1
|
Saratov GA, Vladimirov VI, Novoselov AL, Ziganshin RH, Chen G, Baymukhametov TN, Konevega AL, Belogurov AA, Kudriaeva AA. Myelin Basic Protein Fragmentation by Engineered Human Proteasomes with Different Catalytic Phenotypes Revealed Direct Peptide Ligands of MS-Associated and Protective HLA Class I Molecules. Int J Mol Sci 2023; 24:ijms24032091. [PMID: 36768413 PMCID: PMC9917034 DOI: 10.3390/ijms24032091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/17/2023] [Accepted: 01/17/2023] [Indexed: 01/21/2023] Open
Abstract
Proteasomes exist in mammalian cells in multiple combinatorial variants due to the diverse regulatory particles and exchange of catalytic subunits. Here, using biotin carboxyl carrier domain of transcarboxylase from Propionibacterium shermanii fused with different proteasome subunits of catalytic and regulatory particles, we report comprehensive characterization of highly homogenous one-step purified human constitutive and immune 20S and 26S/30S proteasomes. Hydrolysis of a multiple sclerosis (MS) autoantigen, myelin basic protein (MBP), by engineered human proteasomes with different catalytic phenotypes, revealed that peptides which may be directly loaded on the HLA class I molecules are produced mainly by immunoproteasomes. We detected at least five MBP immunodominant core regions, namely, LPRHRDTGIL, SLPQKSHGR, QDENPVVHFF, KGRGLSLSRF and GYGGRASDY. All peptides, except QDENPVVHFF, which originates from the encephalitogenic MBP part, were associated with HLA I alleles considered to increase MS risk. Prediction of the affinity of HLA class I to this peptide demonstrated that MS-protective HLA-A*44 and -B*35 molecules are high-affinity binders, whereas MS-associated HLA-A*23, -A*24, -A*26 and -B*51 molecules tend to have moderate to low affinity. The HLA-A*44 molecules may bind QDENPVVHFF and its deamidated form in several registers with unprecedently high affinity, probably linking its distinct protective phenotype with thymic depletion of the repertoire of autoreactive cytotoxic T cells or induction of CD8+ regulatory T cells, specific to the encephalitogenic MBP peptide.
Collapse
Affiliation(s)
- George A. Saratov
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
- Phystech School of Biological and Medical Physics, Moscow Institute of Physics and Technology (National Research University), 141701 Dolgoprudny, Russia
| | - Vasiliy I. Vladimirov
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| | - Alexey L. Novoselov
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| | - Rustam H. Ziganshin
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| | - Guo Chen
- School of Biopharmacy, China Pharmaceutical University, Nanjing 211198, China
| | | | - Andrey L. Konevega
- National Research Center, “Kurchatov Institute”, 123182 Moscow, Russia
- Institute of Biomedical Systems and Biotechnologies, Peter the Great St. Petersburg Polytechnic University, 195251 St. Petersburg, Russia
- Petersburg Nuclear Physics Institute Named by B.P. Konstantinov of National Research Centre, Kurchatov Institute, 188300 Gatchina, Russia
| | - Alexey A. Belogurov
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
- Department of Biological Chemistry, Ministry of Health of Russian Federation, Evdokimov Moscow State University of Medicine and Dentistry, 127473 Moscow, Russia
- Correspondence: (A.A.B.J.); (A.A.K.); Tel.: +7-495-3352288 (A.A.B.J. & A.A.K.)
| | - Anna A. Kudriaeva
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
- Correspondence: (A.A.B.J.); (A.A.K.); Tel.: +7-495-3352288 (A.A.B.J. & A.A.K.)
| |
Collapse
|
2
|
Mouse model suggests limited role for human mesotrypsin in pancreatitis. Pancreatology 2021; 21:342-352. [PMID: 33526384 PMCID: PMC7969449 DOI: 10.1016/j.pan.2021.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 12/30/2020] [Accepted: 01/12/2021] [Indexed: 12/11/2022]
Abstract
Mesotrypsin is a low-abundance human trypsin isoform with a unique evolutionary mutation that conferred resistance to trypsin inhibitors and restricted substrate specificity. Mesotrypsin degrades the serine protease inhibitor Kazal type 1 (SPINK1) and thereby might increase risk for pancreatitis. Here, we report a mouse model designed to test the role of mesotrypsin in pancreatitis. We introduced the human mesotrypsin evolutionary signature mutation into mouse cationic trypsinogen (isoform T7), resulting in a Gly to Arg change at the corresponding position 199. In biochemical experiments using purified proteins, the p.G199R T7 mutant recapitulated all salient features of human mesotrypsin. T7G199R mice developed normally with no spontaneous pancreatitis or other obvious phenotypic changes. Cerulein-induced acute pancreatitis in C57BL/6N and T7G199R mice showed similar severity with respect to inflammatory parameters and acinar cell necrosis while plasma amylase activity was higher in T7G199R mice. Neither SPINK1 degradation nor elevated intrapancreatic trypsin activation was apparent in T7G199R mice. The results indicate that in T7G199R mice the newly created mesotrypsin-like activity has no significant impact on cerulein-induced pancreatitis. The observations suggest that human mesotrypsin is unimportant for pancreatitis; a notion that is consistent with published human genetic studies.
Collapse
|
3
|
Raasakka A, Kursula P. Flexible Players within the Sheaths: The Intrinsically Disordered Proteins of Myelin in Health and Disease. Cells 2020; 9:cells9020470. [PMID: 32085570 PMCID: PMC7072810 DOI: 10.3390/cells9020470] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 02/16/2020] [Accepted: 02/16/2020] [Indexed: 02/07/2023] Open
Abstract
Myelin ensheathes selected axonal segments within the nervous system, resulting primarily in nerve impulse acceleration, as well as mechanical and trophic support for neurons. In the central and peripheral nervous systems, various proteins that contribute to the formation and stability of myelin are present, which also harbor pathophysiological roles in myelin disease. Many myelin proteins have common attributes, including small size, hydrophobic segments, multifunctionality, longevity, and regions of intrinsic disorder. With recent advances in protein biophysical characterization and bioinformatics, it has become evident that intrinsically disordered proteins (IDPs) are abundant in myelin, and their flexible nature enables multifunctionality. Here, we review known myelin IDPs, their conservation, molecular characteristics and functions, and their disease relevance, along with open questions and speculations. We place emphasis on classifying the molecular details of IDPs in myelin, and we correlate these with their various functions, including susceptibility to post-translational modifications, function in protein–protein and protein–membrane interactions, as well as their role as extended entropic chains. We discuss how myelin pathology can relate to IDPs and which molecular factors are potentially involved.
