1
|
Behr AC, Fæste CK, Azqueta A, Tavares AM, Spyropoulou A, Solhaug A, Olsen AK, Vettorazzi A, Mertens B, Zegura B, Streel C, Ndiaye D, Spilioti E, Dubreil E, Buratti FM, Crudo F, Eriksen GS, Snapkow I, Teixeira JP, Rasinger JD, Sanders J, Machera K, Ivanova L, Gaté L, Le Hegarat L, Novak M, Smith NM, Tait S, Fraga S, Hager S, Marko D, Braeuning A, Louro H, Silva MJ, Dirven H, Dietrich J. Hazard characterization of the mycotoxins enniatins and beauvericin to identify data gaps and improve risk assessment for human health. Arch Toxicol 2025:10.1007/s00204-025-03988-3. [PMID: 40137953 DOI: 10.1007/s00204-025-03988-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Accepted: 02/10/2025] [Indexed: 03/29/2025]
Abstract
Enniatins (ENNs) and beauvericin (BEA) are cyclic hexadepsipeptide fungal metabolites which have demonstrated antibiotic, antimycotic, and insecticidal activities. The substantial toxic potentials of these mycotoxins are associated with their ionophoric molecular properties and relatively high lipophilicities. ENNs occur extensively in grain and grain-derived products and are considered a food safety issue by the European Food Safety Authority (EFSA). The tolerable daily intake and maximum levels for ENNs in humans and animals remain unestablished due to key toxicological and toxicokinetic data gaps, preventing full risk assessment. Aiming to find critical data gaps impeding hazard characterization and risk evaluation, this review presents a comprehensive summary of the existing information from in vitro and in vivo studies on toxicokinetic characteristics and cytotoxic, genotoxic, immunotoxic, endocrine, reproductive and developmental effects of the most prevalent ENN analogues (ENN A, A1, B, B1) and BEA. The missing information identified showed that additional studies on ENNs and BEA have to be performed before sufficient data for an in-depth hazard characterisation of these mycotoxins become available.
Collapse
Affiliation(s)
- Anne-Cathrin Behr
- Department Food Safety, BfR German Federal Institute for Risk Assessment, Max-Dohrn-Straße 8-10, 10589, Berlin, Germany.
| | | | - Amaya Azqueta
- Department of Pharmaceutical Sciences, UNAV University of Navarra, Pamplona, Spain
| | - Ana M Tavares
- INSA National Institute of Health Dr. Ricardo Jorge, Department of Human Genetics and ToxOmics, Centre for Toxicogenomics and Human Health, Nova Medical School/Faculdade de Ciências Médicas, Universida de Nova de Lisboa, Lisbon, Portugal
| | - Anastasia Spyropoulou
- Laboratory of Toxicological Control of Pesticides, Scientific Directorate of Pesticides' Control and Phytopharmacy, BPI Benaki Phytopathological Institute, 8 Stefanou Delta Street, Kifissia, Attica, Greece
| | - Anita Solhaug
- NVI Norwegian Veterinary Institute, PO box 64, 1431, Ås, Norway
| | - Ann-Karin Olsen
- Department of Pharmaceutical Sciences, UNAV University of Navarra, Pamplona, Spain
| | - Ariane Vettorazzi
- Department for Environmental Chemistry and Health Effects, NILU Climate and Environment Institute, PO Box 100, 2027, Kjeller, Norway
| | - Birgit Mertens
- Department of Chemical and Physical Health Risks, Sciensano, Brussels, Belgium
| | - Bojana Zegura
- NIB National Institute of Biology, Večna Pot 121, Ljubljana, Slovenia
| | - Camille Streel
- Department of Chemical and Physical Health Risks, Sciensano, Brussels, Belgium
| | - Dieynaba Ndiaye
- INRS Institut National de Recherche et de Sécurité Pour La Prévention Des Accidents du Travail Et Des Maladies Professionnelles, Rue du Morvan, CS 60027, 54519, Vandœuvre-Lès-Nancy Cedex, France
| | - Eliana Spilioti
- Laboratory of Toxicological Control of Pesticides, Scientific Directorate of Pesticides' Control and Phytopharmacy, BPI Benaki Phytopathological Institute, 8 Stefanou Delta Street, Kifissia, Attica, Greece
| | - Estelle Dubreil
- Fougères Laboratory, Toxicology of Contaminants Unit, ANSES French Agency for Food, Environmental and Occupational Health and Safety, 35306, Fougères Cedex, France
| | - Franca Maria Buratti
- Mechanisms, Biomarkers and Models Unit, Department Environmental and Health, ISS Istituto Superiore Di Sanità, Viale Regina Elena 299, 00161, Rome, Italy
| | - Francesco Crudo
- Faculty of Chemistry, Department of Food Chemistry and Toxicology, UNIVIE University of Vienna, Vienna, Austria
| | | | - Igor Snapkow
- Department of Chemical Toxicology, NIPH Norwegian Institute of Public Health, 0456, Oslo, Norway
| | - João Paulo Teixeira
- Department of Environmental Health, INSA National Institute of Health Dr. Ricardo Jorge, Porto, Portugal
- EPIUnit-Institute of Public Health, University of Porto and Laboratory for Integrative and Translational Research in Population Health (ITR), Porto, Portugal
| | - Josef D Rasinger
- IMR Norwegian Institute of Marine Research, Nordnes, PO box 1870, 5817, Bergen, Norway
| | - Julie Sanders
- Department of Chemical and Physical Health Risks, Sciensano, Brussels, Belgium
| | - Kyriaki Machera
- Laboratory of Toxicological Control of Pesticides, Scientific Directorate of Pesticides' Control and Phytopharmacy, BPI Benaki Phytopathological Institute, 8 Stefanou Delta Street, Kifissia, Attica, Greece
| | - Lada Ivanova
- NVI Norwegian Veterinary Institute, PO box 64, 1431, Ås, Norway
| | - Laurent Gaté
- INRS Institut National de Recherche et de Sécurité Pour La Prévention Des Accidents du Travail Et Des Maladies Professionnelles, Rue du Morvan, CS 60027, 54519, Vandœuvre-Lès-Nancy Cedex, France
| | - Ludovic Le Hegarat
- Fougères Laboratory, Toxicology of Contaminants Unit, ANSES French Agency for Food, Environmental and Occupational Health and Safety, 35306, Fougères Cedex, France
| | - Matjaz Novak
- NIB National Institute of Biology, Večna Pot 121, Ljubljana, Slovenia
| | - Nicola M Smith
- Department of Chemical Toxicology, NIPH Norwegian Institute of Public Health, 0456, Oslo, Norway
| | - Sabrina Tait
- Mechanisms, Biomarkers and Models Unit, Department Environmental and Health, ISS Istituto Superiore Di Sanità, Viale Regina Elena 299, 00161, Rome, Italy
| | - Sónia Fraga
- Department of Environmental Health, INSA National Institute of Health Dr. Ricardo Jorge, Porto, Portugal
- EPIUnit-Institute of Public Health, University of Porto and Laboratory for Integrative and Translational Research in Population Health (ITR), Porto, Portugal
| | - Sonja Hager
- Faculty of Chemistry, Department of Food Chemistry and Toxicology, UNIVIE University of Vienna, Vienna, Austria
| | - Doris Marko
- Faculty of Chemistry, Department of Food Chemistry and Toxicology, UNIVIE University of Vienna, Vienna, Austria
| | - Albert Braeuning
- Department Food Safety, BfR German Federal Institute for Risk Assessment, Max-Dohrn-Straße 8-10, 10589, Berlin, Germany
| | - Henriqueta Louro
- INSA National Institute of Health Dr. Ricardo Jorge, Department of Human Genetics and ToxOmics, Centre for Toxicogenomics and Human Health, Nova Medical School/Faculdade de Ciências Médicas, Universida de Nova de Lisboa, Lisbon, Portugal
| | - Maria João Silva
- INSA National Institute of Health Dr. Ricardo Jorge, Department of Human Genetics and ToxOmics, Centre for Toxicogenomics and Human Health, Nova Medical School/Faculdade de Ciências Médicas, Universida de Nova de Lisboa, Lisbon, Portugal
| | - Hubert Dirven
- Department of Chemical Toxicology, NIPH Norwegian Institute of Public Health, 0456, Oslo, Norway
| | - Jessica Dietrich
- Department Food Safety, BfR German Federal Institute for Risk Assessment, Max-Dohrn-Straße 8-10, 10589, Berlin, Germany
| |
Collapse
|
2
|
Ochieng PE, Kemboi DC, Okoth S, De Baere S, Cavalier E, Kang'ethe E, Doupovec B, Gathumbi J, Scippo ML, Antonissen G, Lindahl JF, Croubels S. Aflatoxins and fumonisins co-contamination effects on laying hens and use of mycotoxin detoxifiers as a mitigation strategy. Mycotoxin Res 2025; 41:63-75. [PMID: 39402398 PMCID: PMC11759475 DOI: 10.1007/s12550-024-00566-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 09/20/2024] [Accepted: 09/25/2024] [Indexed: 01/24/2025]
Abstract
This study examined the effects of fumonisins (FBs) and aflatoxin B1 (AFB1), alone or in combination, on the productivity and health of laying hens, as well as the transfer of aflatoxins (AFs) to chicken food products. The efficacy and safety of mycotoxin detoxifiers (bentonite and fumonisin esterase) to mitigate these effects were also assessed. Laying hens (400) were divided into 20 groups and fed a control, moderate (54.6 µg/kg feed) or high (546 µg/kg feed) AFB1 or FBs (7.9 mg/kg feed) added diets, either alone or in combination, with the mycotoxin detoxifiers added in selected diets. Productivity was evaluated by feed intake, egg weight, egg production, and feed conversion ratio whereas health was assessed by organ weights, blood biochemistry, and mortality. Aflatoxins residues in plasma, liver, muscle, and eggs were determined using UHPLC-MS/MS methods. A diet with AFB1 at a concentration of 546 µg/kg feed decreased egg production and various AFB1-contaminated diets increased serum uric acid levels and weights of liver, spleen, heart, and gizzard. Interactions between AFB1 and FBs significantly impacted spleen, heart, and gizzard weights as well as AFB1 residues in eggs. Maximum AFB1 residues of 0.64 µg/kg and aflatoxin M1 (below limits of quantification) were observed in liver, plasma, and eggs of layers fed diets with AFB1. The mycotoxin detoxifiers reduced effects of AFB1 and FBs on egg production, organ weights, blood biochemistry, and AFB1 residues in tissues. This study highlights the importance of mycotoxin detoxifiers as a mitigation strategy against mycotoxins in poultry production.
