1
|
Li S, Liu J, Yang Q, Lyu S, Han Q, Fu M, Du Z, Liu X, Zhang T. Multi-omics analysis reveals the anti-fatigue mechanism of BCAA-enriched egg white peptides: the role of the gut-muscle axis. Food Funct 2025; 16:1683-1695. [PMID: 39871582 DOI: 10.1039/d4fo04220d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2025]
Abstract
Bioactive peptides rich in branched-chain amino acids (BCAAs) are an effective way to alleviate fatigue conditions, but the deep mechanism remains unclear. This study investigated the anti-fatigue effect of branched-chain amino acid-enriched egg white peptides (BEWPs) through the gut-muscle axis by gut bacteria and untargeted metabolomic analyses. The results demonstrated that BEWPs enhanced exercise endurance and strength by also promoting gastrocnemius development in mice. Furthermore, there was a reduction in oxidative stress, inflammatory response, and the accumulation of unexpected metabolites generated under fatigue conditions. The intake of BEWPs increased the abundances of Lactobacillus, Akkermansia, and unclassified_f_Lachnospiraceae, while decreasing the abundance of Bacteroides. BEWPs also regulated the levels of key metabolites in mouse muscles, including L-glutamic acid by arginine biosynthesis and bile secretion pathways. Notably, Spearman's correlation analysis indicated that there was a significant correlation between these altered metabolites, microbial populations, and indicators of fatigue. In summary, our research demonstrated that BEWPs alleviated fatigue through the gut-muscle axis, which provided new insights into fatigue management and prevention.
Collapse
Affiliation(s)
- Shengrao Li
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, Jilin University, Changchun, 130062, People's Republic of China.
- College of Food Science and Engineering, Jilin University, Changchun, 130062, People's Republic of China
| | - Jingbo Liu
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, Jilin University, Changchun, 130062, People's Republic of China.
- College of Food Science and Engineering, Jilin University, Changchun, 130062, People's Republic of China
| | - Qi Yang
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, Jilin University, Changchun, 130062, People's Republic of China.
- College of Food Science and Engineering, Jilin University, Changchun, 130062, People's Republic of China
| | - Siwen Lyu
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, Jilin University, Changchun, 130062, People's Republic of China.
- College of Food Science and Engineering, Jilin University, Changchun, 130062, People's Republic of China
| | - Qingwen Han
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, Jilin University, Changchun, 130062, People's Republic of China.
- College of Food Science and Engineering, Jilin University, Changchun, 130062, People's Republic of China
| | - Menghan Fu
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, Jilin University, Changchun, 130062, People's Republic of China.
- College of Food Science and Engineering, Jilin University, Changchun, 130062, People's Republic of China
| | - Zhiyang Du
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, Jilin University, Changchun, 130062, People's Republic of China.
- College of Food Science and Engineering, Jilin University, Changchun, 130062, People's Republic of China
| | - Xuanting Liu
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, Jilin University, Changchun, 130062, People's Republic of China.
- College of Food Science and Engineering, Jilin University, Changchun, 130062, People's Republic of China
| | - Ting Zhang
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, Jilin University, Changchun, 130062, People's Republic of China.
- College of Food Science and Engineering, Jilin University, Changchun, 130062, People's Republic of China
| |
Collapse
|
2
|
Sittisart P, Mahidsanan T, Yuvanatemiya V, Srinamngoen P. Technological quality and fungal community of Kombucha fermented with hemp leaves and milky mushroom flour ( Calocybe indica). PeerJ 2024; 12:e18116. [PMID: 39346034 PMCID: PMC11439377 DOI: 10.7717/peerj.18116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 08/28/2024] [Indexed: 10/01/2024] Open
Abstract
Kombucha is traditionally a non-alcoholic beverage whose production is dependent on culture and the various ingredients used as substrates for fermentation. The goal of our study was to apply hemp leaf and milky mushroom (Calocybe indica) flour as functional ingredients to enhance phytonutrient quality, along with using a microbial consortium highly symbiotic with these ingredients. The study determined the content of phytonutrients (phenolic and flavonoids content), antioxidant activity through percentage inhibition of DPPH radical scavenging activity (%), and microbial communities changes during fermentation. The microbial changes were evaluated by cell viable count (total bacteria, Lactic Acid Bacteria, and Yeast & Mold) and ITS in prepared kombucha (using red tea leaves, pandan leaves, and sucrose) supplemented with functional ingredients: T1 (hemp leaves (control)) and T2 (hemp leaves with milky mushroom flour). The results indicated that microbial consortium changed during fermentation. In the first 7 days, the levels of yeast and mold increased to 6.17 and 6.18 log CFU/mL, respectively. By day 21, the levels of both T1 and T2 continued to rise, reaching 7.78 and 7.82 log CFU/mL, respectively. The viable count of lactic acid bacteria in T1 and T2 gradually increased to 6.79 and 6.70 log CFU/mL, respectively, by day 14. These changes resulted in a marked decrease in pH value, reaching 3.63 and 3.23 in T1 and T2, respectively, by the end of the process (21 days). The total bacterial viable count decreased with an increase in the fermentation time. During fermentation, unique genera of tea fungus observed in T1 and T2 were 64% and 19%, respectively. At the beginning (0 days), the top five genera found in T1 were: g__Setophoma (25.91%), g__Macrocybe (14.88%), g__Cladosporium (7.81%), g__Phaeosphaeria (7.12%), g__Malassezia (6.63%), while the top five genera in T2 were g__Macrocybe (94.55%), g__Setophoma (1.87%), g__Cladosporium (0.77%), g__Phaeosphaeria (0.40%), g__Cordyceps (0.38%). However, on day 21 (end of the process), it was found that g__Dekkera had the highest relative abundance in both T1 and T2. In addition, the supplementation of the two ingredients affected the total phenolic and total flavonoid content of the treatments. At the end of the process, T2 showed values of 155.91 mg GAE/mL for total phenolics and 1.01 mg CE/mL for total flavonoids, compared to T1, which had 129.52 mg GAE/mL and 0.69 mg CE/mL, respectively. Additionally, the DPPH inhibition was higher in T1 (91.95%) compared to T2 (91.03%). The findings suggest that kombucha fermented with these innovative ingredients exhibited enhanced phytonutrients, and served as substrate for LAB and tea fungus fermentation, while limiting the growth of fungal genera and diversity of microbial consortium.