Collapse
Affiliation(s)
- Arne Raasakka
- Department of Biomedicine, University of Bergen, Jonas Lies vei 91, NO-5009 Bergen, Norway;
| | - Petri Kursula
- Department of Biomedicine, University of Bergen, Jonas Lies vei 91, NO-5009 Bergen, Norway;
- Faculty of Biochemistry and Molecular Medicine & Biocenter Oulu, University of Oulu, Aapistie 7A, FI-90220 Oulu, Finland
- Correspondence:
| |
Collapse
|
4
|
Kudriaeva A, Kuzina ES, Zubenko O, Smirnov IV, Belogurov A. Charge‐mediated proteasome targeting. FASEB J 2019; 33:6852-6866. [DOI: 10.1096/fj.201802237r] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Anna Kudriaeva
- Shemyakin-Ovchinnikov Institute of Bioorganic ChemistryRussian Academy of SciencesMoscowRussian Federation
| | - Ekaterina S. Kuzina
- Shemyakin-Ovchinnikov Institute of Bioorganic ChemistryRussian Academy of SciencesMoscowRussian Federation
| | - Oleg Zubenko
- Shemyakin-Ovchinnikov Institute of Bioorganic ChemistryRussian Academy of SciencesMoscowRussian Federation
| | - Ivan V. Smirnov
- Shemyakin-Ovchinnikov Institute of Bioorganic ChemistryRussian Academy of SciencesMoscowRussian Federation
- Kazan Federal UniversityKazanRussian Federation
| | - Alexey Belogurov
- Shemyakin-Ovchinnikov Institute of Bioorganic ChemistryRussian Academy of SciencesMoscowRussian Federation
- Department of Fundamental MedicineLomonosov Moscow State UniversityMoscowRussian Federation
| |
Collapse
|
5
|
Deh K, Ponath GD, Molvi Z, Parel GCT, Gillen KM, Zhang S, Nguyen TD, Spincemaille P, Ma Y, Gupta A, Gauthier SA, Pitt D, Wang Y. Magnetic susceptibility increases as diamagnetic molecules breakdown: Myelin digestion during multiple sclerosis lesion formation contributes to increase on QSM. J Magn Reson Imaging 2018; 48:1281-1287. [PMID: 29517817 PMCID: PMC6129234 DOI: 10.1002/jmri.25997] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 02/12/2018] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND The pathological processes in the first weeks of multiple sclerosis (MS) lesion formation include myelin digestion that breaks chemical bonds in myelin lipid layers. This can increase lesion magnetic susceptibility, which is a potentially useful biomarker in MS patient management, but not yet investigated. PURPOSE To understand and quantify the effects of myelin digestion on quantitative susceptibility mapping (QSM) of MS lesions. STUDY TYPE Histological and QSM analyses on in vitro models of myelin breakdown and MS lesion formation in vivo. POPULATION/SPECIMENS Acutely demyelinating white matter lesions from MS autopsy tissue were stained with the lipid dye oil red O. Myelin basic protein (MBP), a major membrane protein of myelin, was digested with trypsin. Purified human myelin was denatured with sodium dodecyl sulfate (SDS). QSM was performed on phantoms containing digestion products and untreated controls. In vivo QSM was performed on five MS patients with newly enhancing lesions, and then repeated within 2 weeks. FIELD STRENGTH/SEQUENCE 3D <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow><mml:msubsup><mml:mi>T</mml:mi> <mml:mn>2</mml:mn> <mml:mo>*</mml:mo></mml:msubsup> </mml:mrow> </mml:math> -weighted spoiled multiecho gradient echo scans performed at 3T. ASSESSMENT Region of interest analyses were performed by a biochemist and a neuroradiologist to determine susceptibility changes on in vitro and in vivo QSM images. STATISTICAL TESTS Not applicable. RESULTS MBP degradation by trypsin increased the QSM measurement by an average of 112 ± 37 ppb, in excellent agreement with a theoretical estimate of 111 ppb. Degradation of human myelin by SDS increased the QSM measurement by 23 ppb. As MS lesions changed from gadolinium enhancing to nonenhancing over an average of 15.8 ± 3.7 days, their susceptibility increased by an average of 7.5 ± 6.3 ppb. DATA CONCLUSION Myelin digestion in the early stages of MS lesion formation contributes to an increase in tissue susceptibility, detectable by QSM, as a lesion evolves from gadolinium enhancing to nonenhancing. LEVEL OF EVIDENCE 1 Technical Efficacy: Stage 3 J. Magn. Reson. Imaging 2018;47:1281-1287.
Collapse
Affiliation(s)
- Kofi Deh
- Department of Radiology, Weill Cornell Medicine, New York, New York, USA
| | - Gerald D Ponath
- Department of Neurology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Zaki Molvi
- Department of Radiology, Weill Cornell Medicine, New York, New York, USA
| | - Gian-Carlo T Parel
- Department of Radiology, Weill Cornell Medicine, New York, New York, USA
| | - Kelly M Gillen
- Department of Radiology, Weill Cornell Medicine, New York, New York, USA
| | - Shun Zhang
- Department of Radiology, Weill Cornell Medicine, New York, New York, USA
| | - Thanh D Nguyen
- Department of Radiology, Weill Cornell Medicine, New York, New York, USA
| | | | - Yinghua Ma
- Department of Radiology, Weill Cornell Medicine, New York, New York, USA
| | - Ajay Gupta
- Department of Radiology, Weill Cornell Medicine, New York, New York, USA
| | - Susan A Gauthier
- Department of Neurology, Weill Cornell Medicine, New York, New York, USA
| | - David Pitt
- Department of Neurology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Yi Wang
- Department of Radiology, Weill Cornell Medicine, New York, New York, USA.,Department of Biomedical Engineering, Cornell University, Ithaca, New York, USA
| |
Collapse
|
6
|
Cattaruzza F, Amadesi S, Carlsson JF, Murphy JE, Lyo V, Kirkwood K, Cottrell GS, Bogyo M, Knecht W, Bunnett NW. Serine proteases and protease-activated receptor 2 mediate the proinflammatory and algesic actions of diverse stimulants. Br J Pharmacol 2015; 171:3814-26. [PMID: 24749982 DOI: 10.1111/bph.12738] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Revised: 03/26/2014] [Accepted: 04/11/2014] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND AND PURPOSE Although serine proteases and agonists of protease-activated receptor 2 (PAR2) cause inflammation and pain, the spectrum of proteases that are activated by proinflammatory and algesic stimuli and their contribution to inflammatory pain are uncertain. EXPERIMENTAL APPROACH Enzymic assays and selective inhibitors were used to characterize protease activity in mice after intraplantar injections of formalin, bradykinin, PAR2 activating peptide (AP) or vehicle. The capacity of these proteases and of recombinant mouse trypsin 4 to cleave fragments of PAR2 and to activate PAR2 in cell lines was determined. Protease inhibitors and par2 (-/-) mice were used to assess the contributions of proteases and PAR2 to pain and inflammation. KEY RESULTS Intraplantar injection of formalin, bradykinin or PAR2-AP led to the activation of proteases that were susceptible to the serine protease inhibitor melagatran but resistant to soybean trypsin inhibitor (SBTI). Melagatran inhibited mouse trypsin 4, which degraded SBTI. Proteases generated in inflamed tissues cleaved PAR2-derived peptides. These proteases and trypsin 4 increased [Ca(2+) ]i in PAR2-transfected but not in untransfected cells, and melagatran suppressed this activity. Melagatran or PAR2 deletion suppressed oedema and mechanical hypersensitivity induced by intraplantar formalin, bradykinin and PAR2-AP, but had no effect on capsaicin-induced pain. CONCLUSIONS AND IMPLICATIONS Diverse proinflammatory and algesic agents activate melagatran-sensitive serine proteases that cause inflammation and pain by a PAR2-mediated mechanism. By inducing self-activating proteases, PAR2 amplifies and sustains inflammation and pain. Serine protease inhibitors can attenuate the inflammatory and algesic effects of diverse stimuli, representing a useful therapeutic strategy.
Collapse
Affiliation(s)
- F Cattaruzza
- Department of Surgery, University of California, San Francisco, CA, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Rosenberger TA. Targeting calpain-mediated proteolysis and peptide signaling as a strategy to reduce injury in multiple sclerosis. J Neurochem 2014; 130:161-4. [PMID: 24844646 DOI: 10.1111/jnc.12732] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2014] [Revised: 04/01/2014] [Accepted: 04/02/2014] [Indexed: 11/29/2022]
Affiliation(s)
- Thad A Rosenberger
- University of North Dakota School of Medicine and Health Sciences, Department of Basic Sciences, Grand Forks, North Dakota
| |
Collapse
|
8
|
Trager N, Smith A, Wallace Iv G, Azuma M, Inoue J, Beeson C, Haque A, Banik NL. Effects of a novel orally administered calpain inhibitor SNJ-1945 on immunomodulation and neurodegeneration in a murine model of multiple sclerosis. J Neurochem 2014; 130:268-79. [PMID: 24447070 DOI: 10.1111/jnc.12659] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Revised: 12/27/2013] [Accepted: 01/15/2014] [Indexed: 12/12/2022]
Abstract
Multiple sclerosis (MS) pathology is marked by the massive infiltration of myelin-specific T cells into the CNS. Hallmarks of T helper (Th) cells during active disease are pro-inflammatory Th1/Th17 cells that predominate over immunoregulatory Th2/Treg cells. Neurodegeneration, a major factor in progressive MS, is often overlooked when considering drug prescription. Here, we show that oral dosing with SNJ-1945, a novel water-soluble calpain inhibitor, reduces experimental autoimmune encephalomyelitis clinical scores in vivo and has a two pronged effect via anti-inflammation and protection against neurodegeneration. We also show that SNJ-1945 treatment down-regulates Th1/Th17 inflammatory responses, and promotes regulatory T cells (Tregs) and myeloid-derived suppressor cells in vivo, which are known to have the capacity to suppress helper as well as cytotoxic T cell functions. Through analysis of spinal cord samples, we show a reduction in calpain expression, decreased infiltration of inflammatory cells, and signs of inhibition of neurodegeneration. We also show a marked reduction in neuronal cell death in spinal cord (SC) sections. These results suggest that calpain inhibition attenuates experimental autoimmune encephalomyelitis pathology by reducing both inflammation and neurodegeneration, and could be used in clinical settings to augment the efficacy of standard immunomodulatory agents used to treat MS. Multiple sclerosis (MS) pathology is marked by inflammation and infiltration of myelin-specific T cells into the central nervous system. Inflammation leads to neurodegeneration in progressive MS which also leads to epitope spreading, feedback looping to more inflammation. Calpain can play a role in both arms of the disease. Here, oral dosing with SNJ-1945, a novel water-soluble calpain inhibitor, reduces experimental autoimmune encephalomyelitis clinical scores in vivo and has a two-pronged effect via anti-inflammation and protection against neurodegeneration.
