1
|
Hu M, Yu K, Wang C, Liu W, Hu A, Kuang Y, Gajendran B, Zacksenhaus E, Sartori G, Bertoni F, Xiao X, Ben-David Y. FLI1 Induces Plaque Psoriasis and Its Inhibition Attenuates Disease Progression. J Inflamm Res 2025; 18:4213-4231. [PMID: 40129872 PMCID: PMC11932125 DOI: 10.2147/jir.s500822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 03/05/2025] [Indexed: 03/26/2025] Open
Abstract
Plaque Psoriasis Plaque psoriasis is an inflammatory skin disorder affecting nearly 2% of the world population. Despite recent advances in psoriasis treatment, there is still a need for more effective therapies. The ETS transcription factor FLI1 plays critical roles in hematopoiesis, angiogenesis, immunity, and cancer. Emerging evidence suggests that FLI1 is intricately involved in inflammatory processes underlying psoriasis pathogenesis. Methods RNAseq and bioinformatic analysis were used to identify the correlation between FLI1 levels and the expression of inflammatory genes associated with psoriasis. Over-expression of FLI1 in skin cells determined FLI1's role in inducing transcription of psoriasis-related inflammatory genes, including IL6, IL1A, IL1B, IL23, and TNFα. Inhibitors such as chelerythrine (CLT) were tested for their suppressive effects on these genes. Mouse models of plaque psoriasis were employed to assess the therapeutic potential of CLT and tacrolimus (TAC). Results Over-expression of FLI1 in skin cells upregulated 24 psoriasis-associated genes, which were identified through RNAseq. Inhibitors of FLI1, such as CLT, suppressed these inflammatory genes in skin cells. In mouse models of plaque psoriasis induced by imiquimod (IMQ) or phorbol ester (TPA), treatment with the anti-FLI1 inhibitor CLT, administered either peritoneally or topically, significantly downregulated inflammatory genes and alleviated psoriasis symptoms. Similarly, TAC, a common immunosuppressive agent, effectively attenuated IMQ-induced psoriasis by acting as a potent anti-FLI1 compound. Conclusion These findings demonstrate that FLI1 plays a central role in psoriasis development and highlight it as a potential therapeutic target for this skin disorder.
Collapse
Affiliation(s)
- Maoting Hu
- State Key Laboratory of Discovery and Utilization of Functional Components in Traditional Chinese Medicine, Guizhou Medical University, Guiyang, 550014, People’s Republic of China
- The Natural Products Research Center of Guizhou Province, Guiyang, Guizhou, People’s Republic of China
| | - Kunlin Yu
- State Key Laboratory of Discovery and Utilization of Functional Components in Traditional Chinese Medicine, Guizhou Medical University, Guiyang, 550014, People’s Republic of China
- The Natural Products Research Center of Guizhou Province, Guiyang, Guizhou, People’s Republic of China
| | - Chunlin Wang
- State Key Laboratory of Discovery and Utilization of Functional Components in Traditional Chinese Medicine, Guizhou Medical University, Guiyang, 550014, People’s Republic of China
- The Natural Products Research Center of Guizhou Province, Guiyang, Guizhou, People’s Republic of China
| | - Wuling Liu
- State Key Laboratory of Discovery and Utilization of Functional Components in Traditional Chinese Medicine, Guizhou Medical University, Guiyang, 550014, People’s Republic of China
- The Natural Products Research Center of Guizhou Province, Guiyang, Guizhou, People’s Republic of China
| | - Anling Hu
- State Key Laboratory of Discovery and Utilization of Functional Components in Traditional Chinese Medicine, Guizhou Medical University, Guiyang, 550014, People’s Republic of China
- The Natural Products Research Center of Guizhou Province, Guiyang, Guizhou, People’s Republic of China
| | - Yi Kuang
- State Key Laboratory of Discovery and Utilization of Functional Components in Traditional Chinese Medicine, Guizhou Medical University, Guiyang, 550014, People’s Republic of China
- The Natural Products Research Center of Guizhou Province, Guiyang, Guizhou, People’s Republic of China
| | - Babu Gajendran
- School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, Guizhou Province, 550025, People’s Republic of China
| | - Eldad Zacksenhaus
- Division of Advanced Diagnostics, Toronto General Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Giulio Sartori
- Institute of Oncology Research, Faculty of Biomedical Sciences, USI, Bellinzona, Switzerland
| | - Francesco Bertoni
- Institute of Oncology Research, Faculty of Biomedical Sciences, USI, Bellinzona, Switzerland
- Oncology Institute of Southern Switzerland, Ente Ospedaliero Cantonale, Bellinzona, Switzerland
| | - Xiao Xiao
- State Key Laboratory of Discovery and Utilization of Functional Components in Traditional Chinese Medicine, Guizhou Medical University, Guiyang, 550014, People’s Republic of China