Collapse
Affiliation(s)
- Priyada Sittisart
- Department of Agricultural Technology, Faculty of Science and Arts, Burapha University, Chanthaburi Campus, Chanthaburi, Thailand
| | - Thitikorn Mahidsanan
- Department of Food Science and Technology, Faculty of Agricultural Innovation and Technology, Rajamangala University of Technology Isan, Nakhon Ratchasima, Thailand
| | - Vasin Yuvanatemiya
- Faculty of Marine Technology, Burapha University, Chanthaburi Campus, Chanthaburi, Thailand
| | - Pattama Srinamngoen
- Department of Agricultural Technology, Faculty of Science and Arts, Burapha University, Chanthaburi Campus, Chanthaburi, Thailand
| |
Collapse
|
3
|
Wang J, Li C, Ruan J, Yang C, Tian Y, Lu B, Wang Y. Cross-kingdom regulation of ginseng miRNA156 on immunity and metabolism. Int Immunopharmacol 2024; 138:112577. [PMID: 38955029 DOI: 10.1016/j.intimp.2024.112577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/15/2024] [Accepted: 06/25/2024] [Indexed: 07/04/2024]
Abstract
AIM OF THE STUDY To study the cross-border regulation of immunity and energy metabolism by ginseng miRNA156, and to provide a new perspective for further exploring the possibility of ginseng miRNA156 as a pharmacodynamic substance. MATERIALS AND METHODS Combined with the previous research results of our research group, miRNA156 with high expression in blood sequencing of intragastrically administered with ginseng decoction was selected. Bioinformatics analysis was performed on the selected differential miRNA156. The target genes of differential miRNA156 were mainly enriched in metabolic, immune and other signaling pathways. According to the analysis results, the experimental part will use qi deficiency fatigue model and RAW264.7 cells. The contents of lactic acid (LA), creatine kinase (CK), blood urea nitrogen (BUN), lactate dehydrogenase (LD), liver glycogen (LG), muscle glycogen (MG), interleukin 4 (IL-4), matrix metallo-proteinase 9 (MMP-9), superoxide dismutase (SOD), malondialdehyde, phosphor-enolpyruvate carboxykinase (PEPCK), glucose-6-phosphatase (G6pase), nitric oxide (NO) and tumor necrosis factor-α (TNF-α) were measured after administration of miRNA156. RESULTS Ginseng miRNA156 can accelerate the removal of metabolic waste during exercise. Increase the glycogen reserve in, provide energy for the body, regulate the activity of key gluconeogenesis enzyme phosphorus, improve the energy metabolism system of, and enhance the endurance of fatigue mice. The contents of matrix metalloproteinase 9, superoxide dismutase and malondialdehyde were affected, and the content of TNF-α in the supernatant of RAW264.7 cells was significantly increased, which had certain antioxidant capacity and potential immunomodulatory effects. CONCLUSION Ginseng miRNA156 has a certain regulatory effect on the energy metabolism and immune function of mice, which makes it possible to regulate the cross-species regulation of ginseng miRNA in theory, provides ideas for ginseng miRNA to become a new pharmacodynamic substance.
Collapse
Affiliation(s)
- Jinglei Wang
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| | - Chenyi Li
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Jingxiu Ruan
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Chang Yang
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Yuexin Tian
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Binxin Lu
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Yingfang Wang
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Advanced Drug Delivery Systems, Guangzhou 510006, China; Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, The Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
| |
Collapse
|
4
|
Li X, Hao X, Zhou J, Zhou L, Ma B, Qiu Z, Zhao T, Xu L, Liu J, Kang L. Integration of Metabolomics with Network Pharmacology Deciphers the Anti-Fatigue Activity Mechanisms of the Extract of Mirabilis himalaica Root. Mol Nutr Food Res 2024; 68:e2400004. [PMID: 38840434 DOI: 10.1002/mnfr.202400004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 02/27/2024] [Indexed: 06/07/2024]
Abstract
Fatigue, a common symptom in both diseased and healthy individuals, is a biological phenomenon characterized by a sense of extreme physical or mental exhaustion. To explore novel drugs and food sources of anti-fatigue, the hydroalcoholic extract of the root of Mirabilis himalaica (MH extract) is evaluated as anti-fatigue agents in this work, and clarifies that the mechanism of MH intervention in fatigue symptoms, and distribution of the anti-fatigue constituents in the plant of Mirabilis himalaica is examined. The results show that the MH extract have a significantly anti-fatigue effect via the pharmacological experiment and biochemical indicators. The network pharmacology, metabolomics, molecular docking, and pharmacology are integrated to determine that boeravinone A, B, and E are the pharmacoperones of anti-fatigue. Moreover, the compounds of boeravinone are present only in the root and not in the leaf and stem of the Mirabilis himalaica, which validates that root of Mirabilis himalaica is historically and officially utilized medicinal parts.