Collapse
Affiliation(s)
- Nicole Trager
- Department of Neurosciences, Medical University of South Carolina, Charleston, South Carolina, USA; Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, South Carolina, USA
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Vassall KA, Bessonov K, De Avila M, Polverini E, Harauz G. The effects of threonine phosphorylation on the stability and dynamics of the central molecular switch region of 18.5-kDa myelin basic protein. PLoS One 2013; 8:e68175. [PMID: 23861868 PMCID: PMC3702573 DOI: 10.1371/journal.pone.0068175] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Accepted: 05/24/2013] [Indexed: 12/02/2022] Open
Abstract
The classic isoforms of myelin basic protein (MBP) are essential for the formation and maintenance of myelin in the central nervous system of higher vertebrates. The protein is involved in all facets of the development, compaction, and stabilization of the multilamellar myelin sheath, and also interacts with cytoskeletal and signaling proteins. The predominant 18.5-kDa isoform of MBP is an intrinsically-disordered protein that is a candidate auto-antigen in the human demyelinating disease multiple sclerosis. A highly-conserved central segment within classic MBP consists of a proline-rich region (murine 18.5-kDa sequence -T92-P93-R94-T95-P96-P97-P98-S99-) containing a putative SH3-ligand, adjacent to a region that forms an amphipathic α-helix (P82-I90) upon interaction with membranes, or under membrane-mimetic conditions. The T92 and T95 residues within the proline-rich region can be post-translationally modified through phosphorylation by mitogen-activated protein (MAP) kinases. Here, we have investigated the structure of the α-helical and proline-rich regions in dilute aqueous buffer, and have evaluated the effects of phosphorylation at T92 and T95 on the stability and dynamics of the α-helical region, by utilizing four 36-residue peptides (S72-S107) with differing phosphorylation status. Nuclear magnetic resonance spectroscopy reveals that both the α-helical as well as the proline-rich regions are disordered in aqueous buffer, whereas they are both structured in a lipid environment (cf., Ahmed et al., Biochemistry 51, 7475-9487, 2012). Thermodynamic analysis of trifluoroethanol-titration curves monitored by circular dichroism spectroscopy reveals that phosphorylation, especially at residue T92, impedes formation of the amphipathic α-helix. This conclusion is supported by molecular dynamics simulations, which further illustrate that phosphorylation reduces the folding reversibility of the α-helix upon temperature perturbation and affect the global structure of the peptides through altered electrostatic interactions. The results support the hypothesis that the central conserved segment of MBP constitutes a molecular switch in which the conformation and/or intermolecular interactions are mediated by phosphorylation/dephosphorylation at T92 and T95.
Collapse
Affiliation(s)
- Kenrick A. Vassall
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Kyrylo Bessonov
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Miguel De Avila
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | | | - George Harauz
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
10
|
Azzam S, Broadwater L, Li S, Freeman EJ, McDonough J, Gregory RB. A SELDI mass spectrometry study of experimental autoimmune encephalomyelitis: sample preparation, reproducibility, and differential protein expression patterns. Proteome Sci 2013; 11:19. [PMID: 23635033 PMCID: PMC3682907 DOI: 10.1186/1477-5956-11-19] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2012] [Accepted: 03/25/2013] [Indexed: 12/21/2022] Open
Abstract
Background Experimental autoimmune encephalomyelitis (EAE) is an autoimmune, inflammatory disease of the central nervous system that is widely used as a model of multiple sclerosis (MS). Mitochondrial dysfunction appears to play a role in the development of neuropathology in MS and may also play a role in disease pathology in EAE. Here, surface enhanced laser desorption ionization mass spectrometry (SELDI-MS) has been employed to obtain protein expression profiles from mitochondrially enriched fractions derived from EAE and control mouse brain. To gain insight into experimental variation, the reproducibility of sub-cellular fractionation, anion exchange fractionation as well as spot-to-spot and chip-to-chip variation using pooled samples from brain tissue was examined. Results Variability of SELDI mass spectral peak intensities indicates a coefficient of variation (CV) of 15.6% and 17.6% between spots on a given chip and between different chips, respectively. Thinly slicing tissue prior to homogenization with a rotor homogenizer showed better reproducibility (CV = 17.0%) than homogenization of blocks of brain tissue with a Teflon® pestle (CV = 27.0%). Fractionation of proteins with anion exchange beads prior to SELDI-MS analysis gave overall CV values from 16.1% to 18.6%. SELDI mass spectra of mitochondrial fractions obtained from brain tissue from EAE mice and controls displayed 39 differentially expressed proteins (p≤ 0.05) out of a total of 241 protein peaks observed in anion exchange fractions. Hierarchical clustering analysis showed that protein fractions from EAE animals with severe disability clearly segregated from controls. Several components of electron transport chain complexes (cytochrome c oxidase subunit 6b1, subunit 6C, and subunit 4; NADH dehydrogenase flavoprotein 3, alpha subcomplex subunit 2, Fe-S protein 4, and Fe-S protein 6; and ATP synthase subunit e) were identified as possible differentially expressed proteins. Myelin Basic Protein isoform 8 (MBP8) (14.2 kDa) levels were lower in EAE samples with advanced disease relative to controls, while an MBP fragment (12. 4kDa), likely due to calpain digestion, was increased in EAE relative to controls. The appearance of MBP in mitochondrially enriched fractions is due to tissue freezing and storage, as MBP was not found associated with mitochondria obtained from fresh tissue. Conclusions SELDI mass spectrometry can be employed to explore the proteome of a complex tissue (brain) and obtain protein profiles of differentially expressed proteins from protein fractions. Appropriate homogenization protocols and protein fractionation using anion exchange beads can be employed to reduce sample complexity without introducing significant additional variation into the SELDI mass spectra beyond that inherent in the SELDI- MS method itself. SELDI-MS coupled with principal component analysis and hierarchical cluster analysis provides protein patterns that can clearly distinguish the disease state from controls. However, identification of individual differentially expressed proteins requires a separate purification of the proteins of interest by polyacrylamide electrophoresis prior to trypsin digestion and peptide mass fingerprint analysis, and unambiguous identification of differentially expressed proteins can be difficult if protein bands consist of several proteins with similar molecular weights.