Collapse
Affiliation(s)
- Phillis E Ochieng
- Department of Food Sciences, Laboratory of Food Analysis, Faculty of Veterinary Medicine, University of Liège, 4000, Liège, Belgium
- Department of Pathobiology, Pharmacology and Zoological Medicine, Laboratory of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Ghent University, 9820, Merelbeke, Belgium
| | - David C Kemboi
- Department of Pathobiology, Pharmacology and Zoological Medicine, Laboratory of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Ghent University, 9820, Merelbeke, Belgium
- Department of Animal Science, Chuka University, P.O. Box 109-60400, 00625, Chuka, Kenya
| | - Sheila Okoth
- Department of Biology, Faculty of Science and Technology, University of Nairobi, P.O. Box 30197-00100, Nairobi, Kenya
| | - Siegrid De Baere
- Department of Pathobiology, Pharmacology and Zoological Medicine, Laboratory of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Ghent University, 9820, Merelbeke, Belgium
| | - Etienne Cavalier
- Department of Clinical Chemistry, Center for Interdisciplinary Research On Medicines (CIRM), University of Liège, University Hospital of Liège, 4000, Liège, Belgium
| | | | - Barbara Doupovec
- dsm-firmenich Animal Nutrition and Health R&D Center Tulln, 3430, Tulln, Austria
| | - James Gathumbi
- Department of Veterinary Pathology, Microbiology, and Parasitology, Faculty of Veterinary Medicine, University of Nairobi, P.O. Box 29053-00100, Nairobi, Kenya
| | - Marie-Louise Scippo
- Department of Food Sciences, Laboratory of Food Analysis, Faculty of Veterinary Medicine, University of Liège, 4000, Liège, Belgium
| | - Gunther Antonissen
- Department of Pathobiology, Pharmacology and Zoological Medicine, Laboratory of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Ghent University, 9820, Merelbeke, Belgium
- Chair Poultry Health Sciences, Faculty of Veterinary Medicine, Ghent University, 9820, Merelbeke, Belgium
| | - Johanna F Lindahl
- International Livestock Research Institute (ILRI), P.O. Box 30709-00100, Nairobi, Kenya.
- Department of Medical Biochemistry and Microbiology, Uppsala University, 751 05, Uppsala, Sweden.
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, 750 07, Uppsala, Sweden.
| | - Siska Croubels
- Department of Pathobiology, Pharmacology and Zoological Medicine, Laboratory of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Ghent University, 9820, Merelbeke, Belgium.
| |
Collapse
|
3
|
Nuhu AH, Dorleku WP, Blay B, Derban E, McArthur CO, Alobuia SE, Incoom A, Dontoh D, Ofosu IW, Oduro-Mensah D. Exposure to Aflatoxins and Ochratoxin A From the Consumption of Selected Staples and Fresh Cow Milk in the Wet and Dry Seasons in Ghana. Food Control 2025; 168:110968. [PMID: 39649521 PMCID: PMC11619758 DOI: 10.1016/j.foodcont.2024.110968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
Across sub-Saharan Africa, the heavy reliance on mycotoxin-susceptible staple foods means that populations in the region are particularly vulnerable to chronic mycotoxin exposure. This study assessed the exposure risk to ochratoxin A (OTA) and aflatoxins (AFs) from 18 samples of selected staple foods (maize, millet, groundnut) and 56 fresh cow milk samples collected from across Ghana. The foods were sampled simultaneously to maximise comparability, and at two timepoints in March/April (during the dry season) and July/August (during the rainy season) to assess the effects of duration of storage and seasonal conditions on the mycotoxin levels as measured by high-performance liquid chromatography. The margin of exposure (MOE) approach was used to assess the exposure risk from consumption of the sampled foods. Each of the sampled staples was contaminated with OTA (0.19-3.11 ng/g) and at least one AF (0.75-13.05 ng/g B1, ND-12.12 ng/g B2, 0.1-9.95 ng/g G1, ND-16.78 ng/g G2). Up to 67% had contamination above European Food Safety Authority (EFSA) maximum limits, and 50% were above Ghana Standards Authority (GSA) limits. The fresh cow milk samples were contaminated with AFM1 in the range of 0.05-1.49 ng/g, with 95% above EFSA limits and 36% above GSA limits. Aflatoxin contamination in the staples was high, particularly in July/August when the wet conditions may have adversely impacted the handling and storage of farm produce. Variation in AFM1 between the two sampling periods mirrored total aflatoxin in the staples, suggesting that even if dairy cattle were grazing in open pasture and not being rationed on stored feed, then there was a high environmental presence of aflatoxigenic fungi. The MOE estimates were ≤ 533.09, far below the safe cut-off of 10,000 for suspected carcinogenic compounds. The high mycotoxin levels indicate a priority risk to child nutrition which relies heavily on cereal mixes based on one or all the three sampled staples. The data from this study underscore the urgent need for interventions to better appreciate and address mycotoxin exposure for enhanced food security and public health in Ghana and across sub-Saharan Africa.
Collapse
Affiliation(s)
- Abdul Hamid Nuhu
- Department of Biochemistry, Cell, and Molecular Biology, College of Basic and Applied Sciences, University of Ghana, Legon, Accra, Ghana
- Drugs, Cosmetics, and Forensic Department, Ghana Standards Authority, Accra, Ghana
| | - Winfred-Peck Dorleku
- Department of Biochemistry, Cell, and Molecular Biology, College of Basic and Applied Sciences, University of Ghana, Legon, Accra, Ghana
| | - Beatrice Blay
- Department of Food Science and Technology, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Evans Derban
- West African Centre for Cell Biology of Infectious Pathogens, College of Basic and Applied Sciences, University of Ghana, Accra, Ghana
| | - Clara Owusuwah McArthur
- West African Centre for Cell Biology of Infectious Pathogens, College of Basic and Applied Sciences, University of Ghana, Accra, Ghana
| | - Simon Elikplim Alobuia
- West African Centre for Cell Biology of Infectious Pathogens, College of Basic and Applied Sciences, University of Ghana, Accra, Ghana
| | - Araba Incoom
- Histamine and Mycotoxins Laboratory, Ghana Standards Authority, Accra, Ghana
| | - Derry Dontoh
- Histamine and Mycotoxins Laboratory, Ghana Standards Authority, Accra, Ghana
| | - Isaac Williams Ofosu
- Department of Food Science and Technology, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Daniel Oduro-Mensah
- Department of Biochemistry, Cell, and Molecular Biology, College of Basic and Applied Sciences, University of Ghana, Legon, Accra, Ghana
- West African Centre for Cell Biology of Infectious Pathogens, College of Basic and Applied Sciences, University of Ghana, Accra, Ghana
| |
Collapse
|
4
|
Kappari L, Applegate TJ, Glenn AE, Bakre A, Shanmugasundaram R. Early Biomarkers for Detecting Subclinical Exposure to Fumonisin B1, Deoxynivalenol, and Zearalenone in Broiler Chickens. Toxins (Basel) 2024; 17:1. [PMID: 39852954 PMCID: PMC11769279 DOI: 10.3390/toxins17010001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/06/2024] [Accepted: 12/17/2024] [Indexed: 01/26/2025] Open
Abstract
Identifying biomarkers of mycotoxin effects in chickens will provide an opportunity for early intervention to reduce the impact of mycotoxicosis. This study aimed to identify whether serum enzyme concentrations, gut integrity, and liver miRNAs can be potential biomarkers for fumonisin B1 (FB1), deoxynivalenol (DON), and zearalenone (ZEA) toxicity in broiler birds as early as 14 days after exposure. A total of 720 male broiler chicks were distributed to six treatment groups: T1: control group (basal diet), T2 (2 FB1 + 2.5 DON + 0.9 ZEA), T3 (5 FB1 + 0.4 DON + 0.1 ZEA), T4 (9 FB1 + 3.5 DON + 0.7 ZEA), T5 (17 FB1 + 1.0 DON + 0.2 ZEA), and T6 (21 FB1 + 3.0 DON + 1.0 ZEA), all in mg/kg diet. On d14, there were no significant differences in the body weight gain (BWG) of mycotoxin treatment groups when compared to the control (p > 0.05), whereas on d21, T6 birds showed significantly reduced BWG compared to the control (p < 0.05). On d14, birds in T6 showed significant upregulation of liver miRNAs, gga-let-7a-5p (14.17-fold), gga-miR-9-5p (7.05-fold), gga-miR-217-5p (16.87-fold), gga-miR-133a-3p (7.41-fold), and gga-miR-215-5p (6.93-fold) (p < 0.05) and elevated serum fluorescein isothiocyanate-dextran (FITC-d) concentrations, aspartate aminotransferase (AST), and creatine kinase (CK) levels compared to the control (p < 0.05). On d21, T2 to T6 birds exhibited reduced serum phosphorus, glucose, and potassium, while total protein, FITC-d, AST, and CK levels increased compared to control (p < 0.05). These findings suggest that serum FITC-d, AST, CK, and liver miRNAs could serve as biomarkers for detecting mycotoxin exposure in broiler chickens.