Collapse
Affiliation(s)
- Xiang Li
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Xiaoqing Hao
- Beijing Institute of Pharmacology and Toxicology, Beijing, 100039, China
| | - Junhui Zhou
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Li Zhou
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Bo Ma
- Beijing Institute of Pharmacology and Toxicology, Beijing, 100039, China
| | - Zidong Qiu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - TangNa Zhao
- Beijing Institute of Pharmacology and Toxicology, Beijing, 100039, China
| | - Liang Xu
- Beijing Institute of Pharmacology and Toxicology, Beijing, 100039, China
| | - Juan Liu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Liping Kang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| |
Collapse
|
5
|
Chen H, Wu Q, Xuan K, Guo W, Zhang K, Wang Y, Dai Z, Sheng R, He H, Huang Y, Chen Y. Bioguided isolation, identification and bioactivity evaluation of anti-fatigue constituents from Schizophyllum commune. Fitoterapia 2024; 175:105940. [PMID: 38565382 DOI: 10.1016/j.fitote.2024.105940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 03/28/2024] [Accepted: 03/30/2024] [Indexed: 04/04/2024]
Abstract
This study aims to clarify the specific anti-fatigue components of Schizophyllum commune (S.commune) and analyze its potential anti-fatigue mechanism. The main anti-fatigue active ingredient of S.commune was locked in n-butanol extract (SPE-n) by activity evaluation. Twelve compounds were identified by high performance liquid chromatography-electrospray tandem mass spectrometry (LC-ESI-MS/MS). The anti-fatigue effect of morusin is the most predominant among these 12 ingredients. The determination of biochemical indices showed that morusin could increase liver glycogen reserves, improve the activity of antioxidant enzymes in liver, and reduce reactive oxygen species (ROS) content in muscle tissue, thereby reducing myocyte damage. Further studies revealed that morusin could reduce the level of oxidative stress by activating Nrf2/HO-1 pathway, thus alleviating the fatigue of mice caused by exhaustive exercise. The current findings provide a theoretical basis for the development of natural anti-fatigue functional food.
Collapse
Affiliation(s)
- Hao Chen
- Key Laboratory of Ecological Engineering and Biotechnology of Anhui Province, School of Life Sciences, Anhui University, Hefei, Anhui, China
| | - Qianzhen Wu
- Key Laboratory of Ecological Engineering and Biotechnology of Anhui Province, School of Life Sciences, Anhui University, Hefei, Anhui, China
| | - Kaili Xuan
- Key Laboratory of Ecological Engineering and Biotechnology of Anhui Province, School of Life Sciences, Anhui University, Hefei, Anhui, China
| | - Wenqiang Guo
- Key Laboratory of Ecological Engineering and Biotechnology of Anhui Province, School of Life Sciences, Anhui University, Hefei, Anhui, China
| | - Kunfeng Zhang
- Key Laboratory of Ecological Engineering and Biotechnology of Anhui Province, School of Life Sciences, Anhui University, Hefei, Anhui, China
| | - Yuanyuan Wang
- Anhui Zhongqing Testing Co., Ltd, Hefei, Anhui, China
| | - Zhenzhen Dai
- Anhui Zhongqing Testing Co., Ltd, Hefei, Anhui, China
| | - Rong Sheng
- Anhui Zhongqing Testing Co., Ltd, Hefei, Anhui, China
| | - Huaqi He
- College of Agriculture, Anhui Science and Technology University, Chu Zhou, Anhui, China
| | - Yuzhe Huang
- Key Laboratory of Ecological Engineering and Biotechnology of Anhui Province, School of Life Sciences, Anhui University, Hefei, Anhui, China
| | - Yan Chen
- Key Laboratory of Ecological Engineering and Biotechnology of Anhui Province, School of Life Sciences, Anhui University, Hefei, Anhui, China.
| |
Collapse
|
6
|
Huang S, Sun H, Lin D, Huang X, Chen R, Li M, Huang J, Guo F. Camellia oil exhibits anti-fatigue property by modulating antioxidant capacity, muscle fiber, and gut microbial composition in mice. J Food Sci 2024; 89:2465-2481. [PMID: 38380680 DOI: 10.1111/1750-3841.16983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 01/24/2024] [Accepted: 01/30/2024] [Indexed: 02/22/2024]
Abstract
Camellia seed oil (CO) has high nutritional value and multiple bioactivities. However, the specific anti-fatigue characteristics and the implied mechanism of CO have not yet been fully elucidated. Throughout this investigation, male C57BL/6J mice, aged 8 weeks, underwent exhaustive exercise with or without CO pretreatment (2, 4, and 6 mL/kg BW) for 28 days. CO could extend the rota-rod and running time, reduce blood urea nitrogen levels and serum lactic acid, and increase muscle and hepatic glycogen, adenosine triphosphate, and anti-oxidative indicators. Additionally, CO could upregulate the mRNA and Nrf2 protein expression levels, as well as enhance the levels of its downstream antioxidant enzymes and induce the myofiber-type transformation from fast to slow and attenuate the gut mechanical barrier. Moreover, CO could ameliorate gut dysbiosis by reducing Firmicutes to Bacteroidetes ratio at the phylum level, increasing the percentage of Alistipes, Alloprevotella, Lactobacillus, and Muribaculaceae, and decreasing the proportion of Dubosiella at the genus level. In addition, specific bacterial taxa, which were altered by CO, showed a significant correlation with partial fatigue-related parameters. These findings suggest that CO may alleviate fatigue by regulating antioxidant capacity, muscle fiber transformation, gut mechanical barrier, and gut microbial composition in mice. PRACTICAL APPLICATION: Our study revealed that camellia seed oil (CO) could ameliorate exercise-induced fatigue in mice by modulating antioxidant capacity, muscle fiber, and gut microbial composition in mice. Our results promote the application of CO as an anti-fatigue functional food that targets oxidative stress, myofiber-type transformation, and microbial community.
