1
|
Shenassa ED, Botteri E, Stensheim H. Feeding Method, Nicotine Exposure, and Growth during Infancy. JOURNAL OF PEDIATRICS. CLINICAL PRACTICE 2024; 14:200127. [PMID: 39950049 PMCID: PMC11824624 DOI: 10.1016/j.jpedcp.2024.200127] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 09/10/2024] [Accepted: 09/30/2024] [Indexed: 02/16/2025]
Abstract
Objective To answer 3 questions: (1) Are infants breastfed by smokers at risk of rapid weight and length gain? (2) Is rapid growth during infancy partially attributable to ingestion of smokers' breastmilk? (3) If so, what are the implications for breastfeeding by smokers? Study design Using data from the Norwegian Mother, Father and Child Cohort Study and Medical Birth Registry of Norway (n = 54 522), we examined changes in weight, length, weight-for-length z-score (WFLZ) during infancy in the context of maternal smoking (0, 1-10, or >10 cigarettes/day) and feeding method during the first 6 months (breastfed, formula fed, mixed fed). We fit generalized linear models, adding a smoking by feeding method interaction term to evaluate the effect of ingesting smokers' breastmilk. Results Breastfed infants of both light and heavy smokers experienced WFLZ gains of 0.05 (95% CI, 0.01-0.09) and 0.13 (95% CI, 0.07-0.18), respectively. Among mixed-fed infants, only heavy maternal smoking predicted WFLZ gain (0.10; 95% CI, 0.05-0.16). Among exclusively formula-fed infants, maternal smoking did not predict rapid growth. Interaction models suggest that infants ever breastfed (ie, breastfed and mixed-fed groups combined) by heavy smokers gained weight (100 g; 95% CI, 30-231) and length (2.8 mm; 95% CI, 0.1-5.6), attributable to ingesting smoker's breastmilk. Conclusions Infants breastfed by smokers experience rapid growth; some of these gains are attributable to ingesting smokers' breastmilk. Among infants breasted by light smokers, these gains are within the range of normative growth patterns for healthy, breastfed infants.
Collapse
Affiliation(s)
- Edmond D. Shenassa
- Department of Epidemiology and Biostatistics, University of Maryland, College Park, MD
- Department of Epidemiology and Biostatistics, School of Public Health, Brown University, Providence, RI
- Department of Epidemiology and Biostatistics, School of Medicine, University of Maryland, Baltimore, MD
| | - Edoardo Botteri
- Department of Research, Cancer Registry of Norway, Oslo, Norway
- Section for Colorectal Cancer Screening, Cancer Registry of Norway, Oslo, Norway
| | - Hanne Stensheim
- Department of Research, Cancer Registry of Norway, Oslo, Norway
| |
Collapse
|
2
|
Yin X, Shi Y, Sheng T, Ji C. Early-Life Gut Microbiota: A Possible Link Between Maternal Exposure to Non-Nutritive Sweeteners and Metabolic Syndrome in Offspring. Nutr Rev 2024:nuae140. [PMID: 39348276 DOI: 10.1093/nutrit/nuae140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/02/2024] Open
Abstract
Metabolic syndrome (MetS) is recognized as a group of metabolic abnormalities, characterized by clustered interconnected traits that elevate the risks of obesity, cardiovascular and atherosclerotic diseases, hyperlipidemia, and type 2 diabetes mellitus. Non-nutritive sweeteners (NNS) are commonly consumed by those with imbalanced calorie intake, especially in the perinatal period. In the past, accumulating evidence showed the transgenerational and mediated roles of human microbiota in the development of early-life MetS. Maternal exposure to NNS has been recognized as a risk factor for filial metabolic disturbance through various mechanisms, among which gut microbiota and derived metabolites function as nodes linking NNS and MetS in early life. Despite the widespread consumption of NNS, there remain growing concerns about their transgenerational impact on metabolic health. There is growing evidence of NNS being implicated in the development of metabolic abnormalities. Intricate complexities exist and a comprehensive understanding of how the gut microbiota interacts with mechanisms related to maternal NNS intake and disrupts metabolic homeostasis of offspring is critical to realize its full potential in preventing early-life MetS. This review aims to elucidate the effects of early-life gut microbiota and links to maternal NNS exposure and imbalanced offspring metabolic homeostasis and discusses potential perspectives and challenges, which may provide enlightenment and understanding into optimal perinatal nutritional management.