- The Natural Products Research Center of Guizhou Province, Guiyang, Guizhou, People’s Republic of China
| | - Yaacov Ben-David
- State Key Laboratory of Discovery and Utilization of Functional Components in Traditional Chinese Medicine, Guizhou Medical University, Guiyang, 550014, People’s Republic of China
- The Natural Products Research Center of Guizhou Province, Guiyang, Guizhou, People’s Republic of China
| |
Collapse
|
2
|
Mao X, Zhao G, Wang Q, He J, Liu Y, Liu T, Li W, Peng Y, Zheng J. Chelerythrine Chloride is an Affinity-Labeling Inactivator of CYP3A4 by Modification of Cysteine239. J Med Chem 2024; 67:2802-2811. [PMID: 38330258 DOI: 10.1021/acs.jmedchem.3c01943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Abstract
Chelerythrine chloride (CHE) is a quaternary benzo[c]phenanthridine alkaloid with an iminium group that was found to cause time- and concentration-dependent inhibition of CYP3A4. The loss of CYP3A4 activity was independent of NADPH. CYP3A4 competitive inhibitor ketoconazole and nucleophile N-acetylcysteine (NAC) slowed the inactivation. No recovery of CYP3A4 activity was observed after dialysis. Dihydrochelerythrine hardly inhibited CYP3A4, suggesting that the iminium group was primarily responsible for the inactivation. UV spectral analysis revealed that the maximal absorbance of CHE produced a significant red-shift after being mixed with NAC, suggesting that 1,2-addition possibly took place between the sulfhydryl group of NAC and iminium group of CHE. Molecular dynamics simulation and site-direct mutagenesis studies demonstrated that modification of Cys239 by the iminium group of CHE attributed to the inactivation. In conclusion, CHE is an affinity-labeling inactivator of CYP3A4. The observed enzyme inactivation resulted from the modification of Cys239 of CYP3A4 by the iminium group of CHE.
Collapse
Affiliation(s)
- Xu Mao
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang 550004, Guizhou, PR China
- Department of Pharmaceutical Analysis, College of Pharmacy, Mudanjiang Medical University, Mudanjiang 157011, PR China
| | - Guode Zhao
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, Liaoning, PR China
| | - Qian Wang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, Liaoning, PR China
- Shuangyashan Disease Control and Prevention Center, Shuangyashan 155100, PR China
| | - Junqi He
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang 550004, Guizhou, PR China
| | - Ying Liu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang 550004, Guizhou, PR China
| | - Ting Liu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang 550004, Guizhou, PR China
| | - Weiwei Li
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang 550004, Guizhou, PR China
| | - Ying Peng
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, Liaoning, PR China
| | - Jiang Zheng
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang 550004, Guizhou, PR China
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, Liaoning, PR China
| |
Collapse
|
3
|
Aggarwal R, Jain N, Dubey GP, Singh S, Chandra R. Visible Light-Prompted Regioselective Synthesis of Novel 5-Aroyl/hetaroyl-2',4-dimethyl-2,4'-bithiazoles as DNA- and BSA-Targeting Agents. Biomacromolecules 2023; 24:4798-4818. [PMID: 37729507 DOI: 10.1021/acs.biomac.3c00554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
Organic transformations mediated by visible light have gained popularity in recent years as they are green, renewable, inexpensive, and clean and yield excellent products. The present study describes cyclo-condensation of 2-methylthiazole-4-carbothioamide with differently substituted α-bromo-1,3-diketones achieved by utilizing a white light-emitting diode (LED) (9W) to accomplish the regioselective synthesis of novel 5-aroyl/hetaroyl-2',4-dimethyl-2,4'-bithiazole derivatives as DNA/bovine serum albumin (BSA)-targeting agents. The structure characterization of the exact regioisomer was achieved unequivocally by heteronuclear two-dimensional nuclear magnetic resonance (2D-NMR) spectroscopy [1H-13C] HMBC; [1H-13C] HMQC; and [1H-15N] HMBC. In silico toxicity studies indicated that the synthesized compounds exhibit low toxicity risks and adhere to the rules of oral bioavailability without any exception. Computational molecular modeling of the bithiazole derivatives with the dodecamer sequence of the DNA duplex and BSA identified 5-(4-chlorobenzoyl)-2',4-dimethyl-2,4'-bithiazole 7g as the most suitable derivative that can interact effectively with these biomolecules. Furthermore, theoretical results concurred with the ex vivo binding mode of the 7g with calf thymus DNA (ct-DNA) and BSA through a variety of spectroscopic techniques, viz., ultraviolet-visible (UV-visible), circular dichroism (CD), steady-state fluorescence, and competitive displacement assay, along with viscosity measurements.