Collapse
Affiliation(s)
- Shiying Huang
- Department of Nutrition and Food Safety, School of Public Health, Fujian Medical University, Fuzhou, China
- The Affiliated Quanzhou Center for Disease Control and Prevention of Fujian Medical University, Quanzhou, China
| | - Huiyu Sun
- Department of Nutrition and Food Safety, School of Public Health, Fujian Medical University, Fuzhou, China
| | - Dai Lin
- Department of Nutrition and Food Safety, School of Public Health, Fujian Medical University, Fuzhou, China
| | - Xinjue Huang
- Department of Nutrition and Food Safety, School of Public Health, Fujian Medical University, Fuzhou, China
| | - Ruiran Chen
- Department of Nutrition and Food Safety, School of Public Health, Fujian Medical University, Fuzhou, China
| | - Minli Li
- Department of Nutrition and Food Safety, School of Public Health, Fujian Medical University, Fuzhou, China
| | - Jialing Huang
- Department of Nutrition and Food Safety, School of Public Health, Fujian Medical University, Fuzhou, China
| | - Fuchuan Guo
- Department of Nutrition and Food Safety, School of Public Health, Fujian Medical University, Fuzhou, China
| |
Collapse
|
7
|
Zhou H, Zhang X, Huang R, Su T. Antifatigue effects and antioxidant activity in polysaccharide fractions from Chinese yam bulbils. Food Sci Nutr 2024; 12:1218-1229. [PMID: 38370048 PMCID: PMC10867482 DOI: 10.1002/fsn3.3836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 11/01/2023] [Accepted: 11/02/2023] [Indexed: 02/20/2024] Open
Abstract
Polysaccharides are the principal component in Chinese yam (Dioscorea opposita Thunb.) bulbils. The properties and antifatigue of polysaccharides from yam bulbils (PYB) were identified and compared. Their molecular weights (PYB-1 and PYB-2) were approximately 145 and 11 kDa, respectively, with active β-configurations. Meanwhile, the antifatigue activities of PYBs were tested in mice via exhaustive swimming tests (EST). The EST results indicated that PYB-1 and PYB-2 significantly prolonged swimming time in mice (p < .05). Associated with this increase was a rise in hepatic glycogen content and antioxidant enzyme (superoxide dismutase (SOD), glutathione peroxidase (GSH-Px)) activity, along with a decline in blood urea nitrogen, lactic acid, and malondialdehyde levels. The results showed that molecular weight might contribute to the antifatigue effects of PYBs. Additionally, antioxidant tests showed that PYB-1 had stronger free-radical scavenging activity than PYB-2. Taken together, the findings indicated that PYBs exhibited effective antifatigue and antioxidant activities providing additional evidence supporting the use of PYBs as functional food ingredients for relieving fatigue.
Collapse
Affiliation(s)
- Hai‐Xu Zhou
- Henan Institute of Science and TechnologyXinxiangChina
| | - Xiao Zhang
- Henan Institute of Science and TechnologyXinxiangChina
| | - Ren‐gui Huang
- Chongqing SIIE Product Quality Testing Co., Ltd.ChongqingChina
| | - Tong‐chao Su
- Henan Institute of Science and TechnologyXinxiangChina
| |
Collapse
|
8
|
Cheng J, Qiu L, Ahmad N, Liu J, Tian M, Li C, Zhao C. Screening of anti-fatigue active ingredients of Eleutherococcus senticosus via spectrum-effect relationship based on factor analysis and LC-MS/MS. Nat Prod Res 2023; 37:4144-4155. [PMID: 36718097 DOI: 10.1080/14786419.2023.2171416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 01/14/2023] [Indexed: 02/01/2023]
Abstract
ES contains compounds known to have significant anti-fatigue activity. In recent years, it has received extensive attention because it is efficient. However, its active ingredients on antifatigue effect are still unclear. This study attempts to establish the spectrum-effect relationship of ES antifatigue activity to screen the effective components. The results showed that the similarity of 15 ES fingerprints obtained by LC-MS/MS was 0.533-0.992, and the chemical structures of 22 common peaks were identified. The anti-fatigue activity of 15 batches of ES was characterized by forced swimming test of mice and quantified by CAFI, among which S4, S1 and S5 had better activity. 9 components (caffeic acid, 5-(4-O-β-D-glucosylferoyl)-quinic acid, (±)13-HODE, isofraxidin, eleutheroside E, syringin, pinoresinol diglucoside or its isomer, 7,8-dihydrodehydrocarbinol alcohol-4-O-β-D-glucoside, secoisolariciresinol-4-O-β-D-glucoside) highly related to anti-fatigue activity may be the effective components of ES.