Collapse
Affiliation(s)
- Sausan Azzam
- Department of Chemistry and Biochemistry, Kent State University, Kent, Ohio 44242, USA.
| | | | | | | | | | | |
Collapse
|
11
|
Harauz G, Boggs JM. Myelin management by the 18.5-kDa and 21.5-kDa classic myelin basic protein isoforms. J Neurochem 2013; 125:334-61. [PMID: 23398367 DOI: 10.1111/jnc.12195] [Citation(s) in RCA: 115] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Revised: 02/05/2013] [Accepted: 02/05/2013] [Indexed: 12/15/2022]
Abstract
The classic myelin basic protein (MBP) splice isoforms range in nominal molecular mass from 14 to 21.5 kDa, and arise from the gene in the oligodendrocyte lineage (Golli) in maturing oligodendrocytes. The 18.5-kDa isoform that predominates in adult myelin adheres the cytosolic surfaces of oligodendrocyte membranes together, and forms a two-dimensional molecular sieve restricting protein diffusion into compact myelin. However, this protein has additional roles including cytoskeletal assembly and membrane extension, binding to SH3-domains, participation in Fyn-mediated signaling pathways, sequestration of phosphoinositides, and maintenance of calcium homeostasis. Of the diverse post-translational modifications of this isoform, phosphorylation is the most dynamic, and modulates 18.5-kDa MBP's protein-membrane and protein-protein interactions, indicative of a rich repertoire of functions. In developing and mature myelin, phosphorylation can result in microdomain or even nuclear targeting of the protein, supporting the conclusion that 18.5-kDa MBP has significant roles beyond membrane adhesion. The full-length, early-developmental 21.5-kDa splice isoform is predominantly karyophilic due to a non-traditional P-Y nuclear localization signal, with effects such as promotion of oligodendrocyte proliferation. We discuss in vitro and recent in vivo evidence for multifunctionality of these classic basic proteins of myelin, and argue for a systematic evaluation of the temporal and spatial distributions of these protein isoforms, and their modified variants, during oligodendrocyte differentiation.
Collapse
Affiliation(s)
- George Harauz
- Department of Molecular and Cellular Biology, Biophysics Interdepartmental Group and Collaborative Program in Neuroscience, University of Guelph, Guelph, Ontario, Canada.
| | | |
Collapse
|
12
|
Smith GST, Homchaudhuri L, Boggs JM, Harauz G. Classic 18.5- and 21.5-kDa myelin basic protein isoforms associate with cytoskeletal and SH3-domain proteins in the immortalized N19-oligodendroglial cell line stimulated by phorbol ester and IGF-1. Neurochem Res 2012; 37:1277-95. [PMID: 22249765 DOI: 10.1007/s11064-011-0700-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2011] [Revised: 11/17/2011] [Accepted: 12/31/2011] [Indexed: 01/10/2023]
Abstract
The 18.5-kDa classic myelin basic protein (MBP) is an intrinsically disordered protein arising from the Golli (Genes of Oligodendrocyte Lineage) gene complex and is responsible for compaction of the myelin sheath in the central nervous system. This MBP splice isoform also has a plethora of post-translational modifications including phosphorylation, deimination, methylation, and deamidation, that reduce its overall net charge and alter its protein and lipid associations within oligodendrocytes (OLGs). It was originally thought that MBP was simply a structural component of myelin; however, additional investigations have demonstrated that MBP is multi-functional, having numerous protein-protein interactions with Ca²⁺-calmodulin, actin, tubulin, and proteins with SH3-domains, and it can tether these proteins to a lipid membrane in vitro. Here, we have examined cytoskeletal interactions of classic 18.5-kDa MBP, in vivo, using early developmental N19-OLGs transfected with fluorescently-tagged MBP, actin, tubulin, and zonula occludens 1 (ZO-1). We show that MBP redistributes to distinct 'membrane-ruffled' regions of the plasma membrane where it co-localizes with actin and tubulin, and with the SH3-domain-containing proteins cortactin and ZO-1, when stimulated with PMA, a potent activator of the protein kinase C pathway. Moreover, using phospho-specific antibody staining, we show an increase in phosphorylated Thr98 MBP (human sequence numbering) in membrane-ruffled OLGs. Previously, Thr98 phosphorylation of MBP has been shown to affect its conformation, interactions with other proteins, and tethering of other proteins to the membrane in vitro. Here, MBP and actin were also co-localized in new focal adhesion contacts induced by IGF-1 stimulation in cells grown on laminin-2. This study supports a role for classic MBP isoforms in cytoskeletal and other protein-protein interactions during membrane and cytoskeletal remodeling in OLGs.
Collapse
Affiliation(s)
- Graham S T Smith
- Department of Molecular and Cellular Biology, University of Guelph, 50 Stone Road East, Guelph, ON N1G 2W1, Canada
| | | | | | | |
Collapse
|
13
|
Smith GS, De Avila M, Paez PM, Spreuer V, Wills MK, Jones N, Boggs JM, Harauz G. Proline substitutions and threonine pseudophosphorylation of the SH3 ligand of 18.5-kDa myelin basic protein decrease its affinity for the Fyn-SH3 domain and alter process development and protein localization in oligodendrocytes. J Neurosci Res 2012; 90:28-47. [PMID: 21887699 PMCID: PMC3527418 DOI: 10.1002/jnr.22733] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2011] [Revised: 06/02/2011] [Accepted: 06/06/2011] [Indexed: 12/28/2022]
Abstract
The developmentally regulated myelin basic proteins (MBPs), which arise from the golli (gene of oligodendrocyte lineage) complex, are highly positively charged, intrinsically disordered, multifunctional proteins having several alternatively spliced isoforms and posttranslational modifications, and they play key roles in myelin compaction. The classic 18.5-kDa MBP isoform has a proline-rich region comprising amino acids 92-99 (murine sequence -T(92)PRTPPPS(99)-) that contains a minimal SH3 ligand domain. We have previously shown that 18.5-kDa MBP binds to several SH3 domains, including that of Fyn, a member of the Src family of tyrosine kinases involved in a number of signaling pathways during CNS development. To determine the physiological role of this binding as well as the role of phosphorylation of Thr92 and Thr95, in the current study we have produced several MBP variants specifically targeting phosphorylation sites and key structural regions of MBP's SH3 ligand domain. Using isothermal titration calorimetry, we have demonstrated that, compared with the wild-type protein, these variants have lower affinity for the SH3 domain of Fyn. Moreover, overexpression of N-terminal-tagged GFP versions in immortalized oligodendroglial N19 and N20.1 cell cultures results in aberrant elongation of membrane processes and increased branching complexity and inhibits the ability of MBP to decrease Ca(2+) influx. Phosphorylation of Thr92 can also cause MBP to traffic to the nucleus, where it may participate in additional protein-protein interactions. Coexpression of MBP with a constitutively active form of Fyn kinase resulted in membrane process elaboration, a phenomenon that was abolished by point amino acid substitutions in MBP's SH3 ligand domain. These results suggest that MBP's SH3 ligand domain plays a key role in intracellular protein interactions in vivo and may be required for proper membrane elaboration of developing oligodendrocytes and, further, that phosphorylation of Thr92 and Thr95 can regulate this function.
Collapse
Affiliation(s)
- Graham S.T. Smith
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Miguel De Avila
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Pablo M. Paez
- Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California
| | - Vilma Spreuer
- Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California
| | - Melanie K.B. Wills
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Nina Jones
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Joan M. Boggs
- Molecular Structure and Function, Hospital for Sick Children, and Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - George Harauz
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
14
|
Bacheva AV, Belogurov AA, Kuzina ES, Serebriakova MV, Ponomarenko NA, Knorre VD, Govorun VM, Gabibov AG. [Functional degradation of myelin basic protein. Proteomic approach]. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2011; 37:45-54. [PMID: 21460880 DOI: 10.1134/s1068162011010031] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Proteolytic degradation of autoantigens is of prime importance in current biochemistry and immunology. The most fundamental issue in this field is the functional role of peptides produced when the specificity of hydrolysis changes during the shift from health to disease and from normal state to pathology. The identification of specific peptide fragments in many cases proposes the diagnostic and prognostic criterion in the pathology progression. The aim of this work is comparative study of the degradation peculiarities of one of the main neuroantigen, myelin basic protein by proteases, activated during progress of pathological demyelinating process, and by proteasome of different origin. The comparison of specificity of different studied biocatalysts gives reason to discuss the critical change in the set of myelin basic protein fragments capable to be presented by major histocompatibility complex class I during neurodegeneration, which can promote the progress of autoimmune pathological process.
