1
|
Carbonell-Rozas L, Dreolin N, Foddy H, Dall'Asta C. Enhancing pyrrolizidine alkaloid separation and detection: LC-MS/MS method development and integration of ion mobility spectrometry into the LC-HRMS workflow. J Chromatogr A 2025; 1748:465863. [PMID: 40101659 DOI: 10.1016/j.chroma.2025.465863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 03/08/2025] [Accepted: 03/09/2025] [Indexed: 03/20/2025]
Abstract
Pyrrolizidine alkaloids (PAs) are plant toxins occurring in different foodstuffs, including teas, herbal infusions and species. Additionally, PAs may be transferred to honey and pollen when honeybees come into contact with contaminated plants. Due to their adverse effect, PAs occurrence in food must be controlled to ensure public health. Nevertheless, the presence of numeours PA epimers complicates their chromatographic separation and detection. In this regard, a method using liquid chromatography coupled with tandem mass spectrosmetry (LC-MS/MS) has been developed allowing the separation of 31 out of the 35 regulated PAs, which was sucessfully validated in different food matrices such as herbal infusions, spices and honey. Afterwards, travelling wave ion mobility spectrometry hyphenated with quadrupole time-of-flight mass spectrometry (TWIMS-QTOF) was evaluated to improve the analytical performance of PAs determination. Thus, collision cross section (CCS) values of PAs have been therefore obtained for the first time. The CCS library for PAs was also compared with predicted values by machine learning and with those meassured in real food matrices (bias <2 %). In addition, an in-house library was used in the suspect screening of PAs to complement the targeted analysis of the studied samples, all of which tested positive for several PAs.
Collapse
Affiliation(s)
- Laura Carbonell-Rozas
- Department of Food and Drug, University of Parma, Viale delle Scienze 27/A, Parma 43124, Italy.
| | - Nicola Dreolin
- Waters Corporation, Altrincham Road, SK9 4AX Wilmslow, United Kingdom
| | - Henry Foddy
- Waters Corporation, Altrincham Road, SK9 4AX Wilmslow, United Kingdom
| | - Chiara Dall'Asta
- Department of Food and Drug, University of Parma, Viale delle Scienze 27/A, Parma 43124, Italy
| |
Collapse
|
2
|
Yang X, Wang X, Chen Y, Wang Z, Zhang D, Wang N, Wang Z, Xiong A, Li L, Yang L. Rapid on-site identification of pyrrolizidine alkaloids in herbal medicines using miniature mass spectrometry. Analyst 2025; 150:1929-1938. [PMID: 40178228 DOI: 10.1039/d5an00065c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2025]
Abstract
Pyrrolizidine alkaloids (PAs) are naturally occurring plant toxins with significant multi-organ toxicity, especially hepatotoxicity. Accidental consumption of PAs-containing herbal medicines can lead to severe health consequences, emphasizing the need for rapid and effective detection methods to ensure medicinal safety. In this study, we developed a novel on-site rapid analytical method using paper capillary spray miniature mass spectrometry (PCS-mini MS), and created a database containing 34 different PAs with a detection limit ranging from 0.5 to 2 ng mL-1. This method is particularly suitable for identifying PAs in herbal medicines, the accuracy of PCS-mini MS was validated through high-performance liquid chromatography-mass spectrometry. Furthermore, the method's environmental impact was assessed using three green evaluation tools, demonstrating its compliance with green analytical chemistry principles, highlighting both efficiency and sustainability. This study provides a convenient and precise approach for regulating the herbal medicine market, enabling quick identification of toxic plants and reducing the risk of adverse health effects from herb misidentification. In the future, this method is expected to be widely adopted for clinical applications and market regulation of herbal products.
Collapse
Affiliation(s)
- Xiyue Yang
- State Key Laboratory of Discovery and Utilization of Functional Components in Traditional Chinese Medicine, The MOE Key Laboratory of Standardization of Chinese Medicines, the SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicine, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Xingyu Wang
- State Key Laboratory of Discovery and Utilization of Functional Components in Traditional Chinese Medicine, The MOE Key Laboratory of Standardization of Chinese Medicines, the SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicine, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Yilin Chen
- State Key Laboratory of Discovery and Utilization of Functional Components in Traditional Chinese Medicine, The MOE Key Laboratory of Standardization of Chinese Medicines, the SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicine, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Ziying Wang
- State Key Laboratory of Discovery and Utilization of Functional Components in Traditional Chinese Medicine, The MOE Key Laboratory of Standardization of Chinese Medicines, the SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicine, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
- Shanghai Tufeng Pharmaceutical Technology Co., Ltd, Shanghai 201203, China
| | - Dan Zhang
- State Key Laboratory of Discovery and Utilization of Functional Components in Traditional Chinese Medicine, The MOE Key Laboratory of Standardization of Chinese Medicines, the SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicine, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Nan Wang
- PURSPEC Technology (Beijing) Ltd, Beijing 100084, China
| | - Zhengtao Wang
- State Key Laboratory of Discovery and Utilization of Functional Components in Traditional Chinese Medicine, The MOE Key Laboratory of Standardization of Chinese Medicines, the SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicine, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Aizhen Xiong
- State Key Laboratory of Discovery and Utilization of Functional Components in Traditional Chinese Medicine, The MOE Key Laboratory of Standardization of Chinese Medicines, the SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicine, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Linnan Li
- State Key Laboratory of Discovery and Utilization of Functional Components in Traditional Chinese Medicine, The MOE Key Laboratory of Standardization of Chinese Medicines, the SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicine, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Li Yang
- State Key Laboratory of Discovery and Utilization of Functional Components in Traditional Chinese Medicine, The MOE Key Laboratory of Standardization of Chinese Medicines, the SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicine, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
3
|
Lin R, Peng J, Zhu Y, Dong S, Jiang X, Shen D, Li J, Zhu P, Mao J, Wang N, He K. Quantitative Analysis of Pyrrolizidine Alkaloids in Food Matrices and Plant-Derived Samples Using UHPLC-MS/MS. Foods 2025; 14:1147. [PMID: 40238287 PMCID: PMC11989101 DOI: 10.3390/foods14071147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Revised: 03/13/2025] [Accepted: 03/18/2025] [Indexed: 04/18/2025] Open
Abstract
Pyrrolizidine alkaloids (PAs) are a class of nitrogen-containing basic organic compounds that are frequently detected in foods and herbal medicines. Owing to their potential hepatotoxic, genotoxic, and carcinogenic properties, PAs have become a significant focus for monitoring global food safety. In this study, an ultra-high-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) method was developed for the detection and analysis of three foods (tea, honey, and milk) susceptible to PA contamination. This optimized method effectively separated and detected three types of PAs, namely, three pairs of isomers and two pairs of chiral compounds. The limits of detection (LODs) and limits of quantification (LOQs) were determined to be 0.015-0.75 and 0.05-2.5 µg/kg, respectively, with the relative standard deviations (RSDs) of both the interday and intraday precisions remaining below 15%. The average PA recoveries from the honey, milk, and tea matrices fell within the ranges of 64.5-103.4, 65.2-112.2, and 67.6-107.6%, respectively. This method was also applied to 77 samples collected from 33 prefecture-level cities across 16 provinces and included 40 tea, 6 milk, 8 honey, 14 spice, and 9 herbal medicine samples. At least one PA was detected in twenty-three of the samples, with herbal medicines exhibiting the highest total PA content. The obtained results indicate that the developed method demonstrated good repeatability and stability in the detection and quantitative analyses of PAs in food- and plant-derived samples. This method is therefore expected to provide reliable technical support for food safety risk monitoring.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Na Wang
- National Center of Biomedical Analysis, Beijing 100850, China; (R.L.); (J.P.); (Y.Z.); (S.D.); (X.J.); (D.S.); (J.L.); (P.Z.); (J.M.)
| | - Kun He
- National Center of Biomedical Analysis, Beijing 100850, China; (R.L.); (J.P.); (Y.Z.); (S.D.); (X.J.); (D.S.); (J.L.); (P.Z.); (J.M.)
| |
Collapse
|
4
|
Witt KL, van Benthem J, Kobets T, Chen G, Kelber O, Krzykwa J, MacGregor JT, Mei N, Mitchell CA, Rietjens I, Sarigol-Kilic Z, Smith-Roe SL, Stopper H, Thakkar Y, Zeiger E, Pfuhler S. A proposed screening strategy for evaluating the genotoxicity potential of botanicals and botanical extracts. Food Chem Toxicol 2025; 197:115277. [PMID: 39855614 DOI: 10.1016/j.fct.2025.115277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 01/14/2025] [Accepted: 01/21/2025] [Indexed: 01/27/2025]
Abstract
Botanicals have long been used to promote health and treat diseases, but the safety of many currently marketed botanicals has not been adequately evaluated. Given the chemical complexity of botanicals, which often contain numerous unknown constituents, and their widespread use, comprehensive toxicity assessments are needed. The Botanical Safety Consortium was established to address this challenge. This international group of experts in toxicology, chemistry, bioinformatics, and pharmacognosy is developing a toolkit of assays to generate reliable toxicological profiles for botanicals. Genotoxicity assessment is especially critical, because, unlike other toxicities, genotoxicity is not adequately identified by adverse event and history-of-use reports, and genotoxicity is directly linked to health consequences such as cancer and birth defects. The Consortium's Genotoxicity Technical Working Group is exploring a genotoxicity testing strategy based on the use of in silico modeling and the bacterial reverse mutation and in vitro micronucleus assays and including several options for additional tests to further characterize genotoxicity and mode of action when indicated. The effectiveness of this testing strategy is being evaluated using 13 well-characterized botanicals with existing toxicological data as case studies. A brief overview of each of these 13 botanicals is provided. The final strategy for developing comprehensive genotoxicity profiles of botanicals will incorporate published genotoxicity data, chemical composition information, in silico and in vitro test data, and human exposure data, reducing the need for animal testing.
Collapse
Affiliation(s)
- Kristine L Witt
- Division of Translational Toxicology, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Jan van Benthem
- National Institute for Public Health and the Environment (RIVM), Beethoven, the Netherlands
| | - Tetyana Kobets
- Department of Pathology, New York Medical College, Valhalla, NY, 10595, USA
| | - Guosheng Chen
- Human Safety Division, Veterinary Drugs Directorate, Health Products and Food Branch, Health Canada, Ottawa, Canada
| | - Olaf Kelber
- Bayer Consumer Health, Steigerwald Arzneimittelwerk GmbH, Darmstadt, Germany
| | - Julie Krzykwa
- Health and Environmental Sciences Institute, Washington, DC, USA
| | | | - Nan Mei
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR, USA
| | | | - Ivonne Rietjens
- Division of Toxicology, Wageningen University, Wageningen, the Netherlands
| | | | - Stephanie L Smith-Roe
- Division of Translational Toxicology, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Helga Stopper
- Institute of Pharmacology and Toxicology, University of Wuerzburg, Wuerzburg, Germany
| | - Yax Thakkar
- Research Institute for Fragrance Materials, Inc., Woodcliff Lake, NJ, USA
| | | | | |
Collapse
|
5
|
Widjaja-van den Ende F, van Boekel MAJS, Davis C, Wesseling S, Rietjens IMCM. Quantifying the effect of human interindividual kinetic differences on the relative potency value for riddelliine N-oxide at low dose levels by a new approach methodology. Regul Toxicol Pharmacol 2025; 156:105767. [PMID: 39710333 DOI: 10.1016/j.yrtph.2024.105767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 11/15/2024] [Accepted: 12/17/2024] [Indexed: 12/24/2024]
Abstract
Pyrrolizidine alkaloid N-oxides (PA-N-oxides) are predominant in plants and herbal foods, and are converted to pyrrolizidine alkaloids (PAs) upon consumption, leading to toxicity. The effect of interindividual kinetic differences on the relative potency values of PA-N-oxides compared to their PAs (REPPANO to PA) was studied, with riddelliine N-oxide (RIDO) and riddelliine (RID) as model compounds. In vitro kinetic data measured in incubations with 30 fecal and 25 liver S9 donor samples showed high variation across individuals, where the interindividual variability was captured with Bayesian multilevel regression. The distributions of influential PBK model parameters were used as input for physiologically based kinetic (PBK) modeling combined with Monte Carlo (MC) simulations to calculate the probability distribution of REPRIDO to RID values. At low dose levels, interindividual differences were shown to be a factor that influences the REPRIDO to RID value while neither dose nor endpoint used plays a role. The distribution of the REPRIDO to RID value ranged from 0.71 to 0.97 (95th percentile) with a mean value of 0.87. The approach described enables determination of interindividual REPPANO to PA values at low dose levels, which are not accessible in in vivo experiments quantifying the REPPANO to PAvalue.
Collapse
Affiliation(s)
- F Widjaja-van den Ende
- Division of Toxicology, Wageningen University, PO Box 8000, 6700 EA Wageningen, the Netherlands.
| | - M A J S van Boekel
- Food Quality and Design, Wageningen University, PO Box 8129, 6700 EV Wageningen, the Netherlands
| | - C Davis
- Daiichi Sankyo, Inc. 211 Mt. Airy Rd, Basking Ridge, NJ, 07920, USA
| | - S Wesseling
- Division of Toxicology, Wageningen University, PO Box 8000, 6700 EA Wageningen, the Netherlands
| | - I M C M Rietjens
- Division of Toxicology, Wageningen University, PO Box 8000, 6700 EA Wageningen, the Netherlands
| |
Collapse
|
6
|
Santos LO, Borges JMP, Leite JL, Victor MM, da Silva AL, dos Santos CC, da Silva VDA, do Nascimento RP, Costa SL. The Secretome of Brain Endothelial Cells Exposed to the Pyrrolizidine Alkaloid Monocrotaline Induces Astrocyte Reactivity and Is Neurotoxic. Toxins (Basel) 2025; 17:65. [PMID: 39998082 PMCID: PMC11860515 DOI: 10.3390/toxins17020065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 01/24/2025] [Accepted: 01/29/2025] [Indexed: 02/26/2025] Open
Abstract
Monocrotaline (MCT) has well-characterized hepatotoxic and pneumotoxic effects attributed to its active pyrrole metabolites. Studies have previously shown that astrocytes and neurons are targets of MCT, and that toxicity is attributed to astrocyte P450 metabolism to reactive metabolites. However, little is known about MCT toxicity and metabolism by brain endothelial cells (BECs), cells that, together with astrocytes, are specialized in xenobiotic metabolism and neuroprotection. Therefore, in the present study, we evaluated the toxicity of MCT in BECs, and the effects on astrocyte reactivity and neuronal viability in vitro. MCT was purified from Crotalaria retusa seeds. BECs, obtained from the brain of adult Wistar rats, were treated with MCT (1-500 µM), and cell viability and morphology were analyzed after 24-72 h of treatment. Astrocyte/neuron co-cultures were prepared from the cortex of neonatal and embryonic Wistar rats, and the cultures were exposed to conditioned medium (secretome) derived from BECs previously treated with MCT (100-500 µM, SBECM100/500). MCT was not toxic to BECs at the concentrations used and induced a concentration-dependent increase in cell dehydrogenase after 72 h of treatment, suggesting resistance to damage and drug metabolism. However, exposure of astrocyte/neuron co-cultures to the SBECM for 24 h induced changes in the cell morphology, vacuolization, and overexpression of GFAP in astrocytes, characterizing astrogliosis, and neurotoxicity with a reduction in the length of neurites labeled for β-III-tubulin, effects that were MCT concentration-dependent. These results support the hypothesis that MCT neurotoxicity may be due to products of its metabolism by components of the BBB such as BECs and astrocytes, which may be responsible for the brain lesions and symptoms observed after intoxication.