Collapse
Affiliation(s)
- Laharika Kappari
- Department of Poultry Science, University of Georgia, Athens, GA 30602, USA
| | - Todd J. Applegate
- Department of Poultry Science, University of Georgia, Athens, GA 30602, USA
| | - Anthony E. Glenn
- Toxicology and Mycotoxin Research Unit, USDA-ARS, Athens, GA 30605, USA
| | - Abhijeet Bakre
- Exotic and Emerging Avian Viral Diseases Research, USDA-ARS, Athens, GA 30605, USA
| | | |
Collapse
|
5
|
Hadjebar S, Yekkour A, Djemouai N, Matmoura A, Gutierrez-Pozo M, Medina A, Meklat A, Verheecke-Vaessen C. Mycotoxin Accumulation in Dry Rot Potato Tubers from Algeria and Toxigenic Potential of Associated Isolates of Fusarium Genus. Curr Microbiol 2024; 81:320. [PMID: 39174841 DOI: 10.1007/s00284-024-03840-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 08/12/2024] [Indexed: 08/24/2024]
Abstract
The presence of different mycotoxins in 232 tuber samples exhibiting dry rot symptoms and their associated Fusarium strains from two production sites in Algeria was investigated. LC-MS/MS was used to simultaneously detect and quantify 14 mycotoxins, including trichothecenes and non-trichothecenes. A total of 49 tubers were contaminated with at least one mycotoxins, including T-2, HT-2, Diacetoxyscirpenol (DAS), 15-acetoxyscirpenol (15-AS) and Beauvericin (BEA). Positive samples from the Bouira region had a significantly higher level of toxin contamination compared to Ain Defla (56.34% and 5.59%, respectively). A total of 283 Fusarium strains were isolated: 155 from Bouira and 128 from Ain Defla. These strains were evaluated for their ability to produce the targeted mycotoxins. The results showed that 61.29% and 53.9% of strains originate from Bouira and Ain Defla regions were able to produce Nivalenol, Fusarenone-X, DAS, 15-AS, Neosolaniol, BEA and Zearalenone. The phylogenetic analysis of the conserved ribosomal internal transcribed spacer (ITS) sequences of 29 Fusarium strains, representative of the recorded mycotoxins profiles, was distributed into 5 Fusarium species complexes (SC): F. incarnatum-equiseti SC (FIESC), F. sambucinum SC (FSAMSC), F. oxysporum SC (FOSC), F. tricinctum SC (FTSC) and F. redolens SC (FRSC). This is the first study determining multiple occurrences of mycotoxins contamination associated to Fusarium dry rot of potato in Algeria and highlights fungal potential for producing trichothecene and non-trichothecens mycotoxins.
Collapse
Affiliation(s)
- Sihem Hadjebar
- Laboratoire de Biologie Des Systèmes Microbiens, École Normale Supérieure de Kouba, BP 92, Vieux-Kouba, 16308, Algiers, Algeria
- Laboratoire Des Biotechnologies, Environnement Et Santé (BES), Université Blida 1, Blida, Algeria
| | - Amine Yekkour
- Laboratoire de Biologie Des Systèmes Microbiens, École Normale Supérieure de Kouba, BP 92, Vieux-Kouba, 16308, Algiers, Algeria.
- Institut National de Recherche Agronomique d'Algérie, B.P. 37, Algiers, Algeria.
| | - Nadjette Djemouai
- Laboratoire de Biologie Des Systèmes Microbiens, École Normale Supérieure de Kouba, BP 92, Vieux-Kouba, 16308, Algiers, Algeria
- Departement de Biologie, Faculté Des Sciences de La Nature Et de La Vie Et Sciences de La Terre, Université de Ghardaia, BP 455, 47000, Ghardaïa, Algeria
| | - Amina Matmoura
- Laboratoire de Biologie Des Systèmes Microbiens, École Normale Supérieure de Kouba, BP 92, Vieux-Kouba, 16308, Algiers, Algeria
- Département de Biologie, Faculté Des Sciences de La Nature Et de La Vie, Université, Saâd Dahlab de Blida 1, B.P. 270, Route de Soumâa, 09000, Blida, Algeria
| | - Maria Gutierrez-Pozo
- Applied Mycology Group, Environment and AgriFood Theme, Cranfield University, Cranfield, Bedford, MK43 0AL, UK
| | - Angel Medina
- Applied Mycology Group, Environment and AgriFood Theme, Cranfield University, Cranfield, Bedford, MK43 0AL, UK
| | - Atika Meklat
- Laboratoire de Biologie Des Systèmes Microbiens, École Normale Supérieure de Kouba, BP 92, Vieux-Kouba, 16308, Algiers, Algeria
| | - Carol Verheecke-Vaessen
- Applied Mycology Group, Environment and AgriFood Theme, Cranfield University, Cranfield, Bedford, MK43 0AL, UK
| |
Collapse
|
6
|
Laouni C, Lara FJ, Messai A, Redouane-Salah S, Hernández-Mesa M, Gámiz-Gracia L, García-Campaña AM. Emerging mycotoxin occurrence in chicken feed and eggs from Algeria. Mycotoxin Res 2024; 40:447-456. [PMID: 38753281 PMCID: PMC11258080 DOI: 10.1007/s12550-024-00537-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 04/07/2024] [Accepted: 04/23/2024] [Indexed: 07/19/2024]
Abstract
Poultry farming has developed into one of Algeria's most productive industrial farming because of the growing demand for sources of protein among Algerian society. Laying hen feed consists mainly of cereals, which can be contaminated with molds and subsequently with their secondary metabolites known as mycotoxins. These later can pose a serious danger to the production and quality of eggs in the commercial layer industry. This work focuses on the detection of emerging mycotoxins, mainly enniatins (ENNs) and beauvericin (BEA), in poultry feed and eggs from different locations in Algeria. Two different QuEChERS-based extractions were established to extract ENNs and BEA from chicken feed and eggs. The determination of mycotoxin occurrence was achieved by a UHPLC-MS/MS method using 0.1% (v/v) formic acid in water and MeOH as mobile phase, an ESI interface operating in positive mode, and a triple quadrupole mass spectrometer operating in MRM for the detection. Matrix-matched calibration curves were carried out for both matrices, obtaining good linearity (R2 > 0.99). The method performance was assessed in terms of extraction recovery (from 87 to 107%), matrix effect (from - 47 to - 86%), precision (RSD < 15%), and limits of quantitation (≤ 1.1 µg/kg for feed and ≤ 0.8 µg/kg for eggs). The analysis of 10 chicken feed samples and 35 egg samples composed of a 10-egg pool each showed that ENN B1 was the most common mycotoxin (i.e., found in 9 feed samples) with contamination levels ranging from 3.6 to 41.5 µg/kg, while BEA was detected only in one feed sample (12 µg/kg). However, eggs were not found to be contaminated with any mycotoxin at the detection limit levels. Our findings indicate that the searched mycotoxins are present in traces in feed and absent in eggs. This can be explained by the application of a mycotoxin binder. However, this does not put a stop on the conduction of additional research and ultimately setting regulations to prevent the occurrence of emerging mycotoxins.
Collapse
Affiliation(s)
- Chahinez Laouni
- DEDSPAZA Laboratory, Department of Agronomical Sciences, Faculty of Exact Sciences and Natural and Life Sciences, University of Biskra, Biskra, Algeria
| | - Francisco J Lara
- Department of Analytical Chemistry, Faculty of Sciences, University of Granada, Granada, Spain
| | - Ahmed Messai
- PIARA Laboratory, Department of Agronomical Sciences, Faculty of Exact Sciences and Natural and Life Sciences, University of Biskra, Biskra, Algeria
| | - Sara Redouane-Salah
- PIARA Laboratory, Department of Agronomical Sciences, Faculty of Exact Sciences and Natural and Life Sciences, University of Biskra, Biskra, Algeria
| | - Maykel Hernández-Mesa
- Department of Analytical Chemistry, Faculty of Sciences, University of Granada, Granada, Spain
| | - Laura Gámiz-Gracia
- Department of Analytical Chemistry, Faculty of Sciences, University of Granada, Granada, Spain
| | - Ana M García-Campaña
- Department of Analytical Chemistry, Faculty of Sciences, University of Granada, Granada, Spain.
| |
Collapse
|
7
|
Wang Y, Jiang L, Zhang Y, Ran R, Meng X, Liu S. Research advances in the degradation of aflatoxin by lactic acid bacteria. J Venom Anim Toxins Incl Trop Dis 2023; 29:e20230029. [PMID: 37901116 PMCID: PMC10601132 DOI: 10.1590/1678-9199-jvatitd-2023-0029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 09/20/2023] [Indexed: 10/31/2023] Open
Abstract
Aflatoxins are toxic secondary metabolites that often contaminate food and animal feed, causing huge economic losses and serious health hazards. Aflatoxin contamination has become a major concern worldwide. Biological methods have been used to reduce aflatoxins in food and feed by inhibiting toxin production and detoxification. Among biological methods, lactic acid bacteria are of significant interest because of their safety, efficiency, and environmental friendliness. This study aimed to review the mechanisms by which lactic acid bacteria degrade aflatoxins and the factors that influence their degradation efficiency, including the action of the lactic acid bacteria themselves (cell wall adsorption) and the antifungal metabolites produced by the lactic acid bacteria. The current applications of lactic acid bacteria to food and feed were also reviewed. This comprehensive analysis provided insight into the binding mechanisms between lactic acid bacteria and aflatoxins, facilitating the practical applications of lactic acid bacteria to food and agriculture.