Collapse
Affiliation(s)
- Xiaoxiao Yin
- Nanjing Medical Research Center for Women and Children, Women's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, Nanjing, Jiangsu 210004, China
- School of Nursing, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Yujie Shi
- Nanjing Medical Research Center for Women and Children, Women's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, Nanjing, Jiangsu 210004, China
| | - Tongtong Sheng
- School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Chenbo Ji
- Nanjing Medical Research Center for Women and Children, Women's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, Nanjing, Jiangsu 210004, China
- School of Nursing, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| |
Collapse
|
3
|
Mills A, Shoudis L, Cook M, Ranpara A, Chantler PD, Olfert IM. Gestation, Not Lactation, Is to Blame for Postnatal Vascular Dysfunction in Offspring With Maternal Electronic Cigarette Exposure. J Am Heart Assoc 2024; 13:e034030. [PMID: 38533948 PMCID: PMC11179776 DOI: 10.1161/jaha.123.034030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 03/05/2024] [Indexed: 03/28/2024]
Affiliation(s)
- Amber Mills
- Department of Physiology, Pharmacology and ToxicologyWest Virginia University School of MedicineMorgantownWV
- Center for Inhalation ToxicologyWest Virginia University School of MedicineMorgantownWV
| | - Lainey Shoudis
- Immunology and Microbial PathogenesisWest Virginia University School of MedicineMorgantownWV
| | - Mary Cook
- Division of Exercise PhysiologyWest Virginia University School of MedicineMorgantownWV
| | - Anand Ranpara
- Department of Physiology, Pharmacology and ToxicologyWest Virginia University School of MedicineMorgantownWV
- Center for Inhalation ToxicologyWest Virginia University School of MedicineMorgantownWV
| | - Paul D. Chantler
- Division of Exercise PhysiologyWest Virginia University School of MedicineMorgantownWV
- NeuroscienceWest Virginia University School of MedicineMorgantownWV
| | - I. Mark Olfert
- Department of Physiology, Pharmacology and ToxicologyWest Virginia University School of MedicineMorgantownWV
- Center for Inhalation ToxicologyWest Virginia University School of MedicineMorgantownWV
- Division of Exercise PhysiologyWest Virginia University School of MedicineMorgantownWV
| |
Collapse
|
4
|
Harris M, Schiff DM, Saia K, Muftu S, Standish KR, Wachman EM. Academy of Breastfeeding Medicine Clinical Protocol #21: Breastfeeding in the Setting of Substance Use and Substance Use Disorder (Revised 2023). Breastfeed Med 2023; 18:715-733. [PMID: 37856658 PMCID: PMC10775244 DOI: 10.1089/bfm.2023.29256.abm] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2023]
Abstract
Background: The Academy of Breastfeeding Medicine (ABM) revised the 2015 version of the substance use disorder (SUD) clinical protocol to review the evidence and provide updated literature-based recommendations related to breastfeeding in the setting of substance use and SUD treatments. Key Information: Decisions around breastfeeding are an important aspect of care during the peripartum period, and there are specific benefits and risks for substance-exposed mother-infant dyads. Recommendations: This protocol provides breastfeeding recommendations in the setting of nonprescribed opioid, stimulant, sedative-hypnotic, alcohol, nicotine, and cannabis use, and SUD treatments. Additionally, we offer guidance on the utility of toxicology testing in breastfeeding recommendations. Individual programs and institutions should establish consistent breastfeeding approaches that mitigate bias, facilitate consistency, and empower mothers with SUD. For specific breastfeeding recommendations, given the complexity of breastfeeding in mothers with SUD, individualized care plans should be created in partnership with the patient and multidisciplinary team with appropriate clinical support and follow-up. In general, breastfeeding is recommended among mothers who stop nonprescribed substance use by the time of delivery, and they should continue to receive ongoing postpartum care, such as lactation support and SUD treatment. Overall, enhancing breastfeeding education regarding substance use in pregnancy and lactation is essential to allow for patient-centered guidance.
Collapse
Affiliation(s)
- Miriam Harris
- Clinical Addiction Research and Education (CARE) Unit, Section of General Internal Medicine, Department of Medicine, Boston University Chobanian & Avedisian School of Medicine and Boston Medical Center, Boston, Massachusetts, USA
- Grayken Center for Addiction, Boston Medical Center, Boston, Massachusetts, USA
| | - Davida M. Schiff
- Divisions of Newborn Medicine and Mass General Hospital for Children, Boston, Massachusetts, USA
- Divisions of General Academic Pediatrics, Mass General Hospital for Children, Boston, Massachusetts, USA
| | - Kelley Saia
- Grayken Center for Addiction, Boston Medical Center, Boston, Massachusetts, USA
- Department of Obstetrics and Gynecology, Chobanian & Avedisian Boston University School of Medicine and Boston Medical Center, Boston, Massachusetts, USA
| | - Serra Muftu
- Divisions of Newborn Medicine and Mass General Hospital for Children, Boston, Massachusetts, USA
- Divisions of General Academic Pediatrics, Mass General Hospital for Children, Boston, Massachusetts, USA
| | - Katherine R. Standish
- Department of Family Medicine, and Chobanian & Avedisian Boston University School of Medicine and Boston Medical Center, Boston, Massachusetts, USA
| | - Elisha M. Wachman
- Grayken Center for Addiction, Boston Medical Center, Boston, Massachusetts, USA
