results showed that SPI could potentially be used as a novel health strategy to reduce the harm of AA in the human body.
Collapse
Affiliation(s)
- Yu Shen
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China
| | - Sijia Zhao
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China
| | - Qingbo Liu
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China
| | - Yujun Jiang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China
| | - Heliang Dong
- Heilongjiang Institute of Quality Supervision and Testing, Harbin, China
| | - Wenxiao Feng
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China
| | - Tianxu Liu
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China
| | - Honghua Xu
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China
| | - Meili Shao
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China
| |
Collapse
|
33
|
Ge Y, Li B, Yang Y, Feng C, Tang X, Shi Y, Le G, Sun J. Oxidized Pork Induces Disorders of Glucose Metabolism in Mice. Mol Nutr Food Res 2021; 65:e2000859. [PMID: 33502107 DOI: 10.1002/mnfr.202000859] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 12/21/2020] [Indexed: 02/27/2024]
Abstract
SCOPE Consumption of red meat, particularly processed red meat, has been reported to be associated with type 2 diabetes risk, and oxidized proteins and amino acids may be involved in this process. This study explores the effects of pork with varying degrees of oxidative injury caused by cooking on glucose metabolism in mice. METHODS AND RESULTS Cooked pork is freeze-dried to prepare animal feed. Mice are fed either a control diet (CON), a low- (LOP), or a high-oxidative injury pork diet (HOP) for 12 weeks. Intake of HOP causes hyperglycemia, hypoinsulinemia, and impaired glucose tolerance, indicating a glucose metabolism disorder. Accumulation of oxidation products increases oxidative stress and inflammatory response, which impairs pancreatic islet β cells function and reduces insulin secretion. Moreover, HOP-mediated hyperglycemia can be partly attributed to elevated hepatic glucose output, as indicated by increased gluconeogenesis and glycogenolysis, and decreased glycolysis and glycogen content. Changes in these processes may be regulated by reduced insulin levels and suppression of the insulin receptor substrate-1 (IRS-1)/phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt) signaling pathway and its downstream signaling molecules. CONCLUSION HOP intake induces disorders of glucose metabolism by impairing pancreatic insulin secretion and increasing hepatic glucose output. Protein oxidation plays a key role in abnormal glucose metabolism induced by HOP.
Collapse
Affiliation(s)
- Yueting Ge
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
- Center for Food Nutrition and Functional Food Engineering, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Bowen Li
- Center for Food Nutrition and Functional Food Engineering, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Yuhui Yang
- College of Grain and Food Science, Henan University of Technology, Zhengzhou, 450001, China
| | - Chuanxing Feng
- Center for Food Nutrition and Functional Food Engineering, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Xue Tang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
- Center for Food Nutrition and Functional Food Engineering, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Yonghui Shi
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
- Center for Food Nutrition and Functional Food Engineering, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Guowei Le
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
- Center for Food Nutrition and Functional Food Engineering, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Jin Sun
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
- Institute of Nutrition and Health, Qingdao University, Qingdao, 266071, China
| |
Collapse
|
34
|
Quan W, Jiao Y, Li Y, Xue C, Liu G, Wang Z, Qin F, He Z, Zeng M, Chen J. Metabolic changes from exposure to harmful Maillard reaction products and high-fat diet on Sprague-Dawley rats. Food Res Int 2021; 141:110129. [DOI: 10.1016/j.foodres.2021.110129] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 12/17/2020] [Accepted: 01/06/2021] [Indexed: 12/11/2022]
|
35
|
Quan W, Jiao Y, Xue C, Li Y, Wang Z, Zeng M, Qin F, He Z, Chen J. Processed potatoes intake and risk of type 2 diabetes: a systematic review and meta-analysis of nine prospective cohort studies. Crit Rev Food Sci Nutr 2020; 62:1417-1425. [PMID: 33153277 DOI: 10.1080/10408398.2020.1843395] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The current cohort study shows the inconsistent association between potato consumption and the risk of type 2 diabetes mellitus (T2DM). Therefore, we conducted a systematic review and dose-response meta-analysis of published prospective cohort studies to quantitatively estimate this association. We searched PubMed, Embase, MEDLINE, Web of Knowledge, and the Cochrane Library up to September 2019 for all published articles. Seven of the articles reported nine cohort studies with 383,211 participants, with 23,189 T2DM cases that met the inclusion criteria and were included for our analysis. The results of random effects model pooled relative risk (RR) showed an association between potato intake and the risk of T2DM (pooled RR = 1.13, 95% CI: 1.02-1.26, p > 0.01). In the subgroup analysis, French fries, long-term follow-up, large sample size, and high-quality studies were associated with an increased T2DM risk. Further, a linear dose-response analysis indicated that 100 g/day increment of total potato (RR = 1.05, 95% CI: 1.02-1.08) and French fries (RR = 1.10, 95% CI: 1.07-1.14) consumption may increase the risk of T2DM by 5% and 10%, respectively. Our meta-analysis showed that potato consumption, especially French fries consumption, was associated with increased T2DM risk.
Collapse
Affiliation(s)
- Wei Quan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Ye Jiao
- School of Chemistry and Food Engineering, Changsha University of Science & Technology, Changsha, China
| | - Chaoyi Xue
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Yong Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Zhaojun Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Maomao Zeng
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Fang Qin
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Zhiyong He
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Jie Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
36
|
Shen Y, Shi Y, Sun Z. Comment on Experimental Determination of the Threshold Dose for Bifidogenic Activity of Dietary 1-Kestose in Rats. Foods 2020, 9, 4. Foods 2020; 9:E519. [PMID: 32326246 PMCID: PMC7231199 DOI: 10.3390/foods9040519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 03/26/2020] [Accepted: 04/17/2020] [Indexed: 11/16/2022] Open
Abstract
Currently, our group is undertaking a program trying to evaluate the bifidogenic effect/activity of different prebiotics and their dose-effect relationships [...].
Collapse
Affiliation(s)
- Yihao Shen
- Institute of Food and Drug Inspection, Zhoukou Normal University, Zhoukou 466001, China
| | - Yang Shi
- Institute of Food and Drug Inspection, Zhoukou Normal University, Zhoukou 466001, China
| | - Zhongke Sun
- Institute of Food and Drug Inspection, Zhoukou Normal University, Zhoukou 466001, China
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|