Collapse
Affiliation(s)
- Jiabo Cheng
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Chemical Engineering and Resource Utilization; Engineering Research Center of Forest Bio-preparation, Ministry of Education, Northeast Forestry University; Heilongjiang Provincial Key Laboratory of ecological utilization of Forestry-based active substances, Harbin, China
| | - Lequn Qiu
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Chemical Engineering and Resource Utilization; Engineering Research Center of Forest Bio-preparation, Ministry of Education, Northeast Forestry University; Heilongjiang Provincial Key Laboratory of ecological utilization of Forestry-based active substances, Harbin, China
| | - Naveed Ahmad
- Department of Chemistry, Division of Science and Technology, University of Education, Lahore, Pakistan
| | - Jie Liu
- Hisun Pharmaceutical Co., Ltd, Hangzhou, China
| | - Mengfei Tian
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Chemical Engineering and Resource Utilization; Engineering Research Center of Forest Bio-preparation, Ministry of Education, Northeast Forestry University; Heilongjiang Provincial Key Laboratory of ecological utilization of Forestry-based active substances, Harbin, China
| | - Chunying Li
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Chemical Engineering and Resource Utilization; Engineering Research Center of Forest Bio-preparation, Ministry of Education, Northeast Forestry University; Heilongjiang Provincial Key Laboratory of ecological utilization of Forestry-based active substances, Harbin, China
| | - Chunjian Zhao
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Chemical Engineering and Resource Utilization; Engineering Research Center of Forest Bio-preparation, Ministry of Education, Northeast Forestry University; Heilongjiang Provincial Key Laboratory of ecological utilization of Forestry-based active substances, Harbin, China
| |
Collapse
|
9
|
Judžentienė A, Garjonytė R, Būdienė J. Phytochemical Composition and Antioxidant Activity of Various Extracts of Fibre Hemp ( Cannabis sativa L.) Cultivated in Lithuania. Molecules 2023; 28:4928. [PMID: 37446590 DOI: 10.3390/molecules28134928] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/19/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023] Open
Abstract
The phytochemistry of fibre hemp (Cannabis sativa L., cv. Futura 75 and Felina 32) cultivated in Lithuania was investigated. The soil characteristics (conductivity, pH and major elements) of the cultivation field were determined. The chemical composition of hemp extracts and essential oils (EOs) from different plant parts was determined by the HPLC/DAD/TOF and GC/MS techniques. Among the major constituents, β-caryophyllene (≤46.64%) and its oxide (≤14.53%), α-pinene (≤20.25%) or α-humulene (≤11.48) were determined in EOs. Cannabidiol (CBD) was a predominant compound (≤64.56%) among the volatile constituents of the methanolic extracts of hemp leaves and inflorescences. Appreciable quantities of 2-monolinolein (11.31%), methyl eicosatetraenoate (9.70%) and γ-sitosterol (8.99%) were detected in hemp seed extracts. The octadecenyl ester of hexadecenoic acid (≤31.27%), friedelan-3-one (≤21.49%), dihydrobenzofuran (≤17.07%) and γ-sitosterol (14.03%) were major constituents of the methanolic extracts of hemp roots, collected during various growth stages. The CBD quantity was the highest in hemp flower extracts in pentane (32.73%). The amounts of cannabidiolic acid (CBDA) were up to 24.21% in hemp leaf extracts. The total content of tetrahydrocannabinol (THC) isomers was the highest in hemp flower pentane extracts (≤22.43%). The total phenolic content (TPC) varied from 187.9 to 924.7 (average means, mg/L of gallic acid equivalent (GAE)) in aqueous unshelled hemp seed and flower extracts, respectively. The TPC was determined to be up to 321.0 (mg/L GAE) in root extracts. The antioxidant activity (AA) of hemp extracts and Eos was tested by the spectrophotometric DPPH● scavenging activity method. The highest AA was recorded for hemp leaf EOs (from 15.034 to 35.036 mmol/L, TROLOX equivalent). In the case of roots, the highest AA (1.556 mmol/L, TROLOX) was found in the extracts of roots collected at the seed maturation stage. The electrochemical (cyclic and square wave voltammetry) assays correlated with the TPC. The hydrogen-peroxide-scavenging activity of extracts was independent of the TPC.