Collapse
Affiliation(s)
- Ranjana Aggarwal
- Department of Chemistry, Kurukshetra University, Kurukshetra 136119, Haryana, India
- CSIR-National Institute of Science Communication and Policy Research, New Delhi 110012, India
| | - Naman Jain
- Department of Chemistry, Kurukshetra University, Kurukshetra 136119, Haryana, India
| | - Gyan Prakash Dubey
- Department of Chemistry, Kurukshetra University, Kurukshetra 136119, Haryana, India
| | - Snigdha Singh
- Department of Chemistry, University of Delhi, New Delhi 110007, India
| | - Ramesh Chandra
- Department of Chemistry, University of Delhi, New Delhi 110007, India
| |
Collapse
|
4
|
Qureshi MA, Amir M, Khan RH, Musarrat J, Javed S. Glycation reduces the binding dynamics of aflatoxin B 1 to human serum albumin: a comprehensive spectroscopic and computational investigation. J Biomol Struct Dyn 2023; 41:14797-14811. [PMID: 37021366 DOI: 10.1080/07391102.2023.2194000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 02/25/2023] [Indexed: 04/07/2023]
Abstract
Aflatoxin B1 (AFB1), a potent mutagen, is synthesized by Aspergillus parasiticus and Aspergillus flavus. Human serum albumin (HSA) is a globular protein with diverse roles. As AFB1 is ingested with food and is transported in the body via blood, it becomes pertinent to comprehend the effect of the binding of this toxin on the structure and conformation of HSA, which may help to get insight into the toxic effect of the exposure of the mycotoxin. In this study, multi-spectroscopic approaches have been used to evaluate the binding efficiency of AFB1 with both the native HSA (nHSA) and the glycated HSA (gHSA). Steady-state fluorescence spectroscopy reveals the static type of fluorescence quenching in the fluorescence emission spectra of nHSA and gHSA in the presence of AFB1. The binding constant (Kb) is calculated to be 6.88 × 104 M-1 for nHSA, while a reduced Kb value of 2.95 × 104 M-1 has been obtained for gHSA. The circular dichroism study confirms the change in the secondary structure of nHSA and gHSA in the presence of AFB1, followed by alterations in the melting temperature (Tm) of nHSA and gHSA. In silico computational findings envisaged the amino acid residues and bonds involved in the binding of nHSA and gHSA with AFB1. The comprehensive study analyzes the binding effectiveness of AFB1 with nHSA and gHSA and shows reduced binding of AFB1 to gHSA.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Mohd Aamir Qureshi
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, India
| | - Mohd Amir
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, India
| | - Rizwan Hasan Khan
- Interdisciplinary Biotechnology Unit, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, India
| | - Javed Musarrat
- Department of Agricultural Microbiology, Faculty of Agricultural Sciences, Aligarh Muslim University, Aligarh, India
| | - Saleem Javed
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, India
| |
Collapse
|
5
|
Wang P, Zheng SY, Jiang RL, Wu HD, Li YA, Lu JL, Ye X, Han B, Lin L. Necroptosis signaling and mitochondrial dysfunction cross-talking facilitate cell death mediated by chelerythrine in glioma. Free Radic Biol Med 2023; 202:76-96. [PMID: 36997101 DOI: 10.1016/j.freeradbiomed.2023.03.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 03/06/2023] [Accepted: 03/23/2023] [Indexed: 04/01/2023]
Abstract
Glioma is the most common primary malignant brain tumor with poor survival and limited therapeutic options. Chelerythrine (CHE), a natural benzophenanthridine alkaloid, has been reported to exhibit the anti-tumor effects in a variety of cancer cells. However, the molecular target and the signaling process of CHE in glioma remain elusive. Here we investigated the underlying mechanisms of CHE in glioma cell lines and glioma xenograft mice model. Our results found that CHE-induced cell death is associated with RIP1/RIP3-dependent necroptosis rather than apoptotic cell death in glioma cells at the early time. Mechanism investigation revealed the cross-talking between necroptosis and mitochondria dysfunction that CHE triggered generation of mitochondrial ROS, mitochondrial depolarization, reduction of ATP level and mitochondrial fragmentation, which was the important trigger for RIP1-dependent necroptosis activation. Meanwhile, PINK1 and parkin-dependent mitophagy promoted clearance of impaired mitochondria in CHE-incubated glioma cells, and inhibition of mitophagy with CQ selectively enhanced CHE-induced necroptosis. Furthermore, early cytosolic calcium from the influx of extracellular Ca2+ induced by CHE acted as important "priming signals" for impairment of mitochondrial dysfunction and necroptosis. Suppression of mitochondrial ROS contributed to interrupting positive feedback between mitochondrial damage and RIPK1/RIPK3 necrosome. Lastly, subcutaneous tumor growth in U87 xenograft was suppressed by CHE without significant body weight loss and multi-organ toxicities. In summary, the present study helped to elucidate necroptosis was induced by CHE via mtROS-mediated formation of the RIP1-RIP3-Drp1 complex that promoted Drp1 mitochondrial translocation to enhance necroptosis. Our findings indicated that CHE could potentially be further developed as a novel therapeutic strategy for treatment of glioma.
