1
|
Emilia M, Magdalena C, Weronika G, Julia W, Danuta K, Jakub S, Bożena C, Krzysztof K. IgE-based analysis of sensitization and cross-reactivity to yellow mealworm and edible insect allergens before their widespread dietary introduction. Sci Rep 2025; 15:1466. [PMID: 39789064 PMCID: PMC11718154 DOI: 10.1038/s41598-024-83645-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 12/16/2024] [Indexed: 01/12/2025] Open
Abstract
The European Commission authorized the use of dried yellow mealworm (Tenebrio molitor - TM) as a food ingredient under Regulation EU 2021/882. As TM emerges as an important allergen source, sensitization and allergy to TM in various populations need investigation. The aim of this study was to assess the incidence of sensitization to TM before its introduction as a food ingredient in Poland, as well as checking the occurrence of co-sensitivity to TM and other invertebrate allergenic extracts and molecules. This analysis was performed using serum allergen-specific immunoglobulin E (sIgE) results in 6,173 individuals using the ALEX2 test to detect sensitivity to TM and other related allergens. A total of 4.3% of the study population had sIgE to TM extract, with 0.7% of those individuals being mono-sensitized to TM. Sensitization to TM was most commonly associated with a positive response to house cricket and migratory locust allergens. sIgE antibodies against TM significantly more commonly (p < 0.001) co-occurred with sIgE against other invertebrate allergens. Patients with sIgE against TM were most likely sensitised to tropomyosins (49.1% of patients), Niemann-Pick C2 protein (43.8%), group 5/21 allergen (38.6%), class III chitinases (37.1%), and cysteine proteases (34.1%). Based on the serum asIgE levels to TM prior to this ingredient being introduced as a food in Poland, we hypothesised that this primary sensitization may be associated with invertebrate allergies. Our analysis showed that sensitisation to TM was most commonly associated with a positive reaction to house dust mites and shrimp tropomyosins. Therefore, we speculate that individuals allergic to shrimp should exercise caution when consuming foods containing TM.
Collapse
Affiliation(s)
- Majsiak Emilia
- Department of Health Promotion, Faculty Health of Sciences, Medical University of Lublin, Staszica 4/6, Lublin, 20-081, Poland.
| | - Choina Magdalena
- Department of Experimental Allergology and Immunology, Medical University of Bialystok, Bialystok, Poland
- Department of Allergology and Internal Medicine, Medical University of Bialystok, Bialystok, Poland
| | - Gromek Weronika
- Polish-Ukrainian Foundation of Medicine Development, Nałęczowska 14, Lublin, 20-701, Poland
| | | | | | | | - Cukrowska Bożena
- Department of Pathomorphology, The Children's Memorial Health Institute, Aleja Dzieci Polskich 20, Warsaw, 04-730, Poland
| | - Kowal Krzysztof
- Department of Experimental Allergology and Immunology, Medical University of Bialystok, Bialystok, Poland
- Department of Allergology and Internal Medicine, Medical University of Bialystok, Bialystok, Poland
| |
Collapse
|
2
|
Liu W, Yuan J, Gao J, Tong P, Li X, Wang J, Yang Q, Wang Z, Min F, Wu Y, Chen H. Precision risk assessment in wheat allergy: Leveraging advanced quantitative models for safer food consumption. J Food Sci 2024; 89:10181-10190. [PMID: 39656652 DOI: 10.1111/1750-3841.17548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 10/13/2024] [Accepted: 10/30/2024] [Indexed: 12/17/2024]
Abstract
Food allergy is a significant public health concern and food safety issue. Deriving from classical toxicology principle, the food allergen risk assessment has been considered a science-based strategy to identify, quantify, and manage the food allergy risks as such risk represent a significant food safety. Moreover, the implication of the precautionary allergen labeling in most jurisdictions is voluntary, resulting potential risk to allergic consumers. In this study, a quantitative risk assessment technique was employed to evaluate the risk of wheat allergy in prepackaged foods. The assessment utilized probabilistic models, including the lognormal, Weibull, Gamma distributions, and Bayesian model averaging. The predicted allergic reactions were determined to be 682, 854, 677, and 721 incidents per 10,000 eating occasions within wheat allergic population, respectively. The findings of this study revealed that the consumption of prepackaged foods containing gluten without wheat/gluten summary (i.e., ingredient) labeling would potentially pose the risk of allergic reactions to wheat allergic individuals. The utilization of quantitative risk assessment methodology at different points of the food system facilitates alleviating unnecessary concerns to stakeholders while maintaining a reasonable knowledge of allergy risk and providing valuable guidance in formulating effective management strategies to mitigate the risk of food allergies, thereby contributing to the overall safety of the sustainable food system.