Collapse
Affiliation(s)
- Letícia Oliveira Santos
- Laboratory of Neurochemistry and Cellular Biology, Health Sciences Institute, Federal University of Bahia, Av. Reitor Miguel Calmon s/n Vale do Canela, Salvador 40231-300, BA, Brazil; (L.O.S.); (J.M.P.B.); (C.C.d.S.); (V.D.A.d.S.)
| | - Julita Maria Pereira Borges
- Laboratory of Neurochemistry and Cellular Biology, Health Sciences Institute, Federal University of Bahia, Av. Reitor Miguel Calmon s/n Vale do Canela, Salvador 40231-300, BA, Brazil; (L.O.S.); (J.M.P.B.); (C.C.d.S.); (V.D.A.d.S.)
- Department Health of Science, State University of Southwest of Bahia (UESB), Estrada do Bem Querer Km 04, Vitória da Conquista 45083-900, BA, Brazil
| | - Juliana Lago Leite
- Department of Organic Chemistry Chemistry Institute, Federal University of Bahia, R. Barão de Jeremoabo, 147—Ondina, Salvador 40170-115, BA, Brazil; (J.L.L.); (M.M.V.)
| | - Mauricio Moraes Victor
- Department of Organic Chemistry Chemistry Institute, Federal University of Bahia, R. Barão de Jeremoabo, 147—Ondina, Salvador 40170-115, BA, Brazil; (J.L.L.); (M.M.V.)
| | - Adriana Lopes da Silva
- Laboratory of Neurochemistry and Cellular Biology, Health Sciences Institute, Federal University of Bahia, Av. Reitor Miguel Calmon s/n Vale do Canela, Salvador 40231-300, BA, Brazil; (L.O.S.); (J.M.P.B.); (C.C.d.S.); (V.D.A.d.S.)
| | - Cleonice Creusa dos Santos
- Laboratory of Neurochemistry and Cellular Biology, Health Sciences Institute, Federal University of Bahia, Av. Reitor Miguel Calmon s/n Vale do Canela, Salvador 40231-300, BA, Brazil; (L.O.S.); (J.M.P.B.); (C.C.d.S.); (V.D.A.d.S.)
| | - Victor Diógenes Amaral da Silva
- Laboratory of Neurochemistry and Cellular Biology, Health Sciences Institute, Federal University of Bahia, Av. Reitor Miguel Calmon s/n Vale do Canela, Salvador 40231-300, BA, Brazil; (L.O.S.); (J.M.P.B.); (C.C.d.S.); (V.D.A.d.S.)
| | - Ravena Pereira do Nascimento
- Laboratory of Neurochemistry and Cellular Biology, Health Sciences Institute, Federal University of Bahia, Av. Reitor Miguel Calmon s/n Vale do Canela, Salvador 40231-300, BA, Brazil; (L.O.S.); (J.M.P.B.); (C.C.d.S.); (V.D.A.d.S.)
| | - Silvia Lima Costa
- Laboratory of Neurochemistry and Cellular Biology, Health Sciences Institute, Federal University of Bahia, Av. Reitor Miguel Calmon s/n Vale do Canela, Salvador 40231-300, BA, Brazil; (L.O.S.); (J.M.P.B.); (C.C.d.S.); (V.D.A.d.S.)
| |
Collapse
|
7
|
Gupta RC, Doss RB. Toxicity Potential of Nutraceuticals. Methods Mol Biol 2025; 2834:197-230. [PMID: 39312167 DOI: 10.1007/978-1-0716-4003-6_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
During the past few decades and especially during and after the COVID-19 pandemic, the use of nutraceuticals has become increasingly popular in both humans and animals due to their easy access, cost-effectiveness, and tolerability with a wide margin of safety. While some nutraceuticals are safe, others have an inherent toxic potential. For a large number of nutraceuticals, no toxicity/safety data are available due to a lack of pharmacological/toxicological studies. The safety of some nutraceuticals can be compromised via contamination with toxic plants, metals, mycotoxins, pesticides, fertilizers, drugs of abuse, etc. Knowledge of pharmacokinetic/toxicokinetic studies and biomarkers of exposure, effect, and susceptibility appears to play a pivotal role in the safety and toxicity assessment of nutraceuticals. Interaction studies are essential to determine efficacy, safety, and toxicity when nutraceuticals and therapeutic drugs are used concomitantly or when polypharmacy is involved. This chapter describes various aspects of nutraceuticals, particularly their toxic potential, and the factors that influence their safety.
Collapse
Affiliation(s)
- Ramesh C Gupta
- Department of Toxicology, Murray State University, Breathitt Veterinary Center, Hopkinsville, KY, USA.
| | - Robin B Doss
- Department of Toxicology, Murray State University, Breathitt Veterinary Center, Hopkinsville, KY, USA
| |
Collapse
|
8
|
Guo Y, Yuan Y, Wang R, Bai J, Jia Y, Qiu X, Niu H, Li L, Luo Y, Zhao B, Zhang Z. Monocrotaline-mediated autophagy via inhibiting PI3K/AKT/mTOR pathway induces apoptosis in rat hepatocytes. Front Pharmacol 2024; 15:1499116. [PMID: 39494350 PMCID: PMC11527718 DOI: 10.3389/fphar.2024.1499116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 10/11/2024] [Indexed: 11/05/2024] Open
Abstract
Monocrotaline (MCT), a major pyrrolizidine alkaloid, is well-known for its high liver toxicity. Dysregulation of autophagy induced apoptosis can lead to various liver diseases, including those induced by chemical compounds. Therefore, we aim to explore whether autophagy might serve as a potential strategy for addressing liver apoptosis caused by MCT. In primary rat hepatocytes (PRHs), MCT significantly increased the number of autophagosomes and the expression levels of LC3II, Becline-1, and Atg5, while it decreased the expression of p62 in a concentration-dependent manner at doses of 100, 200, 300, and 400 μM. Western blot assays revealed MCT inhibited the phosphorylation levels of the PI3K/AKT/mTOR pathway. To elucidate the role of autophagy in mediating MCT-induced apoptosis, we further pretreated PRHs with the autophagy agonist Rapamycin and the inhibitors Bafilomycin A1 and Chloroquine, respectively, and assessed the apoptosis of PRHs induced by MCT. The results displayed that Rapamycin increased the apoptosis rate and the expression of cleaved caspase-3, whereas Bafilomycin A1 and Chloroquine reduced the apoptosis and the expression of cleaved caspase-3 in PRHs. This study confirms that autophagy enhances PRHs apoptosis induced by MCT. In summary, this study demonstrates that MCT-induced autophagy via inhibition of the PI3K/AKT/mTOR pathway can lead to apoptosis in PRHs.
Collapse
Affiliation(s)
- Yazhou Guo
- Shaanxi Engineering Research Center of the Prevention and Control for Animal Disease, Yangling Vocational and Technical College, Yangling, Shaanxi, China
- Shaanxi Engineering Research Center for Forest Musk Deer Industry, Yangling Vocational and Technical College, Yangling, Shaanxi, China
| | - Yang Yuan
- Shaanxi Engineering Research Center for Forest Musk Deer Industry, Yangling Vocational and Technical College, Yangling, Shaanxi, China
| | - Ruibo Wang
- Shaanxi Engineering Research Center for Forest Musk Deer Industry, Yangling Vocational and Technical College, Yangling, Shaanxi, China
| | - Jun Bai
- Shaanxi Engineering Research Center for Forest Musk Deer Industry, Yangling Vocational and Technical College, Yangling, Shaanxi, China
| | - Yanqing Jia
- Shaanxi Engineering Research Center of the Prevention and Control for Animal Disease, Yangling Vocational and Technical College, Yangling, Shaanxi, China
| | - Xinxin Qiu
- Shaanxi Engineering Research Center of the Prevention and Control for Animal Disease, Yangling Vocational and Technical College, Yangling, Shaanxi, China
| | - Huafeng Niu
- Shaanxi Engineering Research Center for Forest Musk Deer Industry, Yangling Vocational and Technical College, Yangling, Shaanxi, China
| | - Long Li
- The Youth Innovation Team of Shaanxi Universities, Yangling Vocational and Technical College, Yangling, Shaanxi, China
| | - Yan Luo
- Key Laboratory for Efficient Ruminant Breeding Technology of Higher Education Institutions in Shaanxi Province, Yangling Vocational and Technical College, Yangling, Shaanxi, China
| | - Baoyu Zhao
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Zhencang Zhang
- Shaanxi Engineering Research Center of the Prevention and Control for Animal Disease, Yangling Vocational and Technical College, Yangling, Shaanxi, China
| |
Collapse
|
9
|
Mandal AK, Sahoo A, Almalki WH, Almujri SS, Alhamyani A, Aodah A, Alruwaili NK, Abdul Kadir SZBS, Mandal RK, Almalki RA, Lal JA, Rahman M. Phytoactives for Obesity Management: Integrating Nanomedicine for Its Effective Delivery. Nutr Rev 2024:nuae136. [PMID: 39331591 DOI: 10.1093/nutrit/nuae136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/29/2024] Open
Abstract
Obesity is a global health concern that requires urgent investigation and management. While synthetic anti-obesity medications are available, they come with a high risk of side-effects and variability in their efficacy. Therefore, natural compounds are increasingly being used to treat obesity worldwide. The proposition that naturally occurring compounds, mainly polyphenols, can be effective and safer for obesity management through food and nutrient fortification is strongly supported by extensive experimental research. This review focuses on the pathogenesis of obesity while reviewing the efficacy of an array of phytoactives used for obesity treatment. It details mechanisms such as enzyme inhibition, energy expenditure, appetite suppression, adipocyte differentiation, lipid metabolism, and modulation of gut microbiota. Comprehensive in vitro, in vivo, and preclinical studies underscore the promise of phytoactives in combating obesity, which have been thoroughly reviewed. However, challenges, such as poor bioavailability and metabolism, limit their potential. Advances in nanomedicines may overcome these constraints, offering a new avenue for enhancing the efficacy of phytoactives. Nonetheless, rigorous and targeted clinical trials are essential before applying phytoactives as a primary treatment for obesity.
Collapse
Affiliation(s)
- Ashok Kumar Mandal
- Department of Pharmacology, Faculty of Medicine, University Malaya, Kuala Lumpur 50603, Malaysia
| | - Ankit Sahoo
- Department of Pharmaceutical Sciences, Shalom Institute of Health & Allied Sciences, Sam Higginbottom University of Agriculture, Technology & Sciences, Allahabad, Uttar Pradesh 211007, India
| | - Waleed H Almalki
- Department of Pharmacology and Toxicology, College of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Salem Salman Almujri
- Department of Pharmacology, College of Pharmacy, King Khalid University, Asir-Abha 61421, Saudi Arabia
| | - Abdulrahman Alhamyani
- Pharmaceuticals Chemistry Department, Faculty of Clinical Pharmacy, Al Baha University, Al Baha 65779, Saudi Arabia
| | - Alhussain Aodah
- College of Pharmacy, Prince Sattam bin Abdulaziz University, Alkharj 11942, Saudi Arabia
| | - Nabil K Alruwaili
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakakah 72341, Saudi Arabia
| | | | | | - Rami A Almalki
- Clinical Pharmacy Unit, Pharmaceutical Care Department, King Faisal Hospital, Makkah Health Cluster, Makkah 24382, Saudi Arabia
| | - Jonathan A Lal
- Department of Molecular and Cellular Engineering, Jacob Institute of Biotechnology and Bioengineering, Sam Higginbottom University of Agriculture, Technology, and Sciences, Prayagraj, Uttar Pradesh 211007, India
| | - Mahfoozur Rahman
- Department of Pharmaceutical Sciences, Shalom Institute of Health & Allied Sciences, Sam Higginbottom University of Agriculture, Technology & Sciences, Allahabad, Uttar Pradesh 211007, India
| |
Collapse
|
10
|
Dubreil E, Darney K, Delignette-Muller ML, Barranger A, Huet S, Hogeveen K, Léger T, Fessard V, Hégarat LL. Modeling HepaRG metabolome responses to pyrrolizidine alkaloid exposure for insight into points of departure and modes of action. JOURNAL OF HAZARDOUS MATERIALS 2024; 474:134721. [PMID: 38843629 DOI: 10.1016/j.jhazmat.2024.134721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 05/12/2024] [Accepted: 05/22/2024] [Indexed: 06/26/2024]
Abstract
The new challenges in toxicology demand novel and innovative in vitro approaches for deriving points of departure (PODs) and determining the mode of action (MOA) of chemicals. Therefore, the aim of this original study was to couple in vitro studies with untargeted metabolomics to model the concentration-response of extra- and intracellular metabolome data on human HepaRG cells treated for 48 h with three pyrrolizidine alkaloids (PAs): heliotrine, retrorsine and lasiocarpine. Modeling revealed that the three PAs induced various monotonic and, importantly, biphasic curves of metabolite content. Based on unannotated metabolites, the endometabolome was more sensitive than the exometabolome in terms of metabolomic effects, and benchmark concentrations (BMCs) confirmed that lasiocarpine was the most hepatotoxic PA. Regarding its MOA, impairment of lipid metabolism was highlighted at a very low BMC (first quartile, 0.003 µM). Moreover, results confirmed that lasiocarpine targets bile acids, as well as amino acid and steroid metabolisms. Analysis of the endometabolome, based on coupling concentration-response and PODs, gave encouraging results for ranking toxins according to their hepatotoxic effects. Therefore, this novel approach is a promising tool for next-generation risk assessment, readily applicable to a broad range of compounds and toxic endpoints.
Collapse
Affiliation(s)
- Estelle Dubreil
- ANSES, French Agency for Food, Environmental and Occupational Health & Safety, Fougères Laboratory, Toxicology of Contaminants Unit, 10 B rue Claude Bourgelat, 35306 Fougères, France.
| | - Keyvin Darney
- ANSES, French Agency for Food, Environmental and Occupational Health & Safety, Risk Assessment Department, 14 Rue Pierre et Marie Curie, 94701 Maisons-Alfort, France
| | - Marie-Laure Delignette-Muller
- University of Lyon 1, CNRS, VetAgro Sup, UMR 5558, Laboratoire de Biométrie et Biologie Evolutive, 69622 Villeurbanne, France
| | - Audrey Barranger
- ANSES, French Agency for Food, Environmental and Occupational Health & Safety, Fougères Laboratory, Toxicology of Contaminants Unit, 10 B rue Claude Bourgelat, 35306 Fougères, France
| | - Sylvie Huet
- ANSES, French Agency for Food, Environmental and Occupational Health & Safety, Fougères Laboratory, Toxicology of Contaminants Unit, 10 B rue Claude Bourgelat, 35306 Fougères, France
| | - Kevin Hogeveen
- ANSES, French Agency for Food, Environmental and Occupational Health & Safety, Fougères Laboratory, Toxicology of Contaminants Unit, 10 B rue Claude Bourgelat, 35306 Fougères, France
| | - Thibaut Léger
- ANSES, French Agency for Food, Environmental and Occupational Health & Safety, Fougères Laboratory, Toxicology of Contaminants Unit, 10 B rue Claude Bourgelat, 35306 Fougères, France
| | - Valérie Fessard
- ANSES, French Agency for Food, Environmental and Occupational Health & Safety, Fougères Laboratory, Toxicology of Contaminants Unit, 10 B rue Claude Bourgelat, 35306 Fougères, France
| | - Ludovic Le Hégarat
- ANSES, French Agency for Food, Environmental and Occupational Health & Safety, Fougères Laboratory, Toxicology of Contaminants Unit, 10 B rue Claude Bourgelat, 35306 Fougères, France
| |
Collapse
|
11
|
Lis-Cieplak A, Trześniowska K, Stolarczyk K, Stolarczyk EU. Pyrrolizidine Alkaloids as Hazardous Toxins in Natural Products: Current Analytical Methods and Latest Legal Regulations. Molecules 2024; 29:3269. [PMID: 39064851 PMCID: PMC11279032 DOI: 10.3390/molecules29143269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 06/28/2024] [Accepted: 07/04/2024] [Indexed: 07/28/2024] Open
Abstract
Pyrrolizidine alkaloids (PAs) are toxic compounds that occur naturally in certain plants, however, there are many secondary pathways causing PA contamination of other plants, including medicinal herbs and plant-based food products, which pose a risk of human intoxication. It is proven that chronic exposure to PAs causes serious adverse health consequences resulting from their cytotoxicity and genotoxicity. This review briefly presents PA occurrence, structures, chemistry, and toxicity, as well as a set of analytical methods. Recently developed sensitive electrochemical and chromatographic methods for the determination of PAs in honey, teas, herbs, and spices were summarized. The main strategies for improving the analytical efficiency of PA determination are related to the use of mass spectrometric (MS) detection; therefore, this review focuses on advances in MS-based methods. Raising awareness of the potential health risks associated with the presence of PAs in food and herbal medicines requires ongoing research in this area, including the development of sensitive methods for PA determination and rigorous legal regulations of PA intake from herbal products. The maximum levels of PAs in certain products are regulated by the European Commission; however, the precise knowledge about which products contain trace but significant amounts of these alkaloids is still insufficient.