Collapse
Affiliation(s)
- Asta Judžentienė
- Center for Physical Sciences and Technology, Department of Organic Chemistry, Sauletekio Avenue 3, LT-10257 Vilnius, Lithuania
| | - Rasa Garjonytė
- Center for Physical Sciences and Technology, Department of Organic Chemistry, Sauletekio Avenue 3, LT-10257 Vilnius, Lithuania
| | - Jurga Būdienė
- Center for Physical Sciences and Technology, Department of Organic Chemistry, Sauletekio Avenue 3, LT-10257 Vilnius, Lithuania
| |
Collapse
|
10
|
Chen J, Lu X, Chen P, Shen Y, Zheng B, Guo Z. Anti-fatigue effect of glycoprotein from hairtail (Trichiurus lepturus) by-products in a behavioral mouse model. Food Chem X 2023; 18:100645. [PMID: 36968310 PMCID: PMC10034424 DOI: 10.1016/j.fochx.2023.100645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/11/2023] [Accepted: 03/13/2023] [Indexed: 03/18/2023] Open
Abstract
Hairtail (Trichiurus lepturus) is a kind of abundant marine fish, and its by-products contain rich protein resources, which can be better exploited and utilized in the food industry. In this study, the glycoprotein of hairtail by-products (GHB) was extracted using ultrasonic-assisted salt solution extraction with hairtail by-products as the raw material. The anti-fatigue effect of GHB was explored by mouse behavior experiments (shuttle box test, open field test and load swimming test). The results showed that the active escape times of the GHB group increased compared with the blank group in the shuttle box test, and the GHB group stayed in the central area for more time in the open field test. At the same time, the exhaustive swimming time of high-dose-group mice was 122.01% longer than that of the blank control group. GHB can improve the memory learning ability and activity of mice, and exert its anti-fatigue effect by eliminating excessive free radicals, slowing the metabolism of amino acids and proteins, and increasing glycogen reserves. This study provides a theoretical basis for the function mechanism of glycoprotein of hairtail by-products and the development of supplementary material in functional foods.
Collapse
Affiliation(s)
- Jiaqi Chen
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou 350002, PR China
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Xiaodan Lu
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou 350002, PR China
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Peixin Chen
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou 350002, PR China
| | - Yijie Shen
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou 350002, PR China
| | - Baodong Zheng
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou 350002, PR China
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Zebin Guo
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou 350002, PR China
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
- Corresponding author at: College of Food Science, Fujian Agriculture and Forestry University, No. 15, Shangxiadian Road, Cangshan District, Fuzhou City, Fujian Province 350002, PR China.
| |
Collapse
|
11
|
The Anti-Fatigue Effect of Glycoprotein from Hairtail Fish (Trichiurus lepturus) on BALB/c Mice. Foods 2023; 12:foods12061245. [PMID: 36981171 PMCID: PMC10048760 DOI: 10.3390/foods12061245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 03/10/2023] [Indexed: 03/17/2023] Open
Abstract
Fatigue is related to a variety of chronic diseases and has become a hot research topic in recent years. Various bioactive components have been extracted from hairtail fish (Trichiurus lepturus); however, none of these studies involved the anti-fatigue activity of hairtail fish glycoprotein (HGP). Thus, antioxidant experiments were conducted in vitro, and the anti-fatigue activity of HGP was further evaluated in BALB/c mice. The effects of HGP on the behavior of BALB/c mice were verified by classical behavioral experiments, and the indicators related to anti-fatigue activity were detected. The results showed that the antioxidant capacity in vitro of HGP increased gradually in the concentration range of 10 to 100 mg/mL. HGP improved the exercise ability of the mice. HGP was also found to significantly (p < 0.05) reduce the serum levels of lactate dehydrogenase (LDH), blood lactic acid (BLA), blood urea nitrogen (BUN), and creatine kinase (CK). The contents of liver glycogen (LG) and muscle glycogen (MG) were also significantly (p < 0.05) increased by HGP. Malondialdehyde (MDA) content in the serum and brains of the mice was significantly (p < 0.05) reduced and catalase (CAT), glutathione peroxidase (GPX), and superoxide dismutase (SOD) were significantly (p < 0.05) increased by HGP, especially in the middle- and high-dose groups. These results enhance our understanding of the anti-fatigue function of HGP and lay an important foundation for the further development and utilization of hairtail fish resources.
Collapse
|
12
|
Aloo SO, Mwiti G, Ngugi LW, Oh DH. Uncovering the secrets of industrial hemp in food and nutrition: The trends, challenges, and new-age perspectives. Crit Rev Food Sci Nutr 2022; 64:5093-5112. [PMID: 36440859 DOI: 10.1080/10408398.2022.2149468] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Hemp is a valuable crop with a wide range of use, from applications in foods and textiles to pharmaceuticals. Over recent years, the use of hemp as food and food ingredients has drastically increased. The growth is driven by numerous health benefits hemp possesses and its wide range of applications in the food industry. This review provides the scientific literature concerning the benefits of industrial hemp in the food industry. The relevant historical context of use, recent applications in the food industry, health benefits, various development challenges, and the global market outlook for hemp-based food products have been analyzed. Evidence suggests that today hemp is widely consumed as food or an ingredient in the food. Hemp-based foods are marketed as having various health benefits, although their reception by target consumers and success varies. Besides, scientific research on hemp-derived foods has dramatically increased over recent years. Numerous in vitro and in vivo studies have investigated the health benefits of hemp-based foods. Therefore, there is a promising growth trend in producing novel foods from industrial hemp. Nevertheless, due to health concerns related to THC, there is a general need for regulatory compliance when integrating hemp into foods to ensure product safety before use.