Collapse
Affiliation(s)
- Wenfeng Liu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi, China
- School of Food Science and Technology, Nanchang University, Nanchang, Jiangxi, China
- Sino-German Joint Research Institute, Nanchang University, Nanchang, Jiangxi, China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang, Jiangxi, China
| | - Juanli Yuan
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi, China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang, Jiangxi, China
- School of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Jinyan Gao
- School of Food Science and Technology, Nanchang University, Nanchang, Jiangxi, China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang, Jiangxi, China
| | - Ping Tong
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi, China
- School of Food Science and Technology, Nanchang University, Nanchang, Jiangxi, China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang, Jiangxi, China
| | - Xin Li
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi, China
- School of Food Science and Technology, Nanchang University, Nanchang, Jiangxi, China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang, Jiangxi, China
| | - Jian Wang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi, China
- School of Food Science and Technology, Nanchang University, Nanchang, Jiangxi, China
- Sino-German Joint Research Institute, Nanchang University, Nanchang, Jiangxi, China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang, Jiangxi, China
| | - Qian Yang
- School of Food Science and Engineering, Hainan University, Haikou, Hainan, China
| | - Zhongliang Wang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi, China
- School of Food Science and Technology, Nanchang University, Nanchang, Jiangxi, China
- Sino-German Joint Research Institute, Nanchang University, Nanchang, Jiangxi, China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang, Jiangxi, China
| | - Fangfang Min
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi, China
- School of Food Science and Technology, Nanchang University, Nanchang, Jiangxi, China
- Sino-German Joint Research Institute, Nanchang University, Nanchang, Jiangxi, China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang, Jiangxi, China
| | - Yong Wu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi, China
- Sino-German Joint Research Institute, Nanchang University, Nanchang, Jiangxi, China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang, Jiangxi, China
| | - Hongbing Chen
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi, China
- Sino-German Joint Research Institute, Nanchang University, Nanchang, Jiangxi, China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
3
|
Segú H, Jalševac F, Sierra-Cruz M, Feliu F, Movassat J, Rodríguez-Gallego E, Terra X, Pinent M, Ardévol A, Blay MT. Assessing the impact of insect protein sources on intestinal health and disease: insights from human ex vivo and rat in vivo models. Food Funct 2024; 15:4552-4563. [PMID: 38584501 DOI: 10.1039/d4fo00381k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
The exploration of edible insects, specifically Alphitobius diaperinus and Tenebrio molitor, as sustainable sources of protein for human consumption is an emerging field. However, research into their effects on intestinal health, especially in relation to inflammation and permeability, remains limited. Using ex vivo and in vivo models of intestinal health and disease, in this study we assess the impact of the above insects on intestinal function by focusing on inflammation, barrier dysfunction and morphological changes. Initially, human intestinal explants were exposed to in vitro-digested extracts of these insects, almond and beef. Immune secretome analysis showed that the inflammatory response to insect-treated samples was comparatively lower than it was for samples exposed to almond and beef. Animal studies using yellow mealworm (Tenebrio molitor) and buffalo (Alphitobius diaperinus) flours were then used to evaluate their safety in healthy rats and LPS-induced intestinal dysfunction rats. Chronic administration of these insect-derived flours showed no adverse effects on behavior, metabolism, intestinal morphology or immune response (such as inflammation or allergy markers) in healthy Wistar rats. Notably, in rats subjected to proinflammatory LPS-induced intestinal dysfunction, T. molitor consumption did not exacerbate symptoms, nor did it increase allergic responses. These findings validate the safety of these edible insects under healthy conditions, demonstrate their innocuity in a model of intestinal dysfunction, and underscore their promise as sustainable and nutritionally valuable dietary protein sources.
