1
|
Herrera-Uribe J, Convery O, ALmohammadi D, Weinberg FI, Stevenson NJ. The Neglected Suppressor of Cytokine Signalling (SOCS): SOCS4-7. Inflammation 2024:10.1007/s10753-024-02163-7. [PMID: 39460806 DOI: 10.1007/s10753-024-02163-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/30/2024] [Accepted: 10/11/2024] [Indexed: 10/28/2024]
Abstract
SOCS proteins are essential for the regulation of oncogenic, anti-pathogenic, and proinflammatory signalling cascades, including the JAK/STAT and NF-kB pathways, where they act as negative feedback regulators. Given their powerful role in a broad spectrum of biological processes, it is surprising that the functions of many SOCS proteins have not been widely explored. While the mechanisms of action of CIS, SOCS1-3 are well-documented, information regarding SOCS4-7 remains limited. However, recent studies have begun to elucidate the regulatory functions of these proteins during infection and disease, such as influenza infection, cancer and diabetes. Therefore, this review aims to describe and discuss studies detailing our current understanding of SOCS4-7, painting a clearer picture of the biological processes these regulatory proteins maintain. Indeed, our review highlights important evidence proving that all SOCS play a role in biological processes that are essential for normal immunological homeostasis, clearance of infection and avoidance of disease. Understanding how SOCS proteins interact with other proteins or how they are dysregulated in disease is likely to provide valuable insights for advancing therapeutic approaches.
Collapse
Affiliation(s)
- Juber Herrera-Uribe
- Viral Immunology Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Orla Convery
- Viral Immunology Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Daniah ALmohammadi
- Viral Immunology Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Fabienne Ingrid Weinberg
- Viral Immunology Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Nigel J Stevenson
- Viral Immunology Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland.
| |
Collapse
|
2
|
Kelsall IR. Non-lysine ubiquitylation: Doing things differently. Front Mol Biosci 2022; 9:1008175. [PMID: 36200073 PMCID: PMC9527308 DOI: 10.3389/fmolb.2022.1008175] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 09/01/2022] [Indexed: 11/23/2022] Open
Abstract
The post-translational modification of proteins with ubiquitin plays a central role in nearly all aspects of eukaryotic biology. Historically, studies have focused on the conjugation of ubiquitin to lysine residues in substrates, but it is now clear that ubiquitylation can also occur on cysteine, serine, and threonine residues, as well as on the N-terminal amino group of proteins. Paradigm-shifting reports of non-proteinaceous substrates have further extended the reach of ubiquitylation beyond the proteome to include intracellular lipids and sugars. Additionally, results from bacteria have revealed novel ways to ubiquitylate (and deubiquitylate) substrates without the need for any of the enzymatic components of the canonical ubiquitylation cascade. Focusing mainly upon recent findings, this review aims to outline the current understanding of non-lysine ubiquitylation and speculate upon the molecular mechanisms and physiological importance of this non-canonical modification.
Collapse
|
3
|
Low ZY, Wen Yip AJ, Chow VTK, Lal SK. The Suppressor of Cytokine Signalling family of proteins and their potential impact on COVID-19 disease progression. Rev Med Virol 2022; 32:e2300. [PMID: 34546610 PMCID: PMC8646547 DOI: 10.1002/rmv.2300] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 09/06/2021] [Accepted: 09/08/2021] [Indexed: 12/16/2022]
Abstract
The family of Suppressor of Cytokine Signalling (SOCS) proteins plays pivotal roles in cytokine and immune regulation. Despite their key roles, little attention has been given to the SOCS family as compared to other feedback regulators. To date, SOCS proteins have been found to be exploited by viruses such as herpes simplex virus (HSV), hepatitis B virus (HBV), hepatitis C virus (HCV), Zika virus, respiratory syncytial virus (RSV), Ebola virus, influenza A virus (IAV) and SARS-CoV, just to name a few. The hijacking and subsequent upregulation of the SOCS proteins upon viral infection, suppress the associated JAK-STAT signalling activities, thereby reducing the host antiviral response and promoting viral replication. Two SOCS protein family members, SOCS1 and SOCS3 are well-studied and their roles in the JAK-STAT signalling pathway are defined as attenuating interferon (IFN) signalling upon viral infection. The upregulation of SOCS protein by SARS-CoV during the early stages of infection implies strong similarity with SARS-CoV-2, given their closely related genomic organisation. Thus, this review aims to outline the plausibility of SOCS protein inhibitors as a potential therapeutic regimen for COVID-19 patients. We also discuss the antagonists against SOCS protein to offer an overview on the previous 'successes' of SOCS protein inhibition in various viral infections that may portray possible clues for COVID-19 disease management.
Collapse
Affiliation(s)
- Zheng Yao Low
- School of ScienceMonash UniversityBandar SunwaySelangorMalaysia
| | | | - Vincent T. K. Chow
- Infectious Diseases Translational Research ProgramDepartment of Microbiology and ImmunologyYong Loo Lin School of MedicineNational University of SingaporeSingapore
| | - Sunil K. Lal
- School of ScienceMonash UniversityBandar SunwaySelangorMalaysia
- Tropical Medicine and Biology PlatformMonash UniversityBandar SunwaySelangorMalaysia
| |
Collapse
|
4
|
Dong Y, Pan F. Ubiquitin-Dependent Regulation of Treg Function and Plasticity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1278:63-80. [PMID: 33523443 DOI: 10.1007/978-981-15-6407-9_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
Abstract
As an indispensable part of peripheral tolerance, regulatory T (Treg) cells play an important role in immune homeostasis by suppressing other immune cells. Behind this function is a complex network of transcription factors and signaling cascades that regulates the function and plasticity of regulatory T cells. Among these, Forkhead box P3 (Foxp3) is considered as the master transcription factor, and its stability will influence the function and viability of Treg cells. Because of this, understanding the mechanisms that regulate Foxp3 and its co-regulators will provide more understanding to Treg cells and uncover more targets to manipulate Treg cells in treating autoimmune diseases, organ transplantation, and tumor. Interestingly, several recent studies show that ubiquitin-dependent pathways are important regulators of Foxp3, which suggest both great scientific and therapeutic values. In this chapter, we cover emerging evidence of ubiquitin-dependent, posttranslational regulation of Treg function and plasticity.