Collapse
|
15
|
Smith AW, Doonan BP, Tyor WR, Abou-Fayssal N, Haque A, Banik NL. Regulation of Th1/Th17 cytokines and IDO gene expression by inhibition of calpain in PBMCs from MS patients. J Neuroimmunol 2011; 232:179-85. [PMID: 21075457 PMCID: PMC3053080 DOI: 10.1016/j.jneuroim.2010.09.030] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2010] [Revised: 09/16/2010] [Accepted: 09/30/2010] [Indexed: 12/13/2022]
Abstract
Multiple sclerosis (MS) pathology is marked by the massive infiltration of myelin-specific T cells into the central nervous system (CNS). During active disease, pro-inflammatory Th1/Th17 cells predominate over immunoregulatory Th2/Treg cells. Here, we show that calpain inhibition downregulates Th1/Th17 inflammatory cytokines and mRNA in MS patient peripheral blood mononuclear cells (PBMCs) activated with anti-CD3/28 or MBP. Interestingly, calpain inhibition elevated IDO gene expression in MS PBMCs, which was markedly decreased in calpain expressing cells. Functional assay showed that incubation of MS patient PBMCs with calpain inhibitor or recombinant IDO attenuates T cell proliferation. These results suggest that calpain inhibition may attenuate MS pathology and augment the efficacy of standard immunomodulatory agents used to treat this disease.
Collapse
Affiliation(s)
- Amena W Smith
- Department of Neurosciences, Division of Neurology, Medical University of South Carolina, 96 Jonathan Lucas St, Charleston, SC 29425, USA
| | | | | | | | | | | |
Collapse
|
16
|
Tárnok K, Szilágyi L, Berki T, Németh P, Gráf L, Schlett K. Anoxia leads to a rapid translocation of human trypsinogen 4 to the plasma membrane of cultured astrocytes. J Neurochem 2010; 115:314-24. [DOI: 10.1111/j.1471-4159.2010.06685.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
17
|
Wu P, Weisell J, Pakkala M, Peräkylä M, Zhu L, Koistinen R, Koivunen E, Stenman UH, Närvänen A, Koistinen H. Identification of novel peptide inhibitors for human trypsins. Biol Chem 2010; 391:283-293. [DOI: 10.1515/bc.2010.030] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Abstract
Human trypsin isoenzymes share extensive sequence similarity, but certain differences in their activity and susceptibility to inhibitors have been observed. Using phage display technology, we identified seven different peptides that bind to and inhibit the activity of trypsin-3, a minor trypsin isoform expressed in pancreas and brain. All of the peptides contain at least two of the amino acids tryptophan, alanine and arginine, whereas proline was found closer to the N-terminus in all but one peptide. All peptides contain two or more cysteines, suggesting a cyclic structure. However, we were able to make synthetic linear variants of these peptides without losing bioactivity. Alanine replacement experiments for one of the peptides suggest that the IPXXWFR motif is important for activity. By molecular modeling the same amino acids were found to interact with trypsin-3. The peptides also inhibit trypsin-1, but only weakly, if at all, trypsin-2 and -C. As trypsin is a highly active enzyme which can activate protease-activated receptors and enzymes that participate in proteolytic cascades involved in tumor invasion and metastasis, these peptides might be useful lead molecules for the development of drugs for diseases associated with increased trypsin activity.
Collapse
Affiliation(s)
- Ping Wu
- Department of Clinical Chemistry, P.O. Box 63, University of Helsinki and Helsinki University Central Hospital, FIN-00014 University of Helsinki, Helsinki, Finland
| | - Janne Weisell
- Department of Biosciences and Biocenter Kuopio, University of Kuopio, P.O. Box 1627, FIN-70211 Kuopio, Finland
| | - Miikka Pakkala
- Department of Biosciences and Biocenter Kuopio, University of Kuopio, P.O. Box 1627, FIN-70211 Kuopio, Finland
| | - Mikael Peräkylä
- Department of Biosciences and Biocenter Kuopio, University of Kuopio, P.O. Box 1627, FIN-70211 Kuopio, Finland
| | - Lei Zhu
- Department of Clinical Chemistry, P.O. Box 63, University of Helsinki and Helsinki University Central Hospital, FIN-00014 University of Helsinki, Helsinki, Finland
| | - Riitta Koistinen
- Department of Clinical Chemistry, P.O. Box 63, University of Helsinki and Helsinki University Central Hospital, FIN-00014 University of Helsinki, Helsinki, Finland
| | - Erkki Koivunen
- The David H. Koch Center, University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Ulf-Håkan Stenman
- Department of Clinical Chemistry, P.O. Box 63, University of Helsinki and Helsinki University Central Hospital, FIN-00014 University of Helsinki, Helsinki, Finland
| | - Ale Närvänen
- Department of Biosciences and Biocenter Kuopio, University of Kuopio, P.O. Box 1627, FIN-70211 Kuopio, Finland
| | - Hannu Koistinen
- Department of Clinical Chemistry, P.O. Box 63, University of Helsinki and Helsinki University Central Hospital, FIN-00014 University of Helsinki, Helsinki, Finland
| |
Collapse
|
18
|
Belogurov A, Kozyr A, Ponomarenko N, Gabibov A. Catalytic antibodies: balancing between Dr. Jekyll and Mr. Hyde. Bioessays 2010; 31:1161-71. [PMID: 19795406 DOI: 10.1002/bies.200900020] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The immunoglobulin molecule is a perfect template for the de novo generation of biocatalytic functions. Catalytic antibodies, or abzymes, obtained by the structural mimicking of enzyme active sites have been shown to catalyze numerous chemical reactions. Natural enzyme analogs for some of these reactions have not yet been found or possibly do not exist at all. Nowadays, the dramatic breakthrough in antibody engineering and expression technologies has promoted a considerable expansion of immunoglobulin's medical applications and is offering abzymes a unique chance to become a promising source of high-precision "catalytic vaccines." At the same time, the discovery of natural abzymes on the background of autoimmune disease revealed their beneficial and pathogenic roles in the disease progression. Thus, the conflicting Dr. Jekyll and Mr. Hyde protective and destructive essences of catalytic antibodies should be carefully considered in the development of therapeutic abzyme applications.
Collapse
Affiliation(s)
- Alexey Belogurov
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, Moscow 117997, Russia
| | | | | | | |
Collapse
|
19
|
Govender R, Wieselthaler NA, Ndondo A, Wilmshurst JM. Acquired demyelinating disorders of childhood in the Western Cape, South Africa. J Child Neurol 2010; 25:48-56. [PMID: 19494357 DOI: 10.1177/0883073809336294] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In a retrospective review of patients with acquired demyelinating disorders of the central nervous system, 19 children (0.6%) were identified from the Paediatric Neurology database of 3159 patients; 7 had acute disseminated encephalomyelitis, 1 had Schilder's disease, 5 had multiple sclerosis, and 6 had acute transverse myelitis. The median age of presentation was 83 months, with increased incidence during the summer and winter months. The commonest presentation was hemiparesis. The commonest regions of magnetic resonance imaging (MRI) abnormalities were the deep white matter (68%) and cerebellum (48%).The patients with multiple sclerosis had more monosymptomatic presentations (P < .02), raised cerebrospinal fluid protein (P = .022), and contrast enhancement of lesions (P = .05) compared with the acute disseminated encephalomyelitis group. Neuroepidemiological published surveillances of African children provide no data about these disorders. The prevalence of acquired demyelinating disorders in resource-poor settings is under-estimated because of the large burden of infections and limited access to neuroimaging.