Collapse
Affiliation(s)
- Helena Segú
- MoBioFood Research Group, Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, C/Marcel.lí Domingo 1, 43007 Tarragona, Spain.
| | - Florijan Jalševac
- MoBioFood Research Group, Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, C/Marcel.lí Domingo 1, 43007 Tarragona, Spain.
| | - Marta Sierra-Cruz
- MoBioFood Research Group, Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, C/Marcel.lí Domingo 1, 43007 Tarragona, Spain.
| | - Francesc Feliu
- Servei de Gastroenterologia, Institut Sanitari Pere Virgili, Tarragona, Spain
| | - Jamileh Movassat
- Université Paris Cité, CNRS, Unité de Biologie Fonctionnelle et Adaptative, F-75013, Paris, France
| | - Esther Rodríguez-Gallego
- MoBioFood Research Group, Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, C/Marcel.lí Domingo 1, 43007 Tarragona, Spain.
| | - Ximena Terra
- MoBioFood Research Group, Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, C/Marcel.lí Domingo 1, 43007 Tarragona, Spain.
| | - Montserrat Pinent
- MoBioFood Research Group, Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, C/Marcel.lí Domingo 1, 43007 Tarragona, Spain.
| | - Anna Ardévol
- MoBioFood Research Group, Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, C/Marcel.lí Domingo 1, 43007 Tarragona, Spain.
| | - M Teresa Blay
- MoBioFood Research Group, Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, C/Marcel.lí Domingo 1, 43007 Tarragona, Spain.
| |
Collapse
|
4
|
López-Pedrouso M, Lorenzo JM, Alché JDD, Moreira R, Franco D. Advanced Proteomic and Bioinformatic Tools for Predictive Analysis of Allergens in Novel Foods. BIOLOGY 2023; 12:biology12050714. [PMID: 37237526 DOI: 10.3390/biology12050714] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/09/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023]
Abstract
In recent years, novel food is becoming an emerging trend increasingly more demanding in developed countries. Food proteins from vegetables (pulses, legumes, cereals), fungi, bacteria and insects are being researched to introduce them in meat alternatives, beverages, baked products and others. One of the most complex challenges for introducing novel foods on the market is to ensure food safety. New alimentary scenarios drive the detection of novel allergens that need to be identified and quantified with the aim of appropriate labelling. Allergenic reactions are mostly caused by proteins of great abundance in foods, most frequently of small molecular mass, glycosylated, water-soluble and with high stability to proteolysis. The most relevant plant and animal food allergens, such as lipid transfer proteins, profilins, seed storage proteins, lactoglobulins, caseins, tropomyosins and parvalbumins from fruits, vegetables, nuts, milk, eggs, shellfish and fish, have been investigated. New methods for massive screening in search of potential allergens must be developed, particularly concerning protein databases and other online tools. Moreover, several bioinformatic tools based on sequence alignment, motif identification or 3-D structure predictions should be implemented as well. Finally, targeted proteomics will become a powerful technology for the quantification of these hazardous proteins. The ultimate objective is to build an effective and resilient surveillance network with this cutting-edge technology.
Collapse
Affiliation(s)
- María López-Pedrouso
- Department of Zoology, Genetics and Physical Anthropology, Universidade de Santiago de Compostela, Santiago de Compostela, 15872 A Coruña, Spain
| | - José M Lorenzo
- Centro Tecnolóxico da Carne de Galicia, Rúa Galicia Nº 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain
| | - Juan de Dios Alché
- Plant Reproductive Biology and Advanced Microscopy Laboratory, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, Spanish National Research Council (CSIC), Profesor Albareda 1, 18008 Granada, Spain
| | - Ramón Moreira
- Department of Chemical Engineering, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Daniel Franco
- Department of Chemical Engineering, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| |
Collapse
|
5
|
Quintieri L, Nitride C, De Angelis E, Lamonaca A, Pilolli R, Russo F, Monaci L. Alternative Protein Sources and Novel Foods: Benefits, Food Applications and Safety Issues. Nutrients 2023; 15:nu15061509. [PMID: 36986239 PMCID: PMC10054669 DOI: 10.3390/nu15061509] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/16/2023] [Accepted: 03/19/2023] [Indexed: 03/30/2023] Open
Abstract
The increasing size of the human population and the shortage of highly valuable proteinaceous ingredients has prompted the international community to scout for new, sustainable, and natural protein resources from invertebrates (e.g., insects) and underutilized legume crops, unexploited terrestrial and aquatic weeds, and fungi. Insect proteins are known for their nutritional value, being rich in proteins with a good balance of essential amino acids and being a valuable source of essential fatty acids and trace elements. Unconventional legume crops were found rich in nutritional, phytochemical, and therapeutic properties, showing excellent abilities to survive extreme environmental conditions. This review evaluates the recent state of underutilized legume crops, aquatic weeds, fungi, and insects intended as alternative protein sources, from ingredient production to their incorporation in food products, including their food formulations and the functional characteristics of alternative plant-based proteins and edible insect proteins as novel foods. Emphasis is also placed on safety issues due to the presence of anti-nutritional factors and allergenic proteins in insects and/or underutilized legumes. The functional and biological activities of protein hydrolysates from different protein sources are reviewed, along with bioactive peptides displaying antihypertensive, antioxidant, antidiabetic, and/or antimicrobial activity. Due to the healthy properties of these foods for the high abundance of bioactive peptides and phytochemicals, more consumers are expected to turn to vegetarianism or veganism in the future, and the increasing demand for such products will be a challenge for the future.