Collapse
Affiliation(s)
- Agnieszka Lis-Cieplak
- Spectrometric Methods Department, National Medicines Institute, Chełmska 30/34, 00-725 Warsaw, Poland; (A.L.-C.); (K.T.)
| | - Katarzyna Trześniowska
- Spectrometric Methods Department, National Medicines Institute, Chełmska 30/34, 00-725 Warsaw, Poland; (A.L.-C.); (K.T.)
| | | | - Elżbieta U. Stolarczyk
- Spectrometric Methods Department, National Medicines Institute, Chełmska 30/34, 00-725 Warsaw, Poland; (A.L.-C.); (K.T.)
| |
Collapse
|
12
|
Chen Y, Li L, Xu J, Liu Y, Xie Y, Xiong A, Wang Z, Yang L. Mass spectrometric analysis strategies for pyrrolizidine alkaloids. Food Chem 2024; 445:138748. [PMID: 38422865 DOI: 10.1016/j.foodchem.2024.138748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 02/09/2024] [Accepted: 02/11/2024] [Indexed: 03/02/2024]
Abstract
Pyrrolizidine alkaloids (PAs) in food and natural preparations have received widespread attention due to their hepatotoxicity, genotoxicity, and embryotoxicity. Mass spectrometry (MS), as a high resolution, high sensitive, and high throughput detection tool, has been the most commonly used technique for the determination of PAs. The continuous advancement of new technologies, methods, and strategies in the field of MS has contributed to the improvement of the analytical efficiency and methodological enhancement of PAs. This paper provides an overview of the structure, toxicity properties and commonly employed analytical methods, focusing on the concepts, advances, and novel techniques and applications of MS-based methods for the analysis of PAs. Additionally, the remaining challenges, future perspectives, and trends for PA detection are discussed. This review provides a reference for toxicological studies of PAs, content monitoring, and the establishment of quality control and safety standards for herbal and food products.
Collapse
Affiliation(s)
- Yilin Chen
- The MOE Key Laboratory of Standardization of Chinese Medicines, The SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, The Shanghai Key Laboratory for Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Linnan Li
- The MOE Key Laboratory of Standardization of Chinese Medicines, The SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, The Shanghai Key Laboratory for Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Jie Xu
- The MOE Key Laboratory of Standardization of Chinese Medicines, The SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, The Shanghai Key Laboratory for Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yamin Liu
- The MOE Key Laboratory of Standardization of Chinese Medicines, The SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, The Shanghai Key Laboratory for Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yanqiao Xie
- The MOE Key Laboratory of Standardization of Chinese Medicines, The SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, The Shanghai Key Laboratory for Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Aizhen Xiong
- The MOE Key Laboratory of Standardization of Chinese Medicines, The SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, The Shanghai Key Laboratory for Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Zhengtao Wang
- The MOE Key Laboratory of Standardization of Chinese Medicines, The SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, The Shanghai Key Laboratory for Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Li Yang
- The MOE Key Laboratory of Standardization of Chinese Medicines, The SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, The Shanghai Key Laboratory for Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
13
|
Dushna O, Dubenska L, Gawor A, Karasińki J, Barabash O, Ostapiuk Y, Blazheyevskiy M, Bulska E. Structural Characterization and Electrochemical Studies of Selected Alkaloid N-Oxides. Molecules 2024; 29:2721. [PMID: 38930787 PMCID: PMC11205554 DOI: 10.3390/molecules29122721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/05/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024] Open
Abstract
In this work, we synthesized and confirmed the structure of several alkaloid N-oxides using mass spectrometry and Fourier-transform infrared spectroscopy. We also investigated their reduction mechanisms using voltammetry. For the first time, we obtained alkaloid N-oxides using an oxidation reaction with potassium peroxymonosulfate as an oxidant. The structure was established based on the obtained fragmentation mass spectra recorded by LC-Q-ToF-MS. In the FT-IR spectra of the alkaloid N-oxides, characteristic signals of N-O group vibrations were recorded (bands in the range of 928 cm⁻1 to 971 cm⁻1), confirming the presence of this functional group. Electrochemical reduction studies demonstrated the reduction of alkaloid N-oxides at mercury-based electrodes back to the original form of the alkaloid. For the first time, the products of the electrochemical reduction of alkaloid N-oxides were detected by mass spectrometry. The findings provide insights into the structural characteristics and reduction behaviors of alkaloid N-oxides, offering implications for pharmacological and biochemical applications. This research contributes to a better understanding of alkaloid metabolism and degradation processes, with potential implications for drug development and environmental science.
Collapse
Affiliation(s)
- Olha Dushna
- Biological and Chemical Research Centre, Faculty of Chemistry, University of Warsaw, Żwirki i Wigury 101, 02-093 Warsaw, Poland; (O.D.); (A.G.); (J.K.)
- Faculty of Chemistry, Ivan Franko National University of Lviv, Kyryla i Mefodiya 6, 79-005 Lviv, Ukraine; (L.D.); (O.B.); (Y.O.)
| | - Liliya Dubenska
- Faculty of Chemistry, Ivan Franko National University of Lviv, Kyryla i Mefodiya 6, 79-005 Lviv, Ukraine; (L.D.); (O.B.); (Y.O.)
| | - Andrzej Gawor
- Biological and Chemical Research Centre, Faculty of Chemistry, University of Warsaw, Żwirki i Wigury 101, 02-093 Warsaw, Poland; (O.D.); (A.G.); (J.K.)
| | - Jakub Karasińki
- Biological and Chemical Research Centre, Faculty of Chemistry, University of Warsaw, Żwirki i Wigury 101, 02-093 Warsaw, Poland; (O.D.); (A.G.); (J.K.)
| | - Oksana Barabash
- Faculty of Chemistry, Ivan Franko National University of Lviv, Kyryla i Mefodiya 6, 79-005 Lviv, Ukraine; (L.D.); (O.B.); (Y.O.)
| | - Yurii Ostapiuk
- Faculty of Chemistry, Ivan Franko National University of Lviv, Kyryla i Mefodiya 6, 79-005 Lviv, Ukraine; (L.D.); (O.B.); (Y.O.)
| | - Mykola Blazheyevskiy
- Department of General Chemistry, National University of Pharmacy, Valentynivska 4, 61-168 Kharkiv, Ukraine;
| | - Ewa Bulska
- Biological and Chemical Research Centre, Faculty of Chemistry, University of Warsaw, Żwirki i Wigury 101, 02-093 Warsaw, Poland; (O.D.); (A.G.); (J.K.)
| |
Collapse
|
14
|
Berzina Z, Pavlenko R, Bartkiene E, Bartkevics V. Mycotoxins and pyrrolizidine alkaloids in herbal dietary supplements. FOOD ADDITIVES & CONTAMINANTS. PART B, SURVEILLANCE 2024; 17:180-192. [PMID: 38629617 DOI: 10.1080/19393210.2024.2332516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 03/14/2024] [Indexed: 06/09/2024]
Abstract
The market demand for herbal dietary supplements is rapidly growing and such products are becoming more common and accessible to consumers. However, the knowledge about their safety remains incomplete. Herbal dietary supplements are one of the food groups that can contribute significantly to human health concerns arising from chronic exposure to pyrrolizidine alkaloids and mycotoxins. This study aimed to simultaneously determine 79 natural contaminants, including mycotoxins, as well as pyrrolizidine and tropane alkaloids in herbal dietary supplements in one analytical run. Exposure assessment and human health risks were assessed for all compounds included in this study. The total concentration of naturally occurring contaminants in herbal dietary supplements reached 5.3 mg kg-1 and the most frequently detected mycotoxins were tentoxin and alternariol monomethyl ether. The latter was detected with the highest frequency, reaching concentrations up to 2.5 mg kg-1. The obtained results indicate a potential risk to public health related to herbal dietary supplement consumption.
Collapse
Affiliation(s)
- Zane Berzina
- Institute of Food Safety, Animal Health and Environment "BIOR", Riga, Latvia
- Faculty of Chemistry, University of Latvia, Riga, Latvia
| | - Romans Pavlenko
- Institute of Food Safety, Animal Health and Environment "BIOR", Riga, Latvia
| | - Elena Bartkiene
- Department of Food Safety and Quality, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Vadims Bartkevics
- Institute of Food Safety, Animal Health and Environment "BIOR", Riga, Latvia
- Faculty of Chemistry, University of Latvia, Riga, Latvia
| |
Collapse
|
15
|
Sousa AC, Pádua I, Gonçalves VM, Ribeiro C, Leal S. Exploring tea and herbal infusions consumption patterns and behaviours: The case of Portuguese consumers. Heliyon 2024; 10:e28779. [PMID: 38601558 PMCID: PMC11004536 DOI: 10.1016/j.heliyon.2024.e28779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/14/2024] [Accepted: 03/25/2024] [Indexed: 04/12/2024] Open
Abstract
Consumption of tea and herbal infusions (THIs) have a long history in traditional medicine and cultural practices. The health-promoting benefits attributed to THIs are considered influential factors in consumer choices. However, there is limited data on consumer choices and attitudes that might interfere with the positive effects associated with THIs consumption. The aim of this study was to investigate the consumption pattern and behavior of THIs consumers in Portugal, assessing the influence of socio-demographic factors on the selection of THIs products and consumer practices related to these beverages. An online survey was conducted, and from the collected data, 720 responses met the aim of the study and were further analyzed. Most of the respondents were female, 74.4%, belonging to the 40-60 age group (40.6%) and were medium consumers of THIs (47.2%). Green tea was the most consumed type among participants, and its consumption was associated not only with age but also with the pattern of THIs consumption. Despite that, participants preferred herbal infusions, with citronella, chamomile, and lemon verbena being the most consumed types. For certain types of herbal infusions, consumption was associated with age, while other types were preferred by moderate or heavy consumers. Most participants purchased THIs in supermarkets, registered trademark and brand stores, in the form of THIs bag. Light consumers use only bag, while medium/heavy consumers indicated the use of other forms. Almost half of the respondents admitted to not reading the information on product labels before consumption and using THIs after the expiry date, while only one-third of them declared paying attention to the label instructions. This study revealed the impact of socio-demographic factors as age on the consumption patterns and preferences of THIs of consumers. Of concern is the neglect of label usage among Portuguese consumers. This emphasizes the urgency of implementing interventions to guide proper label use and promote good consumption practices to ensure the quality of THIs products.
Collapse
Affiliation(s)
- Ana Catarina Sousa
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, University Institute of Health Sciences - CESPU, 4585-116, Gandra, Portugal
- UCIBIO - Applied Molecular Biosciences Unit, Toxicologic Pathology Research Laboratory, University Institute of Health Sciences (1H-TOXRUN, IUCS-CESPU), 4585-116, Gandra, Portugal
| | - Inês Pádua
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, University Institute of Health Sciences - CESPU, 4585-116, Gandra, Portugal
- UCIBIO - Applied Molecular Biosciences Unit, Translational Toxicology Research Laboratory, University Institute of Health Sciences (1H-TOXRUN, IUCS-CESPU), 4585-116, Gandra, Portugal
| | - Virgínia M.F. Gonçalves
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, University Institute of Health Sciences - CESPU, 4585-116, Gandra, Portugal
- UCIBIO - Applied Molecular Biosciences Unit, Translational Toxicology Research Laboratory, University Institute of Health Sciences (1H-TOXRUN, IUCS-CESPU), 4585-116, Gandra, Portugal
- UNIPRO - Oral Pathology and Rehabilitation Research Unit, University Institute of Health Sciences (IUCS-CESPU), 4585-116, Gandra, Portugal
| | - Cláudia Ribeiro
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, University Institute of Health Sciences - CESPU, 4585-116, Gandra, Portugal
- UCIBIO - Applied Molecular Biosciences Unit, Translational Toxicology Research Laboratory, University Institute of Health Sciences (1H-TOXRUN, IUCS-CESPU), 4585-116, Gandra, Portugal
| | - Sandra Leal
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, University Institute of Health Sciences - CESPU, 4585-116, Gandra, Portugal
- UCIBIO - Applied Molecular Biosciences Unit, Toxicologic Pathology Research Laboratory, University Institute of Health Sciences (1H-TOXRUN, IUCS-CESPU), 4585-116, Gandra, Portugal
| |
Collapse
|
16
|
Schrenk D, Allemang A, Fahrer J, Harms H, Li X, Lin G, Mahony C, Mulder P, Peijnenburg A, Pfuhler S, Punt A, Sievers H, Troutman J, Widjaja F. Toxins in Botanical Drugs and Plant-derived Food and Feed - from Science to Regulation: A Workshop Review. PLANTA MEDICA 2024; 90:219-242. [PMID: 38198805 DOI: 10.1055/a-2218-5667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
In September 2022, the 3rd International Workshop on pyrrolizidine alkaloids (PAs) and related phytotoxins was held on-line, entitled 'Toxins in botanical drugs and plant-derived food and feed - from science to regulation'. The workshop focused on new findings about the occurrence, exposure, toxicity, and risk assessment of PAs. In addition, new scientific results related to the risk assessment of alkenylbenzenes, a distinct class of herbal constituents, were presented. The presence of PAs and alkenylbenzenes in plant-derived food, feed, and herbal medicines has raised health concerns with respect to their acute and chronic toxicity but mainly related to the genotoxic and carcinogenic properties of several congeners. The compounds are natural constituents of a variety of plant families and species widely used in medicinal, food, and feed products. Their individual occurrence, levels, and toxic properties, together with the broad range of congeners present in nature, represent a striking challenge to modern toxicology. This review tries to provide an overview of the current knowledge on these compounds and indicates needs and perspectives for future research.