- Department of Pediatrics, Chobanian & Avedisian Boston University School of Medicine and Boston Medical Center, Boston, Massachusetts, USA
| |
Collapse
|
5
|
Nicotine exposure during breastfeeding alters the expression of endocannabinoid system biomarkers in female but not in male offspring at adulthood. J Dev Orig Health Dis 2023; 14:415-425. [PMID: 36815400 DOI: 10.1017/s2040174423000028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
Early nicotine exposure compromises offspring's phenotype at long-term in both sexes. We hypothesize that offspring exposed to nicotine during breastfeeding show deregulated central and peripheral endocannabinoid system (ECS), compromising several aspects of their metabolism. Lactating rats received nicotine (NIC, 6 mg/Kg/day) or saline from postnatal day (PND) 2 to 16 through implanted osmotic minipumps. Offspring were analyzed at PND180. We evaluated protein expression of N-acylphosphatidylethanolamide-phospholipase D (NAPE-PLD), fatty acid amide hydrolase (FAAH), diacylglycerol lipase (DAGL), monoacylglycerol lipase (MAGL) and cannabinoid receptors (CB1 and/or CB2) in lateral hypothalamus, paraventricular nucleus of the hypothalamus, liver, visceral adipose tissue (VAT), adrenal and thyroid. NIC offspring from both sexes did not show differences in hypothalamic ECS markers. Peripheral ECS markers showed no alterations in NIC males. In contrast, NIC females had lower liver DAGL and CB1, higher VAT DAGL, higher adrenal NAPE-PLD and higher thyroid FAAH. Endocannabinoids biosynthesis was affected by nicotine exposure during breastfeeding only in females; alterations in peripheral tissues suggest lower action in liver and higher action in VAT, adrenal and thyroid. Effects of nicotine exposure during lactation on ECS markers are sex- and tissue-dependent. This characterization helps understanding the phenotype of the adult offspring in this model and may contribute to the development of new pharmacological targets for the treatment of several metabolic diseases that originate during development.
Collapse
|
6
|
Scharf P, Rizzetto F, Xavier LF, Farsky SHP. Xenobiotics Delivered by Electronic Nicotine Delivery Systems: Potential Cellular and Molecular Mechanisms on the Pathogenesis of Chronic Kidney Disease. Int J Mol Sci 2022; 23:10293. [PMID: 36142207 PMCID: PMC9498982 DOI: 10.3390/ijms231810293] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/01/2022] [Accepted: 09/05/2022] [Indexed: 11/20/2022] Open
Abstract
Chronic kidney disease (CKD) is characterized as sustained damage to the renal parenchyma, leading to impaired renal functions and gradually progressing to end-stage renal disease (ESRD). Diabetes mellitus (DM) and arterial hypertension (AH) are underlying diseases of CKD. Genetic background, lifestyle, and xenobiotic exposures can favor CKD onset and trigger its underlying diseases. Cigarette smoking (CS) is a known modified risk factor for CKD. Compounds from tobacco combustion act through multi-mediated mechanisms that impair renal function. Electronic nicotine delivery systems (ENDS) consumption, such as e-cigarettes and heated tobacco devices, is growing worldwide. ENDS release mainly nicotine, humectants, and flavorings, which generate several byproducts when heated, including volatile organic compounds and ultrafine particles. The toxicity assessment of these products is emerging in human and experimental studies, but data are yet incipient to achieve truthful conclusions about their safety. To build up the knowledge about the effect of currently employed ENDS on the pathogenesis of CKD, cellular and molecular mechanisms of ENDS xenobiotic on DM, AH, and kidney functions were reviewed. Unraveling the toxic mechanisms of action and endpoints of ENDS exposures will contribute to the risk assessment and implementation of proper health and regulatory interventions.
Collapse
Affiliation(s)
| | | | | | - Sandra Helena Poliselli Farsky
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, São Paulo 05508-220, Brazil
| |
Collapse
|
7
|
He B, Zhang Q, Guo Y, Ao Y, Tie K, Xiao H, Chen L, Xu D, Wang H. Prenatal smoke (Nicotine) exposure and offspring's metabolic disease susceptibility in adulthood. Food Chem Toxicol 2022; 168:113384. [PMID: 36041661 DOI: 10.1016/j.fct.2022.113384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 08/06/2022] [Accepted: 08/17/2022] [Indexed: 11/17/2022]
Abstract
Exposure to smoking (nicotine) during pregnancy not only directly affects fetal development, but also increases susceptibility to metabolic diseases in adulthood, but the mechanism of action remains unclear. Here, we review epidemiological and laboratory studies linking these relationships. In addition to the direct effect of nicotine on the fetus, intrauterine neuroendocrine-metabolic programming mediated by maternal glucocorticoid overexposure also plays an important role, involving glucocorticoid-insulin-like growth factor 1 (GC-IGF1) axis, hypothalamic-pituitary-adrenal (HPA) axis, renin-angiotensin system (RAS) and other endocrine systems. Epigenetics is involved in intrauterine neuroendocrine-metabolic programming, metabolic disease susceptibility and multigenerational inheritance. There are "two programming" and "two strikes" mechanisms for the occurrence of fetal-originated metabolic diseases in adulthood. These innovative research summaries and academic viewpoints provide experimental and theoretical basis for systematically elucidating the occurrence and development of fetal-originated metabolic diseases.