Collapse
Affiliation(s)
- Peng Wang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Shi-Yi Zheng
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Ruo-Lin Jiang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Hao-Di Wu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Yong-Ang Li
- Department of Neurosurgery, The First People's Hospital of Wenling, Wenling, 317500, China
| | - Jiang-Long Lu
- Department of Neurosurgery, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, China
| | - Xiong Ye
- Department of Neurosurgery, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, China
| | - Bo Han
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Li Lin
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China.
| |
Collapse
|
6
|
Chelerythrine-Induced Apoptotic Cell Death in HepG2 Cells Involves the Inhibition of Akt Pathway and the Activation of Oxidative Stress and Mitochondrial Apoptotic Pathway. Antioxidants (Basel) 2022; 11:antiox11091837. [PMID: 36139911 PMCID: PMC9495744 DOI: 10.3390/antiox11091837] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/10/2022] [Accepted: 09/15/2022] [Indexed: 11/29/2022] Open
Abstract
Chelerythrine (CHE) is a majorly harmful isoquinoline alkaloid ingredient in Chelidonium majus that could trigger potential hepatotoxicity, but the pivotal molecular mechanisms remain largely unknown. In the present study, CHE-induced cytotoxicity and the underlying toxic mechanisms were investigated using human HepG2 cells in vitro. Data showed that CHE treatment (at 1.25–10 μM)-induced cytotoxicity in HepG2 cells is dose-dependent. CHE treatment increased the production of ROS and induced oxidative stress in HepG2 cells. Additionally, CHE treatment triggered the loss of mitochondrial membrane potential, decreased the expression of mitochondrial complexes, upregulated the expression of Bax, CytC, and cleaved-PARP1 proteins and the activities of caspase-9 and caspase-3, and downregulated the expression of Bcl-XL, and HO-1 proteins, finally resulting in cell apoptosis. N-acetylcysteine supplementation significantly inhibited CHE-induced ROS production and apoptosis. Furthermore, CHE treatment significantly downregulated the expression of phosphorylation (p)-Akt (Ser473), p-mTOR (Ser2448), and p-AMPK (Thr172) proteins in HepG2 cells. Pharmacology inhibition of Akt promoted CHE-induced the downregulation of HO-1 protein, caspase activation, and apoptosis. In conclusion, CHE-induced cytotoxicity may involve the inhibition of Akt pathway and the activation of oxidative stress-mediated mitochondrial apoptotic pathway in HepG2 cells. This study sheds new insights into understanding the toxic mechanisms and health risks of CHE.
Collapse
|
7
|
Ruan Y, Sun H, Lu Y, Zhang Y, Xu J, Zhu H, He Y. Evaluating phospholipid- and protein-water partitioning of two groups of chemicals of emerging concern: Diastereo- and enantioselectivity. JOURNAL OF HAZARDOUS MATERIALS 2022; 430:128499. [PMID: 35739679 DOI: 10.1016/j.jhazmat.2022.128499] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 01/19/2022] [Accepted: 02/12/2022] [Indexed: 06/15/2023]
Abstract
The partitioning between phospholipids/proteins and water can be used to predict the bioaccumulation potential of chemicals with better accuracy compared with n-octanol-water partition coefficient. However, such partitioning is poorly understood for chiral chemicals, many of which exhibit differential bioaccumulation and toxicity potential between enantiomers. In this study, the enantiospecific liposome-water and bovine serum albumin (BSA)-water partition coefficients (Klip/w and KBSA/w, determined at 25 ℃ and 37 ℃, respectively) were measured by equilibrium dialysis for α-, β-, and γ-hexabromocyclododecane (HBCD) and three β-blockers (propranolol, metoprolol, and sotalol). Raman and fluorescence analyses and molecular docking were conducted to provide additional insights into the partitioning process. Results showed α- and β-HBCD displayed stronger enantioselective partitioning to liposomes with the (-)-form, while (-)-α-HBCD, R-(+)-propranolol, R-(+)-metoprolol, and E2-sotalol favored partitioning to BSA compared with their antipodes. Raman spectra revealed α- and γ-HBCD enhanced and reduced the organization of liposome acyl chains, respectively, and polar interactions enhanced the liposome partitioning of β-blockers. Fluorescence spectra indicated the changed tryptophan microenvironment might influence the BSA steric effect toward HBCD, and electrostatic interactions dominated the formation of BSA-β-blocker complexes. Molecular docking results supported the difference in the thermodynamic nature of interaction between the studied enantiomers and BSA.