Collapse
Affiliation(s)
- Yuxi Wang
- Institute of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lishi Jiang
- Institute of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ying Zhang
- Institute of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ran Ran
- School of Light Industry and Materials, Chengdu Textile College, Chengdu, China
| | - Xiao Meng
- Institute of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shukun Liu
- Institute of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
8
|
Hosseini S, Brenig B, Winitchakorn S, Kanmanee C, Srinual O, Tapingkae W, Gatphayak K. Genetic assessment of the effect of red yeast ( Sporidiobolus pararoseus) as a feed additive on mycotoxin toxicity in laying hens. Front Microbiol 2023; 14:1254569. [PMID: 37744913 PMCID: PMC10512063 DOI: 10.3389/fmicb.2023.1254569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 08/21/2023] [Indexed: 09/26/2023] Open
Abstract
Toxic fungal species produce hazardous substances known as mycotoxins. Consumption of mycotoxin contaminated feed and food causes a variety of dangerous diseases and can even lead to death of animals and humans, raising global concerns for adverse health effects. To date, several strategies have been developed to counteract with mycotoxin contamination. Red yeast as a novel biological dietary agent is a promising strategy to eliminate mycotoxicity in living organisms. Poultry are most susceptible animals to mycotoxin contamination, as they are fed a mixture of grains and are at higher risk of co-exposure to multiple toxic fungal substances. Therefore, this study investigated the genetic mechanism underlying long-term feeding with red yeast supplementation in interaction with multiple mycotoxins using transcriptome profiling (RNA_Seq) in the liver of laying hens. The results showed a high number of significantly differentially expressed genes in liver of chicken fed with a diet contaminated with mycotoxins, whereas the number of Significantly expressed genes was considerably reduced when the diet was supplemented with red yeast. The expression of genes involved in the phase I (CYP1A1, CYP1A2) and phase II (GSTA2, GSTA3, MGST1) detoxification process was downregulated in animals fed with mycotoxins contaminated diet, indicating suppression of the detoxification mechanisms. However, genes involved in antioxidant defense (GSTO1), apoptosis process (DUSP8), and tumor suppressor (KIAA1324, FBXO47, NME6) were upregulated in mycotoxins-exposed animals, suggesting activation of the antioxidant defense in response to mycotoxicity. Similarly, none of the detoxification genes were upregulated in hens fed with red yeast supplemented diet. However, neither genes involved in antioxidant defense nor tumor suppressor genes were expressed in the animals exposed to the red yeast supplemented feed, suggesting decreases the adsorption of biologically active mycotoxins in the liver of laying hens. We conclude that red yeast can act as a mycotoxin binder to decrease the adsorption of mycotoxins in the liver of laying hens and can be used as an effective strategy in the poultry feed industry to eliminate the adverse effects of mycotoxins for animals and increase food safety for human consumers.
Collapse
Affiliation(s)
- Shahrbanou Hosseini
- Molecular Biology of Livestock and Molecular Diagnostics, Department of Animal Sciences, University of Goettingen, Göttingen, Germany
- Institute of Veterinary Medicine, University of Goettingen, Göttingen, Germany
| | - Bertram Brenig
- Molecular Biology of Livestock and Molecular Diagnostics, Department of Animal Sciences, University of Goettingen, Göttingen, Germany
- Institute of Veterinary Medicine, University of Goettingen, Göttingen, Germany
| | | | - Chanidapha Kanmanee
- Department of Animal and Aquatic Sciences, Chiang Mai University, Chiang Mai, Thailand
| | - Orranee Srinual
- Department of Animal and Aquatic Sciences, Chiang Mai University, Chiang Mai, Thailand
- Functional Feed Innovation Center, Faculty of Agriculture, Chiang Mai University, Chiang Mai, Thailand
| | - Wanaporn Tapingkae
- Department of Animal and Aquatic Sciences, Chiang Mai University, Chiang Mai, Thailand
- Functional Feed Innovation Center, Faculty of Agriculture, Chiang Mai University, Chiang Mai, Thailand
| | - Kesinee Gatphayak
- Department of Animal and Aquatic Sciences, Chiang Mai University, Chiang Mai, Thailand
- Functional Feed Innovation Center, Faculty of Agriculture, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
9
|
Huang M, Guo J, Jia Y, Liao C, He L, Li J, Wei Y, Chen S, Chen J, Shang K, Guo R, Ding K, Yu Z. A Bacillus subtilis Strain ZJ20 with AFB1 Detoxification Ability: A Comprehensive Analysis. BIOLOGY 2023; 12:1195. [PMID: 37759594 PMCID: PMC10525747 DOI: 10.3390/biology12091195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 08/28/2023] [Accepted: 08/29/2023] [Indexed: 09/29/2023]
Abstract
As a class I carcinogen, aflatoxin can cause serious damage to various tissues and organs through oxidative stress injuries. The liver, as the target organ of AFB1, is the most seriously damaged. Biological methods are commonly used to degrade AFB1. In our study, the aflatoxin B1-degrading strain ZJ20 was screened from AFB1-contaminated feed and soil, and the degradation of AFB1 by ZJ20 was investigated. The whole genome of strain ZJ20 was analyzed, revealing the genomic complexity of strain ZJ20. The 16S rRNA analysis of strain ZJ20 showed 100% identity to Bacillus subtilis IAM 12118. Through whole gene functional annotation, it was determined that ZJ20 has high antioxidant activity and enzymatic activity; more than 100 CAZymes and 11 gene clusters are involved in the production of secondary metabolites with antimicrobial properties. In addition, B. subtilis ZJ20 was predicted to contain a cluster of genes encoding AFB1-degrading enzymes, including chitinase, laccase, lactonase, and manganese oxidase. The comprehensive analysis of B. subtilis provides a theoretical basis for the subsequent development of the biological functions of ZJ20 and the combinatorial enzyme degradation of AFB1.
Collapse
Affiliation(s)
- Meixue Huang
- Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471023, China; (M.H.); (J.G.); (Y.J.); (C.L.); (L.H.); (J.L.); (Y.W.); (S.C.); (J.C.); (K.S.); (R.G.)
- Laboratory of Functional Microbiology and Animal Health, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471003, China
| | - Jing Guo
- Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471023, China; (M.H.); (J.G.); (Y.J.); (C.L.); (L.H.); (J.L.); (Y.W.); (S.C.); (J.C.); (K.S.); (R.G.)
- Laboratory of Functional Microbiology and Animal Health, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471003, China
| | - Yanyan Jia
- Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471023, China; (M.H.); (J.G.); (Y.J.); (C.L.); (L.H.); (J.L.); (Y.W.); (S.C.); (J.C.); (K.S.); (R.G.)
- Laboratory of Functional Microbiology and Animal Health, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471003, China
| | - Chengshui Liao
- Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471023, China; (M.H.); (J.G.); (Y.J.); (C.L.); (L.H.); (J.L.); (Y.W.); (S.C.); (J.C.); (K.S.); (R.G.)
- Laboratory of Functional Microbiology and Animal Health, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471003, China
| | - Lei He
- Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471023, China; (M.H.); (J.G.); (Y.J.); (C.L.); (L.H.); (J.L.); (Y.W.); (S.C.); (J.C.); (K.S.); (R.G.)
- Laboratory of Functional Microbiology and Animal Health, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471003, China
| | - Jing Li
- Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471023, China; (M.H.); (J.G.); (Y.J.); (C.L.); (L.H.); (J.L.); (Y.W.); (S.C.); (J.C.); (K.S.); (R.G.)
- Laboratory of Functional Microbiology and Animal Health, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471003, China
| | - Ying Wei
- Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471023, China; (M.H.); (J.G.); (Y.J.); (C.L.); (L.H.); (J.L.); (Y.W.); (S.C.); (J.C.); (K.S.); (R.G.)
- Laboratory of Functional Microbiology and Animal Health, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471003, China
| | - Songbiao Chen
- Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471023, China; (M.H.); (J.G.); (Y.J.); (C.L.); (L.H.); (J.L.); (Y.W.); (S.C.); (J.C.); (K.S.); (R.G.)
- Laboratory of Functional Microbiology and Animal Health, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471003, China
| | - Jian Chen
- Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471023, China; (M.H.); (J.G.); (Y.J.); (C.L.); (L.H.); (J.L.); (Y.W.); (S.C.); (J.C.); (K.S.); (R.G.)
- Laboratory of Functional Microbiology and Animal Health, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471003, China
| | - Ke Shang
- Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471023, China; (M.H.); (J.G.); (Y.J.); (C.L.); (L.H.); (J.L.); (Y.W.); (S.C.); (J.C.); (K.S.); (R.G.)
- Laboratory of Functional Microbiology and Animal Health, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471003, China
| | - Rongxian Guo
- Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471023, China; (M.H.); (J.G.); (Y.J.); (C.L.); (L.H.); (J.L.); (Y.W.); (S.C.); (J.C.); (K.S.); (R.G.)
- Laboratory of Functional Microbiology and Animal Health, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471003, China
| | - Ke Ding
- Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471023, China; (M.H.); (J.G.); (Y.J.); (C.L.); (L.H.); (J.L.); (Y.W.); (S.C.); (J.C.); (K.S.); (R.G.)
- Laboratory of Functional Microbiology and Animal Health, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471003, China
| | - Zuhua Yu
- Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471023, China; (M.H.); (J.G.); (Y.J.); (C.L.); (L.H.); (J.L.); (Y.W.); (S.C.); (J.C.); (K.S.); (R.G.)