Collapse
Affiliation(s)
- Yi Dong
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Fan Pan
- Center for Cancer Immunology Research, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China.
| |
Collapse
|
5
|
Feng Y, Sanders AJ, Morgan LD, Harding KG, Jiang WG. Potential roles of suppressor of cytokine signaling in wound healing. Regen Med 2016; 11:193-209. [PMID: 26877242 DOI: 10.2217/rme.16.4] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Wound healing is a dynamic process comprising three overlapping, highly orchestrated stages known as inflammation, proliferation and re-epithelialization, and tissue remodeling. This complex process is regulated by numerous cytokines, with dysregulation of cytokine-induced signaling leading to impaired wound healing. Suppressor of cytokine signaling (SOCS) proteins are a family of eight intracellular proteins which may hold the potential to maintain homeostasis during wound healing through their negative feedback inhibition of cytokine signaling. To date, the roles of SOCS proteins in inflammation, autoimmunity and cancer have been comprehensively illustrated; however, only a limited number of studies focused on their role in wound healing. This review demonstrates the possible links between SOCS proteins and wound healing, and also highlights the potential importance of this family in a variety of other aspects of regenerative medicine.
Collapse
Affiliation(s)
- Yi Feng
- Cardiff China Medical Research Collaborative & Wound Healing Research Unit, Cardiff University School of Medicine, Cardiff University, Cardiff, UK
| | - Andrew J Sanders
- Cardiff China Medical Research Collaborative & Wound Healing Research Unit, Cardiff University School of Medicine, Cardiff University, Cardiff, UK
| | - Liam D Morgan
- Cardiff China Medical Research Collaborative & Wound Healing Research Unit, Cardiff University School of Medicine, Cardiff University, Cardiff, UK
| | - Keith G Harding
- Wound Healing Research Unit, Cardiff University School of Medicine, Cardiff University, Cardiff, UK
| | - Wen G Jiang
- Cardiff China Medical Research Collaborative & Wound Healing Research Unit, Cardiff University School of Medicine, Cardiff University, Cardiff, UK
| |
Collapse
|
6
|
Jiao S, Maltecca C, Gray KA, Cassady JP. Feed intake, average daily gain, feed efficiency, and real-time ultrasound traits in Duroc pigs: II. Genomewide association. J Anim Sci 2015; 92:2846-60. [PMID: 24962532 DOI: 10.2527/jas.2014-7337] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Efficient use of feed resources has become a clear challenge for the U.S. pork industry as feed costs continue to be the largest variable expense. The availability of the Illumina Porcine60K BeadChip has greatly facilitated whole-genome association studies to identify chromosomal regions harboring genes influencing those traits. The current study aimed at identifying genomic regions associated with variation in feed efficiency and several production traits in a Duroc terminal sire population, including ADFI, ADG, feed conversion ratio, residual feed intake (RFI), real-time ultrasound back fat thickness (BF), ultrasound muscle depth, intramuscular fat content (IMF), birth weight (BW at birth), and weaning weight (BW at weaning). Single trait association analyses were performed using Bayes B models with 35,140 SNP on 18 autosomes after quality control. Significance of nonoverlapping 1-Mb length windows (n = 2,380) were tested across 3 QTL inference methods: posterior distribution of windows variances from Monte Carlo Markov Chain, naive Bayes factor, and nonparametric bootstrapping. Genes within the informative QTL regions for the traits were annotated. A region ranging from166 to 140 Mb (4-Mb length) on SSC 1, approximately 8 Mb upstream of the MC4R gene, was significantly associated with ADFI, ADG, and BF, where SOCS6 and DOK6 are proposed as the most likely candidate genes. Another region affecting BW at weaning was identified on SSC 4 (84-85 Mb), harboring genes previously found to influence both human and cattle height: PLAG1, CHCHD7, RDHE2 (or SDR16C5), MOS, RPS20, LYN, and PENK. No QTL were identified for RFI, IMF, and BW at birth. In conclusion, we have identified several genomic regions associated with traits affecting nutrient utilization that could be considered for future genomic prediction to improve feed utilization.