Collapse
Affiliation(s)
- Bo He
- Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan, 430071, China; School of Pharmaceutical Sciences and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, 650500, China
| | - Qi Zhang
- Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan, 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071, China
| | - Yu Guo
- Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan, 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071, China
| | - Ying Ao
- Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan, 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071, China
| | - Kai Tie
- Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071, China
| | - Hao Xiao
- Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071, China
| | - Liaobin Chen
- Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071, China
| | - Dan Xu
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071, China; Department of Pharmacy, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China.
| | - Hui Wang
- Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan, 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071, China.
| |
Collapse
|
8
|
Koshko L, Scofield S, Mor G, Sadagurski M. Prenatal Pollutant Exposures and Hypothalamic Development: Early Life Disruption of Metabolic Programming. Front Endocrinol (Lausanne) 2022; 13:938094. [PMID: 35909533 PMCID: PMC9327615 DOI: 10.3389/fendo.2022.938094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 06/13/2022] [Indexed: 11/23/2022] Open
Abstract
Environmental contaminants in ambient air pollution pose a serious risk to long-term metabolic health. Strong evidence shows that prenatal exposure to pollutants can significantly increase the risk of Type II Diabetes (T2DM) in children and all ethnicities, even without the prevalence of obesity. The central nervous system (CNS) is critical in regulating whole-body metabolism. Within the CNS, the hypothalamus lies at the intersection of the neuroendocrine and autonomic systems and is primarily responsible for the regulation of energy homeostasis and satiety signals. The hypothalamus is particularly sensitive to insults during early neurodevelopmental periods and may be susceptible to alterations in the formation of neural metabolic circuitry. Although the precise molecular mechanism is not yet defined, alterations in hypothalamic developmental circuits may represent a leading cause of impaired metabolic programming. In this review, we present the current knowledge on the links between prenatal pollutant exposure and the hypothalamic programming of metabolism.
Collapse
Affiliation(s)
- Lisa Koshko
- Integrative Biosciences Center, Department of Biological Sciences, Wayne State University, Detroit, MI, United States
| | - Sydney Scofield
- Integrative Biosciences Center, Department of Biological Sciences, Wayne State University, Detroit, MI, United States
| | - Gil Mor
- C.S. Mott Center for Human Growth and Development, Department of Obstetrics and Gynecology School of Medicine, Wayne State University, Detroit, MI, United States
| | - Marianna Sadagurski
- Integrative Biosciences Center, Department of Biological Sciences, Wayne State University, Detroit, MI, United States
| |
Collapse
|
9
|
Litter Size Reduction as a Model of Overfeeding during Lactation and Its Consequences for the Development of Metabolic Diseases in the Offspring. Nutrients 2022; 14:nu14102045. [PMID: 35631188 PMCID: PMC9145223 DOI: 10.3390/nu14102045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/10/2022] [Accepted: 05/10/2022] [Indexed: 02/06/2023] Open
Abstract
Overfeeding during lactation has a deleterious impact on the baby’s health throughout life. In humans, early overnutrition has been associated with higher susceptibility to obesity and metabolic disorders in childhood and adulthood. In rodents, using a rodent litter size reduction model (small litter) to mimic early overfeeding, the same metabolic profile has been described. Therefore, the rodent small litter model is an efficient tool to investigate the adaptive mechanisms involved in obesogenesis. Besides central and metabolic dysfunctions, studies have pointed to the contribution of the endocrine system to the small litter phenotype. Hormones, especially leptin, insulin, and adrenal hormones, have been associated with satiety, glucose homeostasis, and adipogenesis, while hypothyroidism impairs energy metabolism, favoring obesity. Behavioral modifications, hepatic metabolism changes, and reproductive dysfunctions have also been reported. In this review, we update these findings, highlighting the interaction of early nutrition and the adaptive features of the endocrine system. We also report the sex-related differences and epigenetic mechanisms. This model highlights the intense plasticity during lactation triggering many adaptive responses, which are the basis of the developmental origins of health and disease (DOHaD) concept. Our review demonstrates the complexity of the adaptive mechanisms involved in the obesity phenotype promoted by early overnutrition, reinforcing the necessity of adequate nutritional habits during lactation.