- Laboratory of Functional Microbiology and Animal Health, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471003, China
| |
Collapse
|
10
|
Marlida Y, Nurmiati N, Husmaini H, Huda N, Anggraini L, Ardani LR. The potential of lactic acid bacteria isolated from ikan budu (fermented fish) to inhibit the growth of pathogenic fungi and detoxify aflatoxin B1. Vet World 2023; 16:1373-1379. [PMID: 37621548 PMCID: PMC10446719 DOI: 10.14202/vetworld.2023.1373-1379] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 05/23/2023] [Indexed: 08/26/2023] Open
Abstract
Background and Aim Market demand for safe feed and food supply and consumer preferences for safe and healthy products are increasing. Control measures to counter threats to the feed supply need to be implemented as early as possible to prevent economic losses. Mycotoxins produced by certain groups of fungi are a problem that can disrupt the feed supply or pose a threat to the health of animals and humans. Biological control to detoxify contaminated feed ingredients can be carried out on a large scale economically. For example, lactic acid bacteria (LAB) can act as biological agents for eliminating mycotoxins. This study aimed to clarify the value of screening LAB to inhibit Aspergillus flavus growth and detoxify aflatoxin B1 (AFB1). Materials and Methods In this study, using a completely randomized design with three replications, five isolates of LAB (LA.1, LA.6, LA.8, LA.12, and LA.22) along with their supernatants were tested qualitatively and quantitatively for their ability to counter mycotoxins using A. flavus and corn kernels. The isolates with the best activity were identified by sequencing 16S rDNA. Results The results showed that the five LAB isolates can inhibit the growth of A. flavus and detoxify AFB1. Among these isolates, LA.12 showed the best performance, followed by LA.22, LA.8, LA.6, and then LA.1. The sequencing results confirmed that LA.12 was Lactobacillus harbinensis strain 487. Conclusion All of the isolates in this study have the potential as biological agents for detoxifying AFB1, with isolate LA.12 appearing to be the most promising biodetoxification agent for feed (AFB1 in corn) based on its ability to inhibit pathogenic fungi.
Collapse
Affiliation(s)
- Yetti Marlida
- Department of Animal Nutrition, Faculty of Animal Science, Andalas University, Limau Manis Campus, Padang 25163, West Sumatra, Indonesia
| | - Nurmiati Nurmiati
- Department of Biology, Faculty of Mathematics and Natural Sciences, Andalas University, Padang City, West Sumatra 25175, Indonesia
| | - Husmaini Husmaini
- Department of Animal Production, Faculty of Animal Science, Andalas University, Limau Manis Campus, Padang 25163, West Sumatra, Indonesia
| | - Nurul Huda
- Faculty of Sustainable Agriculture, Universiti Malaysia Sabah, 90509, Sandakan, Sabah, Malaysia
| | - Lili Anggraini
- Department of Animal Nutrition, Faculty of Animal Science, Andalas University, Limau Manis Campus, Padang 25163, West Sumatra, Indonesia
| | - Laily Rinda Ardani
- Graduate Program of Animal Science, Andalas University, Limau Manis Campus, Padang 25163, West Sumatra, Indonesia
| |
Collapse
|
11
|
Song W, Wang Y, Huang T, Liu Y, Chen F, Chen Y, Jiang Y, Zhang C, Yang X. T-2 toxin metabolism and its hepatotoxicity: New insights on the molecular mechanism and detoxification. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 330:121784. [PMID: 37169237 DOI: 10.1016/j.envpol.2023.121784] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 05/04/2023] [Accepted: 05/05/2023] [Indexed: 05/13/2023]
Abstract
T-2 toxin, a type A trichothecene, is a secondary metabolite produced by Fusarium poae, Fusarium sporotrichioides, and Fusarium tricinctum. As the most toxic trichothecenes, T-2 toxin causes severe damage to multiple organs, especially to liver. However, the contamination of T-2 toxin covers a wide range of plants, including nuts, grains, fruits and herbs globally. And due to chemical stability of T-2 toxin, it is difficult to be completely removed from the food and feeds, which poses a great threat to human and animal health. Liver is the major detoxifying organ which also makes it the main target of T-2 toxin. After being absorbed by intestine, the first pass effect will reduce the level of T-2 toxin in blood indicating that liver is the main metabolic site of T-2 toxin in vivo. In this review, updated researches on the hepatotoxicity of T-2 toxin were summarized. The metabolic characteristic of T-2 toxin in vivo was introduced. The main hepatotoxic mechanisms of T-2 toxin are oxidative stress, mitochondrial damage, deoxyribonucleic acid (DNA) methylation, autophagy and apoptosis. Recent research of the main hepatotoxic mechanisms of T-2 toxin and the interactions between these mechanisms were summarized. The remission of the hepatotoxicity induced by T-2 toxin was also studied in this review followed by new findings on the detoxification of hepatotoxicity induced by T-2 toxin. The review aimed to offer a comprehensive view and proposes new perspectives in the field of hepatotoxicity induced by T-2 toxin.
Collapse
Affiliation(s)
- Wenxi Song
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, Henan, China
| | - Youshuang Wang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, Henan, China
| | - Tingyu Huang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, Henan, China
| | - Yu Liu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, Henan, China
| | - Fengjuan Chen
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, Henan, China
| | - Yunhe Chen
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, Henan, China
| | - Yibao Jiang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450002, Henan, China
| | - Cong Zhang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, Henan, China
| | - Xu Yang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, Henan, China.
| |
Collapse
|
12
|
Lu H, Yang P, Zhong M, Bilal M, Xu H, Zhang Q, Xu J, Liang N, Liu S, Zhao L, Zhao Y, Geng C. Isolation of a potential probiotic strain Bacillus amyloliquefaciensLPB-18 and identification of antimicrobial compounds responsible for inhibition of food-borne pathogens. Food Sci Nutr 2023; 11:2186-2196. [PMID: 37181301 PMCID: PMC10171509 DOI: 10.1002/fsn3.3094] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 09/07/2022] [Accepted: 09/25/2022] [Indexed: 12/15/2022] Open
Abstract
This study was carried out to screen a potential probiotic microbe with broad-spectrum antagonistic activity against food-borne pathogens and identify the antimicrobial compounds. Based on morphological and molecular analysis, a new Bacillus strain with the ability to produce effective antimicrobial agents was isolated from the breeding soil of earthworms and identified as having a close evolutionary footprint to Bacillus amyloliquefaciens. The antimicrobial substances produced by B. amyloliquefaciens show effective inhibition of Aspergillus flavus and Fusarium oxysporum in an agar diffusion assay. Antimicrobial agents were identified as a series of fengycin and its isoforms (fengycin A and fengycin B) after being submitted to RT-HPLC and MALDI-TOF MS analyses. To evaluate the probiotic activity of the B. amyloliquefaciens, antibiotic safety and viability of the isolated strain in a simulated gastrointestinal environment were carried out. The safety test result revealed that strain LPB-18 is susceptible to multiple common antibiotics. Moreover, acidic condition and bile salts assay were carried out, and the results revealed that it couble be a potential probiotic microbe B. amyloliquefaciens LPB-18 is good choice for biological strains in agricultural commodities and animal feedstuffs.
Collapse
Affiliation(s)
- Hedong Lu
- School of Life Science and Food EngineeringHuaiyin Institute of TechnologyHuaianChina
- National Engineering Research Center for Functional FoodJiangnan UniversityWuxiChina
| | - Panping Yang
- School of Life Science and Food EngineeringHuaiyin Institute of TechnologyHuaianChina
| | - Mengyuan Zhong
- School of Life Science and Food EngineeringHuaiyin Institute of TechnologyHuaianChina
| | - Muhammad Bilal
- School of Life Science and Food EngineeringHuaiyin Institute of TechnologyHuaianChina
| | - Hai Xu
- School of Life Science and Food EngineeringHuaiyin Institute of TechnologyHuaianChina
| | - Qihan Zhang
- School of Life Science and Food EngineeringHuaiyin Institute of TechnologyHuaianChina
| | - Jiangnan Xu
- School of Life Science and Food EngineeringHuaiyin Institute of TechnologyHuaianChina
| | - Naiguo Liang
- School of Life Science and Food EngineeringHuaiyin Institute of TechnologyHuaianChina
| | - Shuai Liu
- School of Life Science and Food EngineeringHuaiyin Institute of TechnologyHuaianChina
| | - Li Zhao
- School of Life Science and Food EngineeringHuaiyin Institute of TechnologyHuaianChina
| | - Yuping Zhao
- School of Life Science and Food EngineeringHuaiyin Institute of TechnologyHuaianChina
| | - Chengxin Geng
- School of Life Science and Food EngineeringHuaiyin Institute of TechnologyHuaianChina
| |
Collapse
|
13
|
Valenti I, Tini F, Sevarika M, Agazzi A, Beccari G, Bellezza I, Ederli L, Grottelli S, Pasquali M, Romani R, Saracchi M, Covarelli L. Impact of Enniatin and Deoxynivalenol Co-Occurrence on Plant, Microbial, Insect, Animal and Human Systems: Current Knowledge and Future Perspectives. Toxins (Basel) 2023; 15:271. [PMID: 37104209 PMCID: PMC10144843 DOI: 10.3390/toxins15040271] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 03/30/2023] [Accepted: 03/31/2023] [Indexed: 04/08/2023] Open
Abstract
Fusarium mycotoxins commonly contaminate agricultural products resulting in a serious threat to both animal and human health. The co-occurrence of different mycotoxins in the same cereal field is very common, so the risks as well as the functional and ecological effects of mycotoxins cannot always be predicted by focusing only on the effect of the single contaminants. Enniatins (ENNs) are among the most frequently detected emerging mycotoxins, while deoxynivalenol (DON) is probably the most common contaminant of cereal grains worldwide. The purpose of this review is to provide an overview of the simultaneous exposure to these mycotoxins, with emphasis on the combined effects in multiple organisms. Our literature analysis shows that just a few studies on ENN-DON toxicity are available, suggesting the complexity of mycotoxin interactions, which include synergistic, antagonistic, and additive effects. Both ENNs and DON modulate drug efflux transporters, therefore this specific ability deserves to be explored to better understand their complex biological role. Additionally, future studies should investigate the interaction mechanisms of mycotoxin co-occurrence on different model organisms, using concentrations closer to real exposures.