Collapse
Affiliation(s)
- Yuefei Ruan
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; State Key Laboratory of Marine Pollution (SKLMP), Department of Chemistry, Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), City University of Hong Kong, Hong Kong Special Administrative Region of China
| | - Hongwen Sun
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| | - Yichun Lu
- School of Energy and Environment, City University of Hong Kong, Hong Kong Special Administrative Region of China
| | - Yanwei Zhang
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Jiayao Xu
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Hongkai Zhu
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Yuhe He
- School of Energy and Environment, City University of Hong Kong, Hong Kong Special Administrative Region of China
| |
Collapse
|
8
|
The interaction between bovine serum albumin and [6]-,[8]- and [10]-gingerol: An effective strategy to improve the solubility and stability of gingerol. Food Chem 2022; 372:131280. [PMID: 34818732 DOI: 10.1016/j.foodchem.2021.131280] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 09/21/2021] [Accepted: 09/28/2021] [Indexed: 12/29/2022]
Abstract
In this study, the binding mechanism between bovine serum albumin (BSA) and three gingerols ([6]-, [8]- and [10]-gingerol) was evaluated to explore an effective strategy for improving solubility and stability of gingerols. The fluorescence analysis suggested gingerols could bind with BSA to form a stable BSA/gingerols complex and [10]-gingerol had the strongest binding affinity (Ka = 4.016 × 104 L/mol) at 298 K. Thermodynamic parameters and molecular modeling validated that hydrophobic interaction and hydrogen bonds were the main driving force for the interaction of BSA/gingerols. Gingerols bound to BSA at site I (subdomain IIA) resulted in a conformational change of BSA with a structure shrinkage, which was responsible for the decrease of surface hydrophobicity. The formation of BSA/gingerols complexes promoted the solubility of [6]-, [8]- and [10]-gingerol increasing by 1.50, 6.04 and 23.50 times, respectively. In addition, the stability and antioxidant capacity of gingerols was significantly improved after binding with BSA.
Collapse
|
9
|
Verma P, Kaur L, Aswal P, Singh A, Ojha H, Rahman AJ, Singhal R, Tiwari AK, Pathak M. Luminescence studies of binding affinity of vildagliptin with bovine serum albumin. J Biomol Struct Dyn 2022; 41:3002-3013. [PMID: 35220922 DOI: 10.1080/07391102.2022.2043939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Vildagliptin (VDG)is a frontier drug for diabetes mellitus. It is prescribed both in the monotherapy as well as in an amalgamation with other antidiabetic drugs. Drug-serum protein binding is an essential parameter which influences ADME properties of the drug. In current study, binding of VDG with serum protein (bovine serum albumin: BSA) was investigated using multi-spectroscopic techniques. A computational approach was also employed to identify the binding affinity of VDG with BSA at both Sudlow I and II sites. An enzyme activity assay specific for esterase was also investigated to know the post-binding consequences of VDG with BSA. Fluorescence spectra of BSA samples treated with VDG shows static quenching with binding parameters for VDG-BSA complex show single class of equivalent binding stoichiometry(n = 1.331) and binding constant 1.1 x 104M-1 at 298.15 K. The binding constant indicates important role of non-polar interactions in the binding process. Fluorescence resonance energy transfer (FRET) analysis of VDG absorption spectra and emission spectrum of BSA confirmed no significant resonance in energy transfer. Synchronous fluorescence of BSA after binding with VDG show maximum changes in emission intensity at tryptophan (Trp) residues. Post binding with VDG, BSA conformation changes as suggested by circular dichorism (CD) spectra of BSA and this lead to enhanced protein stability as indicated by a thermal melting curve of BSA.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Piyush Verma
- CBRN Protection and Decontamination Research Group, Division of Radiological Nuclear and Imaging Sciences (RNAIS), Institute of Nuclear Medicine and Allied Sciences, Defence R&D Organisation, Timarpur, Delhi, India
| | - Lajpreet Kaur
- CBRN Protection and Decontamination Research Group, Division of Radiological Nuclear and Imaging Sciences (RNAIS), Institute of Nuclear Medicine and Allied Sciences, Defence R&D Organisation, Timarpur, Delhi, India
| | - Priyanka Aswal
- Department of Pharmaceutics, Veer Madho Singh Bhandari Uttarakhand Technical University, Dehradun, Uttarakhand, India
| | - Anju Singh
- Department of Chemistry, Ramjas College, University of Delhi, Delhi, India
| | - Himanshu Ojha
- CBRN Protection and Decontamination Research Group, Division of Radiological Nuclear and Imaging Sciences (RNAIS), Institute of Nuclear Medicine and Allied Sciences, Defence R&D Organisation, Timarpur, Delhi, India
| | - Afreen Jahan Rahman
- CBRN Protection and Decontamination Research Group, Division of Radiological Nuclear and Imaging Sciences (RNAIS), Institute of Nuclear Medicine and Allied Sciences, Defence R&D Organisation, Timarpur, Delhi, India
| | - Rahul Singhal
- Department of Chemistry, Shivaji College, University of Delhi, Delhi, India
| | - Anjani K Tiwari
- Department of Chemistry, Baba Bhim Rao Ambedkar University, Lucknow, India
| | - Mallika Pathak
- Department of Chemistry, Miranda House, University of Delhi, Delhi, India
| |
Collapse