Collapse
|
10
|
Almeida MM, Dias-Rocha CP, Calviño C, Trevenzoli IH. Lipid endocannabinoids in energy metabolism, stress and developmental programming. Mol Cell Endocrinol 2022; 542:111522. [PMID: 34843899 DOI: 10.1016/j.mce.2021.111522] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 11/09/2021] [Accepted: 11/23/2021] [Indexed: 12/12/2022]
Abstract
The endocannabinoid system (ECS) regulates brain development and function, energy metabolism and stress in a sex-, age- and tissue-dependent manner. The ECS comprises mainly the bioactive lipid ligands anandamide (AEA) and 2-aracdonoylglycerol (2-AG), cannabinoid receptors 1 and 2 (CB1 and CB2), and several metabolizing enzymes. The endocannabinoid tonus is increased in obesity, stimulating food intake and a preference for fat, reward, and lipid accumulation in peripheral tissues, as well as favoring a positive energy balance. Energy balance and stress responses share adaptive mechanisms regulated by the ECS that seem to underlie the complex relationship between feeding and emotional behavior. The ECS is also a key regulator of development. Environmental insults (diet, toxicants, and stress) in critical periods of developmental plasticity, such as gestation, lactation and adolescence, alter the ECS and may predispose individuals to the development of chronic diseases and behavioral changes in the long term. This review is focused on the ECS and the developmental origins of health and disease (DOHaD).
Collapse
Affiliation(s)
- Mariana Macedo Almeida
- Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, RJ, Brazil
| | | | - Camila Calviño
- Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, RJ, Brazil
| | - Isis Hara Trevenzoli
- Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
11
|
Lisboa PC, Miranda RA, Souza LL, Moura EG. Can breastfeeding affect the rest of our life? Neuropharmacology 2021; 200:108821. [PMID: 34610290 DOI: 10.1016/j.neuropharm.2021.108821] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 08/17/2021] [Accepted: 09/30/2021] [Indexed: 12/31/2022]
Abstract
The breastfeeding period is one of the most important critical windows in our development, since milk, our first food after birth, contains several compounds, such as macronutrients, micronutrients, antibodies, growth factors and hormones that benefit human health. Indeed, nutritional, and environmental alterations during lactation, change the composition of breast milk and induce alterations in the child's development, such as obesity, leading to the metabolic dysfunctions, cardiovascular diseases and neurobehavioral disorders. This review is based on experimental animal models, most of them in rodents, and summarizes the impact of an adequate breast milk supply in view of the developmental origins of health and disease (DOHaD) concept, which has been proposed by researchers in the areas of epidemiology and basic science from around the world. Here, experimental advances in understanding the programming during breastfeeding were compiled with the purpose of generating knowledge about the genesis of chronic noncommunicable diseases and to guide the development of public policies to deal with and prevent the problems arising from this phenomenon. This review article is part of the special issue on "Cross talk between periphery and brain".
Collapse
Affiliation(s)
- Patricia C Lisboa
- Laboratory of Endocrine Physiology, Department of Physiological Sciences, Roberto Alcantara Gomes Biology Institute, State University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil.
| | - Rosiane A Miranda
- Laboratory of Endocrine Physiology, Department of Physiological Sciences, Roberto Alcantara Gomes Biology Institute, State University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Luana L Souza
- Laboratory of Endocrine Physiology, Department of Physiological Sciences, Roberto Alcantara Gomes Biology Institute, State University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Egberto G Moura
- Laboratory of Endocrine Physiology, Department of Physiological Sciences, Roberto Alcantara Gomes Biology Institute, State University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
12
|
Rodrigues VST, Moura EG, Peixoto TC, Soares PN, Lopes BP, Oliveira E, Manhães AC, Atella GC, Kluck GEG, Cabral SS, Trindade PL, Daleprane JB, Lisboa PC. Changes in gut-brain axis parameters in adult rats of both sexes with different feeding pattern that were early nicotine-exposed. Food Chem Toxicol 2021; 158:112656. [PMID: 34740714 DOI: 10.1016/j.fct.2021.112656] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 10/20/2021] [Accepted: 10/29/2021] [Indexed: 01/09/2023]
Abstract
Nicotine is an endocrine disruptor and imprinting factor during breastfeeding that can cause food intake imbalance in the adulthood. As nicotine affects the intestinal microbiota, altering the composition of the bacterial communities and short-chain fatty acids (SCFAs) synthesis in a sex-dependent manner, we hypothesized that nicotine could program the gut-brain axis, consequently modifying the eating pattern of adult male and female rats in a model of maternal nicotine exposure (MNE) during breastfeeding. Lactating Wistar rat dams received minipumps that release 6 mg/kg/day of nicotine (MNE group) or saline for 14 days. The progeny received standard diet from weaning until euthanasia (26 weeks of age). We measured: in vivo electrical activity of the vagus nerve; c-Fos expression in the nucleus tractus solitarius, gastrointestinal peptides receptors, intestinal brain-derived neurotrophic factor (BDNF), SCFAs and microbiota. MNE females showed hyperphagia despite normal adiposity, while MNE males had unchanged food intake, despite obesity. Adult MNE offspring showed decreased Bacteroidetes and increased Firmicutes, Actinobacteria and Proteobacteria. MNE females had lower fecal acetate while MNE males showed higher vagus nerve activity. In summary nicotine exposure through the milk induces long-term intestinal dysbiosis, which may affect eating patterns of adult offspring in a sex-dependent manner.