Collapse
Affiliation(s)
- S Jiao
- Department of Animal Science, North Carolina State University, Raleigh 27695
| | - C Maltecca
- Department of Animal Science, North Carolina State University, Raleigh 27695
| | - K A Gray
- Smithfield Premium Genetics, Rose Hill, NC 28458
| | - J P Cassady
- Department of Animal Science, North Carolina State University, Raleigh 27695
| |
Collapse
|
7
|
Kabir NN, Sun J, Rönnstrand L, Kazi JU. SOCS6 is a selective suppressor of receptor tyrosine kinase signaling. Tumour Biol 2014; 35:10581-9. [PMID: 25172101 DOI: 10.1007/s13277-014-2542-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Accepted: 08/21/2014] [Indexed: 01/17/2023] Open
Abstract
The suppressors of cytokine signaling (SOCS) are well-known negative regulators of cytokine receptor signaling. SOCS6 is one of eight members of the SOCS family of proteins. Similar to other SOCS proteins, SOCS6 consists of an uncharacterized extended N-terminal region followed by an SH2 domain and a SOCS box. Unlike other SOCS proteins, SOCS6 is mainly involved in negative regulation of receptor tyrosine kinase signaling. SOCS6 is widely expressed in many tissues and is found to be downregulated in many cancers including colorectal cancer, gastric cancer, lung cancer, ovarian cancer, stomach cancer, thyroid cancer, hepatocellular carcinoma, and pancreatic cancer. SOCS6 is involved in negative regulation of receptor signaling by increasing degradation mediated by ubiquitination of receptors or substrate proteins and induces apoptosis by targeting mitochondrial proteins. Therefore, SOCS6 turns out as an important regulator of survival signaling and its activity is required for controlling receptor tyrosine kinase signaling.
Collapse
Affiliation(s)
- Nuzhat N Kabir
- Laboratory of Computational Biochemistry, KN Biomedical Research Institute, Barisal, Bangladesh
| | | | | | | |
Collapse
|
8
|
Abstract
The RBR (RING-BetweenRING-RING) or TRIAD [two RING fingers and a DRIL (double RING finger linked)] E3 ubiquitin ligases comprise a group of 12 complex multidomain enzymes. This unique family of E3 ligases includes parkin, whose dysfunction is linked to the pathogenesis of early-onset Parkinson's disease, and HOIP (HOIL-1-interacting protein) and HOIL-1 (haem-oxidized IRP2 ubiquitin ligase 1), members of the LUBAC (linear ubiquitin chain assembly complex). The RBR E3 ligases share common features with both the larger RING and HECT (homologous with E6-associated protein C-terminus) E3 ligase families, directly catalysing ubiquitin transfer from an intrinsic catalytic cysteine housed in the C-terminal domain, as well as recruiting thioester-bound E2 enzymes via a RING domain. Recent three-dimensional structures and biochemical findings of the RBRs have revealed novel protein domain folds not previously envisioned and some surprising modes of regulation that have raised many questions. This has required renaming two of the domains in the RBR E3 ligases to more accurately reflect their structures and functions: the C-terminal Rcat (required-for-catalysis) domain, essential for catalytic activity, and a central BRcat (benign-catalytic) domain that adopts the same fold as the Rcat, but lacks a catalytic cysteine residue and ubiquitination activity. The present review discusses how three-dimensional structures of RBR (RING1-BRcat-Rcat) E3 ligases have provided new insights into our understanding of the biochemical mechanisms of these important enzymes in ubiquitin biology.
Collapse
|
9
|
Lennartsson J, Rönnstrand L. Stem Cell Factor Receptor/c-Kit: From Basic Science to Clinical Implications. Physiol Rev 2012; 92:1619-49. [DOI: 10.1152/physrev.00046.2011] [Citation(s) in RCA: 593] [Impact Index Per Article: 45.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Stem cell factor (SCF) is a dimeric molecule that exerts its biological functions by binding to and activating the receptor tyrosine kinase c-Kit. Activation of c-Kit leads to its autophosphorylation and initiation of signal transduction. Signaling proteins are recruited to activated c-Kit by certain interaction domains (e.g., SH2 and PTB) that specifically bind to phosphorylated tyrosine residues in the intracellular region of c-Kit. Activation of c-Kit signaling has been found to mediate cell survival, migration, and proliferation depending on the cell type. Signaling from c-Kit is crucial for normal hematopoiesis, pigmentation, fertility, gut movement, and some aspects of the nervous system. Deregulated c-Kit kinase activity has been found in a number of pathological conditions, including cancer and allergy. The observation that gain-of-function mutations in c-Kit can promote tumor formation and progression has stimulated the development of therapeutics agents targeting this receptor, e.g., the clinically used inhibitor imatinib mesylate. Also other clinically used multiselective kinase inhibitors, for instance, sorafenib and sunitinib, have c-Kit included in their range of targets. Furthermore, loss-of-function mutations in c-Kit have been observed and shown to give rise to a condition called piebaldism. This review provides a summary of our current knowledge regarding structural and functional aspects of c-Kit signaling both under normal and pathological conditions, as well as advances in the development of low-molecular-weight molecules inhibiting c-Kit function.