|
10
|
The protective effect of natural phenolic compound on the functional and structural responses of inhibited catalase by a common azo food dye. Food Chem Toxicol 2021; 160:112801. [PMID: 34974130 DOI: 10.1016/j.fct.2021.112801] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 12/24/2021] [Accepted: 12/28/2021] [Indexed: 01/15/2023]
Abstract
In this research retrieval effects of natural yellow (NY) on the performance of carmoisine (CAR) inhibited bovine liver catalase (BLC) was studied using multispectral and theoretical methods. Kinetic studies showed that CAR inhibited BLC through competitive inhibition (IC50 value of 2.24 × 10-6 M) while the addition of NY recover the activity of CAR-BLC up to 82% in comparison with the control enzyme. Circular dichroism data revealed that NY can repair the structural changes of BLC, affected by CAR. Furthermore, an equilibrium dialysis study indicated that NY could reduce the stability of the CAR-catalase complex. The surface plasmon resonance (SPR) data analysis indicated a high affinity of NY to BLC compared to CAR and the binding of NY led to a decrease in the affinity of the enzyme to the inhibitor. On the other hand, fluorescence and molecular docking studies showed that the quenching mechanism of BLC by CAR occurs through a static quenching process, and van der Waals forces and hydrogen bonding play a crucial role in the binding of CAR to BLC. MLSD data demonstrated that NY could increase the binding energy of CAR-BLC complex from -7.72 kJ mol-1 to -5.9 kJ mol-1, leading to complex instability and catalase activity salvage.
Collapse
|
11
|
Pokidova OV, Kormukhina AY, Kotelnikov AI, Rudneva TN, Lyssenko KA, Sanina NA. Features of the decomposition of cationic nitrosyl iron complexes with N-ethylthiourea and penicillamine ligands in the presence of albumin. Inorganica Chim Acta 2021. [DOI: 10.1016/j.ica.2021.120453] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
12
|
Qureshi MA, Javed S. Aflatoxin B 1 Induced Structural and Conformational Changes in Bovine Serum Albumin: A Multispectroscopic and Circular Dichroism-Based Study. ACS OMEGA 2021; 6:18054-18064. [PMID: 34308039 PMCID: PMC8296610 DOI: 10.1021/acsomega.1c01799] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Accepted: 06/23/2021] [Indexed: 05/15/2023]
Abstract
Aflatoxin B1 (AFB1) is a mutagen that has been categorized as a group 1 human carcinogen by the International Agency for Research on Cancer. It is produced as a secondary metabolite by soil fungi Aspergillus flavus and Aspergillus parasiticus . Here, in this study, the effect of AFB1 on the structure and conformation of bovine serum albumin (BSA) using multispectroscopic tools like fluorescence spectroscopy, ultraviolet-visible absorption spectroscopy, and circular dichroism spectropolarimetry has been ascertained. Ultraviolet absorption spectroscopy revealed hyperchromicity in the absorption spectra of BSA in the presence of AFB1. The binding constant was calculated in the range of 104 M-1, by fluorescence spectroscopy suggesting moderate binding of the toxin to BSA. The study also confirms the static nature of fluorescence quenching. The stoichiometry of binding sites was found to be unity. The competing capability of warfarin for AFB1 was higher than ibuprofen as calculated from site marker displacement assay. Förster resonance energy transfer confirmed the high efficiency of energy transfer from BSA to AFB1. Circular dichroism spectropolarimetry showed a decrease in the α-helix in BSA in the presence of AFB1. The melting temperature of BSA underwent an increment in the presence of a mycotoxin from 62.5 to 70.3 °C. Molecular docking confirmed the binding of AFB1 to subdomain IIA in BSA.
Collapse
|
13
|
Liao X, Zhu C, Huang D, Wen X, Zhang SL, Shen Y. Profiling the interaction of a novel toxic pyruvate dehydrogenase kinase inhibitor with human serum albumin. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 256:119733. [PMID: 33827040 DOI: 10.1016/j.saa.2021.119733] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 03/16/2021] [Accepted: 03/18/2021] [Indexed: 06/12/2023]
Abstract
To discover novel pyruvate dehydrogenase kinase (PDK) inhibitors, a new compound 2,2-dichloro-1-(4-((4-isopropylphenyl)amino)-3-nitrophenyl)ethan-1-one, namely XB-1 was identified, which inhibited PDK activity with a half maximal inhibitory concentration (IC50) value of 337.0 nM, and reduced A549 cell proliferation with a half maximal effective concentration (EC50) value of 330.0 nM. However, the compound appears to exhibit a negligible selectivity between cancer cell and normal one, indicating a potential toxicity existed for the compound. Herein, the interaction of the toxic XB-1 to human serum albumin (HSA) was firstly explored by spectroscopic approaches with the aim to reduce/avoid the toxicity of PDK inhibitors in the next hit-to-lead campaign. In detail, it was found that the XB-1 could effectively bind to HSA mainly via hydrogen bond interaction in PBS buffer (pH = 7.4, 10.0 mM), resulting in the formation of HSA-XB-1 complex. The negative value of ΔG showed that the binding of XB-1 to HSA is a spontaneous process. The result from site-selective binding assay suggested that the XB-1 bound to the site I of HSA by competing with warfarin, which was perfect in agreement with the molecular docking method. The results of this paper may offer a valuable theoretical basis to study the toxicity of biofunctional molecules and may offer thoughts about how to avoid/reduce toxicity for a small molecule.