Collapse
Affiliation(s)
- V S T Rodrigues
- Laboratory of Endocrine Physiology, Biology Institute, State University of Rio de Janeiro, RJ, Brazil
| | - E G Moura
- Laboratory of Endocrine Physiology, Biology Institute, State University of Rio de Janeiro, RJ, Brazil
| | - T C Peixoto
- Laboratory of Endocrine Physiology, Biology Institute, State University of Rio de Janeiro, RJ, Brazil
| | - P N Soares
- Laboratory of Endocrine Physiology, Biology Institute, State University of Rio de Janeiro, RJ, Brazil
| | - B P Lopes
- Laboratory of Endocrine Physiology, Biology Institute, State University of Rio de Janeiro, RJ, Brazil
| | - E Oliveira
- Laboratory of Endocrine Physiology, Biology Institute, State University of Rio de Janeiro, RJ, Brazil
| | - A C Manhães
- Neurophysiology Laboratory, Biology Institute, State University of Rio de Janeiro, RJ, Brazil
| | - G C Atella
- Laboratory of Lipids and Lipoprotein Biochemistry, Biochemistry Institute, Federal University of Rio de Janeiro, RJ, Brazil
| | - G E G Kluck
- Laboratory of Lipids and Lipoprotein Biochemistry, Biochemistry Institute, Federal University of Rio de Janeiro, RJ, Brazil
| | - S S Cabral
- Laboratory of Lipids and Lipoprotein Biochemistry, Biochemistry Institute, Federal University of Rio de Janeiro, RJ, Brazil
| | - P L Trindade
- Laboratory for Studies of Interactions Between Nutrition and Genetics, Nutrition Institute, Rio de Janeiro State University, RJ, Brazil
| | - J B Daleprane
- Laboratory for Studies of Interactions Between Nutrition and Genetics, Nutrition Institute, Rio de Janeiro State University, RJ, Brazil
| | - P C Lisboa
- Laboratory of Endocrine Physiology, Biology Institute, State University of Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
13
|
Al-Sawalha NA, Bdeir R, Sohaib A, Saad M, Inghaimesh T, Khabour OF, Alzoubi KH, Shihadeh A. Effect of E-cigarettes aerosol exposure during lactation in rats: Hormonal and biochemical aspects. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2021; 88:103759. [PMID: 34695539 PMCID: PMC8957699 DOI: 10.1016/j.etap.2021.103759] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 10/07/2021] [Accepted: 10/20/2021] [Indexed: 05/03/2023]
Abstract
Electronic cigarettes (e-cigarettes) have been marketed as a less lethal substitute for smoking traditional cigarettes. This study aims to investigate the impact of e-cigarettes aerosol exposure on lactating dams and pups, whose dams were exposed. Lactating dams received fresh air (control) or e-cigarettes aerosol during lactation (day 4-21). Maternal exposure to e-cigarettes aerosol during lactation induced significant reduction (P < 0.0001) in the fat content of the milk and serum Leptin level (P < 0.005) compared to control dams. Furthermore, pups whose dams were exposed to e-cigarettes during lactation showed an increased level of glucose, thyroxine and decreased level of insulin. The exposure to e-cigarettes aerosol during lactation altered the composition of milk as well as the hormonal and biochemical profile in dams and pups. This result, if observed in women using e-cigarettes, suggests that e-cigarettes' use during lactation may have consequences on the milk production and hormonal and biochemical profile in breastfeeding mothers and nursing babies.
Collapse
Affiliation(s)
- Nour A Al-Sawalha
- Department of Clinical Pharmacy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, Jordan.
| | - Roba Bdeir
- Faculty of Pharmacy, Jadara University, Irbid, Jordan
| | - Aiman Sohaib
- Faculty of Pharmacy, Jadara University, Irbid, Jordan
| | - Marwan Saad
- Department of Clinical Pharmacy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| | - Tasneem Inghaimesh
- Department of Clinical Pharmacy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| | - Omar F Khabour
- Faculty of Applied Medical Sciences, Jordan University of Science and Technology, Irbid, Jordan
| | - Karem H Alzoubi
- Department of Pharmacy Practice and Pharmacotherapeutics, University of Sharjah, Sharjah, UAE; Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| | - Alan Shihadeh
- Mechanical Engineering Department, American University of Beirut, Beirut 1107 2020, Lebanon; Center for the Study of Tobacco Products, Virginia Commonwealth University, Richmond, VA, USA
| |
Collapse
|
14
|
Can Özalp E, Yalçın SS. Is maternal cigarette or water pipe use associated with stopping breastfeeding? Evidence from the Jordan population and family health surveys 2012 and 2017-18. Int Breastfeed J 2021; 16:43. [PMID: 34053454 PMCID: PMC8165988 DOI: 10.1186/s13006-021-00387-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 05/06/2021] [Indexed: 02/07/2023] Open
Abstract
Background Maternal smoking is suspected to have negative impacts on breastfeeding, such as decreasing the quantity of breast milk, and reducing vitamin and fat concentrations in the milk in the late lactation period. Cigarette and water pipe tobacco products are widely used in Jordan. We aimed to estimate the association between use of different tobacco products and the rates of current breastfeeding. Methods Data from Jordan’s Population and Family Health Surveys 2012 and 2017–18 were examined. Last-born, living children, aged < 25 months, from singleton births, ever breastfed, and living with their mother were included. The key outcome variables were the current breastfeeding (during last 24 h) and tobacco usage status [water pipe tobacco (hookah or narghile) and/or cigarette tobacco]. Complex sample multivariate logistic regression analysis was used to evaluate the association of the current breastfeeding with maternal smoking status. Results Overall, 6726 infants were included in