Collapse
Affiliation(s)
- Johan Lennartsson
- Ludwig Institute for Cancer Research, Uppsala University, Uppsala, Sweden; and Experimental Clinical Chemistry, Wallenberg Laboratory, Department of Laboratory Medicine, Lund University, Skåne University Hospital, Malmö, Sweden
| | - Lars Rönnstrand
- Ludwig Institute for Cancer Research, Uppsala University, Uppsala, Sweden; and Experimental Clinical Chemistry, Wallenberg Laboratory, Department of Laboratory Medicine, Lund University, Skåne University Hospital, Malmö, Sweden
| |
Collapse
|
10
|
Tokunaga F, Iwai K. LUBAC, a novel ubiquitin ligase for linear ubiquitination, is crucial for inflammation and immune responses. Microbes Infect 2012; 14:563-72. [DOI: 10.1016/j.micinf.2012.01.011] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2011] [Accepted: 01/19/2012] [Indexed: 10/14/2022]
|
11
|
Beasley SA, Safadi SS, Barber KR, Shaw GS. Solution structure of the E3 ligase HOIL-1 Ubl domain. Protein Sci 2012; 21:1085-92. [PMID: 22517668 DOI: 10.1002/pro.2080] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2012] [Accepted: 04/05/2012] [Indexed: 12/17/2022]
Abstract
The E3 ligases HOIL-1 and parkin are each comprised of an N-terminal ubiquitin-like (Ubl) domain followed by a zinc-binding region and C-terminal RING-In-between-RING-RING domains. These two proteins, involved in the ubiquitin-mediated degradation pathway, are the only two known E3 ligases to share this type of multidomain architecture. Further, the Ubl domain of both HOIL-1 and parkin has been shown to interact with the S5a subunit of the 26S proteasome. The solution structure of the HOIL-1 Ubl domain was solved using NMR spectroscopy to compare it with that of parkin to determine the structural elements responsible for S5a intermolecular interactions. The final ensemble of 20 structures had a β-grasp Ubl-fold with an overall backbone RMSD of 0.59 ± 0.10 Å in the structured regions between I55 and L131. HOIL-1 had a unique extension of both β1 and β2 sheets compared to parkin and other Ubl domains, a result of a four-residue insertion in this region. A similar 15-residue hydrophobic core in the HOIL-1 Ubl domain resulted in a comparable stability to the parkin Ubl, but significantly lower than that observed for ubiquitin. A comparison with parkin and other Ubl domains indicates that HOIL-1 likely uses a conserved hydrophobic patch (W58, V102, Y127, Y129) found on the β1 face, the β3-β4 loop and β5, as well as a C-terminal basic residue (R134) to recruit the S5a subunit as part of the ubiquitin-mediated proteolysis pathway.
Collapse
Affiliation(s)
- Steven A Beasley
- Department of Biochemistry, University of Western Ontario, London, Ontario N6A 5C1, Canada
| | | | | | | |
Collapse
|
12
|
Hassink G, Slotman J, Oorschot V, Van Der Reijden BA, Monteferrario D, Noordermeer SM, Van Kerkhof P, Klumperman J, Strous GJ. Identification of the ubiquitin ligase Triad1 as a regulator of endosomal transport. Biol Open 2012; 1:607-14. [PMID: 23213454 PMCID: PMC3509441 DOI: 10.1242/bio.2012778] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
The ubiquitin system plays an important role in trafficking of signaling receptors from the plasma membrane to lysosomes. Triad1 is a ubiquitin ligase that catalyzes the formation of poly-ubiquitin chains linked via lysine-48 as well as lysine-63 residues. We show that depletion of Triad1 affects the sorting of both growth hormone and epidermal growth factor. Triad1-depleted cells accumulate both ligands in endosomes. While fluid phase transport to the lysosomes is reduced in the absence of Triad1, growth hormone receptor can recycle back to the plasma membrane together with transferrin. Using immune electron microscopy we show that Triad1 depletion results in enlarged endosomes with enlarged and irregular shaped intraluminal vesicles. The endosomes display prominent clathrin coats and show increased levels of growth hormone label. We conclude that Triad1 is required for the proper function of multivesicular bodies.
Collapse
Affiliation(s)
- Gerco Hassink
- Department of Cell Biology and Institute of Biomembranes, University Medical Center Utrecht , 3584 CX Utrecht , The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Emmerich CH, Schmukle AC, Walczak H. The Emerging Role of Linear Ubiquitination in Cell Signaling. Sci Signal 2011; 4:re5. [DOI: 10.1126/scisignal.2002187] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
14
|
Gupta S, Mishra K, Surolia A, Banerjee K. Suppressor of cytokine signalling-6 promotes neurite outgrowth via JAK2/STAT5-mediated signalling pathway, involving negative feedback inhibition. PLoS One 2011; 6:e26674. [PMID: 22125600 PMCID: PMC3219632 DOI: 10.1371/journal.pone.0026674] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2011] [Accepted: 09/30/2011] [Indexed: 11/27/2022] Open
Abstract
Background Suppressors of cytokine signalling (SOCS) protein family are key regulators of cellular responses to cytokines and play an important role in the nervous system. The SOCS6 protein, a less extensively studied SOCS family member, has been shown to induce insulin resistance in the retina and promote survival of the retinal neurons. But no reports are available about the role of SOCS6 in neuritogenesis. In this study, we examined the role of SOCS6 in neurite outgrowth and neuronal cell signalling. Methodology/Principal Findings The effect of SOCS6 in neural stem cells differentiation was studied in neural stem cells and PC12 cell line. Highly elevated levels of SOCS6 were found upon neural cell differentiation both at the mRNA and protein level. Furthermore, SOCS6 over-expression lead to increase in neurite outgrowth and degree of branching, whereas SOCS6 knockdown with specific siRNAs, lead to a significant decrease in neurite initiation and extension. Insulin-like growth factor-1 (IGF-1) stimulation which enhanced neurite outgrowth of neural cells resulted in further enhancement of SOCS6 expression. Jak/Stat (Janus Kinase/Signal Transducer And Activator Of Transcription) pathway was found to be involved in the SOCS6 mediated neurite outgrowth. Bioinformatics study revealed presence of putative Stat binding sites in the SOCS6 promoter region. Transcription factors Stat5a and Stat5b were involved in SOCS6 gene upregulation leading to neuronal differentiation. Following differentiation, SOCS6 was found to form a ternary complex with IGFR (Insulin Like Growth Factor-1 Receptor) and JAK2 which acted in a negative feedback loop to inhibit pStat5 activation. Conclusion/Significance The current paradigm for the first time states that SOCS6, a SOCS family member, plays an important role in the process of neuronal differentiation. These findings define a novel molecular mechanism for Jak2/Stat5 mediated SOCS6 signalling.