Collapse
Affiliation(s)
- Laura Quintieri
- Institute of Sciences of Food Production, National Research Council of Italy (ISPA-CNR), Via Giovanni Amendola 122/O, 70126 Bari, Italy
| | - Chiara Nitride
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, 80055 Portici, Italy
| | - Elisabetta De Angelis
- Institute of Sciences of Food Production, National Research Council of Italy (ISPA-CNR), Via Giovanni Amendola 122/O, 70126 Bari, Italy
| | - Antonella Lamonaca
- Institute of Sciences of Food Production, National Research Council of Italy (ISPA-CNR), Via Giovanni Amendola 122/O, 70126 Bari, Italy
| | - Rosa Pilolli
- Institute of Sciences of Food Production, National Research Council of Italy (ISPA-CNR), Via Giovanni Amendola 122/O, 70126 Bari, Italy
| | - Francesco Russo
- Functional Gastrointestinal Disorders Research Group, National Institute of Gastroenterology IRCCS "Saverio de Bellis", 70013 Castellana Grotte, Italy
| | - Linda Monaci
- Institute of Sciences of Food Production, National Research Council of Italy (ISPA-CNR), Via Giovanni Amendola 122/O, 70126 Bari, Italy
| |
Collapse
|
6
|
Belluco S, Bertola M, Montarsi F, Di Martino G, Granato A, Stella R, Martinello M, Bordin F, Mutinelli F. Insects and Public Health: An Overview. INSECTS 2023; 14:240. [PMID: 36975925 PMCID: PMC10059202 DOI: 10.3390/insects14030240] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 02/22/2023] [Accepted: 02/24/2023] [Indexed: 05/27/2023]
Abstract
Insects are, by far, the most common animals on our planet. The ubiquity and plethora of ecological niches occupied by insects, along with the strict and sometimes forced coexistence between insects and humans, make insects a target of public health interest. This article reports the negative aspects historically linked to insects as pests and vectors of diseases, and describes their potential as bioindicators of environmental pollution, and their use as food and feed. Both negative and positive impacts of insects on human and animal health need to be addressed by public health professionals who should aim to strike a balance within the wide range of sometimes conflicting goals in insect management, such as regulating their production, exploiting their potential, protecting their health and limiting their negative impact on animals and humans. This requires increased insect knowledge and strategies to preserve human health and welfare. The aim of this paper is to provide an overview of traditional and emerging topics bridging insects and public health to highlight the need for professionals, to address these topics during their work. The present and future role and activities of public health authorities regarding insects are analyzed.