the study. The current breastfeeding rate in infants aged 0–6 months was 87%, compared with 43.9% in infants aged 12–17 months and 19.4% in infants aged 18–24 months. Overall, 4.4% had mothers who smoked cigarettes, 5.4% smoked water pipe, and 1.6% both cigarettes and water pipe. The proportion of breastfed infants in non-smoking mothers was 57.7% and, those in smoke water pipe, cigarette and both tobacco products were 55.4, 44.9, and 51.0% respectively. Univariate analysis revealed that women cigarette smokers had a lower odds ratio (OR) for current breastfeeding (OR 0.60, 95% Confidence Interval [CI] 0.39, 0.92). Multivariate analysis revealed that maternal cigarette smoking was associated with a lower odds ratio for current breastfeeding compared with mothers who smoked neither water pipe nor cigarettes (AOR 0.51, 95% Cl 0.30, 0.87). Conclusions These results indicate that maternal smoking is associated with termination of breastfeeding, suggesting that structured training should be organized for healthcare professionals, expectant mothers and the general public about the association between maternal smoking and cessation of lactation.
Collapse
Affiliation(s)
- Esra Can Özalp
- Unit of Social Pediatrics Department of Pediatrics, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - S Songül Yalçın
- Unit of Social Pediatrics Department of Pediatrics, Faculty of Medicine, Hacettepe University, Ankara, Turkey.
| |
Collapse
|
15
|
Neonatal nicotine exposure changes insulin status in fat depots: sex-related differences. J Dev Orig Health Dis 2021; 13:252-262. [PMID: 33818369 DOI: 10.1017/s2040174421000131] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Nicotine is the main psychoactive substance present in cigarette smoke that is transferred to the baby by breast milk. In rats, maternal nicotine exposure during breastfeeding induces obesogenesis and hormone dysfunctions in adult male offspring. As glucocorticoid (GC), insulin, and vitamin D change both adipogenesis and lipogenesis processes, we assessed parameters related to metabolism and action of these hormones in visceral and subcutaneous adipose tissues (VAT and SAT) of adult male and female rats in a model of neonatal nicotine exposure. At postnatal (PN) day 2, dams were kept with six pups (three per sex) and divided into nicotine and control groups for implantation of osmotic minipumps that released 6 mg/kg nicotine or saline, respectively. At PN180, fat mass, hormone levels, and protein contents of biomarkers of the GC activation and receptor (11beta-hydroxysteroid dehydrogenase type 1 and glucocorticoid receptor alpha), insulin signaling pathway [insulin receptor beta (IRβ), phosphorylated insulin receptor substrate 1, insulin receptor substrate 1 (IRS1), phosphorylated serine/threonine kinase (pAKT), serine/threonine kinase, glucose transporter type 4 (GLUT4)], and vitamin D activation and receptor (1α-hydroxylase and vitamin D receptor) were evaluated. While nicotine-exposed males showed increased fat mass, hypercorticosteronemia, hyperinsulinemia, and higher 25-hydroxyvitamin D, these alterations were not observed in nicotine-exposed females. Nicotine-exposed males only showed lower IRS1 in VAT, while the females had hyperglycemia, higher pAKT in VAT, while lower IRβ, IRS1, and GLUT4 in SAT. Parameters related to metabolism and action of GC and vitamin D were unaltered in both sexes. We evidence that exposure exclusively to nicotine during breastfeeding affects the hormone status and fat depots of the adult progeny in a sex-dependent manner.
Collapse
|
16
|
Peixoto TC, Gaspar de Moura E, Quitete FT, Simino LA, Torsoni AS, Torsoni MA, Manhaes AC, Lisboa PC. Early life nicotine exposure alters mRNA and microRNA expressions related to thyroid function and lipid metabolism in liver and BAT of adult wistar rats. Mol Cell Endocrinol 2021; 523:111141. [PMID: 33359828 DOI: 10.1016/j.mce.2020.111141] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 12/17/2020] [Accepted: 12/18/2020] [Indexed: 02/06/2023]
Abstract
In rats, maternal nicotine exposure during lactation induces obesity, thyroid dysfunction, brown adipose tissue (BAT) hypofunction and liver alterations in adult offspring. Both thyroid function and lipid metabolism are influenced by gene silencing mediated by microRNAs (miRNAs). Here we investigated long-term effects of early nicotine exposure on molecular and epigenetic mechanisms closely related to thyroid and lipid metabolism, through the expression of mRNAs and miRNAs in BAT and liver of adult male and female offspring. At postnatal day 2 (PND2), lactating control (CON) or nicotine (NIC) dams were subcutaneously implanted with osmotic minipumps containing, respectively, saline or 6 mg/kg nicotine. Litters were adjusted to 3 males and 3 females. Offspring's euthanasia occurred at PND180. In the BAT, NIC females showed higher Dio2 mRNA expression, while miR-382* expression was not altered in both sexes. In the liver, NIC offspring of both sexes showed lower Dio1 mRNA expression and higher miR-224 expression, while only NIC females had higher miR-383 and miR-21 expressions. NIC offspring of both sexes showed higher mRNA expression of SCD1 in the liver; NIC males had decreased CPT1 expression, whereas NIC females had increased FASN, miR-370 and miR-122 expressions. Regardless of sex, alterations in liver Dio1, miR-224 and SCD1 expressions are involved in the disturbances caused by maternal nicotine exposure during breastfeeding. Interestingly, females had more altered miRs in the liver. Early nicotine exposure induces a sex dimorphism, particularly regarding hepatic lipid metabolism, through miRs expression.