Collapse
Affiliation(s)
- Sakshi Gupta
- Eukaryotic Gene Expression Laboratory, National Institute of Immunology, New Delhi, India
| | - Kanchan Mishra
- Eukaryotic Gene Expression Laboratory, National Institute of Immunology, New Delhi, India
| | - Avadhesha Surolia
- Centre for Molecular Medicine, National Institute of Immunology, New Delhi, India
- Molecular Biophysics Unit, Indian Institute of Sciences, Bangalore, India
- * E-mail: (KB); (AS)
| | - Kakoli Banerjee
- Eukaryotic Gene Expression Laboratory, National Institute of Immunology, New Delhi, India
- * E-mail: (KB); (AS)
| |
Collapse
|
15
|
Strebovsky J, Walker P, Lang R, Dalpke AH. Suppressor of cytokine signaling 1 (SOCS1) limits
NFκB
signaling by decreasing p65 stability within the cell nucleus. FASEB J 2010; 25:863-74. [DOI: 10.1096/fj.10-170597] [Citation(s) in RCA: 122] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Julia Strebovsky
- Department of Infectious Diseases–Medical Microbiology and Hygiene University of Heidelberg Heidelberg Germany
| | - Patrick Walker
- Department of Infectious Diseases–Medical Microbiology and Hygiene University of Heidelberg Heidelberg Germany
| | - Roland Lang
- Institute of Clinical Microbiology Immunology and Hygiene University Hospital Erlangen Erlangen Germany
| | - Alexander H. Dalpke
- Department of Infectious Diseases–Medical Microbiology and Hygiene University of Heidelberg Heidelberg Germany
| |
Collapse
|
16
|
Gautheron J, Courtois G. "Without Ub I am nothing": NEMO as a multifunctional player in ubiquitin-mediated control of NF-kappaB activation. Cell Mol Life Sci 2010; 67:3101-13. [PMID: 20502939 PMCID: PMC11115954 DOI: 10.1007/s00018-010-0404-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2010] [Revised: 05/06/2010] [Accepted: 05/07/2010] [Indexed: 11/26/2022]
Abstract
Ubiquitination has emerged over the years as the most sophisticated way to modify proteins to affect their fate and function. In particular, it has been reported to be instrumental in regulating several steps of the NF-kappaB signalling pathway which controls inflammation, immunity, adhesion and cell survival. Integrating ubiquitination into NF-kappaB activation requires the regulatory subunit of IKK, NEMO, which not only displays affinity for polyubiquitin chains, but is also posttranslationally modified by a complex set of reactions involving ubiquitin. Here, we examine how studies of the NEMO/ubiquitin relationship have provided novel insights into the IKK activation process and have uncovered molecular mechanisms that should represent in the future attractive targets for specifically modulating NF-kappaB function.
Collapse
Affiliation(s)
- Jérémie Gautheron
- INSERM U781, Tour Lavoisier, Hôpital Necker-Enfants Malades and Université Paris-Descartes, 149, rue de Sèvres, 75015 Paris, France
| | - Gilles Courtois
- INSERM U781, Tour Lavoisier, Hôpital Necker-Enfants Malades and Université Paris-Descartes, 149, rue de Sèvres, 75015 Paris, France
| |
Collapse
|
17
|
Voisset E, Lopez S, Chaix A, Vita M, George C, Dubreuil P, De Sepulveda P. FES kinase participates in KIT-ligand induced chemotaxis. Biochem Biophys Res Commun 2010; 393:174-8. [PMID: 20117079 DOI: 10.1016/j.bbrc.2010.01.116] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2010] [Accepted: 01/27/2010] [Indexed: 12/31/2022]
Abstract
FES is a cytoplasmic tyrosine kinase activated by several membrane receptors, originally identified as a viral oncogene product. We have recently identified FES as a crucial effector of oncogenic KIT mutant receptor. However, FES implication in wild-type KIT receptor function was not addressed. We report here that FES interacts with KIT and is phosphorylated following activation by its ligand SCF. Unlike in the context of oncogenic KIT mutant, FES is not involved in wild-type KIT proliferation signal, or in cell adhesion. Instead, FES is required for SCF-induced chemotaxis. In conclusion, FES kinase is a mediator of wild-type KIT signalling implicated in cell migration.
Collapse
Affiliation(s)
- Edwige Voisset
- INSERM U891, Centre de Recherche en Cancérologie de Marseille (CRCM), Marseille, France.
| | | | | | | | | | | | | |
Collapse
|
18
|
Choi YB, Son M, Park M, Shin J, Yun Y. SOCS-6 negatively regulates T cell activation through targeting p56lck to proteasomal degradation. J Biol Chem 2009; 285:7271-80. [PMID: 20007709 DOI: 10.1074/jbc.m109.073726] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The T cell-specific tyrosine kinase, p56(lck), plays crucial roles in T cell receptor (TCR)-mediated T cell activation. Here, we report that SOCS-6 (suppressor of cytokine signaling-6) is a negative regulator of p56(lck). SOCS-6 was identified as a protein binding to the kinase domain of p56(lck) through yeast two-hybrid screening. SOCS-6 bound specifically to p56(lck) (F505), which mimics the active form of p56(lck), but not to wild type p56(lck). In Jurkat T cells, SOCS-6 binding to p56(lck) was detected 1-2 h after TCR stimulation. Confocal microscopy showed that upon APC-T cell conjugation, SOCS-6 was recruited to the immunological synapse and colocalized with the active form of p56(lck). SOCS-6 promoted p56(lck) ubiquitination and its subsequent targeting to the proteasome. Moreover, SOCS-6 overexpression led to repression of TCR-dependent interleukin-2 promoter activity. These results establish that SOCS-6 acts as a negative regulator of T cell activation by promoting ubiquitin-dependent proteolysis.