Collapse
Affiliation(s)
- Rajeshree Govender
- Department of Paediatric Neurology, School of Child and Adolescent Health, Red Cross Children's Hospital, University of Cape Town, Cape Town, South Africa.
| | | | | | | |
Collapse
|
20
|
Harauz G, Ladizhansky V, Boggs JM. Structural Polymorphism and Multifunctionality of Myelin Basic Protein. Biochemistry 2009; 48:8094-104. [DOI: 10.1021/bi901005f] [Citation(s) in RCA: 157] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
| | | | - Joan M. Boggs
- Department of Molecular Structure and Function, Research Institute, Hospital for Sick Children, Toronto, Ontario M5G 1X8, Canada, and Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario M5G 1L5, Canada
| |
Collapse
|
21
|
Belogurov AA, Ponomarenko NA, Govorun VM, Gabibov AG, Bacheva AV. Site-specific degradation of myelin basic protein by the proteasome. DOKL BIOCHEM BIOPHYS 2009; 425:68-72. [PMID: 19496324 DOI: 10.1134/s1607672909020033] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- A A Belogurov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, Moscow 117997, Russia
| | | | | | | | | |
Collapse
|
22
|
Koistinen H, Koistinen R, Zhang WM, Valmu L, Stenman UH. Nexin-1 inhibits the activity of human brain trypsin. Neuroscience 2009; 160:97-102. [PMID: 19249338 DOI: 10.1016/j.neuroscience.2009.02.042] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2008] [Revised: 12/18/2008] [Accepted: 02/19/2009] [Indexed: 10/21/2022]
Abstract
Trypsin and other trypsin-like serine proteases have been shown to play important roles in neural development, plasticity and neurodegeneration. Their activity is modulated by serine protease inhibitors, serpins. However, for human brain trypsin, trypsin-4, no brain-derived inhibitors have been described. Here, we report that nexin-1 inhibits trypsin-4, and forms stable complexes only with this trypsin-isoenzyme. This result suggests that nexin-1 could modulate trypsin activity in brain where both nexin-1 and trypsin-4 are expressed.
Collapse
Affiliation(s)
- H Koistinen
- Department of Clinical Chemistry, Biomedicum, University of Helsinki and Helsinki University Central Hospital, PO Box 63, FIN 00014, Finland.
| | | | | | | | | |
Collapse
|
23
|
Phosphorylation of U24 from Human Herpes Virus type 6 (HHV-6) and its potential role in mimicking myelin basic protein (MBP) in multiple sclerosis. FEBS Lett 2008; 582:2685-8. [DOI: 10.1016/j.febslet.2008.06.050] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2008] [Revised: 06/10/2008] [Accepted: 06/11/2008] [Indexed: 01/14/2023]
|
24
|
Belogurov AA, Kurkova IN, Friboulet A, Thomas D, Misikov VK, Zakharova MY, Suchkov SV, Kotov SV, Alehin AI, Avalle B, Souslova EA, Morse HC, Gabibov AG, Ponomarenko NA. Recognition and degradation of myelin basic protein peptides by serum autoantibodies: novel biomarker for multiple sclerosis. THE JOURNAL OF IMMUNOLOGY 2008; 180:1258-67. [PMID: 18178866 DOI: 10.4049/jimmunol.180.2.1258] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The pathologic role of autoantibodies in autoimmune disease is widely accepted. Recently, we reported that anti-myelin basic protein (MBP) serum Abs from multiple sclerosis (MS) patients exhibit proteolytic activity toward the autoantigen. The aim of this study is to determine MBP epitopes specific for the autoantibodies in MS and compare these data with those from other neuronal disorders (OND), leading to the generation of new diagnostic and prognostic criteria. We constructed a MBP-derived recombinant "epitope library" covering the entire molecule. We used ELISA and PAGE/surface-enhanced laser desorption/ionization mass spectroscopy assays to define the epitope binding/cleaving activities of autoantibodies isolated from the sera of 26 MS patients, 22 OND patients, and 11 healthy individuals. The levels of autoantibodies to MBP fragments 48-70 and 85-170 as well as to whole MBP and myelin oligodendrocyte glycoprotein molecules were significantly higher in the sera of MS patients than in those of healthy donors. In contrast, selective reactivity to the two MBP fragments 43-68 and 146-170 distinguished the OND and MS patients. Patients with MS (77% of progressive and 85% of relapsing-remitting) but only 9% of patients with OND and no healthy donors were positive for catalysis, showing pronounced epitope specificity to the encephalitogenic MBP peptide 81-103. This peptide retained its substrate properties when flanked with two fluorescent proteins, providing a novel fluorescent resonance energy transfer approach for MS studies. Thus, anti-MBP autoantibody-mediated, epitope-specific binding and cleavage may be regarded as a specific characteristic of MS compared with OND and healthy donors and may serve as an additional biomarker of disease progression.
Collapse
Affiliation(s)
- Alexey A Belogurov
- Institute of Bioorganic Chemistry, Clinical Hospital, Russian Academy of Sciences, Moscow, Russia
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Salameh MA, Soares AS, Hockla A, Radisky ES. Structural basis for accelerated cleavage of bovine pancreatic trypsin inhibitor (BPTI) by human mesotrypsin. J Biol Chem 2007; 283:4115-23. [PMID: 18077447 DOI: 10.1074/jbc.m708268200] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Human mesotrypsin is an isoform of trypsin that displays unusual resistance to polypeptide trypsin inhibitors and has been observed to cleave several such inhibitors as substrates. Whereas substitution of arginine for the highly conserved glycine 193 in the trypsin active site has been implicated as a critical factor in the inhibitor resistance of mesotrypsin, how this substitution leads to accelerated inhibitor cleavage is not clear. Bovine pancreatic trypsin inhibitor (BPTI) forms an extremely stable and cleavage-resistant complex with trypsin, and thus provides a rigorous challenge of mesotrypsin catalytic activity toward polypeptide inhibitors. Here, we report kinetic constants for mesotrypsin and the highly homologous (but inhibitor sensitive) human cationic trypsin, describing inhibition by, and cleavage of BPTI, as well as crystal structures of the mesotrypsin-BPTI and human cationic trypsin-BPTI complexes. We find that mesotrypsin cleaves BPTI with a rate constant accelerated 350-fold over that of human cationic trypsin and 150,000-fold over that of bovine trypsin. From the crystal structures, we see that small conformational adjustments limited to several side chains enable mesotrypsin-BPTI complex formation, surmounting the predicted steric clash introduced by Arg-193. Our results show that the mesotrypsin-BPTI interface favors catalysis through (a) electrostatic repulsion between the closely spaced mesotrypsin Arg-193 and BPTI Arg-17, and (b) elimination of two hydrogen bonds between the enzyme and the amine leaving group portion of BPTI. Our model predicts that these deleterious interactions accelerate leaving group dissociation and deacylation.
Collapse
Affiliation(s)
- Moh'd A Salameh
- Department of Cancer Biology, Mayo Clinic Cancer Center, Jacksonville, Florida 32224, USA
| | | | | | | |
Collapse
|
26
|
Polverini E, Rangaraj G, Libich DS, Boggs JM, Harauz G. Binding of the proline-rich segment of myelin basic protein to SH3 domains: spectroscopic, microarray, and modeling studies of ligand conformation and effects of posttranslational modifications. Biochemistry 2007; 47:267-82. [PMID: 18067320 DOI: 10.1021/bi701336n] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Myelin basic protein (MBP) is a multifunctional protein involved in maintaining the stability and integrity of the myelin sheath by a variety of interactions with membranes and with cytoskeletal and other proteins. A central segment of MBP is highly conserved in mammals and consists of a membrane surface-associated amphipathic alpha-helix, immediately followed by a proline-rich segment that we hypothesize is an SH3 ligand. We show by circular dichroic spectroscopy that this proline-rich segment forms a polyproline type II helix in vitro under physiological conditions and that phosphorylation at a constituent threonyl residue has a stabilizing effect on its conformation. Using SH3 domain microarrays, we observe that the unmodified recombinant murine 18.5 kDa MBP isoform (rmC1 component) binds the following SH3 domains: Yes1 > PSD95 > cortactin = PexD = Abl = Fyn = c-Src = Itk in order of decreasing affinity. A quasi-deiminated form of the protein (rmC8) binds the SH3 domains Yes1 > Fyn > cortactin = c-Src > PexD = Abl. Phosphorylation of rmC1 at 1-2 threonines within the proline-rich segment by mitogen-activated protein kinase in vitro has no effect on the binding specificity to the SH3 domains on the array. An SH3 domain of chicken Fyn is also demonstrated to bind to lipid membrane-associated C1, phosphorylated C1, and rmC8. Molecular docking simulations of the interaction of the putative SH3 ligand of classic MBP with the human Fyn SH3 domain indicate that the strength of the interaction is of the same order of magnitude as with calmodulin and that the molecular recognition and association is mediated by some weak CH...pi interactions between the ligand prolyl residues and the aromatic ones of the SH3 binding site. One such interaction is well-conserved and involves the stacking of an MBP-peptide prolyl and an SH3 domain tryptophanyl residue, as in most other SH3-ligand complexes. Lysyl and arginyl residues in the peptide canonically interact via salt bridges and cation-pi interactions with negatively charged and aromatic residues in the SH3 domain binding site. Posttranslational modifications (phosphorylation or methylation) of the ligand cause noticeable shifts in the conformation of the flexible peptide and its side chains but do not predict any major inhibition of the binding beyond somewhat less favorable interactions for peptides with phosphorylated seryl or threonyl residues.