Collapse
Affiliation(s)
| | - Michela Bertola
- Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell’Università 10, 35020 Legnaro, Italy
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Monitoring Yellow Mealworm ( Tenebrio molitor) as a Potential Novel Allergenic Food: Effect of Food Processing and Matrix. Nutrients 2023; 15:nu15030482. [PMID: 36771191 PMCID: PMC9921270 DOI: 10.3390/nu15030482] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/12/2023] [Accepted: 01/14/2023] [Indexed: 01/19/2023] Open
Abstract
The consumption of insects has increased in western countries, raising concerns about their potential to induce food allergic reactions in sensitized/allergic individuals. This work intended to develop a real-time PCR approach for the detection/quantification of yellow mealworm (Tenebrio molitor) as a potential allergenic food in complex matrices. For this purpose, reference mixtures simulating the production of pork sausages and wheat biscuits containing known amounts of mealworm were used. Real-time PCR with TaqMan probe targeting the cytochrome b gene of T. molitor was able to detect up to 2 fg of insect DNA, and 1.0 and 0.1 mg/kg of mealworm flour in autoclaved sausages and baked biscuits, respectively. Generally, the method showed acceptable analytical performance parameters, confirming its suitability/applicability for a wide range of foods. However, real-time PCR data showed significant differences among food matrix and processing, highlighting the importance of using appropriate calibration models for quantitative analysis. Finally, the real-time PCR approach was successfully validated with blind mixtures and applied to commercial samples, demonstrating its efficacy and reliability in the quantification of mealworm in processed foodstuffs.
Collapse
|
8
|
Delgado Calvo‐Flores L, Garino C, Moreno FJ, Broll H. Insects in food and their relevance regarding allergenicity assessment. EFSA J 2022; 20:e200909. [PMID: 36531273 PMCID: PMC9749433 DOI: 10.2903/j.efsa.2022.e200909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Within the European Green Deal, the 'Farm-to-Fork' strategy aims to accelerate the transition to a sustainable food system and to make food systems fair, healthy and environmentally friendly. Insects contribute to the circularity of agriculture, and are ideal candidates to complement traditional sources of protein. In this context, a working programme within the European Food Risk Assessment (EU-FORA) Fellowship Programme framework was developed at the German Federal Institute for Risk Assessment in collaboration with the Spanish National Research Council. The purpose of this technical report is to describe the activities in which the fellow was involved. As part of the training, the fellow performed a literature search regarding insects as food and allergenicity resulting in 493 hits. Out of the literature search a comprehensive scientific database with 200 publications has been built using the application 'EndNote'. Furthermore, an extensive scientific review with the title 'Sustainable food systems: EU regulatory framework and contribution of insects to the Farm-to-Fork strategy' approaching several important issues regarding insects (Regulatory frame, Market situation, Labelling and Control, Application as food/feed, Consumer acceptance and Allergenicity risk assessment) has been drafted and sent for publication in a peer reviewed journal. In order to analyse the impact of food processing on the allergenicity of insects, different food samples were prepared and artificially digested using a protocol simulating the gastrointestinal tract. Further laboratory work to analyse the readouts, including enzyme-linked immunosorbent assay (ELISA), has been discussed and proposed, scheduled for the end of July. In conclusion, the present working programme, together with additional activities and training provided by different institutions, enabled the fellow to gain a broader perspective in food safety, particularly concerning insects as novel foods and their safety assessment.
Collapse
Affiliation(s)
- Lidia Delgado Calvo‐Flores
- Unit Effect‐based Analytics and ToxicogenomicsFederal Institute for Risk Assessment (BfR)BerlinGermany
- Instituto de Investigación en Ciencias de la Alimentación, CIAL (CSIC-UAM)MadridSpain
| | - Cristiano Garino
- Unit Effect‐based Analytics and ToxicogenomicsFederal Institute for Risk Assessment (BfR)BerlinGermany
| | | | - Hermann Broll
- Unit Effect‐based Analytics and ToxicogenomicsFederal Institute for Risk Assessment (BfR)BerlinGermany
| |
Collapse
|
9
|
Wang X, Tang T. Effects of Polystyrene Diet on the Growth and Development of Tenebrio molitor. TOXICS 2022; 10:608. [PMID: 36287887 PMCID: PMC9610515 DOI: 10.3390/toxics10100608] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/11/2022] [Accepted: 10/11/2022] [Indexed: 06/16/2023]
Abstract
In recent years, the role of Tenebrio molitor in degrading polystyrene foam through its gut microbes has become the focus of research. However, little literature has reported the effect of feeding on polystyrene foam on the growth and development of Tenebrio molitor. In this study, we investigated the impacts of different polystyrene by evaluating the vital signs of Tenebrio molitor fed in the intestines and excrement fluids using RNA-Seq t.echnology and then verifying the transcriptome sequencing findings using qRT-PCR technology. The average weight of Tenebrio molitor larvae in the wheat bran group increased significantly. Tenebrio molitor larvae in the PS group, on the other hand, didn't grow as much and had a much lower average weight than those in the wheat bran group. Compared to the bran group, the excrement of Tenebrio molitor fed only on polystyrene foam was flaky and coarse, increased nitrogen and phosphorus atomic concentration ratios by about 50%, decreased potassium atomic concentration ratios by 63%, with the enterocytes and circular muscle of Tenebrio molitor falling as well. Kyoto Encyclopedia of Genes and Genomes enrichment indicated that the differential genes were mainly related to metabolic pathways. There was an agreement between qRT-PCR and RNA-Seq analyses for the growth and development genes chitinase, heat shock protein 70, and cytochrome P450. Only feeding polystyrene foam shall lead to the growth and development retardation of Tenebrio molitor.