Collapse
Affiliation(s)
- Xianjiu Liao
- West Guangxi Key Laboratory for Prevention and Treatment of High-Incidence Diseases, Youjiang Medical University for Nationalities, Baise 533000, China
| | - Chunlei Zhu
- School of Food & Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Ding Huang
- School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Xiaoqing Wen
- West Guangxi Key Laboratory for Prevention and Treatment of High-Incidence Diseases, Youjiang Medical University for Nationalities, Baise 533000, China
| | - Shao-Lin Zhang
- School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China.
| | - Yizhong Shen
- School of Food & Biological Engineering, Hefei University of Technology, Hefei 230009, China.
| |
Collapse
|
14
|
Peng L, Wen L, Shi Q, Gao F, Huang B, Wang C. Chelerythrine Ameliorates Pulmonary Fibrosis via Activating the Nrf2/ARE Signaling Pathway. Cell Biochem Biophys 2021; 79:337-347. [PMID: 33580396 DOI: 10.1007/s12013-021-00967-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/13/2021] [Indexed: 12/12/2022]
Abstract
Chelerythrine (CHE) is a natural benzophenanthridine alkaloid, which has shown its anti-fibrosis activity in kidney and liver, while the impact of CHE in pulmonary fibrosis is still unclear. This study is developed to explore the impact and mechanism of CHE in pulmonary fibrosis. Pulmonary fibrosis mouse models were established through intratracheal injection of bleomycin (BLM), after which the mice were intraperitoneally injected with CHE (0.375 or 0.75 mg/kg/d) every other day. The mice were sacrificed at the 28th day to collect blood serum, bronchoalveolar lavage fluid (BALF), and pulmonary tissues. Then, the severity of pulmonary fibrosis and the expression of nuclear factor erythroid 2 [NF-E2]-related factor 2 (Nrf2) in the pulmonary tissues were detected. Western blot analysis quantified the expressions of fibronectin and alpha-smooth muscle actin (α-SMA). The levels of 4-hydroxynonenal (4-HNE), glutathione (GSH), superoxide dismutase (SOD), TGF-β and hydroxyproline (HP) in the BALF, and pulmonary tissues were measured. The expression levels of Nrf2 and its downstream genes, hemeoxygenase-1 (HO-1) and NAD (P) H: quinone oxidoreductase (NQO1) were examined. CHE at the concentration of 0.375 or 0.75 mg/kg/d could attenuate pulmonary fibrosis. CHE injection reduced the expression levels of fibronectin, α-SMA, and TGF-β, upregulated the levels of SOD and GSH and decreased the levels of 4-HNE and HP. Also, CHE increased the expressions of Nrf2, HO-1, and NQO1. Treatment of Nrf2/antioxidant response element (ARE) inhibitor could block the Nrf2/ARE signaling pathway, thus perturbing the inhibition of CHE on BLM-stimulated pulmonary fibrosis in mice. CHE alleviates BLM-induced pulmonary fibrosis in mice through activating the Nrf2/ARE pathway to increase the activity of antioxidant enzymes.
Collapse
Affiliation(s)
- Ling Peng
- Department of Nephrology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, China
| | - Li Wen
- Department of Respiratory Medicine, The Fifth Affiliated Hospital of Guilin Medical University, Guilin People's Hospital, Guilin, 541000, Guangxi, China
| | - Qingfeng Shi
- Department of Respiratory Medicine, The Fifth Affiliated Hospital of Guilin Medical University, Guilin People's Hospital, Guilin, 541000, Guangxi, China
| | - Feng Gao
- Department of Respiratory Medicine, The Fifth Affiliated Hospital of Guilin Medical University, Guilin People's Hospital, Guilin, 541000, Guangxi, China
| | - Bin Huang
- Department of Respiratory Medicine, The Fifth Affiliated Hospital of Guilin Medical University, Guilin People's Hospital, Guilin, 541000, Guangxi, China
| | - Changming Wang
- Department of Respiratory Medicine, The Fifth Affiliated Hospital of Guilin Medical University, Guilin People's Hospital, Guilin, 541000, Guangxi, China.