Collapse
Affiliation(s)
- Eugenia Polverini
- Dipartimento di Fisica and CNISM, Università di Parma, V. le Usberti, 7/A, 43100 Parma, Italy
| | | | | | | | | |
Collapse
|
27
|
Knecht W, Cottrell GS, Amadesi S, Mohlin J, Skåregärde A, Gedda K, Peterson A, Chapman K, Hollenberg MD, Vergnolle N, Bunnett NW. Trypsin IV or Mesotrypsin and p23 Cleave Protease-activated Receptors 1 and 2 to Induce Inflammation and Hyperalgesia. J Biol Chem 2007; 282:26089-100. [PMID: 17623652 DOI: 10.1074/jbc.m703840200] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Although principally produced by the pancreas to degrade dietary proteins in the intestine, trypsins are also expressed in the nervous system and in epithelial tissues, where they have diverse actions that could be mediated by protease-activated receptors (PARs). We examined the biological actions of human trypsin IV (or mesotrypsin) and rat p23, inhibitor-resistant forms of trypsin. The zymogens trypsinogen IV and pro-p23 were expressed in Escherichia coli and purified to apparent homogeneity. Enteropeptidase cleaved both zymogens, liberating active trypsin IV and p23, which were resistant to soybean trypsin inhibitor and aprotinin. Trypsin IV cleaved N-terminal fragments of PAR(1), PAR(2), and PAR(4) at sites that would expose the tethered ligand (PAR(1) = PAR(4) > PAR(2)). Trypsin IV increased [Ca(2+)](i) in transfected cells expressing human PAR(1) and PAR(2) with similar potencies (PAR(1), 0.5 microm; PAR(2), 0.6 microm). p23 also cleaved fragments of PAR(1) and PAR(2) and signaled to cells expressing these receptors. Trypsin IV and p23 increased [Ca(2+)](i) in rat dorsal root ganglion neurons that responded to capsaicin and which thus mediate neurogenic inflammation and nociception. Intraplantar injection of trypsin IV and p23 in mice induced edema and granulocyte infiltration, which were not observed in PAR (-/-)(1)(trypsin IV) and PAR (-/-)(2) (trypsin IV and p23) mice. Trypsin IV and p23 caused thermal hyperalgesia and mechanical allodynia and hyperalgesia in mice, and these effects were absent in PAR (-/-)(2) mice but maintained in PAR (-/-)(1) mice. Thus, trypsin IV and p23 are inhibitor-resistant trypsins that can cleave and activate PARs, causing PAR(1)- and PAR(2)-dependent inflammation and PAR(2)-dependent hyperalgesia.
Collapse
MESH Headings
- Animals
- Aprotinin/chemistry
- Calcium Signaling/drug effects
- Capsaicin/pharmacology
- Edema/chemically induced
- Edema/genetics
- Edema/metabolism
- Edema/pathology
- Enteropeptidase/chemistry
- Ganglia, Spinal/metabolism
- Ganglia, Spinal/pathology
- Granulocytes/metabolism
- Granulocytes/pathology
- Humans
- Hyperalgesia/chemically induced
- Hyperalgesia/genetics
- Hyperalgesia/metabolism
- Hyperalgesia/pathology
- Inflammation/chemically induced
- Inflammation/genetics
- Inflammation/metabolism
- Inflammation/pathology
- Male
- Mice
- Mice, Knockout
- Nociceptors/metabolism
- Nociceptors/pathology
- Pain Measurement
- Rats
- Rats, Sprague-Dawley
- Receptor, PAR-1/deficiency
- Receptor, PAR-1/metabolism
- Receptor, PAR-2/deficiency
- Receptor, PAR-2/physiology
- Receptors, Proteinase-Activated/metabolism
- Receptors, Thrombin/metabolism
- Recombinant Proteins/chemistry
- Recombinant Proteins/genetics
- Recombinant Proteins/metabolism
- Recombinant Proteins/pharmacology
- Trypsin/chemistry
- Trypsin/genetics
- Trypsin/metabolism
- Trypsin/pharmacology
- Trypsin Inhibitors/chemistry
Collapse
Affiliation(s)
- Wolfgang Knecht
- Molecular Pharmacology and Lead Generation, AstraZeneca Research and Development, Mölndal 431 83, Sweden
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Németh AL, Medveczky P, Tóth J, Siklódi E, Schlett K, Patthy A, Palkovits M, Ovádi J, Tõkési N, Németh P, Szilágyi L, Gráf L. Unconventional translation initiation of human trypsinogen 4 at a CUG codon with an N-terminal leucine. A possible means to regulate gene expression. FEBS J 2007; 274:1610-20. [PMID: 17480209 DOI: 10.1111/j.1742-4658.2007.05708.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Chromosomal rearrangements apparently account for the presence of a primate-specific gene (protease serine 3) in chromosome 9. This gene encodes, as the result of alternative splicing, both mesotrypsinogen and trypsinogen 4. Whereas mesotrypsinogen is known to be a pancreatic protease, neither the chemical nature nor biological function of trypsinogen 4 has been explored previously. The trypsinogen 4 sequence contains two predicted translation initiation sites: an AUG site that codes for a 72-residue leader peptide on Isoform A, and a CUG site that codes for a 28-residue leader peptide on Isoform B. We report studies that provide evidence for the N-terminal amino acid sequence of trypsinogen 4 and the possible mechanism of expression of this protein in human brain and transiently transfected cells. We raised mAbs against a 28-amino acid synthetic peptide representing the leader sequence of Isoform B and against recombinant trypsin 4. By using these antibodies, we isolated and chemically identified trypsinogen 4 from extracts of both post mortem human brain and transiently transfected HeLa cells. Our results show that Isoform B, with a leucine N terminus, is the predominant (if not exclusive) form of the enzyme in post mortem human brain, but that both isoforms are expressed in transiently transfected cells. On the basis of our studies on the expression of a series of trypsinogen 4 constructs in two different cell lines, we propose that unconventional translation initiation at a CUG with a leucine, rather than a methionine, N terminus may serve as a means to regulate protein expression.
Collapse
Affiliation(s)
- Attila L Németh
- Department of Biochemistry, Eötvös Loránd University, Pázmány Peter s. 1/C, Budapest H-1117, Hungary
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Tóth J, Siklódi E, Medveczky P, Gallatz K, Németh P, Szilágyi L, Gráf L, Palkovits M. Regional distribution of human trypsinogen 4 in human brain at mRNA and protein level. Neurochem Res 2007; 32:1423-33. [PMID: 17406981 DOI: 10.1007/s11064-007-9327-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2007] [Accepted: 03/01/2007] [Indexed: 10/23/2022]
Abstract
Gene PRSS3 on chromosome 9 of the human genome encodes, due to alternative splicing, both mesotrypsinogen and trypsinogen 4. Mesotrypsinogen has long been known as a minor component of trypsinogens expressed in human pancreas, while the mRNA for trypsinogen 4 has recently been identified in brain and other human tissues. We measured the amount of trypsinogen 4 mRNA and the quantity of the protein as well in 17 selected areas of the human brain. Our data suggest that human trypsinogen 4 is widely but unevenly distributed in the human brain. By immunohistochemistry, here we show that this protease is localized in neurons and glial cells, predominantly in astrocytes. In addition to cellular immunoreactivity, human trypsinogen 4 immunopositive dots were detected in the extracellular matrix, supporting the view that human trypsinogen 4 might be released from the cells under special conditions.
Collapse
Affiliation(s)
- Júlia Tóth
- Department of Biochemistry, Eötvös Loránd University, Pázmány Street 1/C, 1117 Budapest, Hungary
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Su LJ, Ding GW, Yang ZL, Zhang SB, Yang YX, Xu CS. Expression patterns and action analysis of genes associated with hepatitis virus infection during rat liver regeneration. World J Gastroenterol 2006; 12:7626-34. [PMID: 17171791 PMCID: PMC4088044 DOI: 10.3748/wjg.v12.i47.7626] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To study the action of hepatitis virus infection-associated genes at transcription level during liver regeneration (LR).