Collapse
Affiliation(s)
- Xiaosu Wang
- School of Tropical Medicine, Hainan Medical University, Haikou 571199, China
- NHC Key Laboratory of Tropical Disease Control, Hainan Medical University, Haikou 571199, China
| | - Tianle Tang
- School of Tropical Medicine, Hainan Medical University, Haikou 571199, China
- NHC Key Laboratory of Tropical Disease Control, Hainan Medical University, Haikou 571199, China
| |
Collapse
|
10
|
Delgado L, Garino C, Moreno FJ, Zagon J, Broll H. Sustainable Food Systems: EU Regulatory Framework and Contribution of Insects to the Farm-To-Fork Strategy. FOOD REVIEWS INTERNATIONAL 2022. [DOI: 10.1080/87559129.2022.2130354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Lidia Delgado
- European Commission, Joint Research Center (JRC), Belgium
| | - Cristiano Garino
- Department of Food Safety, German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | | | - Jutta Zagon
- Department of Food Safety, German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Hermann Broll
- Department of Food Safety, German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| |
Collapse
|
11
|
Pan J, Xu H, Cheng Y, Mintah BK, Dabbour M, Yang F, Chen W, Zhang Z, Dai C, He R, Ma H. Recent Insight on Edible Insect Protein: Extraction, Functional Properties, Allergenicity, Bioactivity, and Applications. Foods 2022; 11:foods11192931. [PMID: 36230006 PMCID: PMC9562009 DOI: 10.3390/foods11192931] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/03/2022] [Accepted: 09/09/2022] [Indexed: 11/16/2022] Open
Abstract
Due to the recent increase in the human population and the associated shortage of protein resources, it is necessary to find new, sustainable, and natural protein resources from invertebrates (such as insects) and underutilized plants. In most cases, compared to plants (e.g., grains and legumes) and animals (e.g., fish, beef, chicken, lamb, and pork), insect proteins are high in quality in terms of their nutritional value, total protein content, and essential amino acid composition. This review evaluates the recent state of insects as an alternative protein source from production to application; more specifically, it introduces in detail the latest advances in the protein extraction process. As an alternative source of protein in food formulations, the functional characteristics of edible insect protein are comprehensively presented, and the risk of allergy associated with insect protein is also discussed. The biological activity of protein hydrolyzates from different species of insects (Bombyx mori, Hermetia illucens, Acheta domesticus, Tenebrio molitor) are also reviewed, and the hydrolysates (bioactive peptides) are found to have either antihypertensive, antioxidant, antidiabetic, and antimicrobial activity. Finally, the use of edible insect protein in various food applications is presented.