| |
Collapse
|
15
|
Chan CK, Chan KKJ, Liu N, Chan W. Quantitation of Protein Adducts of Aristolochic Acid I by Liquid Chromatography-Tandem Mass Spectrometry: A Novel Method for Biomonitoring Aristolochic Acid Exposure. Chem Res Toxicol 2021; 34:144-153. [PMID: 33410325 DOI: 10.1021/acs.chemrestox.0c00454] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Emerging evidence suggests that chronic exposure to aristolochic acids (AAs) is one of the etiological pathways leading to chronic kidney disease (CKD). Due to the traditional practice of herbal medicine and AA-containing plants being used extensively as medicinal herbs, over 100 million East Asians are estimated to be at risk of AA poisoning. Given that the chronic nephrotoxicity of AAs only manifests itself after decades of exposure, early diagnosis of AA exposure could allow for timely intervention and disease risk reduction. However, an early detection method is not yet available, and diagnosis can only be established at the end stage of CKD. The goal of this study was to develop a highly sensitive and selective method to quantitate protein adducts of aristolochic acid I (AAI) as a biomarker of AA exposure. The method entails the release of protein-bound aristolactam I (ALI) by heat-assisted alkaline hydrolysis, extraction of ALI, addition of internal standard, and quantitation by liquid chromatography-tandem mass spectrometric analysis. Accuracy and precision of the method were critically evaluated using a synthetic ALI-containing glutathione adduct. The validated method was subsequently used to detect dose-dependent formation of ALI-protein adducts in human serum albumin exposed to AAI and in proteins isolated from the tissues and sera of AAI-exposed rats. Our time-dependent study showed that ALI-protein adducts remained detectable in rats even at 28 days postdosing. It is anticipated that the developed method will fill the technical gap in diagnosing AA intoxication and facilitate the biomonitoring of human exposures to AAs.
Collapse
Affiliation(s)
- Chi-Kong Chan
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Kwan-Kit Jason Chan
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Ning Liu
- Central Laboratory, The Second Hospital of Jilin University, Key Laboratory of Zoonosis Research, Ministry of Education, Jilin University, Changchun, China
| | - Wan Chan
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| |
Collapse
|
16
|
Zhu C, Liu F, Wei Y, Zhang F, Pan T, Ye Y, Shen Y. Evaluating the potential risk by probing the site-selective binding of rutin-Pr(III) complex to human serum albumin. Food Chem Toxicol 2020; 148:111927. [PMID: 33340613 DOI: 10.1016/j.fct.2020.111927] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 11/26/2020] [Accepted: 12/13/2020] [Indexed: 02/08/2023]
Abstract
Having reported that rare earth elements displayed potential toxicity in vivo, often be found in soil, plants and etc., which might be easily chelated with the natural functional molecule rutin to form rutin metal complexes, ultimately entering the human body by means of food chain. However, few reports paid the attention on the toxicology of the complexes consisting of rutin with rare earth ions. Here, we focused on the potential toxicity by probing the site-selective binding of the rutin-rare earth ions complexes to human serum albumin (HSA). As a proof-of-concept, we selected Pr3+ as the representative to conjugate with rutin to form rutin-Pr(III) complex, which was further applied to interact with HSA in aqueous solution. The results exhibited that the rutin-Pr(III) complex primary bound to the hydrophobic cavity at site II (subdomain IIIA) of HSA through hydrogen bonding and van der Waals force. Through the thermomechanical analysis, we found this binding process was spontaneous because of the negative ΔG. We believe that this work may offer a new insight into understanding the physiological effects (e.g. toxicology) of rutin and rare earth ions, which could be helpful to guide their rational use in the agriculture and environment-related industries.
Collapse
Affiliation(s)
- Chunlei Zhu
- School of Food & Biological Engineering, Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei, 230009, China
| | - Fengru Liu
- School of Food & Biological Engineering, Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei, 230009, China
| | - Yunlong Wei
- School of Food & Biological Engineering, Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei, 230009, China
| | - Fan Zhang
- School of Food & Biological Engineering, Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei, 230009, China
| | - Ting Pan
- School of Food & Biological Engineering, Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei, 230009, China
| | - Yingwang Ye
- School of Food & Biological Engineering, Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei, 230009, China.
| | - Yizhong Shen
- School of Food & Biological Engineering, Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei, 230009, China.
| |
Collapse
|
17
|
Cespedes-Acuña CL, Wei ZJ. X th International Symposium on Natural Products Chemistry and Applications (2019 X ISNPCA Chillan Chile). Food Chem Toxicol 2020; 140:111316. [PMID: 32246955 DOI: 10.1016/j.fct.2020.111316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Carlos L Cespedes-Acuña
- Department of Basic Sciences, Research Group in Chemistry and Biotechnology of Bioactive Natural Products, Faculty of Sciences, University of Bio-Bío, Andrés Bello, Avenue, Chillan, Chile.
| | - Zhao-Jun Wei
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, PR China.
| |
Collapse
|