Collapse
Affiliation(s)
- Dieter Schrenk
- Food Chemistry and Toxicology, RPTU Kaiserslautern-Landau, Kaiserslautern, Germany
| | - Ashley Allemang
- Central Product Safety, The Procter & Gamble Company, Mason, USA
| | - Jörg Fahrer
- Food Chemistry and Toxicology, RPTU Kaiserslautern-Landau, Kaiserslautern, Germany
| | - Henrik Harms
- Federal Institute for Drugs and Medical Devices (BfArM), Bonn, Germany
| | - Xilin Li
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, U. S. Food and Drug Administration, Jefferson, USA
| | - Ge Lin
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR
| | - Catherine Mahony
- Central Product Safety, Procter & Gamble Technical Centre, Reading, United Kingdom
| | - Patrick Mulder
- Wageningen Food Safety Research, Wageningen University & Research, Wageningen, the Netherlands
| | - Ad Peijnenburg
- Wageningen Food Safety Research, Wageningen University & Research, Wageningen, the Netherlands
| | - Stefan Pfuhler
- Central Product Safety, The Procter & Gamble Company, Mason, USA
| | - Ans Punt
- Wageningen Food Safety Research, Wageningen University & Research, Wageningen, the Netherlands
| | | | - John Troutman
- Central Product Safety, The Procter & Gamble Company, Mason, USA
| | - Frances Widjaja
- Division of Toxicology, Wageningen University & Research, Wageningen, the Netherlands
| |
Collapse
|
17
|
Lu YS, Qiu J, Mu XY, Qian YZ, Chen L. Levels, Toxic Effects, and Risk Assessment of Pyrrolizidine Alkaloids in Foods: A Review. Foods 2024; 13:536. [PMID: 38397512 PMCID: PMC10888194 DOI: 10.3390/foods13040536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 01/30/2024] [Accepted: 02/02/2024] [Indexed: 02/25/2024] Open
Abstract
Pyrrolizidine alkaloids (PAs) are naturally occurring secondary metabolites of plants. To date, more than 660 types of PAs have been identified from an estimated 6000 plants, and approximately 120 of these PAs are hepatotoxic. As a result of PAs being found in spices, herbal teas, honey, and milk, PAs are considered contaminants in foods, posing a potential risk to human health. Here, we summarize the chemical structure, toxic effects, levels, and regulation of PAs in different countries to provide a better understanding of their toxicity and risk assessment. With recent research on the risk assessment of PAs, this review also discusses the challenges facing this field, aiming to provide a scientific basis for PA toxicity research and safety assessment.
Collapse
Affiliation(s)
- Yu-Shun Lu
- Key Laboratory of Agro-Product Quality and Safety, Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Y.-S.L.); (Y.-Z.Q.)
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun 130112, China
| | - Jing Qiu
- Key Laboratory of Agro-Product Quality and Safety, Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Y.-S.L.); (Y.-Z.Q.)
| | - Xi-Yan Mu
- Key Laboratory of Agro-Product Quality and Safety, Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Y.-S.L.); (Y.-Z.Q.)
| | - Yong-Zhong Qian
- Key Laboratory of Agro-Product Quality and Safety, Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Y.-S.L.); (Y.-Z.Q.)
| | - Lu Chen
- Key Laboratory of Agro-Product Quality and Safety, Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Y.-S.L.); (Y.-Z.Q.)
| |
Collapse
|
18
|
Tábuas B, Cruz Barros S, Diogo C, Cavaleiro C, Sanches Silva A. Pyrrolizidine Alkaloids in Foods, Herbal Drugs, and Food Supplements: Chemistry, Metabolism, Toxicological Significance, Analytical Methods, Occurrence, and Challenges for Future. Toxins (Basel) 2024; 16:79. [PMID: 38393157 PMCID: PMC10892171 DOI: 10.3390/toxins16020079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/20/2023] [Accepted: 01/23/2024] [Indexed: 02/25/2024] Open
Abstract
Consumers are increasingly seeking natural alternatives to chemical compounds, including the use of dried aromatic plants as seasonings instead of salt. However, the presence of pyrrolizidine alkaloids (PAs) in food supplements and dried plants has become a concern because of their link to liver diseases and their classification as carcinogenic by the International Agency for Research on Cancer (IARC). Despite European Union (EU) Regulation (EU) 2023/915, non-compliance issues persist, as indicated by alerts on the Rapid Alert System for Food and Feed (RASFF) portal. Analyzing PAs poses a challenge because of their diverse chemical structures and low concentrations in these products, necessitating highly sensitive analytical methods. Despite these challenges, ongoing advancements in analytical techniques coupled with effective sampling and extraction strategies offer the potential to enhance safety measures. These developments aim to minimize consumer exposure to PAs and safeguard their health while addressing the growing demand for natural alternatives in the marketplace.
Collapse
Affiliation(s)
- Bruna Tábuas
- Faculty of Pharmacy, University of Coimbra, Polo III, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal (C.C.)
| | - Sílvia Cruz Barros
- National Institute for Agricultural and Veterinary Research (INIAV), I.P, 4485-655 Vila do Conde, Portugal
| | - Catarina Diogo
- Faculty of Pharmacy, University of Coimbra, Polo III, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal (C.C.)
| | - Carlos Cavaleiro
- Faculty of Pharmacy, University of Coimbra, Polo III, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal (C.C.)
- Chemical Process Engineering and Forest Products Research Centre (CIEPQPF), University of Coimbra, Rua Sílvio Lima, 3030-790 Coimbra, Portugal
| | - Ana Sanches Silva
- Faculty of Pharmacy, University of Coimbra, Polo III, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal (C.C.)
- Center for Study in Animal Science (CECA), Institute of Sciences, Technologies and Agro-Environment of the University of Porto (ICETA), University of Porto, 4501-401 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477 Lisbon, Portugal
| |
Collapse
|
19
|
Letsyo E, Madilo FK, Effah-Manu L. Pyrrolizidine alkaloid contamination of food in Africa: A review of current trends and implications. Heliyon 2024; 10:e24055. [PMID: 38230234 PMCID: PMC10789634 DOI: 10.1016/j.heliyon.2024.e24055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 12/13/2023] [Accepted: 01/03/2024] [Indexed: 01/18/2024] Open
Abstract
Pyrrolizidine alkaloids (PAs) contamination of foodstuffs has become a topical issue in recent years on account of its potential hepatotoxicity to consumers. This review therefore highlights human exposure to PAs across Africa, focusing on their occurrence, current trends of food contamination, and their associated health implications. A comprehensive search of peer-scientific literature and relevant databases, PubMed, Google Scholar, Science Direct, Web of Science and Scopus, was conducted from 2001 to 2023 focusing mainly on foodstuffs, including grains, herbs, teas, honey, and livestock products. The findings revealed that PA contamination is a prevalent issue in several African countries, with the primary sources of contamination attributed to the consumption of honey and the use of PA plants as herbs in food preparations. Additionally, poor farming practices have been found to influence the presence and levels of PAs in foodstuffs. To mitigate PA contamination in food and safeguarding public health across the continent, several strategies are proposed, including the implementation of stringent regulatory and quality control measures, adoption of Good Agricultural Practices, and public awareness campaigns to educate producers, consumers and beekeepers about the risks associated with PA-contaminated food products.
Collapse
Affiliation(s)
- Emmanuel Letsyo
- Department of Food Science and Technology, Faculty of Applied Sciences and Technology, Ho Technical University, P.O Box HP 217, Ho, Ghana
| | - Felix Kwashie Madilo
- Department of Food Science and Technology, Faculty of Applied Sciences and Technology, Ho Technical University, P.O Box HP 217, Ho, Ghana
| | - Liticia Effah-Manu
- Department of Food Science and Technology, Faculty of Applied Sciences and Technology, Ho Technical University, P.O Box HP 217, Ho, Ghana
| |
Collapse
|
20
|
Abdalfattah S, Knorz C, Ayoobi A, Omer EA, Rosellini M, Riedl M, Meesters C, Efferth T. Identification of Antagonistic Action of Pyrrolizidine Alkaloids in Muscarinic Acetylcholine Receptor M1 by Computational Target Prediction Analysis. Pharmaceuticals (Basel) 2024; 17:80. [PMID: 38256913 PMCID: PMC10818892 DOI: 10.3390/ph17010080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 12/27/2023] [Accepted: 01/05/2024] [Indexed: 01/24/2024] Open
Abstract
Pyrrolizidine alkaloids (PAs) are one of the largest distributed classes of toxins in nature. They have a wide range of toxicity, such as hepatotoxicity, pulmonary toxicity, neuronal toxicity, and carcinogenesis. Yet, biological targets responsible for these effects are not well addressed. Using methods of computational biology for target identification, we tested more than 200 PAs. We used a machine-learning approach that applies structural similarity for target identification, ChemMapper, and SwissTargetPrediction. The predicted target with high probability was muscarinic acetylcholine receptor M1. The predicted interactions between this target and PAs were further studied by molecular docking-based binding energies using AutoDock and VinaLC, which revealed good binding affinities. The PAs are bound to the same binding pocket as pirenzepine, a known M1 antagonist. These results were confirmed by in vitro assays showing that PAs increased the levels of intracellular calcium. We conclude that PAs are potential acetylcholine receptor M1 antagonists. This elucidates for the first time the serious neuro-oncological toxicities exerted by PA consumption.
Collapse
Affiliation(s)
- Sara Abdalfattah
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany; (S.A.); (C.K.); (A.A.); (E.A.O.); (M.R.)
| | - Caroline Knorz
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany; (S.A.); (C.K.); (A.A.); (E.A.O.); (M.R.)
| | - Akhtar Ayoobi
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany; (S.A.); (C.K.); (A.A.); (E.A.O.); (M.R.)
- Department of Plant Sciences, Faculty of Biological Sciences, Alzahra University, Tehran 19938 93973, Iran
| | - Ejlal A. Omer
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany; (S.A.); (C.K.); (A.A.); (E.A.O.); (M.R.)
| | - Matteo Rosellini
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany; (S.A.); (C.K.); (A.A.); (E.A.O.); (M.R.)
| | - Max Riedl
- Institute for Medical Informatics, Statistics and Epidemiology, University of Leipzig, 04107 Leipzig, Germany;
| | - Christian Meesters
- High Performance Computing Group, University of Mainz, 55131 Mainz, Germany;
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany; (S.A.); (C.K.); (A.A.); (E.A.O.); (M.R.)
| |
Collapse
|
21
|
Indrayanto G. Regulation and standardization of herbal drugs: Current status, limitation, challenge's and future prospective. PROFILES OF DRUG SUBSTANCES, EXCIPIENTS, AND RELATED METHODOLOGY 2023; 49:153-199. [PMID: 38423707 DOI: 10.1016/bs.podrm.2023.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Herbal drugs (HD) or traditional drugs have been used worldwide for centuries, especially in the developing countries. Global market of HD reaches billion of USD annually and increases every year. For ensuring the safety and efficacy of HD, the Drug Agency/Authority issues regulations for the registration & application of new HD, their manufacturing processes, controlling and monitoring in the market. The efficacy and safety of HD depend on their whole chemical contents. Quality assessment of HD should be performed using standardization methods according to the current Pharmacopoeias or Materia Medica. Unfortunately, the official methods of the compendia cannot be applied for evaluation of mixed herbs and their preparations.; HD's producers should develop, validate, and standardize the method for the quality assessment of their own specific products. Therefore, assuring the safety and efficacy of HD remains a challenging task due to the complex nature of HD, that typically consist of many constituents of herbs/extracts whose quality may vary among different sources of materials. This present review will describe, compare, and discuss the regulations and standardization methods of HD from US, EU countries, Japan, Taiwan, Hong Kong and Indonesia. The official standardization methods of HD, their current criteria, limitations, challenge and future prospective will be described and discussed. Official methods for quality assessment of HD should be state of the art, fast, low-cost, accurate and precise, and could be used for evaluation of all kinds of HD.
Collapse
|
22
|
Haas M, Ackermann G, Küpper JH, Glatt H, Schrenk D, Fahrer J. OCT1-dependent uptake of structurally diverse pyrrolizidine alkaloids in human liver cells is crucial for their genotoxic and cytotoxic effects. Arch Toxicol 2023; 97:3259-3271. [PMID: 37676300 PMCID: PMC10567918 DOI: 10.1007/s00204-023-03591-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 08/24/2023] [Indexed: 09/08/2023]
Abstract
Pyrrolizidine alkaloids (PAs) are important plant hepatotoxins, which occur as contaminants in plant-based foods, feeds and phytomedicines. Numerous studies demonstrated that the genotoxicity and cytotoxicity of PAs depend on their chemical structure, allowing for potency ranking and grouping. Organic cation transporter-1 (OCT1) was previously shown to be involved in the cellular uptake of the cyclic PA diesters monocrotaline, retrorsine and senescionine. However, little is known about the structure-dependent transport of PAs. Therefore, we investigated the impact of OCT1 on the uptake and toxicity of three structurally diverse PAs (heliotrine, lasiocarpine and riddelliine) differing in their degree and type of esterification in metabolically competent human liver cell models and hamster fibroblasts. Human HepG2-CYP3A4 liver cells were exposed to the respective PA in the presence or absence of the OCT1-inhibitors D-THP and quinidine, revealing a strongly attenuated cytotoxicity upon OCT1 inhibition. The same experiments were repeated in V79-CYP3A4 hamster fibroblasts, confirming that OCT1 inhibition prevents the cytotoxic effects of all tested PAs. Interestingly, OCT1 protein levels were much lower in V79-CYP3A4 than in HepG2-CYP3A4 cells, which correlated with their lower susceptibility to PA-induced cytotoxicity. The cytoprotective effect of OCT1 inhibiton was also demonstrated in primary human hepatocytes following PA exposure. Our experiments further showed that the genotoxic effects triggered by the three PAs are blocked by OCT1 inhibition as evidenced by strongly reduced γH2AX and p53 levels. Consistently, inhibition of OCT1-mediated uptake suppressed the activation of the DNA damage response (DDR) as revealed by decreased phosphorylation of checkpoint kinases upon PA treatment. In conclusion, we demonstrated that PAs, independent of their degree of esterification, are substrates for OCT1-mediated uptake into human liver cells. We further provided evidence that OCT1 inhibition prevents PA-triggered genotoxicity, DDR activation and subsequent cytotoxicity. These findings highlight the crucial role of OCT1 together with CYP3A4-dependent metabolic activation for PA toxicity.
Collapse
Affiliation(s)
- Manuel Haas
- Division of Food Chemistry and Toxicology, Department of Chemistry, RPTU Kaiserslautern-Landau, Erwin-Schroedinger-Str. 52, 67663, Kaiserslautern, Germany
| | - Gabriel Ackermann
- Division of Food Chemistry and Toxicology, Department of Chemistry, RPTU Kaiserslautern-Landau, Erwin-Schroedinger-Str. 52, 67663, Kaiserslautern, Germany
| | - Jan-Heiner Küpper
- Division of Molecular Cell Biology, Department of Environment and Nature Science, Brandenburg University of Technology Cottbus-Senftenberg, 01968, Senftenberg, Germany
| | - Hansruedi Glatt
- Department Food Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Strasse 8-10, 10589, Berlin, Germany
- Department of Nutritional Toxicology, German Institute of Human Nutrition (DIfE), Potsdam-Rehbrücke, Arthur-Scheunert-Allee 114-116, 14558, Nuthetal, Germany
| | - Dieter Schrenk
- Division of Food Chemistry and Toxicology, Department of Chemistry, RPTU Kaiserslautern-Landau, Erwin-Schroedinger-Str. 52, 67663, Kaiserslautern, Germany
| | - Jörg Fahrer
- Division of Food Chemistry and Toxicology, Department of Chemistry, RPTU Kaiserslautern-Landau, Erwin-Schroedinger-Str. 52, 67663, Kaiserslautern, Germany.
| |
Collapse
|
23
|
Lin T, Zhou L, Chen Z, Wang L, Yang J, Wang S, Chen X, Zuo Z, He C, Guo L. Exposure to echimidine impairs the heart development and function of zebrafish larvae. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 266:115574. [PMID: 37839186 DOI: 10.1016/j.ecoenv.2023.115574] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 10/04/2023] [Accepted: 10/10/2023] [Indexed: 10/17/2023]
Abstract
Pyrrolizidine alkaloids (PAs) are a class of phytotoxins that are widely distributed and can be consumed by humans through their daily diets. Echimidine is one of the most abundant PAs, but its safety, particularly its effects on development, is not fully understood. In this study, we used a zebrafish model to assess the developmental toxicity of echimidine. Zebrafish embryos were exposed to echimidine at concentrations of 0.02, 0.2, and 2 mg/L for 96 h. Our study revealed that embryonic exposure to echimidine led to developmental toxicity, characterized by delayed hatching and reduced body length. Additionally, echimidine exposure had a notable impact on heart development in larvae, causing tachycardia and reducing stroke volume (SV)and cardiac output (CO). Upon exposing the transgenic zebrafish strain Tg(cmlc2:EGFP) to echimidine, we observed atrial dilation and thinning of the atrial wall in developing embryos. Moreover, our findings indicated abnormal expression of genes associated with cardiac development (including gata4, tbx5, nkx2.5 and myh6) and genes involved in calcium signaling pathways (such as cacna1aa, cacna1sa, ryr2a, ryr2b, atp2a2a, atp2a2b, slc8a1, slc8a3 and slc8a4a). In summary, our findings demonstrate that echimidine may impair cardiac development and function in zebrafish larvae by disrupting calcium transport, leading to developmental toxicity. These findings provide insights regarding the safety of products containing PAs in food and medicine.