Collapse
Affiliation(s)
- Young Bong Choi
- Department of Life Science, Ewha Woman's University, 120-750 Seoul, Korea
| | | | | | | | | |
Collapse
|
19
|
Palmer DC, Restifo NP. Suppressors of cytokine signaling (SOCS) in T cell differentiation, maturation, and function. Trends Immunol 2009; 30:592-602. [PMID: 19879803 DOI: 10.1016/j.it.2009.09.009] [Citation(s) in RCA: 223] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2009] [Revised: 09/28/2009] [Accepted: 09/29/2009] [Indexed: 12/11/2022]
Abstract
Cytokines are key modulators of T cell biology, but their influence can be attenuated by suppressors of cytokine signaling (SOCS), a family of proteins consisting of eight members, SOCS1-7 and CIS. SOCS proteins regulate cytokine signals that control the polarization of CD4(+) T cells into Th1, Th2, Th17, and T regulatory cell lineages, the maturation of CD8(+) T cells from naïve to "stem-cell memory" (Tscm), central memory (Tcm), and effector memory (Tem) states, and the activation of these lymphocytes. Understanding how SOCS family members regulate T cell maturation, differentiation, and function might prove critical in improving adoptive immunotherapy for cancer and therapies aimed at treating autoimmune and infectious diseases.
Collapse
Affiliation(s)
- Douglas C Palmer
- National Cancer Institute, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892, USA.
| | | |
Collapse
|
20
|
Mullenders J, Fabius AWM, Madiredjo M, Bernards R, Beijersbergen RL. A large scale shRNA barcode screen identifies the circadian clock component ARNTL as putative regulator of the p53 tumor suppressor pathway. PLoS One 2009; 4:e4798. [PMID: 19277210 PMCID: PMC2653142 DOI: 10.1371/journal.pone.0004798] [Citation(s) in RCA: 107] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2008] [Accepted: 01/28/2009] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND The p53 tumor suppressor gene is mutated in about half of human cancers, but the p53 pathway is thought to be functionally inactivated in the vast majority of cancer. Understanding how tumor cells can become insensitive to p53 activation is therefore of major importance. Using an RNAi-based genetic screen, we have identified three novel genes that regulate p53 function. RESULTS We have screened the NKI shRNA library targeting 8,000 human genes to identify modulators of p53 function. Using the shRNA barcode technique we were able to quickly identify active shRNA vectors from a complex mixture. Validation of the screening results indicates that the shRNA barcode technique can reliable identify active shRNA vectors from a complex pool. Using this approach we have identified three genes, ARNTL, RBCK1 and TNIP1, previously unknown to regulate p53 function. Importantly, ARNTL (BMAL1) is an established component of the circadian regulatory network. The latter finding adds to recent observations that link circadian rhythm to the cell cycle and cancer. We show that cells having suppressed ARNTL are unable to arrest upon p53 activation associated with an inability to activate the p53 target gene p21(CIP1). CONCLUSIONS We identified three new regulators of the p53 pathway through a functional genetic screen. The identification of the circadian core component ARNTL strengthens the link between circadian rhythm and cancer.
Collapse
Affiliation(s)
- Jasper Mullenders
- Division of Molecular Carcinogenesis, Centre for Biomedical Genetics and Cancer Genomics Centre, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Armida W. M. Fabius
- Division of Molecular Carcinogenesis, Centre for Biomedical Genetics and Cancer Genomics Centre, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Mandy Madiredjo
- Division of Molecular Carcinogenesis, Centre for Biomedical Genetics and Cancer Genomics Centre, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - René Bernards
- Division of Molecular Carcinogenesis, Centre for Biomedical Genetics and Cancer Genomics Centre, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Roderick L. Beijersbergen
- Division of Molecular Carcinogenesis, Centre for Biomedical Genetics and Cancer Genomics Centre, Netherlands Cancer Institute, Amsterdam, The Netherlands
| |
Collapse
|
21
|
Abstract
The suppressors of cytokine signalling (SOCS) box is a structural domain found at the C-terminus of over 70 human proteins. It is usually coupled to a protein interaction module such as an SH2 domain in case of SOCS proteins, a family of modulators of cytokine signaling. The SOCS box participates in the formation of E3 ligase complexes, marking activated cytokine receptor complexes for proteasomal degradation. A similar mechanism was recently uncovered for controlling SOCS activity itself, since SOCS2 was found to enhance the turnover of other SOCS proteins. The SOCS box can also add unique features to individual SOCS proteins: it can function as an adaptor domain as was demonstrated for SOCS3, or as a modulator of substrate binding in case of CIS. In this review we discuss these multiple roles of the SOCS box, which emerges as a versatile module controlling cytokine signaling via multiple mechanisms.