Collapse
Affiliation(s)
- Simon Okomo Aloo
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon, Gangwon-do, Republic of Korea
| | - Godfrey Mwiti
- Department of Food and Nutrition, Chungnam National University, Daejeon, Republic of Korea
| | - Louise Wanjiku Ngugi
- Department of Food Science and Nutrition, School of Agriculture and Biotechnology, Karatina University, Karatina, Kenya
| | - Deog-Hwan Oh
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon, Gangwon-do, Republic of Korea
| |
Collapse
|
13
|
Chen X, Xue Y, Jia G, Zhao H, Liu G, Huang Z. Antifatigue effect of naringin on improving antioxidant capacity and mitochondrial function and preventing muscle damage. Exp Biol Med (Maywood) 2022; 247:1776-1784. [PMID: 36112949 PMCID: PMC9638954 DOI: 10.1177/15353702221117128] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The aim of this study was to explore effects of naringin (Nar) on antifatigue ability; the weight-loaded and non-loading swimming tests were performed. Compared with the control group, dietary supplementation of Nar significantly prolonged the weight-loaded swimming time to exhaustion of mice (P < 0.01). Nar significantly reduced the serum lactic acid (LD) level (P < 0.05) and lactate dehydrogenase (LDH) activity (P < 0.001), while increased the serum non-esterified free fatty acids (NEFA) level (P < 0.001). In addition, Nar significantly increased the liver glycogen and muscle glycogen contents (P < 0.05) and the phosphoenolpyruvate carboxykinase (PEPCK) (P < 0.01) and glucokinase (GCK) mRNA levels (P < 0.001) in liver and gastrocnemius (GAS) muscle. Furthermore, Nar significantly improved the antioxidant capacity, mitochondrial function, and muscle mitochondrial fatty acid β-oxidation (P < 0.05), and decreased inflammation and muscle damage-related gene expression (P < 0.05). These findings suggested that Nar can improve antifatigue effect by enhancing antioxidant capacity and mitochondrial function and preventing muscle damage.
Collapse
|
14
|
Peng Y, Zhao L, Hu K, Yang Y, Ma J, Zhai Y, Jiang Y, Zhang D. Anti-Fatigue Effects of Lycium barbarum Polysaccharide and Effervescent Tablets by Regulating Oxidative Stress and Energy Metabolism in Rats. Int J Mol Sci 2022; 23:ijms231810920. [PMID: 36142831 PMCID: PMC9504225 DOI: 10.3390/ijms231810920] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/06/2022] [Accepted: 09/14/2022] [Indexed: 11/16/2022] Open
Abstract
The purpose of this study was to investigate the anti-fatigue effect of natural Lycium barbarum polysaccharide (LBP) during exercise, develop a functional anti-fatigue effervescent tablet by applying LBP to practical products, and help patients who have difficulty swallowing conventional tablets or capsules. LBP was extracted with water, and DEAE-52 cellulose was used for purification. The chemical structure and monosaccharide composition of LBP by Fourier transform infrared spectroscopy (FI-IR) and ion chromatography (IC). Lycium barbarum polysaccharide effervescent tablets (LBPT) were prepared by mixing LBP and an excipient. Animal experiments showed that LBP and LBPT significantly increased the exhaustive swimming time in rats. LBP and LBPT improved biochemical markers in rat serum, such as lactic acid and creatine kinase, enhanced the antioxidant capacity of rat muscle, and reversed the decrease in serum glucose, ATP and glycogen content caused by exercise. Transmission electron microscopy showed that LBP and LBPT increased the density of mitochondria in rat liver. In addition, molecular experiments showed that LBP and LBPT could improve oxidative stress caused by exercise by regulating the Nrf2/HO-1 signaling pathway and regulating energy metabolism via the AMPK/PGC-1α signaling pathway.
Collapse
Affiliation(s)
- Yanfeng Peng
- College of Eco-Environmental Engineering, Qinghai University, Xining 810016, China
| | - Linlin Zhao
- College of Medical, Qinghai University, Xining 810016, China
| | - Ke Hu
- College of Medical, Shanghai University, Shanghai 200444, China
| | - Yongjing Yang
- College of Eco-Environmental Engineering, Qinghai University, Xining 810016, China
| | - Jin Ma
- College of Eco-Environmental Engineering, Qinghai University, Xining 810016, China
| | - Yuqing Zhai
- College of Eco-Environmental Engineering, Qinghai University, Xining 810016, China
| | - Yan Jiang
- College of Medical, Qinghai University, Xining 810016, China
| | - Dejun Zhang
- College of Eco-Environmental Engineering, Qinghai University, Xining 810016, China
- Correspondence:
| |
Collapse
|
15
|
Zhu H, Zeng W, Zhao T, Shi W, Dong X, Zhang A, Li X, Xu L. Synthesis and evaluation of 5-aminimidazole-4-carboxamide riboside derivatives as anti-fatigue agents. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
16
|
Biosorption of methyl orange from aqueous solution with hemp waste, investigation of isotherm, kinetic and thermodynamic studies and modeling using multigene genetic programming. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-022-02411-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
17
|
Zhong W, Zhu J, Yi J, Zhao C, Shi Y, Kang Q, Huang J, Hao L, Lu J. Biochemical analysis reveals the systematic response of motion sickness mice to ginger (Zingiber officinale) extract's amelioration effect. JOURNAL OF ETHNOPHARMACOLOGY 2022; 290:115077. [PMID: 35131339 DOI: 10.1016/j.jep.2022.115077] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 01/01/2022] [Accepted: 02/03/2022] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE As a common medicinal and edible plant, Zingiber officinale Roscoe (ginger) is often used for the prevention of motion sickness. However, the mechanism of its anti-motion sickness remains to be elucidated. AIM OF THE STUDY To explore novel treatment for motion sickness with less side effects, anti-motion sickness effect of ginger (Zingiber officinale) extract (GE) and the possible molecular mechanisms were investigated. MATERIALS AND METHODS The anti-motion sickness effect of ginger was evaluated through mice animal experimental models. Components of ginger that might contribute to the anti-motion sickness effect were analyzed by LC-MS/MS. Subsequently, biochemical analysis integrated with serum metabolomic profiling were performed to reveal the systematic response of motion sickness mice to ginger extract's amelioration effect. RESULTS Exhaustive swimming time of mice in the GE group reached 8.9 min, which was 52.2% longer than that in the model group. Motion sickness index scores and time taken traversing balance beam of mice in the GE group were decreased by 53.2% and 38.5%, respectively. LC-MS/MS analysis suggested that various active ingredients in GE, such as gingerol, ginger oil and terpenoids, might contribute to its appealing anti-motion sickness activity. Biochemical analysis revealed that GE can relieve motion sickness through reducing histamine and acetylcholine release in vestibular system, regulating fatty acid oxidation, sugar metabolism and bile acid metabolism in mice. CONCLUSION Gavage of mice with GE can effectively relieve the symptoms of autonomic nervous system dysfunction, improve the balance and coordination ability and ameliorate the ability to complete complex work after rotation stimulation. GE has attractive potential for development and utilization as novel anti-motion sickness food or drugs.