Collapse
Affiliation(s)
- Jiayin Pan
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
- Institute of Food Physical Processing, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Haining Xu
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
- Institute of Food Physical Processing, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Yu Cheng
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
- Institute of Food Physical Processing, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | | | - Mokhtar Dabbour
- Department of Agricultural and Biosystems Engineering, Faculty of Agriculture, Benha University, Qaluobia P.O. Box 13736, Egypt
| | - Fan Yang
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
- Institute of Food Physical Processing, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Wen Chen
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
- Institute of Food Physical Processing, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Zhaoli Zhang
- School of Food Science and Engineering, Yangzhou University, 196 Huayang West Road, Yangzhou 225127, China
| | - Chunhua Dai
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
- Institute of Food Physical Processing, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Ronghai He
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
- Institute of Food Physical Processing, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
- Correspondence: or ; Tel./Fax: +86-(511)-8878-0201
| | - Haile Ma
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
- Institute of Food Physical Processing, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| |
Collapse
|
12
|
Development and validation of a novel real-time PCR protocol for the detection of buffalo worm (Alphitobius diaperinus) in food. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.109138] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
13
|
Arévalo Arévalo HA, Menjura Rojas EM, Barragan Fonseca KB, Vásquez Mejía SM. Implementation of the HACCP system for production of Tenebrio molitor larvae meal. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.109030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
14
|
Petrescu‐Mag RM, Rastegari Kopaei H, Petrescu DC. Consumers' acceptance of the first novel insect food approved in the European Union: Predictors of yellow mealworm chips consumption. Food Sci Nutr 2022; 10:846-862. [PMID: 35311162 PMCID: PMC8907748 DOI: 10.1002/fsn3.2716] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 12/17/2021] [Accepted: 12/22/2021] [Indexed: 01/23/2023] Open
Abstract
Climate and environmental-related challenges are high on the agenda of the European Union (EU). One priority is to redesign the existing food system into a more sustainable one, where the link between healthy people and a balanced environment is considered. The EU bets on the role of insect farming in supporting the transition toward healthier and future-proof diets. Following this orientation, we investigated consumers' attitude toward yellow mealworm chips (YMC) and identified the predictors of YMC consumption. The causal relationships between constructs were explored using the structural equation modeling (SEM) based on partial least squares (PLS) using SmartPLS software. The perceived lower environmental impact of YMC compared to meat was the most appreciated characteristic of YMC. The study identified five predictors of YMC consumption, among which the perceived characteristics of YMC have the strongest influence on the consumption probability. Against the expectations of the authors, disgust with the accidental encounter of insects in foods did not influence the probability of eating YMC. Age was another predictor of YMC consumption. It is known that food preferences and eating behaviors are mainly developed during childhood and tend to manifest in adult life. Consequently, it can be inferred that acceptance and preference for insect-based foods (IBF) should be stimulated from early childhood. Finally, practical implications are advanced as possible solutions to overcome the obstacles toward YMC consumption.
Collapse
Affiliation(s)
| | - Hamid Rastegari Kopaei
- Department of Rural Development ManagementFaculty of AgricultureYasouj UniversityYasoujIran
| | - Dacinia Crina Petrescu
- Faculty of BusinessBabes‐Bolyai UniversityCluj‐NapocaRomania
- Department of Marketing, Innovation and OrganizationFaculty of Economics and Business AdministrationGhent UniversityGhentBelgium
| |
Collapse
|
15
|
Rossi S, Parrotta L, Del Duca S, Rosa MD, Patrignani F, Schluter O, Lanciotti R. Effect of Yarrowia lipolytica RO25 cricket-based hydrolysates on sourdough quality parameters. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111760] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
16
|
De Marchi L, Wangorsch A, Zoccatelli G. Allergens from Edible Insects: Cross-reactivity and Effects of Processing. Curr Allergy Asthma Rep 2021; 21:35. [PMID: 34056688 PMCID: PMC8165055 DOI: 10.1007/s11882-021-01012-z] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/26/2021] [Indexed: 11/30/2022]
Abstract
PURPOSE OF REVIEW The recent introduction of edible insects in Western countries has raised concerns about their safety in terms of allergenic reactions. The characterization of insect allergens, the sensitization and cross-reactivity mechanisms, and the effects of food processing represent crucial information for risk assessment. RECENT FINDINGS Allergic reactions to different insects and cross-reactivity with crustacean and inhalant allergens have been described, with the identification of new IgE-binding proteins besides well-known pan-allergens. Depending on the route of sensitization, different potential allergens seem to be involved. Food processing may affect the solubility and the immunoreactivity of insect allergens, with results depending on species and type of proteins. Chemical/enzymatic hydrolysis, in some cases, abolishes immunoreactivity. More studies based on subjects with a confirmed insect allergy are necessary to identify major and minor allergens and the role of the route of sensitization. The effects of processing need to be further investigated to assess the risk associated with the ingestion of insect-containing food products.
Collapse
Affiliation(s)
- Laura De Marchi
- Department of Biotechnology, University of Verona, Verona, Italy
| | | | | |
Collapse
|