Collapse
Affiliation(s)
- Tingting Lin
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Li Zhou
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; Evaluation and Research Center of Daodi Herbs of Jiangxi Province, Nanchang 330000, China
| | - Zhibin Chen
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Luanjin Wang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Jian Yang
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; Evaluation and Research Center of Daodi Herbs of Jiangxi Province, Nanchang 330000, China
| | - Sheng Wang
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Xintan Chen
- Chest Pain Center, Anxi County Hospital, Quanzhou, Fujian 362400, China
| | - Zhenghong Zuo
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Chengyong He
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China.
| | - Lanping Guo
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| |
Collapse
|
24
|
Rollo E, Catellani D, Dall'Asta C, Suman M. QuEChERS method combined to liquid chromatography high-resolution mass spectrometry for the accurate and sensitive simultaneous determination of pyrrolizidine and tropane alkaloids in cereals and spices. JOURNAL OF MASS SPECTROMETRY : JMS 2023; 58:e4969. [PMID: 37604670 DOI: 10.1002/jms.4969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 06/23/2023] [Accepted: 07/21/2023] [Indexed: 08/23/2023]
Abstract
Within the last decades, in the EU, there has been an increasing interest in toxic plant alkaloids as food contaminants, especially after the continuous and growing consumption of plant-based foods compared with food of animal origin. In this regard, the once neglected presence of these tropane alkaloids (TAs) and pyrrolizidine alkaloids (PAs) has recently been reconsidered by the European Food Safety Authority, highlighting the lack of data and the need to develop risk assessment strategies. For this reason, the emphasis has been placed on detecting their occurrence in food through the development of accurate and sensitive analytical methods to achieve the determination of these compounds. The present study aims to elaborate and validate an analytical method based on QuEChERS sample preparation approach, exploiting the UHPLC coupled to the HRMS to simultaneously identify and quantify 21 PAs and two TAs in cereals and spices. For TAs, the obtained limit of detection (LOD) is 0.1 μg·kg-1 and the limit of quantification (LOQ) is 0.4 μg·kg-1 , while for PAs, the LODs values ranging between 0.2 to 0.3 μg·kg-1 and the LOQ, between 0.4 and 0.8 μg·kg-1 , ensuring compliance with the recently established European Regulations. Several commercial samples were analysed to further verify the applicability of this comprehensive analytical approach.
Collapse
Affiliation(s)
- Eleonora Rollo
- Analytical Food Science, Barilla G. e R. Fratelli S.p.A., Parma, Italy
- Department of Food and Drug, University of Parma, Parma, Italy
| | - Dante Catellani
- Analytical Food Science, Barilla G. e R. Fratelli S.p.A., Parma, Italy
| | | | - Michele Suman
- Analytical Food Science, Barilla G. e R. Fratelli S.p.A., Parma, Italy
- Department for Sustainable Food Process, Catholic University Sacred Heart, Piacenza, Italy
| |
Collapse
|
25
|
Gumus ZP. Assessment of Toxic Pyrrolizidine and Tropane Alkaloids in Herbal Teas and Culinary Herbs Using LC-Q-ToF/MS. Foods 2023; 12:3572. [PMID: 37835225 PMCID: PMC10572649 DOI: 10.3390/foods12193572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/20/2023] [Accepted: 09/22/2023] [Indexed: 10/15/2023] Open
Abstract
Pyrrolizidine alkaloids are secondary metabolites produced by plants as a defense against insects. These can cause acute or chronic toxicity in humans. Therefore, avoiding potential poisoning from the consumption of tea and culinary plants contaminated with pyrrolizidine alkaloids (PAs), pyrrolizidine alkaloids N-oxides (PANOs), and tropane alkaloids (TAs) is important for human health and food safety. Therefore, it is important to determine the levels of these substances with reliable and highly accurate methods. In this study, the PAs, PANOs, and TAs in herbal teas and culinary herbs sold in Turkish markets were identified and their levels were determined. Thus, the general profiles of herbal teas and culinary herbs in Turkey were revealed, and the compliance of the total amounts of PA and TA with the regulations was examined. The identification and quantification of 25 PAs and N-oxides and 2 TAs (atropine and scopolamine) in the samples was performed with a liquid chromatography-quadrupole time-of-flight tandem mass spectrometer (LC-Q-ToF/MS). At least a few of these substances were detected in all of the tested herbal teas and culinary herbs. The total contents of the black tea, green tea, mixed tea, flavored tea, chamomile tea, sage tea, linden tea, fennel tea, rosehip tea, peppermint, and thyme samples ranged from 4.6 ng g-1 to 1054.5 ng g-1. The results obtained shed light on the importance of analyzing the total dehydro PA, PANO, and TA amounts in plant-based products consumed in diets with sensitive and accurate methods, and they highlight the necessity of performing these analyses routinely in terms of food safety.
Collapse
Affiliation(s)
- Zinar Pinar Gumus
- Central Research Test and Analysis Laboratory Application and Research Center (EGE-MATAL), Ege University, 35100 Izmir, Turkey
| |
Collapse
|
26
|
Pan Y, Ma J, Zhao H, Fu PP, Lin G. Hepatotoxicity screening and ranking of structurally different pyrrolizidine alkaloids in zebrafish. Food Chem Toxicol 2023:113903. [PMID: 37390955 DOI: 10.1016/j.fct.2023.113903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 06/09/2023] [Accepted: 06/15/2023] [Indexed: 07/02/2023]
Abstract
Pyrrolizidine alkaloids (PAs) are phytotoxins distributed in ∼6000 plant species. PA-contaminated/containing foodstuffs/herbs/supplements pose a potential threat to human health. Various regulatory authorities established different PA margins of exposure assuming an equal hepatotoxic potency of structurally diverse PAs, although they exhibit different toxic potencies. Therefore, understanding hepatotoxic potencies of different PAs would facilitate a more appropriate risk assessment of PA exposure. In this study, a zebrafish model, which mimics physiological processes of absorption, distribution, metabolism, and excretion, was selected to evaluate acute hepatotoxic potency of different PAs (7 PAs and 2 PA N-oxides) and explore possible physiological pathways involved in PA-induced hepatotoxicity. After 6 h oral administration, PAs caused distinct structure-dependent hepatotoxicity with a series of biochemical and histological changes in zebrafish. Based on the measured toxicological endpoints, the relative toxic potency order of different PAs was derived as lasiocarpine ∼ retrorsine > monocrotaline > riddelliine > clivorine > heliotrine > retrorsine N-oxide ∼ riddelliine N-oxide≫>platyphyline. Further, compared to control group, different upregulation/downregulation of mRNA expression in PA-treated groups indicated that inflammation, apoptosis, and steatosis were involved in PA-induced hepatotoxicity in zebrafish. These findings demonstrate that zebrafish model is useful for screening and ranking hepatotoxicity of PAs with diverse structures, which would facilitate the more accurate risk assessment of PA exposure.
Collapse
Affiliation(s)
- Yueyang Pan
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong.
| | - Jiang Ma
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong; School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Hui Zhao
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong
| | - Peter P Fu
- National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079, USA
| | - Ge Lin
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong.
| |
Collapse
|
27
|
Sousa AC, Ribeiro C, Gonçalves VMF, Pádua I, Leal S. Chromatographic Methods for Detection and Quantification of Pyrrolizidine Alkaloids in Flora, Herbal Medicines, and Food: An Overview. Crit Rev Anal Chem 2023; 54:2915-2939. [PMID: 37300809 DOI: 10.1080/10408347.2023.2218476] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Pyrrolizidine alkaloids (PAs) are natural toxins produced by some plants that gained special interest due to their potential hazardous effects in humans and animals. These substances have been found in wild flora, herbal medicines and food products raising health concerns. Recently, maximum concentration levels of PAs were established for some food products; however, maximum daily intake frequently surpasses the upper limit set by the competent authorities posing a health risk. Given the scarcity or absence of occurrence data on PAs in many products, there is an urgent need to measure their levels and establish safety intake levels. Analytical methods have been reported to detect and quantify PAs in different matrices. The commonly used chromatographic methodologies provides accurate and reliable results. Analytical methods include diverse steps as extraction and sample preparation procedures that are critical for sensitivity and selectivity of the analytical method. Great efforts have been directed toward optimization of extraction procedures, clean up and chromatographic conditions to improve recovery, reduce matrix effects, and achieve low limits of detection and quantification. Therefore, this paper aims to give a general overview about the occurrence of PAs in flora, herbal medicines, and foodstuff; and discuss the different chromatographic methodologies used for PAs analysis, namely extraction and sample preparation procedures and chromatographic conditions.
Collapse
Affiliation(s)
- Ana Catarina Sousa
- TOXRUN - Toxicology Research Unit, University Institute of Health Sciences, CESPU, CRL, Gandra, Portugal
| | - Cláudia Ribeiro
- TOXRUN - Toxicology Research Unit, University Institute of Health Sciences, CESPU, CRL, Gandra, Portugal
| | - Virgínia M F Gonçalves
- TOXRUN - Toxicology Research Unit, University Institute of Health Sciences, CESPU, CRL, Gandra, Portugal
- UNIPRO - Oral Pathology and Rehabilitation Research Unit, University Institute of Health Sciences (IUCS), CESPU, Gandra, Portugal
| | - Inês Pádua
- TOXRUN - Toxicology Research Unit, University Institute of Health Sciences, CESPU, CRL, Gandra, Portugal
- Epidemiology Unit - Institute of Public Health of University of Porto (ISPUP), Porto, Portugal
| | - Sandra Leal
- TOXRUN - Toxicology Research Unit, University Institute of Health Sciences, CESPU, CRL, Gandra, Portugal
- CINTESIS-RISE, MEDCIDS, Faculty of Medicine, University of Porto, Porto, Portugal
| |
Collapse
|
28
|
Rizzo S, Celano R, Piccinelli AL, Russo M, Rastrelli L. Target screening method for the quantitative determination of 118 pyrrolizidine alkaloids in food supplements, herbal infusions, honey and teas by liquid chromatography coupled to quadrupole orbitrap mass spectrometry. Food Chem 2023; 423:136306. [PMID: 37167673 DOI: 10.1016/j.foodchem.2023.136306] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 03/16/2023] [Accepted: 05/01/2023] [Indexed: 05/13/2023]
Abstract
An analytical procedure for the screening of 118 pyrrolizidine alkaloids (PAs) was successfully validated and applied to their quantitative determination in food supplements, herbal infusions, honey, and teas. It provides the reliable analyte identification by high-resolution tandem mass spectrometry (HRMS/MS), the accurate determination of 21 regulated PAs, and broad contamination profiles. 10% of 281 analyzed samples resulted contaminated at levels above the maximum levels (MLs) of European legislation. The contamination of herbal infusions of mixed plants can represent a possible health concern (23%; mean of PA sum above ML). A high number of PAs not included in the regulation was detected in honey and herbal food supplements, but their contribution was only relevant to the overall level in honey. The results indicate the need to continue collecting contamination data in food supplements and infusions of mixed herbs and to expand the PA-pool to be monitored in honey and related products.
Collapse
Affiliation(s)
- Serena Rizzo
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Salerno, Italy; Drug Discovery and Development, University of Salerno, Via Giovanni Paolo II 132, Fisciano, SA 84084, Italy
| | - Rita Celano
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Salerno, Italy
| | - Anna Lisa Piccinelli
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Salerno, Italy.
| | - Mariateresa Russo
- Department of Agriculture Science, Food Chemistry, Safety and Sensoromic Laboratory, University of Reggio Calabria, Via Salita Melissari, 89124 Reggio Calabria, Italy
| | - Luca Rastrelli
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Salerno, Italy
| |
Collapse
|
29
|
An analytical platform for the screening and identification of pyrrolizidine alkaloids in food matrices with high risk of contamination. Food Chem 2023; 406:135058. [PMID: 36459797 DOI: 10.1016/j.foodchem.2022.135058] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 11/11/2022] [Accepted: 11/22/2022] [Indexed: 11/27/2022]
Abstract
An analytical platform for the detection of pyrrolizidine alkaloids (PAs) in honey, pollen, teas, herbal infusions, and dietary supplements is proposed; it includes a wide-scope suspect screening method, based on a diagnostic product ion filtering strategy for the characterization of PAs, and a target screening and identification method for the high-throughput detection of 118 PAs of a high-resolution mass spectral library. Salting-out assisted liquid-liquid extraction of aqueous extracts combined to ultra-high performance liquid chromatography-high-resolution tandem mass spectrometry was employed. The limit of identification (0.6-30 µg kg-1) of 28 standards were fit-for-purpose in PA-monitoring applications, with a false negative rate <1.3 % at 4 µg L-1. The wide-scope suspect screening method allowed the tentative identification of 88 compounds. The screening of 282 commercial samples revealed a broad contamination of the studied matrices, demonstrating the effectiveness of the platform in detecting and identifying both target and untarget PAs.
Collapse
|
30
|
Lin F, Zhao L, Wang Y, Ye Y, Liu J. Comparative Pharmacokinetic Study of Two Pyrrolizidine Alkaloids Lasiocarpine and Heliotrine in Rats. PLANTA MEDICA 2023; 89:571-579. [PMID: 36170857 DOI: 10.1055/a-1915-5456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Lasiocarpine (LAS) and heliotrine (HEL) are two different ester types of toxic pyrrolizidine alkaloids (PAs): open-chain diester and monoester. However, the pharmacokinetics of these two types of PAs in rats have not been reported. In the present study, two LC-MS/MS methods for determining LAS and HEL were established and validated. The methods exhibited good linearity, accuracy, and precision and were then applied to a comparative pharmacokinetic study. After intravenous administration to male rats at 1 mg/kg, the AUC0-t values of LAS and HEL were 336 ± 26 ng/mL × h and 170 ± 5 ng/mL × h. After oral administration at 10 mg/kg, the AUC0-t of LAS was much lower than that of HEL (18.2 ± 3.8 ng/mL × h vs. 396 ± 18 ng/mL × h), while the Cmax of LAS was lower than that of HEL (51.7 ± 22.5 ng/mL × h vs. 320 ± 26 ng/mL × h). The absolute oral bioavailability of LAS was 0.5%, which was significantly lower than that of HEL (23.3%). The results revealed that the pharmacokinetic behaviors of LAS differed from that of HEL.