Collapse
|
22
|
Zhang M, Tian Y, Wang RP, Gao D, Zhang Y, Diao FC, Chen DY, Zhai ZH, Shu HB. Negative feedback regulation of cellular antiviral signaling by RBCK1-mediated degradation of IRF3. Cell Res 2008; 18:1096-104. [DOI: 10.1038/cr.2008.277] [Citation(s) in RCA: 125] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
23
|
Lee KH, Moon KJ, Kim HS, Yoo BC, Park S, Lee H, Kwon S, Lee ES, Yoon S. Increased cytoplasmic levels of CIS, SOCS1, SOCS2, or SOCS3 are required for nuclear translocation. FEBS Lett 2008; 582:2319-2324. [PMID: 18538139 DOI: 10.1016/j.febslet.2008.05.039] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2008] [Revised: 05/22/2008] [Accepted: 05/27/2008] [Indexed: 11/16/2022]
Abstract
We investigated the cellular localization of ectopically-expressed CIS, SOCS1, SOCS2 and SOCS3 proteins. We found that SOCS proteins localize to the nucleus where they reduce Stat3 proteins and that the presence of proteasome inhibitors increased SOCS nuclear localization. Our results indicate that increased nuclear localization resulted from increased levels of SOCS proteins in the cytoplasm. Finally, we demonstrate that the same effect occurs with endogenously-expressed SOCS proteins. These observations suggest that increased cytoplasmic levels of proteins in the SOCS family are regulated through nuclear translocation.
Collapse
Affiliation(s)
- Kyeong-Hee Lee
- Research Institute, National Cancer Center, 809 Madu 1-dong, Ilsan-gu, Goyang-si, Gyeonggi-do, Republic of Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Zumbrennen KB, Hanson ES, Leibold EA. HOIL-1 is not required for iron-mediated IRP2 degradation in HEK293 cells. BIOCHIMICA ET BIOPHYSICA ACTA 2008; 1783:246-52. [PMID: 17822790 PMCID: PMC2274887 DOI: 10.1016/j.bbamcr.2007.07.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/02/2007] [Revised: 07/19/2007] [Accepted: 07/26/2007] [Indexed: 01/11/2023]
Abstract
Iron regulatory protein 2 (IRP2) binds to iron-responsive elements (IREs) to regulate the translation and stability of mRNAs encoding several proteins involved in mammalian iron homeostasis. Increases in cellular iron stimulate the polyubiquitylation and proteasomal degradation of IRP2. One study has suggested that haem-oxidized IRP2 ubiquitin ligase-1 (HOIL-1) binds to a unique 73-amino acid (aa) domain in IRP2 in an iron-dependent manner to regulate IRP2 polyubiquitylation and degradation. Other studies have questioned the role of the 73-aa domain in iron-dependent IRP2 degradation. We investigated the potential role of HOIL-1 in the iron-mediated degradation of IRP2 in human embryonic kidney 293 (HEK293) cells. We found that transiently expressed HOIL-1 and IRP2 interact via the 73-aa domain, but this interaction is not iron-dependent, nor does it enhance the rate of IRP2 degradation by iron. In addition, stable expression of HOIL-1 does not alter the iron-dependent degradation or RNA-binding activity of endogenous IRP2. Reduction of endogenous HOIL-1 by siRNA has no affect on the iron-mediated degradation of endogenous IRP2. These data demonstrate that HOIL-1 is not required for iron-dependent degradation of IRP2 in HEK293 cells, and suggest that a HOIL-1 independent mechanism is used for IRP2 degradation in most cell types.
Collapse
Affiliation(s)
- Kimberly B. Zumbrennen
- Eccles Program in Human Molecular Biology and Genetics, University of Utah, Salt Lake City, Utah, 84112
- Oncological Sciences, University of Utah, Salt Lake City, Utah, 84112
| | - Eric S. Hanson
- Eccles Program in Human Molecular Biology and Genetics, University of Utah, Salt Lake City, Utah, 84112
- Departments of Medicine, University of Utah, Salt Lake City, Utah, 84112
| | - Elizabeth A. Leibold
- Eccles Program in Human Molecular Biology and Genetics, University of Utah, Salt Lake City, Utah, 84112
- Departments of Medicine, University of Utah, Salt Lake City, Utah, 84112
- Oncological Sciences, University of Utah, Salt Lake City, Utah, 84112
| |
Collapse
|
25
|
Hwang MN, Min CH, Kim HS, Lee H, Yoon KA, Park SY, Lee ES, Yoon S. The nuclear localization of SOCS6 requires the N-terminal region and negatively regulates Stat3 protein levels. Biochem Biophys Res Commun 2007; 360:333-338. [PMID: 17603019 DOI: 10.1016/j.bbrc.2007.06.062] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2007] [Accepted: 06/05/2007] [Indexed: 01/28/2023]
Abstract
We determined that endogenous- and overexpressed- SOCS6 was localized in both the nucleus and cytoplasm. The localization of SOCS6 depended on amino acids 1-210 in the N-terminal region of the protein, which contains an unidentified domain. GFP-tagged SOCS6 or the N-terminal region, was exclusively localized and widely distributed throughout the entire nucleus, whereas the C-terminal region displayed a nuclear omission pattern. We also demonstrated that the SOCS6 protein could decrease the levels of the Stat3 protein in the nucleus, and that its negative regulation of the Stat3 protein level was dependent on its C-terminal region. These observations suggest that SOCS6 is composed of at least two functional domains required for its biological role in localizing and degrading Stat3 in the nucleus.