Collapse
Affiliation(s)
- Irene Valenti
- Department of Food, Environmental and Nutritional Sciences, University of Milan, 20133 Milan, Italy; (I.V.); (M.P.); (M.S.)
| | - Francesco Tini
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, 06121 Perugia, Italy; (M.S.); (G.B.); (L.E.); (R.R.); (L.C.)
| | - Milos Sevarika
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, 06121 Perugia, Italy; (M.S.); (G.B.); (L.E.); (R.R.); (L.C.)
| | - Alessandro Agazzi
- Department of Veterinary Medicine and Animal Sciences, University of Milan, 26900 Lodi, Italy;
| | - Giovanni Beccari
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, 06121 Perugia, Italy; (M.S.); (G.B.); (L.E.); (R.R.); (L.C.)
| | - Ilaria Bellezza
- Department of Medicine and Surgery, University of Perugia, 06132 Perugia, Italy; (I.B.); (S.G.)
| | - Luisa Ederli
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, 06121 Perugia, Italy; (M.S.); (G.B.); (L.E.); (R.R.); (L.C.)
| | - Silvia Grottelli
- Department of Medicine and Surgery, University of Perugia, 06132 Perugia, Italy; (I.B.); (S.G.)
| | - Matias Pasquali
- Department of Food, Environmental and Nutritional Sciences, University of Milan, 20133 Milan, Italy; (I.V.); (M.P.); (M.S.)
| | - Roberto Romani
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, 06121 Perugia, Italy; (M.S.); (G.B.); (L.E.); (R.R.); (L.C.)
| | - Marco Saracchi
- Department of Food, Environmental and Nutritional Sciences, University of Milan, 20133 Milan, Italy; (I.V.); (M.P.); (M.S.)
| | - Lorenzo Covarelli
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, 06121 Perugia, Italy; (M.S.); (G.B.); (L.E.); (R.R.); (L.C.)
| |
Collapse
|
14
|
Zhu F, Zhu L, Xu J, Wang Y, Wang Y. Effects of moldy corn on the performance, antioxidant capacity, immune function, metabolism and residues of mycotoxins in eggs, muscle, and edible viscera of laying hens. Poult Sci 2023; 102:102502. [PMID: 36739801 PMCID: PMC9932114 DOI: 10.1016/j.psj.2023.102502] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 01/06/2023] [Accepted: 01/10/2023] [Indexed: 01/15/2023] Open
Abstract
Mycotoxins, including aflatoxin B1 (AFB1), zearalenone (ZEN) and deoxynivalenol (DON), are common contaminants of moldy feeds. Mycotoxins can cause deleterious effects on the health of chickens and can be carried over in poultry food products. This study was conducted to investigate the effects of moldy corn (containing AFB1, ZEN, and DON) on the performance, health, and mycotoxin residues of laying hens. One hundred and eighty 400-day-old laying hens were divided into 4 treatments: basal diet (Control), basal diet containing 20% moldy corn (MC20), 40% moldy corn (MC40) and 60% moldy corn (MC60). At d 20, 40, and 60, the performance, oxidative stress, immune function, metabolism, and mycotoxin residues in eggs were determined. At d 60, mycotoxin residues in muscle and edible viscera were measured. Results showed the average daily feed intake (ADFI) and laying performance of laying hens were decreased with moldy corn treatments. All the moldy corn treatments also induced significant oxidative stress and immunosuppression, reflected by decreased antioxidase activities, contents of cytokines, immunoglobulins, and increased malonaldehyde level. Moreover, the activities of aspartate aminotransferase and alanine transaminase were increased by moldy corn treatments. The lipid metabolism was influenced in laying hens receiving moldy corn, reflected by lowered levels of total protein, high density lipoprotein cholesterol, low density lipoprotein cholesterol, total cholesterol, and increased total triglyceride as well as uric acid. The above impairments were aggravated with the increase of mycotoxin levels. Furthermore, AFB1 and ZEN residues were found in eggs, muscle, and edible viscera with moldy corn treatments, but the residues were below the maximum residue limits. In conclusion, moldy corn impaired the performance, antioxidant capacity, immune function, liver function, and metabolism of laying hens at d 20, 40, and 60. Moldy corn also led to AFB1 residue in eggs at d 20, 40, and 60, and led to both AFB1 and ZEN residues in eggs at days 40 and 60, and in muscle and edible viscera at d 60. The toxic effects and mycotoxin residues were elevated with the increase of moldy corn levels in feed.
Collapse
Affiliation(s)
- Fenghua Zhu
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, P.R. China
| | - Lianqin Zhu
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao 266109, P.R. China
| | - Jindong Xu
- College of Science and Information, Qingdao Agricultural University, Qingdao 266109, P.R. China
| | - Yuchang Wang
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao 266109, P.R. China
| | - Yang Wang
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, P.R. China.
| |
Collapse
|
15
|
Hamad GM, Mehany T, Simal-Gandara J, Abou-Alella S, Esua OJ, Abdel-Wahhab MA, Hafez EE. A review of recent innovative strategies for controlling mycotoxins in foods. Food Control 2023; 144:109350. [DOI: 10.1016/j.foodcont.2022.109350] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
16
|
De Baere S, Ochieng PE, Kemboi DC, Scippo ML, Okoth S, Lindahl JF, Gathumbi JK, Antonissen G, Croubels S. Development of High-Throughput Sample Preparation Procedures for the Quantitative Determination of Aflatoxins in Biological Matrices of Chickens and Cattle Using UHPLC-MS/MS. Toxins (Basel) 2023; 15:37. [PMID: 36668857 PMCID: PMC9866995 DOI: 10.3390/toxins15010037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/14/2022] [Accepted: 12/21/2022] [Indexed: 01/05/2023] Open
Abstract
Aflatoxins (AFs) frequently contaminate food and animal feeds, especially in (sub) tropical countries. If animals consume contaminated feeds, AFs (mainly aflatoxin B1 (AFB1), B2 (AFB2), G1 (AFG1), G2 (AFG2) and their major metabolites aflatoxin M1 (AFM1) and M2 (AFM2)) can be transferred to edible tissues and products, such as eggs, liver and muscle tissue and milk, which ultimately can reach the human food chain. Currently, the European Union has established a maximum level for AFM1 in milk (0.05 µg kg-1). Dietary adsorbents, such as bentonite clay, have been used to reduce AFs exposure in animal husbandry and carry over to edible tissues and products. To investigate the efficacy of adding bentonite clay to animal diets in reducing the concentration of AFB1, AFB2, AFG1, AFG2, and the metabolites AFM1 and AFM2 in animal-derived foods (chicken muscle and liver, eggs, and cattle milk), chicken and cattle plasma and cattle ruminal fluid, a sensitive and selective ultra-high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) method has been developed. High-throughput sample preparation procedures were optimized, allowing the analysis of 96 samples per analytical batch and consisted of a liquid extraction using 1% formic acid in acetonitrile, followed by a further clean-up using QuEChERS (muscle tissue), QuEChERS in combination with Oasis® Ostro (liver tissue), Oasis® Ostro (egg, plasma), and Oasis® PRiME HLB (milk, ruminal fluid). The different procedures were validated in accordance with European guidelines. As a proof-of-concept, the final methods were used to successfully determine AFs concentrations in chicken and cattle samples collected during feeding trials for efficacy and safety evaluation of mycotoxin detoxifiers to protect against AFs as well as their carry-over to animal products.
Collapse
Affiliation(s)
- Siegrid De Baere
- Laboratory of Pharmacology and Toxicology, Department of Pathobiology, Pharmacology and Zoological Medicine, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| | - Phillis E. Ochieng
- Laboratory of Pharmacology and Toxicology, Department of Pathobiology, Pharmacology and Zoological Medicine, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
- Laboratory of Food Analysis, FARAH—Veterinary Public Health, University of Liège, Avenue de Cureghem 10, 4000 Liège, Belgium
| | - David C. Kemboi
- Laboratory of Pharmacology and Toxicology, Department of Pathobiology, Pharmacology and Zoological Medicine, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
- Department of Veterinary Pathology, Microbiology, and Parasitology, Faculty of Veterinary Medicine, University of Nairobi, P.O. Box 29053, Nairobi 00100, Kenya
- Department of Animal Sciences, Chuka University, P.O. Box 109-60400, Chuka 00625, Kenya
| | - Marie-Louise Scippo
- Laboratory of Food Analysis, FARAH—Veterinary Public Health, University of Liège, Avenue de Cureghem 10, 4000 Liège, Belgium
| | - Sheila Okoth
- Department of Biology, Faculty of Science and Technology, University of Nairobi, P.O. Box 30197, Nairobi 00100, Kenya
| | - Johanna F. Lindahl
- International Livestock Research Institute (ILRI), P.O. Box 30709, Nairobi 00100, Kenya
- Department of Medical Biochemistry and Microbiology, Uppsala University, SE-751 05 Uppsala, Sweden
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, SE-750 07 Uppsala, Sweden
| | - James K. Gathumbi
- Department of Veterinary Pathology, Microbiology, and Parasitology, Faculty of Veterinary Medicine, University of Nairobi, P.O. Box 29053, Nairobi 00100, Kenya
| | - Gunther Antonissen
- Laboratory of Pharmacology and Toxicology, Department of Pathobiology, Pharmacology and Zoological Medicine, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
- Chair Poultry Health Sciences, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| | - Siska Croubels
- Laboratory of Pharmacology and Toxicology, Department of Pathobiology, Pharmacology and Zoological Medicine, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| |
Collapse
|
17
|
Osaili TM, Al-Abboodi AR, Awawdeh MAL, Jbour SAM. Assessment of mycotoxins (deoxynivalenol, zearalenone, aflatoxin B 1 and fumonisin B 1) in hen's eggs in Jordan. Heliyon 2022; 8:e11017. [PMID: 36325142 PMCID: PMC9618984 DOI: 10.1016/j.heliyon.2022.e11017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 06/03/2022] [Accepted: 10/05/2022] [Indexed: 11/06/2022] Open
Abstract
The present study was carried out to evaluate the prevalence of mycotoxins (Deoxynivalenol (DON), Zearalenone (ZEA), Aflatoxin B1 (AFB1) and Fumonisin B1 (FB1)) in local hen's table eggs (white and yolk) as well as their stability upon refrigeration. Two hundred and fifty of fresh table eggs samples collected from Jordan governorates were analyzed using Liquid Chromatography- Mass Spectrophotometry (LC– MS/MS) More than half (67%) of the tested samples were positive for mycotoxins. The mean concentration of AFB1, FB1 and ZEA was 0.5 ± 0.4, 0.5 ± 0.2 and 3.2 ± 1.5 μg/kg, respectively. The overall prevalence of AFB1, ZEA, FB1 was 56.8, 16.0 and 7.6%, respectively. DON was not found in any of the samples. The highest prevalence was observed in Amman (85.7%) followed by Mafraq (78.6%), Karak (75.0%) and Zarqa'a (66.6%). None of the investigated mycotoxins were detected in egg whites. However, the prevalence of AFB1, ZEA, FB1 in egg yolk was 21.3, 16 and 7.6%, respectively. Refrigeration up to 4 weeks did not decrease the mycotoxin concentration significantly. Mycotoxin concentration in all investigated samples in this study were well below both the International and Jordanian acceptable limits. However, continuous exposure may lead to bioaccumulation over a long term and pose a threat to health.