Collapse
Affiliation(s)
- Feifei Lin
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
| | - Lijuan Zhao
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yingying Wang
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yang Ye
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jia Liu
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
31
|
Xu Y, Li J, Mao H, You W, Chen J, Xu H, Wu J, Gong Y, Guo L, Liu T, Li W, Xu B, Xie J. Structural annotation, semi-quantification and toxicity prediction of pyrrolizidine alkaloids from functional food: In silico and molecular networking strategy. Food Chem Toxicol 2023; 176:113738. [PMID: 37003509 DOI: 10.1016/j.fct.2023.113738] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 03/12/2023] [Accepted: 03/19/2023] [Indexed: 04/03/2023]
Abstract
Many traditional Chinese herbs contain pyrrolizidine alkaloids (PAs), which have been reported to be toxic to livestock and humans. However, the lack of PAs standards makes it difficult to effectively conduct a risk assessment in the varied components of traditional Chinese medicine. It is necessary to propose a suitable strategy to obtain the representative occurrence data of PAs in complex systems. A comprehensive approach for annotating the structures, concentration, and mutagenicity of PAs in three Chinese herbs has been proposed in this article. First, feature-based molecular networking (FBMN) combined with network annotation propagation (NAP) on the Global Natural Products Social Molecular Networking web platform speeds up the process of annotating PAs found in Chinese herbs. Second, a semi-quantitative prediction model based on the quantitative structures and ionization intensity relationship (QSIIR) is used to forecast the amounts of PAs in complex substrates. Finally, the T.E.S.T. was used to provide predictions regarding the mutagenicity of annotated PAs. The goal of this study was to develop a strategy for combining the results of several computer models for PA screening to conduct a comprehensive analysis of PAs, which is a crucial step in risk assessment of unknown PAs in traditional Chinese herbal preparations.
Collapse
Affiliation(s)
- Yaping Xu
- State Key Laboratory of Toxicology and Medical Countermeasures, Laboratory of Toxicant Analysis, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Beijing, China
| | - Jie Li
- State Key Laboratory of Toxicology and Medical Countermeasures, Laboratory of Toxicant Analysis, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Beijing, China
| | - Huajian Mao
- Scientific Research Support Center, Academy of Military Medical Sciences, Beijing, China
| | - Wei You
- State Key Laboratory of Toxicology and Medical Countermeasures, Laboratory of Toxicant Analysis, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Beijing, China
| | - Jia Chen
- State Key Laboratory of Toxicology and Medical Countermeasures, Laboratory of Toxicant Analysis, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Beijing, China
| | - Hua Xu
- State Key Laboratory of Toxicology and Medical Countermeasures, Laboratory of Toxicant Analysis, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Beijing, China
| | - Jianfeng Wu
- State Key Laboratory of Toxicology and Medical Countermeasures, Laboratory of Toxicant Analysis, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Beijing, China
| | - Ying Gong
- State Key Laboratory of Toxicology and Medical Countermeasures, Laboratory of Toxicant Analysis, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Beijing, China
| | - Lei Guo
- State Key Laboratory of Toxicology and Medical Countermeasures, Laboratory of Toxicant Analysis, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Beijing, China
| | - Tao Liu
- Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Wuju Li
- Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Bin Xu
- State Key Laboratory of Toxicology and Medical Countermeasures, Laboratory of Toxicant Analysis, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Beijing, China.
| | - Jianwei Xie
- State Key Laboratory of Toxicology and Medical Countermeasures, Laboratory of Toxicant Analysis, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Beijing, China.
| |
Collapse
|
32
|
Widjaja F, Zheng L, Wesseling S, Rietjens IMCM. Physiologically based kinetic modeling of senecionine N-oxide in rats as a new approach methodology to define the effects of dose and endpoint used on relative potency values of pyrrolizidine alkaloid N-oxides. Front Pharmacol 2023; 14:1125146. [PMID: 36937884 PMCID: PMC10017778 DOI: 10.3389/fphar.2023.1125146] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 02/14/2023] [Indexed: 03/06/2023] Open
Abstract
Over 1,000 pyrrolizidine alkaloids (PAs) and their N-oxides (PA-N-oxides) occur in 3% of all flowering plants. PA-N-oxides are toxic when reduced to their parent PAs, which are bioactivated into pyrrole intermediates that generate protein- and DNA-adducts resulting in liver toxicity and carcinogenicity. Literature data for senecionine N-oxide in rats indicate that the relative potency (REP) value of this PA-N-oxide compared to its parent PA senecionine varies with the endpoint used. The first endpoint was the ratio between the area under the concentration-time curve (AUC) for senecionine upon dosing senecionine N-oxide or an equimolar dose of senecionine, while the second endpoint was the ratio between the amount for pyrrole-protein adducts formed under these conditions. This study aimed to investigate the mode of action underlying this endpoint dependent REP value for senecionine N-oxide with physiologically based kinetic (PBK) modeling. Results obtained reveal that limitation of 7-GS-DHP adduct formation due to GSH depletion, resulting in increased pyrrole-protein adduct formation, occurs more likely upon high dose oral PA administration than upon an equimolar dose of PA-N-oxide. At high dose levels, this results in a lower REP value when based on pyrrole-protein adduct levels than when based on PA concentrations. At low dose levels, the difference no longer exists. Altogether, the results of the study show how the REP value for senecionine N-oxide depends on dose and endpoint used, and that PBK modeling provides a way to characterize REP values for PA-N-oxides at realistic low dietary exposure levels, thus reducing the need for animal experiments.
Collapse
Affiliation(s)
- Frances Widjaja
- Division of Toxicology, Wageningen University, Wageningen, Netherlands
| | | | | | | |
Collapse
|
33
|
Song Z, Lian W, He Y, Zhang C, Lin G. Targeting erythrocyte-mediated hypoxia to alleviate lung injury induced by pyrrolizidine alkaloids. Arch Toxicol 2023; 97:819-829. [PMID: 36639515 DOI: 10.1007/s00204-023-03443-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 01/09/2023] [Indexed: 01/15/2023]
Abstract
Pyrrolizidine alkaloids (PAs) are widely distributed natural toxins and have been extensively studied for their hepatotoxicity. However, PA-induced pulmonary toxicity remains less studied regarding the initiating mechanism and treatment approaches. Our previous study demonstrated the formation of pyrrole-hemoglobin adducts after PA exposure in vivo, which is suspected to affect the oxygen-carrying capacity of erythrocytes [red blood cells (RBCs)] consequently. The present study aimed to investigate the effects of PAs on the oxygen-carrying capacity of RBCs and the potential of targeting RBC-mediated hypoxia to alleviate PA-induced lung injury. First, rats were treated with retrorsine (RTS) or monocrotaline (MCT) intravenously at 0.2 mmol/kg. The results of Raman spectrometry analysis on blood samples revealed both RTS and MCT significantly reduced the oxygen-carrying capacity of RBCs. Further, MCT (0.2 mmol/kg) was orally given to the rats with or without pretreatment with two doses of erythropoietin (Epo, 500 IU/kg/dose every other day), an RBC-stimulating agent. Biochemical and histological results showed pretreatment with Epo effectively reduced the cardiopulmonary toxicity induced by MCT. These findings provide the first evidence that adduction on hemoglobin, and the resulting RBC damage and impaired oxygen-carrying capacity, are the major initiating mechanism underlying PA-induced pulmonary arterial hypertension (PAH), while targeting the RBC damage is a potential therapeutic approach for PA-induced lung injury.
Collapse
Affiliation(s)
- Zijing Song
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, People's Republic of China
| | - Wei Lian
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, People's Republic of China
| | - Yisheng He
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, People's Republic of China
- School of Medicine, The Chinese University of Hong Kong-Shenzhen, Shenzhen, People's Republic of China
| | - Chunyuan Zhang
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, People's Republic of China
| | - Ge Lin
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, People's Republic of China.
| |
Collapse
|
34
|
Lo Piparo E, Christinat N, Badoud F. From Structural Alerts to Signature Fragment Alerts: A Case Study on Pyrrolizidine Alkaloids. Chem Res Toxicol 2023; 36:213-229. [PMID: 36692496 DOI: 10.1021/acs.chemrestox.2c00292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Even though modeling is considered a valid alternative to mutagenicity testing for substances with known structures, it can be applied for mixtures only if all of the single chemical structures are identified. Within the present work, we investigate a new avenue to exploit computational toxicology for mixtures, such as plant-based food ingredients. Indeed, considering that in the absence of toxicological information, an important early consideration is whether any substance may be genotoxic through the mutagenic mechanism of action, we tried to establish a correspondence between genotoxic structural alerts (SAs) and so-called signature fragment alerts (SFAs). Once this correspondence is established, chromatograms could be screened for chemical features associated with genotoxic alerts. Pyrrolizidine alkaloids (PAs), a large group of natural toxins (several of them known as genotoxic) were used as a case study because their early identification would bring significant benefits. The method was built using 56 PA pure standards, resulting in the characterization of signature fragment alerts. Finally, the approach was verified in real plant-based samples such as herbal tea and alfalfa, where the screening of signature fragment alerts allowed highlighting quickly the presence of genotoxic PAs in plant-based mixtures. Therefore, the SFA analysis can be used for risk prioritization of newly identified PAs and for their identification in mixtures, contributing to the unnecessary use of animal experimentation for genotoxicity testing.
Collapse
Affiliation(s)
- Elena Lo Piparo
- Food Safety Research, Nestlé Research, CH-1000 Lausanne, Switzerland
| | | | - Flavia Badoud
- Analytical Sciences, Nestlé Research, CH-1000 Lausanne, Switzerland
| |
Collapse
|
35
|
Eckert E, Lepper H, Hintzsche H. Risk assessment of short-term intake of pyrrolizidine alkaloids in food: derivation of an acute reference dose. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2023; 40:588-596. [PMID: 36794362 DOI: 10.1080/19440049.2023.2178828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Pyrrolizidine alkaloids (PA) are phytochemicals that are known to act as human hepatotoxins and are also considered to be genotoxic carcinogens. Several plant-derived foods are frequently contaminated with PA, like teas and herbal infusions, spices and herbs or certain food supplements. With respect to the chronic toxicity of PA, the carcinogenic potential of PA is generally regarded as the critical toxicological effect. The risk assessment of the short-term toxicity of PA, however, is internationally less consistent. The characteristic pathological syndrome of acute PA toxicity is hepatic veno-occlusive disease. High PA exposure levels may lead to liver failure and even death as documented by several case reports. In the present report, we suggest a risk assessment approach for the derivation of an acute reference dose (ARfD) for PA of 1 µg/kg body weight per day based on a sub-acute animal toxicity study in rats after oral PA administration. The derived ARfD value is further supported by several case reports describing acute human poisoning following accidental PA intake. The here derived ARfD value may be used for PA risk assessment in cases where the short-term toxicity of PA is of interest in addition to the assessment of the long-term risks.
Collapse
Affiliation(s)
- Elisabeth Eckert
- Department of Risk Assessment, Bavarian Health and Food Safety Authority, Erlangen, Germany.,Institute and Outpatient Clinic of Occupational, Social and Environmental Medicine, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Hans Lepper
- Department of Risk Assessment, Bavarian Health and Food Safety Authority, Erlangen, Germany
| | - Henning Hintzsche
- Department of Risk Assessment, Bavarian Health and Food Safety Authority, Erlangen, Germany.,Department of Food Safety, Institute of Food and Nutritional Sciences, University of Bonn, Bonn, Germany
| |
Collapse
|
36
|
Gong B, Zhang S, Wang X, Ran G, Zhang X, Xi J, Gao Z, Lei Y, Pan J, Liu Y, Luan Y, Zhang X, Peng Y, Li W, Zheng J. Inflammation Intensifies Monocrotaline-Induced Liver Injury. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:3433-3443. [PMID: 36753335 DOI: 10.1021/acs.jafc.2c07939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Pyrrolizidine alkaloids (PAs) are the most common toxins of plant origin, and it is evident that PAs pollute soil, water, nearby plants, and derived foods. Cases of human poisoning due to ingestion of PA-contaminated foods have been reported in several countries. Monocrotaline (MCT) is a pyrrolizidine alkaloid from the plants of Crotalaria genus that causes hepatic and cardiopulmonary toxicities, and the exhibition of the toxicities requires the metabolic activation by CYP3A4 to form electrophilic dehydro-monocrotaline (DHM). The present study demonstrated that myeloperoxidase (MPO) also participated in the bioactivation of MCT. N-Chloromonocrotaline was detected in both HClO/MCT incubations and MPO/H2O2/MgCl2/MCT incubations. DHM-derived N-acetylcysteine (NAC) conjugates were detected in the above incubations fortified with NAC. Lipopolysaccharide-induced inflammation in mice resulted in an elevated level of hepatic MPO activity, increased metabolic activation of MCT, and intensified elevation of serum ALT and AST activity induced by MCT. MPO inhibitor 4-aminobenzoic acid hydrazide was found to reverse these alterations. Mpo-KO mice were resistant to the observed potentiating effect of inflammation on MCT-induced liver injury. In conclusion, inflammation intensified MCT-induced liver injury. MPO participated in the observed potentiating effect of inflammation on the hepatotoxicity induced by MCT.
Collapse
Affiliation(s)
- Bowen Gong
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, Guizhou 550004, P. R. China
- School of Basic Medical Sciences, Guizhou Medical University, Guiyang, Guizhou 550004, P. R. China
| | - Shiyu Zhang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, Guizhou 550004, P. R. China
- School of Basic Medical Sciences, Guizhou Medical University, Guiyang, Guizhou 550004, P. R. China
- First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang 550001, P. R. China
| | - Xin Wang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, Guizhou 550004, P. R. China
- School of Pharmacy, Guizhou Medical University, Guiyang, Guizhou 550004, P. R. China
| | - Guangyun Ran
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, Guizhou 550004, P. R. China
- School of Pharmacy, Guizhou Medical University, Guiyang, Guizhou 550004, P. R. China
| | - Xiaohong Zhang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, P. R. China
| | - Jing Xi
- School of Public Health, Hongqiao International Institute of Medicine, Shanghai JiaoTong University School of Medicine, 227 South Chongqing Road, Shanghai 200025, China
| | - Zhenna Gao
- School of Public Health, Hongqiao International Institute of Medicine, Shanghai JiaoTong University School of Medicine, 227 South Chongqing Road, Shanghai 200025, China
| | - Yuyang Lei
- School of Public Health, Hongqiao International Institute of Medicine, Shanghai JiaoTong University School of Medicine, 227 South Chongqing Road, Shanghai 200025, China
| | - Jie Pan
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, Guizhou 550004, P. R. China
- School of Basic Medical Sciences, Guizhou Medical University, Guiyang, Guizhou 550004, P. R. China
- School of Pharmacy, Guizhou Medical University, Guiyang, Guizhou 550004, P. R. China
| | - Ying Liu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, Guizhou 550004, P. R. China
- School of Basic Medical Sciences, Guizhou Medical University, Guiyang, Guizhou 550004, P. R. China
| | - Yang Luan
- School of Public Health, Hongqiao International Institute of Medicine, Shanghai JiaoTong University School of Medicine, 227 South Chongqing Road, Shanghai 200025, China
| | - Xinyu Zhang
- School of Public Health, Hongqiao International Institute of Medicine, Shanghai JiaoTong University School of Medicine, 227 South Chongqing Road, Shanghai 200025, China
| | - Ying Peng
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, P. R. China
| | - Weiwei Li
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, Guizhou 550004, P. R. China
- School of Pharmacy, Guizhou Medical University, Guiyang, Guizhou 550004, P. R. China
| | - Jiang Zheng
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, Guizhou 550004, P. R. China
- School of Basic Medical Sciences, Guizhou Medical University, Guiyang, Guizhou 550004, P. R. China
- School of Pharmacy, Guizhou Medical University, Guiyang, Guizhou 550004, P. R. China
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, P. R. China
| |
Collapse
|
37
|
Zan K, Wang Z, Hu XW, Li YL, Wang Y, Jin HY, Zuo TT, Ma SC. Pyrrolizidine alkaloids and health risk of three Boraginaceae used in TCM. Front Pharmacol 2023; 14:1075010. [PMID: 37033649 PMCID: PMC10076571 DOI: 10.3389/fphar.2023.1075010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 03/13/2023] [Indexed: 04/11/2023] Open
Abstract
Objective: The aim of this study was to systematically explore the pyrrolizidine alkaloids (PAs) type, content and risk assessment in the three Boraginaceae used in TCM, involving Arnebia euchroma (AE), A. guttata (AG), and Lithospermum erythrorhizon (LE). Method: A UHPLC-MS/MS method was established to simultaneously determine eight pyrrolizidine alkaloids (PAs), namely intermedine, lycopsamine, intermedine N-oxide, lycopsamine N-oxide, 7-acetyllycopsamine, 7-acetyllycopsamine N-oxide, echimidine N-oxide, and echimidine in the three herbs. Based on these results, the risk assessment was explored using the routine margin of exposure (MOE) combined with relative potency (REP) for oral and external usage, respectively. Results and Conclusion: Imermedine and imermedine N-oxide were common components in the eight tested PAs. 7-acetyllycopsamine and its N-oxide were not detected in AE; echimidine and its N-oxide were not detected in AG; lycopsamine and its N-oxide, 7-acetyllycopsamine and its N-oxide were not detected in LE. The total contents of 8 PAs in 11 batches of AG was341.56-519.51 μg/g; the content in 15 batches of LE was 71.16-515.73 μg/g, and the content in 11 batches of AE was 23.35-207.13 μg/g. Based on these results, the risk assessment was explored using MOE combined with REP for oral and external usage, respectively. The findings of the risk assessment method of PAs based on MOE combined with the REP factor were consistent with the clinical toxicity results. As an oral herb, AE had low risk or no risk due to its low PA contents, and individual batches of LE were medium risk, while attention should be paid to their clinical use.AG was also low risk. The external use of the three Boraginaceae used in TCM was not associated with any risk. This study systematically explored the PA type and content of the three Boraginaceae used in TCM. Additionally, the refined risk assessment of PAs based on REP provided a more scientific basis for quality evaluation and rational use of the medicinal Boraginaceae used in TCM to improve public health.