METHODS: Hepatitis virus infection-associated genes were obtained by collecting the data from databases and retrieving the correlated articles, and their expression changes in the regenerating rat liver were detected with the rat genome 230 2.0 array.
RESULTS: Eighty-eight genes were found to be associated with liver regeneration. The number of genes initially and totally expressed during initial LR [0.5-4 h after partial hepatectomy (PH)], transition from G0 to G1 (4-6 h after PH), cell proliferation (6-66 h after PH), cell differentiation and reorganization of structure-function (66-168 h after PH) was 37, 8, 48, 3 and 37, 26, 80, 57, respectively, indicating that the genes were mainly triggered at the early stage of LR (0.5-4 h after PH), and worked at different phases. These genes were classified into 5 types according to their expression similarity, namely 37 up-regulated, 9 predominantly up-regulated, 34 down-regulated, 6 predominantly down-regulated and 2 up/down-regulated genes. Their total up- and down-regulation frequencies were 359 and 149 during LR, indicating that the expression of most genes was enhanced, while the expression of a small number of genes was attenuated during LR. According to time relevance, they were classified into 12 groups (0.5 and 1 h, 2 and 4 h, 6 h, 8 and 12 h, 16 and 96 h, 18 and 24 h, 30 and 42 h, 36 and 48 h, 54 and 60 h, 66 and 72 h, 120 and 144 h, 168 h), demonstrating that the cellular physiological and biochemical activities during LR were fluctuated. According to expression changes of the genes, their expression patterns were classified into 23 types, suggesting that the cellular physiological and biochemical activities during LR were diverse and complicated.
CONCLUSION: The anti-virus infection capacity of regenerating liver can be enhanced and 88 genes play an important role in LR.
Collapse
Affiliation(s)
- Li-Juan Su
- Faculty of Life Science and Technology, Ocean University of China, Qingdao 260003, Shandong Province, China
| | | | | | | | | | | |
Collapse
|
31
|
Harauz G, Musse AA. A Tale of Two Citrullines—Structural and Functional Aspects of Myelin Basic Protein Deimination in Health and Disease. Neurochem Res 2006; 32:137-58. [PMID: 16900293 DOI: 10.1007/s11064-006-9108-9] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/28/2006] [Indexed: 02/03/2023]
Abstract
Myelin basic protein (MBP) binds to negatively charged lipids on the cytosolic surface of oligodendrocyte membranes and is responsible for adhesion of these surfaces in the multilayered myelin sheath. The pattern of extensive post-translational modifications of MBP is dynamic during normal central nervous system (CNS) development and during myelin degeneration in multiple sclerosis (MS), affecting its interactions with the myelin membranes and with other molecules. In particular, the degree of deimination (or citrullination) of MBP is correlated with the severity of MS, and may represent a primary defect that precedes neurodegeneration due to autoimmune attack. That the degree of MBP deimination is also high in early CNS development indicates that this modification plays major physiological roles in myelin assembly. In this review, we describe the structural and functional consequences of MBP deimination in healthy and diseased myelin.
Collapse
Affiliation(s)
- George Harauz
- Department of Molecular and Cellular Biology, and Biophysics Interdepartmental Group, University of Guelph, 50 Stone Road East, Guelph, ON, Canada, N1G 2W1.
| | | |
Collapse
|
32
|
Szepessy E, Sahin-Tóth M. Human mesotrypsin exhibits restricted S1' subsite specificity with a strong preference for small polar side chains. FEBS J 2006; 273:2942-54. [PMID: 16759229 PMCID: PMC1550978 DOI: 10.1111/j.1742-4658.2006.05305.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Mesotrypsin, an inhibitor-resistant human trypsin isoform, does not activate or degrade pancreatic protease zymogens at a significant rate. These observations led to the proposal that mesotrypsin is a defective digestive protease on protein substrates. Surprisingly, the studies reported here with alpha1-antitrypsin (alpha1AT) revealed that, even though mesotrypsin was completely resistant to this serpin-type inhibitor, it selectively cleaved the Lys10-Thr11 peptide bond at the N-terminus. Analyzing a library of alpha1AT mutants in which Thr11 was mutated to various amino acids, we found that mesotrypsin hydrolyzed lysyl peptide bonds containing Thr or Ser at the P1' position with relatively high specificity (kcat/KM approximately 10(5) m(-1) x s(-1)). Compared with Thr or Ser, P1' Gly or Met inhibited cleavage 13- and 25-fold, respectively, whereas P1' Asn, Asp, Ile, Phe or Tyr resulted in 100-200-fold diminished rates of proteolysis, and Pro abolished cleavage completely. Consistent with the Ser/Thr P1' preference, mesotrypsin cleaved the Arg358-Ser359 reactive-site peptide bond of alpha1AT Pittsburgh and was rapidly inactivated by the serpin mechanism (ka approximately 10(6) m(-1) s(-1)). Taken together, the results indicate that mesotrypsin is not a defective protease on polypeptide substrates in general, but exhibits a relatively high specificity for Lys/Arg-Ser/Thr peptide bonds. This restricted, thrombin-like subsite specificity explains why mesotrypsin cannot activate pancreatic zymogens, but might activate certain proteinase-activated receptors. The observations also identify alpha1AT Pittsburgh as an effective mesotrypsin inhibitor and the serpin mechanism as a viable stratagem to overcome the inhibitor-resistance of mesotrypsin.
Collapse
Affiliation(s)
| | - Miklós Sahin-Tóth
- *Address correspondence to Miklós Sahin-Tóth, 715 Albany Street, Evans-433; Boston, MA 02118; Tel: (617) 414-1070; Fax: (617) 414-1041; E-mail:
| |
Collapse
|
33
|
Sahin-Tóth M. Addressable enzymes as protein therapeutics. Expert Opin Ther Pat 2006. [DOI: 10.1517/13543776.16.5.719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
34
|
Tóth J, Gombos L, Simon Z, Medveczky P, Szilágyi L, Gráf L, Málnási-Csizmadia A. Thermodynamic Analysis Reveals Structural Rearrangement during the Acylation Step in Human Trypsin 4 on 4-Methylumbelliferyl 4-Guanidinobenzoate Substrate Analogue. J Biol Chem 2006; 281:12596-602. [PMID: 16492676 DOI: 10.1074/jbc.m512301200] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Human trypsin 4 is an unconventional serine protease that possesses an arginine at position 193 in place of the highly conserved glycine. Although this single amino acid substitution does not affect steady-state activity on small synthetic substrates, it has dramatic effects on zymogen activation, interaction with canonical inhibitors, and substrate specificity toward macromolecular substrates. To study the effect of a non-glycine residue at position 193 on the mechanism of the individual enzymatic reaction steps, we expressed wild type human trypsin 4 and its R193G mutant. 4-Methylumbelliferyl 4-guanidinobenzoate has been chosen as a substrate analogue, where deacylation is rate-limiting, and transient kinetic methods were used to monitor the reactions. This experimental system allows for the separation of the individual reaction steps during substrate hydrolysis and the determination of their rate constants dependably. We suggest a refined model for the reaction mechanism, in which acylation is preceded by the reversible formation of the first tetrahedral intermediate. Furthermore, the thermodynamics of these steps were also investigated. The formation of the first tetrahedral intermediate is highly exothermic and accompanied by a large entropy decrease for the wild type enzyme, whereas the signs of the enthalpy and entropy changes are opposite and smaller for the R193G mutant. This difference in the energetic profiles indicates much more extended structural and/or dynamic rearrangements in the equilibrium step of the first tetrahedral intermediate formation in wild type human trypsin 4 than in the R193G mutant enzyme, which may contribute to the biological function of this protease.
Collapse
Affiliation(s)
- Júlia Tóth
- Department of Biochemistry, Eötvös Loránd University, Pázmány Péter sétány 1/C, H-1117 Budapest, Hungary
| | | | | | | | | | | | | |
Collapse
|