Collapse
Affiliation(s)
- Tareq M. Osaili
- Department of Clinical Nutrition and Dietetics, College of Health Sciences, University of, Sharjah, P. O. Box 27272 Sharjah, United Arab Emirates
- Department of Nutrition and Food Technology, Faculty of Agriculture, Jordan University of Science and Technology, P.O. Box 3030, Irbid 22110, Jordan
- Corresponding author.
| | - Akram R. Al-Abboodi
- Department of Pathology and Public Health, Faculty of Veterinary Medicine, Jordan University of Science and Technology, P.O. Box 3030, Irbid 22110, Jordan
| | - Mofleh AL. Awawdeh
- Department of Pathology and Public Health, Faculty of Veterinary Medicine, Jordan University of Science and Technology, P.O. Box 3030, Irbid 22110, Jordan
| | - Samah Aref M.AL. Jbour
- Department of Pathology and Public Health, Faculty of Veterinary Medicine, Jordan University of Science and Technology, P.O. Box 3030, Irbid 22110, Jordan
| |
Collapse
|
18
|
Jing S, Liu C, Zheng J, Dong Z, Guo N. Toxicity of zearalenone and its nutritional intervention by natural products. Food Funct 2022; 13:10374-10400. [PMID: 36165278 DOI: 10.1039/d2fo01545e] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Zearalenone (ZEN) is a toxic secondary metabolite mainly produced by fungi of the genus Fusarium, and is often present in various food and feed ingredients such as corn and wheat. The structure of ZEN is similar to that of natural estrogen, and it can bind to estrogen receptors and has estrogenic activity. Therefore, it can cause endocrine-disrupting effects and promote the proliferation of estrogen receptor-positive cell lines. In addition, ZEN can cause oxidative damage, endoplasmic reticulum stress, apoptosis, and other hazards, resulting in systemic toxic effects, including reproductive toxicity, hepatotoxicity, and immunotoxicity. In the past few decades, researchers have tried many ways to remove ZEN from food and feed, but it is still a challenge to eliminate it. In recent years, natural compounds have become of interest for their excellent protective effects on human health from food contaminants. Researchers have discovered that natural compounds often used as dietary supplements can effectively alleviate ZEN-induced systemic toxic effects. Most of the compounds mitigate ZEN-induced toxicity through antioxidant effects. In this article, the contamination of food and feed by ZEN and the various toxic effects and mechanisms of ZEN are reviewed, as well as the mitigation effects of natural compounds on ZEN-induced toxicity.
Collapse
Affiliation(s)
- Siyuan Jing
- College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| | - Chunmei Liu
- College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| | - Jian Zheng
- College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| | - Zhijian Dong
- College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| | - Na Guo
- College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| |
Collapse
|
19
|
Shi J, Wang Y, Xu W, Cai G, Zou H, Yuan Y, Gu J, Liu Z, Bian J. Role of Nrf2 Nucleus Translocation in Beauvericin-Induced Cell Damage in Rat Hepatocytes. Toxins (Basel) 2022; 14:toxins14060367. [PMID: 35737028 PMCID: PMC9229947 DOI: 10.3390/toxins14060367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 05/22/2022] [Accepted: 05/23/2022] [Indexed: 11/29/2022] Open
Abstract
Beauvericin (BEA), a food-borne mycotoxin metabolite derived from the fungus Beauveria Bassiana, is proven to exhibit high hepatotoxicity. However, the molecular mechanism underlying BEA-induced liver damage is not fully understood. Herein, the effect of Nrf2 nuclear translocation-induced by BEA in hepatocytes was investigated. CCK8 solution was used to determine the appropriate concentrations of BEA (0, 1, 1.5 and 2 μmol/L), and BRL3A cells were then exposed to different concentrations of BEA for 12 h. Our results reveal that BEA exposure is associated with high cytotoxicity, lowered cell viability, damaged cellular morphology, and increased apoptosis rate. BEA could lead to oxidative damage through the overproduction of ROS and unbalanced redox, trigger the activation of Nrf2 signaling pathway and Nrf2 nuclear translocation for transcriptional activation of downstream antioxidative genes. Additionally, BEA treatment upregulated the expression of autophagy-related proteins (LC3, p62, Beclin1, and ATG5) indicating a correlation between Nrf2 activation and autophagy, which warrants further studies. Furthermore, ML385, an Nrf2 inhibitor, partially ameliorated BEA-induced cell injury while CDDO, an Nrf2 activator, aggravated liver damage. The present study emphasizes the role of Nrf2 nuclear translocation in BEA-induced oxidative stress associated with the hepatotoxic nature of BEA.
Collapse
Affiliation(s)
- Jiabin Shi
- College of Veterinary Medicine, Yangzhou University, 12 Wenhui East Road, Yangzhou 225009, China; (J.S.); (Y.W.); (W.X.); (G.C.); (H.Z.); (Y.Y.); (J.G.); (Z.L.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Yaling Wang
- College of Veterinary Medicine, Yangzhou University, 12 Wenhui East Road, Yangzhou 225009, China; (J.S.); (Y.W.); (W.X.); (G.C.); (H.Z.); (Y.Y.); (J.G.); (Z.L.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
| | - Wenlin Xu
- College of Veterinary Medicine, Yangzhou University, 12 Wenhui East Road, Yangzhou 225009, China; (J.S.); (Y.W.); (W.X.); (G.C.); (H.Z.); (Y.Y.); (J.G.); (Z.L.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
| | - Guodong Cai
- College of Veterinary Medicine, Yangzhou University, 12 Wenhui East Road, Yangzhou 225009, China; (J.S.); (Y.W.); (W.X.); (G.C.); (H.Z.); (Y.Y.); (J.G.); (Z.L.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
| | - Hui Zou
- College of Veterinary Medicine, Yangzhou University, 12 Wenhui East Road, Yangzhou 225009, China; (J.S.); (Y.W.); (W.X.); (G.C.); (H.Z.); (Y.Y.); (J.G.); (Z.L.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
| | - Yan Yuan
- College of Veterinary Medicine, Yangzhou University, 12 Wenhui East Road, Yangzhou 225009, China; (J.S.); (Y.W.); (W.X.); (G.C.); (H.Z.); (Y.Y.); (J.G.); (Z.L.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
| | - Jianhong Gu
- College of Veterinary Medicine, Yangzhou University, 12 Wenhui East Road, Yangzhou 225009, China; (J.S.); (Y.W.); (W.X.); (G.C.); (H.Z.); (Y.Y.); (J.G.); (Z.L.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
| | - Zongping Liu
- College of Veterinary Medicine, Yangzhou University, 12 Wenhui East Road, Yangzhou 225009, China; (J.S.); (Y.W.); (W.X.); (G.C.); (H.Z.); (Y.Y.); (J.G.); (Z.L.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Jianchun Bian
- College of Veterinary Medicine, Yangzhou University, 12 Wenhui East Road, Yangzhou 225009, China; (J.S.); (Y.W.); (W.X.); (G.C.); (H.Z.); (Y.Y.); (J.G.); (Z.L.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
- Correspondence:
| |
Collapse
|
20
|
Chiminelli I, Spicer LJ, Maylem ERS, Caloni F. Emerging mycotoxins and reproductive effects in animals: A short review. J Appl Toxicol 2022; 42:1901-1909. [PMID: 35229323 DOI: 10.1002/jat.4311] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 02/19/2022] [Accepted: 02/23/2022] [Indexed: 11/09/2022]
Abstract
Emerging Fusarium mycotoxins beauvericin (BEA), enniatins (ENNs) and moniliformin (MON) are gaining increasing interest due to their wide presence especially in cereals and grain-based products. In vitro and in vivo studies indicate that Fusarium mycotoxins can be implicated in reproductive disorders in animals. Of these mycotoxins BEA may affect reproductive functions, impairing the development of oocytes in pigs and sheep. Studies show dramatic inhibitory effects of BEA and ENNA on bovine granulosa cell steroidogenesis. ENNs also inhibit boar sperm motility and cause detrimental effects on embryos in mice and pigs. Although little data are reported on reproductive effects of MON, in vitro studies show inhibitory effects of MON on Chinese hamster ovary cells. The present review aims to summarize the reproductive toxicological effects of emerging Fusarium mycotoxins BEA, ENNs and MON on embryo development, ovarian function, and testicular function of animals. In vitro and in vivo toxicological data are reported although additional studies are needed for proper risk assessment.