Collapse
Affiliation(s)
- Ke Zan
- National Institutes for Food and Drug Control, Beijing, China
| | - Zhao Wang
- National Institutes for Food and Drug Control, Beijing, China
| | - Xiao-Wen Hu
- National Institutes for Food and Drug Control, Beijing, China
| | - Yao-Lei Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Ying Wang
- National Institutes for Food and Drug Control, Beijing, China
| | - Hong-Yu Jin
- National Institutes for Food and Drug Control, Beijing, China
| | - Tian-Tian Zuo
- National Institutes for Food and Drug Control, Beijing, China
- *Correspondence: Tian-Tian Zuo, ; Shuang-Cheng Ma,
| | - Shuang-Cheng Ma
- National Institutes for Food and Drug Control, Beijing, China
- *Correspondence: Tian-Tian Zuo, ; Shuang-Cheng Ma,
| |
Collapse
|
38
|
Acito M, Russo C, Fatigoni C, Mercanti F, Moretti M, Villarini M. Cytotoxicity and Genotoxicity of Senecio vulgaris L. Extracts: An In Vitro Assessment in HepG2 Liver Cells. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:14824. [PMID: 36429544 PMCID: PMC9690910 DOI: 10.3390/ijerph192214824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/03/2022] [Accepted: 11/08/2022] [Indexed: 06/16/2023]
Abstract
Senecio vulgaris L. is a herbaceous species found worldwide. The demonstrated occurrence of pyrrolizidine alkaloids in this species and its ability to invade a great variety of habitats result in a serious risk of contamination of plant material batches addressed to the herbal teas market; this presents a potential health risk for consumers. In light of the above, this work aimed to assess the cytotoxic and genotoxic activity of S. vulgaris extracts in HepG2 cells. Dried plants were ground and extracted using two different methods, namely an organic solvent-based procedure (using methanol and chloroform), and an environmentally friendly extraction procedure (i.e., aqueous extraction), which mimicked the domestic preparation of herbal teas (5, 15, and 30 min of infusion). Extracts were then tested in HepG2 cells for their cytotoxic and genotoxic potentialities. Results were almost superimposable in both extracts, showing a slight loss in cell viability at the highest concentration tested, and a marked dose-dependent genotoxicity exerted by non-cytotoxic concentrations. It was found that the genotoxic effect is even more pronounced in aqueous extracts, which induced primary DNA damage after five minutes of infusion even at the lowest concentration tested. Given the broad intake of herbal infusions worldwide, this experimental approach might be proposed as a screening tool in the analysis of plant material lots addressed to the herbal infusion market.
Collapse
Affiliation(s)
- Mattia Acito
- Department of Pharmaceutical Sciences, Unit of Public Health, University of Perugia, Via del Giochetto, 06122 Perugia, Italy
| | - Carla Russo
- Department of Pharmaceutical Sciences, Unit of Public Health, University of Perugia, Via del Giochetto, 06122 Perugia, Italy
| | - Cristina Fatigoni
- Department of Pharmaceutical Sciences, Unit of Public Health, University of Perugia, Via del Giochetto, 06122 Perugia, Italy
| | - Federica Mercanti
- Sana Pianta Soc. Agricola S.a.s., Strada Tiberina Nord 228, 06134 Perugia, Italy
| | - Massimo Moretti
- Department of Pharmaceutical Sciences, Unit of Public Health, University of Perugia, Via del Giochetto, 06122 Perugia, Italy
- Inter-University Centre for the Environment (CIPLA-Centro Interuniversitario per l’Ambiente), University of Perugia, Piazza Università 1, 06123 Perugia, Italy
| | - Milena Villarini
- Department of Pharmaceutical Sciences, Unit of Public Health, University of Perugia, Via del Giochetto, 06122 Perugia, Italy
| |
Collapse
|
39
|
Zan K, Lei W, Li Y, Wang Y, Liu L, Zuo T, Jin H, Ma S. Integrative Metabolomics and Proteomics Detected Hepatotoxicity in Mice Associated with Alkaloids from Eupatorium fortunei Turcz. Toxins (Basel) 2022; 14:toxins14110765. [PMID: 36356015 PMCID: PMC9698670 DOI: 10.3390/toxins14110765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/03/2022] [Accepted: 11/03/2022] [Indexed: 11/09/2022] Open
Abstract
The traditional Chinese herbal medicine Eupatorium fortunei Turcz. (E. fortunei) has been widely adopted to treat nausea, diabetes, siriasis, and poor appetite. However, E. fortunei contains multiple pyrrolizidine alkaloids (PAs). This study aimed to investigate the hepatotoxicity of total alkaloids in E. fortunei (EFTAs) and identify the toxic mechanisms of EFTAs on hepatocytes. Liquid chromatography with a tandem mass spectrometry assay with reference standards indicated that EFTAs mainly consisted of eight PAs whose content accounted for 92.38% of EFTAs. EFTAs markedly decreased mouse body and liver weights and increased the contents of AST and ALT. The histopathological assays demonstrated that, after exposition to EFTAs, the structures of hepatocytes were damaged and the fibrosis and apoptosis in hepatocytes were accelerated. Moreover, EFTAs increased the serum level of inflammatory cytokines and aggravated circulating oxidative stress. A combination of hepatic proteomics and metabolomics was used to investigate the toxic mechanisms of EFTAs. The study revealed that EFTAs seriously disrupted glycerophospholipid metabolism by upregulating the contents of lysophosphatidylglycerol acyltransferase 1 and phosphatidylinositol and downregulating the contents of choline/ethanolamine kinase beta, choline-ethanolamine phosphotransferase 1, phospholipase D4, 1-acylglycerophosphocholine, phosphatidylcholine, and dihydroxyacetone phosphate in the liver, resulting in detrimental inflammation, fibrosis, and apoptosis. This study revealed that EFTAs induced severe hepatotoxicity by disrupting glycerophospholipid metabolism.
Collapse
Affiliation(s)
- Ke Zan
- National Institutes for Food and Drug Control, Beijing 102629, China
| | - Wei Lei
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Correspondence: (W.L.); (S.M.)
| | - Yaolei Li
- National Institutes for Food and Drug Control, Beijing 102629, China
| | - Ying Wang
- National Institutes for Food and Drug Control, Beijing 102629, China
| | - Lina Liu
- National Institutes for Food and Drug Control, Beijing 102629, China
| | - Tiantian Zuo
- National Institutes for Food and Drug Control, Beijing 102629, China
| | - Hongyu Jin
- National Institutes for Food and Drug Control, Beijing 102629, China
| | - Shuangcheng Ma
- National Institutes for Food and Drug Control, Beijing 102629, China
- Correspondence: (W.L.); (S.M.)
| |
Collapse
|
40
|
Xiao Y, Yi H, Wang G, Chen S, Li X, Wu Q, Zhang S, Deng K, He Y, Yang X. Electrochemiluminescence sensor for point-of-care detection of pyrrolizidine alkaloids. Talanta 2022; 249:123645. [PMID: 35700647 DOI: 10.1016/j.talanta.2022.123645] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 05/28/2022] [Accepted: 05/31/2022] [Indexed: 10/31/2022]
Abstract
Pyrrolizidine alkaloids (PAs) and PA N-oxides are hepatotoxic natural products, produced by over 6000 plant species worldwide. However, an unmet need remains for confirmative measurement of PAs in routine clinical tests. Here, we develop a visual, easy-to-use, and economic mesoporous silica-electrochemiluminescence (MPS-ECL) sensor for point-of-care (POC) testing of PAs, utilizing MPS's amplification effect on positive ions. The relationship between PAs' different structures and corresponding Ru(bpy)32+ ECL activity shows that reaction mechanism, stability of intermediate, molecular geometry and alternative anodic reactivity significantly affect the ECL activity. The ECL intensity varies among different PAs: monocrotaline ˃ senecionine N-oxide ˃ retrorsine ˃ senkirkine. The POC sensors possess excellent linearity (0.9993 > R2 > 0.9944), low detection limits (0.02 μM-0.07 μM), and good recoveries (90.12%-105.93%), indicating good accuracy and practicability. The portable and low-cost sensor is user-friendly, which holds promise to be applied to POC testing of PAs in drugs, food products, and clinical samples, which is promising for initial assessments of PA-induced health risk.
Collapse
Affiliation(s)
- Yi Xiao
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha, 410013, Hunan, China; John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
| | - Haomin Yi
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha, 410013, Hunan, China
| | - Guofang Wang
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha, 410013, Hunan, China
| | - Suhua Chen
- Hunan Provincial Maternal and Child Health Care Hospital, Changsha, 410008, Hunan, China
| | - Xiang Li
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha, 410013, Hunan, China
| | - Qinyu Wu
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha, 410013, Hunan, China
| | - Siyi Zhang
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha, 410013, Hunan, China
| | - Kexin Deng
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha, 410013, Hunan, China
| | - Yisheng He
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China.
| | - Xiaoping Yang
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha, 410013, Hunan, China.
| |
Collapse
|
41
|
Han H, Jiang C, Wang C, Lu Y, Wang Z, Chai Y, Zhang X, Liu X, Lu C, Chen H. Dissipation pattern and conversion of pyrrolizidine alkaloids (PAs) and pyrrolizidine alkaloid N-oxides (PANOs) during tea manufacturing and brewing. Food Chem 2022; 390:133183. [PMID: 35597088 DOI: 10.1016/j.foodchem.2022.133183] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 04/28/2022] [Accepted: 05/06/2022] [Indexed: 01/23/2023]
Abstract
Pyrrolizidine alkaloids (PAs) and pyrrolizidine alkaloid N-oxides (PANOs) are toxic secondary metabolites in plants, and one kind of main exogenous pollutants of tea. Herein, the dissipation pattern and conversion behavior of PAs/PANOs were investigated during tea manufacturing and brewing using ultra high-performance liquid chromatography tandem mass spectrometry. Compared with PAs (processing factor (PF) = 0.73-1.15), PANOs had higher degradation rates (PF = 0.21-0.56) during tea manufacturing, and drying played the most important role in PANOs degradation. Moreover, PANOs were firstly discovered to be converted to corresponding PAs especially in the time-consuming (spreading of green tea manufacturing and withering of black tea manufacturing) and high-temperature tea processing (drying). Moreover, higher transfer rates of PANOs (≥75.84%) than that of PAs (≤56.53%) were observed during tea brewing. Due to higher toxicity of PAs than PANOs, these results are conducive to risk assessment and pollution control of PAs/PANOs in tea.
Collapse
Affiliation(s)
- Haolei Han
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; Graduate School of Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Changling Jiang
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; Graduate School of Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Chen Wang
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; Key Laboratory of Tea Quality and Safety & Risk Assessment, Ministry of Agriculture, Hangzhou 310008, China
| | - Yuting Lu
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; Graduate School of Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Ziqi Wang
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; Key Laboratory of Tea Biochemistry and Biotechnology, Ministry of Agriculture and Ministry of Education, Anhui Agricultural University, Hefei 230036, China
| | - Yunfeng Chai
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; Key Laboratory of Tea Quality and Safety & Risk Assessment, Ministry of Agriculture, Hangzhou 310008, China
| | - Xiangchun Zhang
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; Key Laboratory of Tea Quality and Safety & Risk Assessment, Ministry of Agriculture, Hangzhou 310008, China
| | - Xin Liu
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; Key Laboratory of Tea Quality and Safety & Risk Assessment, Ministry of Agriculture, Hangzhou 310008, China
| | - Chengyin Lu
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; Key Laboratory of Tea Quality and Safety & Risk Assessment, Ministry of Agriculture, Hangzhou 310008, China.
| | - Hongping Chen
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; Key Laboratory of Tea Quality and Safety & Risk Assessment, Ministry of Agriculture, Hangzhou 310008, China.
| |
Collapse
|
42
|
Effective Solid Phase Extraction of Toxic Pyrrolizidine Alkaloids from Honey with Reusable Organosilyl-Sulfonated Halloysite Nanotubes. SEPARATIONS 2022. [DOI: 10.3390/separations9100270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Pyrrolizidine alkaloids are plant secondary metabolites that have recently attracted attention as toxic contaminants in various foods and feeds as they are often harvested by accident. Furthermore, they prove themselves as hard to analyze due to their wide structural range and low concentration levels. However, even low concentrations show toxic behavior in the form of chronic liver diseases and possible carcinogenicity. Since sample preparation for this compound group is in need of more green and sustainable alternatives, modified halloysite nanotubes present an interesting approach. Based on the successful use of sulfonated halloysite nanotubes as inexpensive, easy-to-produce cation exchangers for solid phase extraction in our last work, this study deals with the further modification of the raw nanotubes and their performance in the solid phase extraction of pyrrolizidine alkaloids. Conducting already published syntheses of two organosilyl-sulfonated halloysite nanotubes, namely HNT-PhSO3H and HNT-MPTMS-SO3H, both materials were used as novel materials in solid phase extraction. After the optimization of the extraction protocol, extractions of aqueous pyrrolizidine alkaloid mixtures showed promising results with recoveries ranging from 78.3% to 101.3%. Therefore, spiked honey samples were extracted with an adjusted protocol. The mercaptopropyl-sulfonated halloysite nanotubes revealed satisfying loading efficiencies and recoveries. Validation was then performed, which displayed acceptable performance for the presented method. In addition, reusability studies using HNT-MPTMS-SO3H for solid phase extraction of an aqueous pyrrolizidine alkaloid mixture demonstrated excellent results over six cycles with no trend of recovery reduction or material depletion. Therefore, organosilyl-sulfonated halloysite nanotubes display a green, efficient and low-cost alternative to polymeric support in solid phase extraction of toxic pyrrolizidine alkaloids from complex honey matrix.