Collapse
Affiliation(s)
- Thamara Cherem Peixoto
- Laboratory of Endocrine Physiology, Department of Physiological Sciences, Biology Institute, State University of Rio de Janeiro, Rio de Janeiro, RJ, 20551-030, Brazil
| | - Egberto Gaspar de Moura
- Laboratory of Endocrine Physiology, Department of Physiological Sciences, Biology Institute, State University of Rio de Janeiro, Rio de Janeiro, RJ, 20551-030, Brazil
| | - Fernanda Torres Quitete
- Laboratory of Endocrine Physiology, Department of Physiological Sciences, Biology Institute, State University of Rio de Janeiro, Rio de Janeiro, RJ, 20551-030, Brazil
| | - Laís Angélica Simino
- Laboratory of Metabolic Disorders, School of Applied Sciences, University of Campinas, Limeira, SP, 13484-350, Brazil
| | - Adriana Souza Torsoni
- Laboratory of Metabolic Disorders, School of Applied Sciences, University of Campinas, Limeira, SP, 13484-350, Brazil
| | - Marcio Alberto Torsoni
- Laboratory of Metabolic Disorders, School of Applied Sciences, University of Campinas, Limeira, SP, 13484-350, Brazil
| | - Alex Christian Manhaes
- Laboratory of Neurophysiology, Department of Physiological Sciences, Biology Institute, State University of Rio de Janeiro, Rio de Janeiro, RJ, 20551-030, Brazil
| | - Patricia Cristina Lisboa
- Laboratory of Endocrine Physiology, Department of Physiological Sciences, Biology Institute, State University of Rio de Janeiro, Rio de Janeiro, RJ, 20551-030, Brazil.
| |
Collapse
|
17
|
Li GL, Ping J, Chen HJ, Zhang WX, Fan J, Peng DS, Zhang L, Yan YE. Maternal nicotine exposure impairs brown adipose tissue via AMPK-SIRT1-PGC-1α signals in male offspring. Life Sci 2021; 264:118695. [PMID: 33130079 DOI: 10.1016/j.lfs.2020.118695] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/28/2020] [Accepted: 10/28/2020] [Indexed: 12/11/2022]
Abstract
AIMS Maternal nicotine exposure during pregnancy and lactation is associated with obesity in offspring. Brown adipose tissue (BAT) is correlated with energy metabolism and obesity. In this study, we explored the mechanism of maternal nicotine exposure on BAT changes in male offspring. MAIN METHODS Pregnant rats were randomly assigned to nicotine (1.0 mg/kg twice per day, subcutaneous administration) or control groups. In vitro, C3H10T1/2 cells were induced to differentiate into mature brown adipocytes, and 0-50 μM nicotine was given to C3H10T1/2 cells during the differentiation process. KEY FINDINGS Nicotine-exposed males had white-like adipocytes and abnormal mitochondria structure in iBAT at 26 weeks. The expression of mitochondrial genes, UCP1 and AMPK-SIRT1-PGC-1α pathway were downregulated in the nicotine group at 26 weeks rather than 4 weeks. In vitro, 50 μM nicotine decreased the expression of mitochondrial genes, UCP1 and AMPK-SIRT1-PGC-1α pathway in brown adipocytes. SIGNIFICANCE Maternal nicotine exposure showed the "programming" effect on the decreased brown-like phenotype in BAT of adult male offspring via downregulating AMPK-SIRT1-PGC-1α pathway. This impairment of BAT may be a potential mechanism of nicotine-induced obesity in male offspring.
Collapse
Affiliation(s)
- Gai-Ling Li
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China
| | - Jie Ping
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China
| | - Hui-Jian Chen
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China
| | - Wan-Xia Zhang
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China
| | - Jie Fan
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China
| | - Dang-Sheng Peng
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China
| | - Li Zhang
- Demonstration Center for Experimental Basic Medicine Education of Wuhan University, China
| | - You-E Yan
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China.
| |
Collapse
|