Collapse
Affiliation(s)
- I Chiminelli
- Department of Environmental Science and Policy (ESP), Università degli Studi di Milano, Milan, Italy
| | - L J Spicer
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK, USA
| | | | - F Caloni
- Department of Environmental Science and Policy (ESP), Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
21
|
Simultaneous Determination of 23 Mycotoxins in Broiler Tissues by Solid Phase Extraction UHPLC-Q/Orbitrap High Resolution Mass Spectrometry. SEPARATIONS 2021. [DOI: 10.3390/separations8120236] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Mycotoxins are a type of toxins harmful for not only animal but also human health. Cooccurrence of multi-mycotoxins could occur for food infected by several molds, producing multi-mycotoxins. It is necessary to develop corresponding determination methods, among which current mass spectrometry (MS) dominates. Currently, the accurate identification and quantitation of mycotoxins in complex matrices by MS with low resolution is still a challenge since false-positive results are typically obtained. Here, a method for the simultaneous determination of 23 mycotoxins in broiler tissues using ultra-high performance liquid chromatography-quadrupole/orbitrap HRMS was established. After the extraction by acetonitrile-water-formic acid (80:18:2, v/v/v), the purification by multifunctional purification solid phase extraction cartridges and the chromatographic separation on a C18 column, representative mycotoxins were determined by HRMS in full scan/data-dependent MS/MS acquisition mode. The quantitation was based on the external standard method. An MS/MS database of 23 mycotoxins was established to achieve qualitative screening and simultaneous quantification. Mycotoxins had a good linear relationship within a certain concentration range with correlation coefficients (r2) larger than 0.991 as well as the limit of quantitation of 1.80–300 μg/kg. The average recoveries at three different levels of low, medium and high fortification were 61–111% with relative standard deviations less than 13.5%. The method was fast, accurate, and suitable for the precise qualification of multiple mycotoxins in broiler tissues. 15 μg/kg zearalenone (ZEN) was detected in one liver sample among 30 samples from markets including chicken breast meat, liver, and gizzards. The result illustrated that the pollution of ZEN should not be neglected considering its harmful effect on the target organ of liver.
Collapse
|
22
|
Tolosa J, Rodríguez-Carrasco Y, Ruiz MJ, Vila-Donat P. Multi-mycotoxin occurrence in feed, metabolism and carry-over to animal-derived food products: A review. Food Chem Toxicol 2021; 158:112661. [PMID: 34762978 DOI: 10.1016/j.fct.2021.112661] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 10/08/2021] [Accepted: 11/03/2021] [Indexed: 11/16/2022]
Abstract
The world requests for raw materials used in animal feed has been steadily rising in the last years driven by higher demands for livestock production. Mycotoxins are frequent toxic metabolites present in these raw materials. The exposure of farm animals to mycotoxins could result in undesirable residues in animal-derived food products. Thus, the potential ingestion of edible animal products (milk, meat and fish) contaminated with mycotoxins constitutes a public health concern, since they enter the food chain and may cause adverse effects upon human health. The present review summarizes the state-of-the-art on the occurrence of mycotoxins in feed, their metabolism and carry-over into animal source foodstuffs, focusing particularly on the last decade. Maximum levels (MLs) for various mycotoxins have been established for a number of raw feed materials and animal food products. Such values are sometimes exceeded, however. Aflatoxins (AFs), fumonisins (FBs), ochratoxin A (OTA), trichothecenes (TCs) and zearalenone (ZEN) are the most prevalent mycotoxins in animal feed, with aflatoxin M1 (AFM1) predominating in milk and dairy products, and OTA in meat by-products. The co-occurrence of mycotoxins in feed raw materials tends to be the rule rather than the exception, and the carry-over of mycotoxins from feed to animal source foods is more than proven.
Collapse
Affiliation(s)
- J Tolosa
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Av. Vicent Andrés Estellés s/n, Valencia, 46100, Spain
| | - Y Rodríguez-Carrasco
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Av. Vicent Andrés Estellés s/n, Valencia, 46100, Spain
| | - M J Ruiz
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Av. Vicent Andrés Estellés s/n, Valencia, 46100, Spain
| | - P Vila-Donat
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Av. Vicent Andrés Estellés s/n, Valencia, 46100, Spain.
| |
Collapse
|
23
|
Ochieng PE, Scippo ML, Kemboi DC, Croubels S, Okoth S, Kang’ethe EK, Doupovec B, Gathumbi JK, Lindahl JF, Antonissen G. Mycotoxins in Poultry Feed and Feed Ingredients from Sub-Saharan Africa and Their Impact on the Production of Broiler and Layer Chickens: A Review. Toxins (Basel) 2021; 13:633. [PMID: 34564637 PMCID: PMC8473361 DOI: 10.3390/toxins13090633] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 08/30/2021] [Accepted: 09/03/2021] [Indexed: 11/17/2022] Open
Abstract
The poultry industry in sub-Saharan Africa (SSA) is faced with feed insecurity, associated with high cost of feeds, and feed safety, associated with locally produced feeds often contaminated with mycotoxins. Mycotoxins, including aflatoxins (AFs), fumonisins (FBs), trichothecenes, and zearalenone (ZEN), are common contaminants of poultry feeds and feed ingredients from SSA. These mycotoxins cause deleterious effects on the health and productivity of chickens and can also be present in poultry food products, thereby posing a health hazard to human consumers of these products. This review summarizes studies of major mycotoxins in poultry feeds, feed ingredients, and poultry food products from SSA as well as aflatoxicosis outbreaks. Additionally reviewed are the worldwide regulation of mycotoxins in poultry feeds, the impact of major mycotoxins in the production of chickens, and the postharvest use of mycotoxin detoxifiers. In most studies, AFs are most commonly quantified, and levels above the European Union regulatory limits of 20 μg/kg are reported. Trichothecenes, FBs, ZEN, and OTA are also reported but are less frequently analyzed. Co-occurrences of mycotoxins, especially AFs and FBs, are reported in some studies. The effects of AFs on chickens' health and productivity, carryover to their products, as well as use of mycotoxin binders are reported in few studies conducted in SSA. More research should therefore be conducted in SSA to evaluate occurrences, toxicological effects, and mitigation strategies to prevent the toxic effects of mycotoxins.
Collapse
Affiliation(s)
- Phillis E. Ochieng
- Laboratory of Food Analysis, FARAH-Veterinary Public Health, University of Liège, Avenue de Cureghem 10, 4000 Liège, Belgium; (P.E.O.); (M.-L.S.)
- Department of Pharmacology, Toxicology and Biochemistry, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium; (D.C.K.); (S.C.)
| | - Marie-Louise Scippo
- Laboratory of Food Analysis, FARAH-Veterinary Public Health, University of Liège, Avenue de Cureghem 10, 4000 Liège, Belgium; (P.E.O.); (M.-L.S.)
| | - David C. Kemboi
- Department of Pharmacology, Toxicology and Biochemistry, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium; (D.C.K.); (S.C.)
- Department of Pathology, Microbiology and Parasitology, Faculty of Veterinary Medicine, University of Nairobi, P.O. Box 29053, Nairobi 00100, Kenya;
- Department of Animal Science, Chuka University, P.O. Box 109-00625, Chuka 00625, Kenya
| | - Siska Croubels
- Department of Pharmacology, Toxicology and Biochemistry, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium; (D.C.K.); (S.C.)
| | - Sheila Okoth
- School of Biological Sciences, University of Nairobi, P.O. Box 30197, Nairobi 00100, Kenya;
| | | | | | - James K. Gathumbi
- Department of Pathology, Microbiology and Parasitology, Faculty of Veterinary Medicine, University of Nairobi, P.O. Box 29053, Nairobi 00100, Kenya;
| | - Johanna F. Lindahl
- Department of Biosciences, International Livestock Research Institute (ILRI), P.O. Box 30709, Nairobi 00100, Kenya;
- Department of Medical Biochemistry and Microbiology, Uppsala University, P.O. Box 582, 751 23 Uppsala, Sweden
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, P.O Box 7054, 750 07 Uppsala, Sweden
| | - Gunther Antonissen
- Department of Pharmacology, Toxicology and Biochemistry, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium; (D.C.K.); (S.C.)
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| |
Collapse
|
24
|
Nešić K, Habschied K, Mastanjević K. Possibilities for the Biological Control of Mycotoxins in Food and Feed. Toxins (Basel) 2021; 13:198. [PMID: 33801997 PMCID: PMC8001018 DOI: 10.3390/toxins13030198] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/04/2021] [Accepted: 03/07/2021] [Indexed: 12/14/2022] Open
Abstract
Seeking useful biological agents for mycotoxin detoxification has achieved success in the last twenty years thanks to the participation of many multidisciplinary teams. We have recently witnessed discoveries in the fields of bacterial genetics (inclusive of next-generation sequencing), protein encoding, and bioinformatics that have helped to shape the latest perception of how microorganisms/mycotoxins/environmental factors intertwine and interact, so the road is opened for new breakthroughs. Analysis of literature data related to the biological control of mycotoxins indicates the ability of yeast, bacteria, fungi and enzymes to degrade or adsorb mycotoxins, which increases the safety and quality of susceptible crops, animal feed and, ultimately, food of animal origin (milk, meat and eggs) by preventing the presence of residues. Microbial detoxification (transformation and adsorption) is becoming a trustworthy strategy that leaves no or less toxic compounds and contributes to food security. This review summarizes the data and highlights the importance and prospects of these methods.
Collapse
Affiliation(s)
- Ksenija Nešić
- Institute of Veterinary Medicine of Serbia, Food and Feed Department, Autoput 3, 11070 Beograd, Serbia
| | - Kristina Habschied
- Faculty of Food Technology Osijek, Josip Juraj Strossmayer University of Osijek, F. Kuhača 20, 31000 Osijek, Croatia;
| | - Krešimir Mastanjević
- Faculty of Food Technology Osijek, Josip Juraj Strossmayer University of Osijek, F. Kuhača 20, 31000 Osijek, Croatia;
| |
Collapse
|