Collapse
|
43
|
Taenzer J, Gehling M, Klevenhusen F, Saltzmann J, Dänicke S, These A. Rumen Metabolism of Senecio Pyrrolizidine Alkaloids May Explain Why Cattle Tolerate Higher Doses Than Monogastric Species. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:10111-10120. [PMID: 35948427 PMCID: PMC9413219 DOI: 10.1021/acs.jafc.2c01332] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Rumen metabolism of Senecio pyrrolizidine alkaloids (PAs) and their N-oxide forms was studied by mass spectrometry in in vitro batch culture incubates and confirmed in in vivo samples. Most N-oxides were found to undergo rapid conversion to their corresponding free bases, followed by biotransformation to metabolites hydrogenated at both the necine base and the necic acid moiety. Therefore, rumen metabolism can be considered a detoxification step, as saturated necine base structures are known as the platyphylline type, which is regarded as less or nontoxic. Individual Senecio PAs, such as jacoline, are metabolized slowly during rumen fermentation. PAs that showed limited biotransformation in the rumen in this study also showed limited transformation and CYP-mediated bioactivation in the liver in other studies. This could not only explain why PAs that are comparatively metabolically stable can pass into milk but also suggest that such PAs might be considered compounds of lesser concern.
Collapse
Affiliation(s)
- Julian Taenzer
- Department
Safety in the Food Chain, German Federal
Institute for Risk Assessment, 10589 Berlin, Germany
| | - Matthias Gehling
- Department
Safety in the Food Chain, German Federal
Institute for Risk Assessment, 10589 Berlin, Germany
| | - Fenja Klevenhusen
- Department
Safety in the Food Chain, German Federal
Institute for Risk Assessment, 10589 Berlin, Germany
| | - Janine Saltzmann
- Institute
of Animal Nutrition, Friedrich-Loeffler-Institut, Federal Research
Institute for Animal Health, 38116 Braunschweig, Germany
| | - Sven Dänicke
- Institute
of Animal Nutrition, Friedrich-Loeffler-Institut, Federal Research
Institute for Animal Health, 38116 Braunschweig, Germany
| | - Anja These
- Department
Safety in the Food Chain, German Federal
Institute for Risk Assessment, 10589 Berlin, Germany
| |
Collapse
|
44
|
Wang Z, Ma J, He Y, Miu KK, Yao S, Tang C, Ye Y, Lin G. Nrf2-mediated liver protection by 18β-glycyrrhetinic acid against pyrrolizidine alkaloid-induced toxicity through PI3K/Akt/GSK3β pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 102:154162. [PMID: 35598524 DOI: 10.1016/j.phymed.2022.154162] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/22/2022] [Accepted: 05/08/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Misusage of pyrrolizidine alkaloid (PA)-containing plants or unaware intake of PA-contaminated foodstuffs causes thousands of PA poisoning cases in humans. PA intoxication is accompanied by oxidative stress and subsequent extensive hepatocellular damage. Our previous study has demonstrated that 18β-glycyrrhetinic acid (GA), a bioactive constituent of liquorice, prevented PA-induced hepatotoxicity in rats, however the underlying mechanisms remain unclear. OBJECTIVE This study aims to explore the mechanisms underlying the hepato-protective effect of GA in combating retrorsine (RTS, a representative toxic PA)-induced liver injury. METHODS Histological and biochemical assessments were employed to evaluate the protective effect of GA on RTS-induced hepatotoxicity in rats. Sulforhodamine B assay, real-time PCR, western blotting, and immunostaining were used to explore the underlying mechanisms in human hepatocytes and rats. RESULTS Our findings demonstrated that GA alleviated RTS-induced elevation of serum ALT and bilirubin levels, as well as hepatocytes necrosis and sinusoidal endothelial cells (SECs) damage in rats. GA also enhanced the activities and expressions of several antioxidant enzymes through upregulating nuclear factor-erythroid 2-related factor2 (Nrf2). Moreover, inhibition of Nrf2 blocked the hepatoprotective effect of GA against RTS intoxication. Mechanistically, GA increased the phosphorylation of phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT) and enhanced glycogen synthase kinase 3 beta (GSK3β) inhibitory phosphorylation at serine 9, thus promoting the nuclear accumulation of Nrf2 and activating its downstream targets. CONCLUSION This study for the first time demonstrated that GA exerted protective effects against RTS-induced liver injury by potentiating the Nrf2-mediated antioxidant system through PI3K/Akt/GSK3β pathway. The findings indicated that GA may serve as a potential candidate drug for the treatment of PA intoxication.
Collapse
Affiliation(s)
- Zhangting Wang
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, 505A, Lo Kwee-Seong Integrated Biomedical Sciences Building, Area 39, Hong Kong SAR, China
| | - Jiang Ma
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, 505A, Lo Kwee-Seong Integrated Biomedical Sciences Building, Area 39, Hong Kong SAR, China; School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Yisheng He
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, 505A, Lo Kwee-Seong Integrated Biomedical Sciences Building, Area 39, Hong Kong SAR, China
| | - Kai-Kei Miu
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, 505A, Lo Kwee-Seong Integrated Biomedical Sciences Building, Area 39, Hong Kong SAR, China
| | - Sheng Yao
- State Key Laboratory of Drug Research and Natural Products Chemistry Department, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Chunping Tang
- State Key Laboratory of Drug Research and Natural Products Chemistry Department, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yang Ye
- State Key Laboratory of Drug Research and Natural Products Chemistry Department, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Ge Lin
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, 505A, Lo Kwee-Seong Integrated Biomedical Sciences Building, Area 39, Hong Kong SAR, China.
| |
Collapse
|
45
|
Schlappack T, Rainer M, Weinberger N, Bonn GK. Sulfonated halloysite nanotubes as a novel cation exchange material for solid phase extraction of toxic pyrrolizidine alkaloids. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:2689-2697. [PMID: 35766306 DOI: 10.1039/d2ay00614f] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Pyrrolizidine alkaloids are phytochemicals, which present a highly toxic class of compounds in multiple food resources and are therefore a late-breaking topic in food safety. This study describes the first use of modified halloysite nanotubes as a novel solid material for solid phase extraction. As a result of a fast one-pot sulfonation of the cheap and non-toxic halloysite nanotubes, an efficient cation exchange phase has been prepared. After optimization of the solid phase extraction protocol, high extraction efficiencies and overall recoveries were obtained for a mixture of four pyrrolizidine alkaloid structures through UHPLC-MS/MS analysis with caffeine as the internal standard. Furthermore, the novel solid phase was used for the selective binding of the toxic pyrrolizidine alkaloids in a real-life honey sample, which itself is often contaminated with these compounds. In-house validation showed great extraction efficiencies up to 99.9% for senecionine with a lower limit for lycopsamine with 59.3%, which indicated high selectivity even in the presence of potential interfering compounds. Subsequently, overall recoveries up to 91.5% could be obtained for senecionine while the lowest value was reached for lycopsamine with 55.1%. Comparison with a commercial strong cation exchange tube procedure showed the high competitiveness of the novel solid phase with respect to overall performance. Only slight disadvantages regarding precision and repeatability with values under 5.7% and 11.6% could be observed. Therefore, sulfonated halloysite nanotubes present themselves as an easy to prepare, cheap and highly efficient novel cation exchange material for the selective solid phase extraction of toxic pyrrolizidine alkaloids in frequently contaminated real-life samples like honey.
Collapse
Affiliation(s)
- Tobias Schlappack
- Institute of Analytical Chemistry and Radiochemistry, Leopold-Franzens-University Innsbruck, Innrain 80/82, A-6020 Innsbruck, Austria.
| | - Matthias Rainer
- Institute of Analytical Chemistry and Radiochemistry, Leopold-Franzens-University Innsbruck, Innrain 80/82, A-6020 Innsbruck, Austria.
| | - Nikolaus Weinberger
- Unit of Material Technology, Leopold-Franzens-University Innsbruck, Technikerstraße 13, A-6020 Innsbruck, Austria
| | - Günther K Bonn
- Institute of Analytical Chemistry and Radiochemistry, Leopold-Franzens-University Innsbruck, Innrain 80/82, A-6020 Innsbruck, Austria.
- Austrian Drug Screening Institute, Innrain 66a, A-6020 Innsbruck, Austria
| |
Collapse
|
46
|
Willocx M, Van der Beeten I, Asselman P, Delgat L, Baert W, Janssens SB, Leliaert F, Picron JF, Vanhee C. Sorting out the plants responsible for a contamination with pyrrolizidine alkaloids in spice seeds by means of LC-MS/MS and DNA barcoding: Proof of principle with cumin and anise spice seeds. FOOD CHEMISTRY: MOLECULAR SCIENCES 2022; 4:100070. [PMID: 35415703 PMCID: PMC8991971 DOI: 10.1016/j.fochms.2021.100070] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 12/19/2021] [Accepted: 12/28/2021] [Indexed: 11/30/2022]
Abstract
Identification of contaminating plants in seed spice with DNA barcoding. The obtained data concurs the previously obtained results with DNA metabarcoding. Heliotropium sp. is the predominant source of phytotoxic PA/PANOs in those samples. The presence of only 2 Heliotropium seeds/jar can render a sample non-compliant. The benefit combining chemical and molecular approach to check for phytotoxins.
High value commodities such as spices suffer from occasional contaminations of both chemical and biological origin. Consequently, quality control and safety monitoring has become a pressing issue for the spice industry. Two recent independent studies showed that at least one third of the analyzed cumin and green anise spice seeds samples surpassed the by the European Union recently established threshold value for toxic pyrrolizidine alkaloids (PAs) and their corresponding N-oxides (PANOs). These heterocyclic secondary plant metabolites are produced by a large number of different plant families. In those spice seeds, it was found by means of DNA metabarcoding, that predominant contamination was due to the presence of herbal material from the Heliotropium genus (Boraginaceae). Unfortunately, the use of this specific type of DNA-based identification remains controversial for the majority of the official instances and preference is still given to the use of more tangible classical approaches, including microscopy and chemical analysis. However, these methodologies often suffer from inherent drawbacks. Here we demonstrate that at least for spice seeds, a combinatory approach of microscopy, chemical analysis and classical DNA barcoding of the isolated contaminants using the matK and trnH-psbA loci, provides qualitative and quantitative information on the amount of plant material responsible for the contaminations and the extent of the contamination. The generated data also demonstrates that the presence of a very limited number of Heliotropium sp. seeds in a standard commercially available canister is sufficient to surpass the allowed threshold value, illustrating once more the importance of weed control.
Collapse
|
47
|
Zhu L, Xue J, He Y, Xia Q, Fu PP, Lin G. Correlation Investigation between Pyrrole-DNA and Pyrrole-Protein Adducts in Male ICR Mice Exposed to Retrorsine, a Hepatotoxic Pyrrolizidine Alkaloid. Toxins (Basel) 2022; 14:377. [PMID: 35737038 PMCID: PMC9231038 DOI: 10.3390/toxins14060377] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 05/26/2022] [Accepted: 05/27/2022] [Indexed: 02/04/2023] Open
Abstract
Pyrrolizidine alkaloids (PAs) have been found in over 6000 plants worldwide and represent the most common hepatotoxic phytotoxins. Catalyzed by hepatic cytochrome P450 enzymes, PAs are metabolized into reactive pyrrolic metabolites, which can alkylate cellular proteins and DNA to form pyrrole-protein adducts and pyrrole-DNA adducts, leading to cytotoxicity, genotoxicity, and tumorigenicity. To date, the correlation between these PA-derived pyrrole-protein and pyrrole-DNA adducts has not been well investigated. Retrorsine is a representative hepatotoxic and carcinogenic PA. In the present study, the correlations among the PA-derived liver DNA adducts, liver protein adducts, and serum protein adducts in retrorsine-treated mice under different dosage regimens were studied. The results showed positive correlations among these adducts, in which serum pyrrole-protein adducts were more accessible and present in higher abundance, and thus could be used as a suitable surrogate biomarker for pyrrole-DNA adducts to indicate the genetic or carcinogenic risk posed by retrorsine.
Collapse
Affiliation(s)
- Lin Zhu
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China; (L.Z.); (J.X.); (Y.H.)
| | - Junyi Xue
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China; (L.Z.); (J.X.); (Y.H.)
| | - Yisheng He
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China; (L.Z.); (J.X.); (Y.H.)
| | - Qingsu Xia
- National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079, USA;
| | - Peter P. Fu
- National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079, USA;
| | - Ge Lin
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China; (L.Z.); (J.X.); (Y.H.)
| |
Collapse
|
48
|
Kaltner F. Fate of Food-Relevant Toxic Plant Alkaloids during Food Processing or Storing and Analytical Strategies to Unveil Potential Transformation Products. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:5975-5981. [PMID: 35544324 DOI: 10.1021/acs.jafc.2c01489] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Toxic plant alkaloids (TPAs) may contaminate food and pose a threat to consumer health; as a consequence, they are undesired in foodstuff or food commodities. Similar to other ingredients, TPA may be affected by storing or processing of food, often associated with decreased levels of the parent alkaloids. Up to now, little is known about potential transformation products or if they still may exhibit toxic potential to consumers. This perspective briefly summarizes the current knowledge regarding the behavior of opium, pyrrolizidine, and tropane alkaloids toward processing or storing and highlights analytical strategies to identify and elucidate potential transformation products.
Collapse
Affiliation(s)
- Florian Kaltner
- Institute of Food Chemistry and Food Biotechnology, Justus Liebig University Giessen, 35392 Giessen, Germany
| |
Collapse
|
49
|
Bioassay-directed analysis-based identification of relevant pyrrolizidine alkaloids. Arch Toxicol 2022; 96:2299-2317. [PMID: 35610518 PMCID: PMC9217854 DOI: 10.1007/s00204-022-03308-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 04/27/2022] [Indexed: 11/05/2022]
Abstract
Pyrrolizidine alkaloids (PAs) are produced by various plant species and have been detected as contaminants in food and feed. Monitoring programmes should include PAs that are present in relevant matrices and that exhibit a high toxic potential. The aim of the present study was to use a bioassay-directed analysis approach to identify relevant PAs not yet included in monitoring programmes. To that end, extracts of Heliotropium europaeum and H. popovii were prepared and analysed with LC–MS/MS for the presence of 35 PAs included in monitoring programmes, as well as for genotoxic activity in the HepaRG/γH2AX assay. Europine, heliotrine and lasiocarpine were found to be the most abundant PAs. The extracts showed a higher γH2AX activity than related artificial mixtures of quantified known PAs, which might point to the presence of unknown toxic PAs. The H. europaeum extract was fractionated and γH2AX activities of individual fractions were determined. Fractions were further analysed applying LC–Orbitrap-MS analysis and Compound Discoverer software, identifying various candidate PAs responsible for the non-explained genotoxic activity. Altogether, the results obtained show that bioassay-directed analysis allows identification of candidate PAs that can be included in monitoring programmes.
Collapse
|
50
|
Chen Y, Wang WQ, Jia XL, Wang CH, Yang L, Wang ZT, Xiong AZ. Firm evidence for the detoxification of senecionine-induced hepatotoxicity via N-glucuronidation in UGT1A4–humanized transgenic mice. Food Chem Toxicol 2022; 165:113185. [PMID: 35636643 DOI: 10.1016/j.fct.2022.113185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 05/07/2022] [Accepted: 05/24/2022] [Indexed: 11/16/2022]
|