Collapse
Affiliation(s)
- Wanlin Zhong
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Jiaqing Zhu
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China.
| | - Juanjuan Yi
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Changcheng Zhao
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Yanling Shi
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Qiaozhen Kang
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Jinyong Huang
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Limin Hao
- Institute of Quartermaster Engineering and Technology, Academy of Military Sciences PLA China, Beijing, 100010, China
| | - Jike Lu
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China.
| |
Collapse
|
18
|
Wang Y, Zhang Y, Hou M, Han W. Anti-fatigue activity of parsley (Petroselinum crispum) flavonoids via regulation of oxidative stress and gut microbiota in mice. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.104963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
|
19
|
Amendola G, Bocca B, Picardo V, Pelosi P, Battistini B, Ruggieri F, Attard Barbini D, De Vita D, Madia VN, Messore A, Di Santo R, Costi R. Toxicological aspects of cannabinoid, pesticide and metal levels detected in light Cannabis inflorescences grown in Italy. Food Chem Toxicol 2021; 156:112447. [PMID: 34343597 DOI: 10.1016/j.fct.2021.112447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 07/21/2021] [Accepted: 07/29/2021] [Indexed: 10/20/2022]
Abstract
Recently, the cultivation of light Cannabis, with a total THC content less than 0.6%, has been encouraged due to its industrial and therapeutic potential. This has increased the consumption of hemp for both smoking purposes and food preparation. Even so, Cannabis inflorescences are not subject to EU regulations and standards provided for food and tobacco products. A study was carried out on thirty-one inflorescences samples, collected in different Italian regions, in order to determine cannabinoids, pesticides and metals and to evaluate the exposure of consumers to contaminants and ensure a safe consumption. Contents of THC were always below 0.5%, while CBD ranged between 0.3 and 8.64%. The determination of 154 pesticides showed that 87% of the samples contained fungicides and insecticides in the range 0.01-185 μg/g. The most found are spinosad and cyprodinil. The concentration of metals ranged from 1 to more than 100 μg/g and As, Cd, Co, Cr, Hg, Cu, Mo, Ni and V exceeded the regulatory US limits for inhaled Cannabis products, while Pb exceeded them for both oral and inhaled products. These contaminants are intrinsically toxic and may affect public health. Actions are needed to establish regulatory measures and reduce the adverse effects caused by contaminants in Cannabis.
Collapse
Affiliation(s)
- G Amendola
- Environment and Health Department, Istituto Superiore di Sanità, Rome, Italy.
| | - B Bocca
- Environment and Health Department, Istituto Superiore di Sanità, Rome, Italy
| | - V Picardo
- Environment and Health Department, Istituto Superiore di Sanità, Rome, Italy
| | - P Pelosi
- Environment and Health Department, Istituto Superiore di Sanità, Rome, Italy
| | - B Battistini
- Environment and Health Department, Istituto Superiore di Sanità, Rome, Italy
| | - F Ruggieri
- Environment and Health Department, Istituto Superiore di Sanità, Rome, Italy
| | - D Attard Barbini
- Environment and Health Department, Istituto Superiore di Sanità, Rome, Italy
| | - D De Vita
- Dipartimento di Biologia Ambientale, "Sapienza" Università di Roma, p.le Aldo Moro 5, 00185, Rome, Italy
| | - V N Madia
- Dipartimento di Chimica e Tecnologie del Farmaco, Istituto Pasteur-Fondazione Cenci Bolognetti, "Sapienza" Università di Roma, p.le Aldo Moro 5, 00185, Rome, Italy
| | - A Messore
- Dipartimento di Chimica e Tecnologie del Farmaco, Istituto Pasteur-Fondazione Cenci Bolognetti, "Sapienza" Università di Roma, p.le Aldo Moro 5, 00185, Rome, Italy
| | - R Di Santo
- Dipartimento di Chimica e Tecnologie del Farmaco, Istituto Pasteur-Fondazione Cenci Bolognetti, "Sapienza" Università di Roma, p.le Aldo Moro 5, 00185, Rome, Italy
| | - R Costi
- Dipartimento di Chimica e Tecnologie del Farmaco, Istituto Pasteur-Fondazione Cenci Bolognetti, "Sapienza" Università di Roma, p.le Aldo Moro 5, 00185, Rome, Italy
| |
Collapse
|