Collapse
Affiliation(s)
- Mi-Na Hwang
- Research Institute, National Cancer Center, 809 Madu l-dong, Ilsan-gu, Goyang-si Gyeonggi-do 411-764, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Marteijn JAF, van der Meer LT, van Emst L, van Reijmersdal S, Wissink W, de Witte T, Jansen JH, Van der Reijden BA. Gfi1 ubiquitination and proteasomal degradation is inhibited by the ubiquitin ligase Triad1. Blood 2007; 110:3128-35. [PMID: 17646546 DOI: 10.1182/blood-2006-11-058602] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Growth factor independence 1 (Gfi1) is a transcriptional repressor essential for the function and development of many different hematopoietic lineages. The Gfi1 protein expression is regulated by the ubiquitin-proteasome system. In granulocytes, Gfi1 is rapidly degraded by the proteasome, while it is more stable in monocytes. How the ubiquitination and degradation of Gfi1 is regulated is unclear. Here, we show that the ubiquitin ligase Triad1 interacts with the DNA-binding domain of Gfi1. Unexpectedly, we found that Triad1 inhibited Gfi1 ubiquitination, resulting in a prolonged half-life. Down-regulation of endogenous Triad1 by siRNAs resulted in increased Gfi1 ubiquitination. In U937 cells, Triad1 caused an increase in endogenous Gfi1 protein levels and slowed cell proliferation in a similar manner when Gfi1 itself was expressed. A Triad1 mutant that lacks the Gfi1-binding domain did not affect Gfi1 levels and proliferation. Because neither proteasome-ubiquitin nor Triad1 ubiquitin ligase activity was required for the inhibition of Gfi1 ubiquitination, these data suggest that Triad1 competes for Gfi1 binding with as yet to be identified E3 ubiquitin ligases that do mark Gfi1 for proteasomal degradation. The fine-tuning of Gfi1 protein levels regulated by Triad1 defines an unexpected role for this protein in hematopoiesis.
Collapse
Affiliation(s)
- Jurgen A F Marteijn
- Central Hematology Laboratory, Radboud University Nijmegen Medical Centre, Nijmegen Centre for Molecular Life Sciences, 6500 HB Nijmegen, the Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Hwang MN, Ha TH, Park J, Shim J, Lee H, Kim YN, Lee ES, Yoon S. Increased SOCS6 stability with PMA requires its N-terminal region and the Erk pathway via Pkcδ activation. Biochem Biophys Res Commun 2007; 354:184-9. [PMID: 17210122 DOI: 10.1016/j.bbrc.2006.12.175] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2006] [Accepted: 12/22/2006] [Indexed: 10/23/2022]
Abstract
We investigated stability of the ectopically expressed the SOCS6 protein in HEK293T cells with PMA, which activates protein kinase C (PKC). The treatment of PMA could largely increase SOCS6 stability in HEK293T cells. But, we did not observe increased protein levels of SOCS3 or Erk1 with PMA. This result suggests that the increased stability of SOCS6 with PMA did not generally occur in other proteins. The stability of SOCS6 depended on the N-terminal region containing an unidentified domain. We then studied the role of signal pathways in SOCS6 stability with PMA. We found that both Erk and Pkcdelta activation were required for the increased SOCS6 stability by PMA. The Erk activation by PMA appeared to be downstream from the Pkcdelta activation. The increased SOCS6 stability and Erk activation by PMA were both conserved in another cell line, MCF7. In addition, we demonstrated that PMA, insulin, and PDGF increased both the stability of endogenous-expressed SOCS6 and Erk activation in MDA-MB231 cells. These observations suggest that Erk activation may be correlated in the cells with high expression of SOCS6.
Collapse
Affiliation(s)
- Mi-Na Hwang
- Research Institute, National Cancer Center, 809 Madu 1-dong, Ilsan-gu, Goyang-si Gyeonggi-do 411-764, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Knisz J, Rothman PB. Suppressor of cytokine signaling in allergic inflammation. J Allergy Clin Immunol 2007; 119:739-45. [PMID: 17258308 DOI: 10.1016/j.jaci.2006.12.620] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2006] [Revised: 12/08/2006] [Accepted: 12/11/2006] [Indexed: 01/14/2023]
Abstract
The immunopathological hallmark of allergic diseases is elevated total and allergen specific serum IgE levels along with inflammation. This inflammation results from the activation of a cadre of hematopoietic and nonhematopoetic cells. This coordinated activation is the result of the increased production of a variety of soluble factors including chemokines and cytokines. The magnitude and the duration of cytokine action will determine the response to an allergen, either mounting a low-grade immunologic response or resulting in exaggerated reaction such as asthma or atopic dermatitis. Thus, the action of cytokines is tightly regulated both developmentally and within the cell. The suppressor of cytokine signaling (SOCS) protein family represents a novel group of cytoplasmic negative feedback regulators of type I and II cytokines. Several of the signaling pathways regulated by SOCS proteins are important in allergic immune responses. Thus, SOCS proteins may be important regulators of atopy.
Collapse
Affiliation(s)
- Judit Knisz
- University of Iowa, Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, Iowa City, IA 52242, USA
| | | |
Collapse
|
29
|
Kirisako T, Kamei K, Murata S, Kato M, Fukumoto H, Kanie M, Sano S, Tokunaga F, Tanaka K, Iwai K. A ubiquitin ligase complex assembles linear polyubiquitin chains. EMBO J 2006; 25:4877-87. [PMID: 17006537 PMCID: PMC1618115 DOI: 10.1038/sj.emboj.7601360] [Citation(s) in RCA: 623] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2006] [Accepted: 08/29/2006] [Indexed: 11/08/2022] Open
Abstract
The ubiquitin system plays important roles in the regulation of numerous cellular processes by conjugating ubiquitin to target proteins. In most cases, conjugation of polyubiquitin to target proteins regulates their function. In the polyubiquitin chains reported to date, ubiquitin monomers are linked via isopeptide bonds between an internal Lys and a C-terminal Gly. Here, we report that a protein complex consisting of two RING finger proteins, HOIL-1L and HOIP, exhibits ubiquitin polymerization activity by recognizing ubiquitin moieties of proteins. The polyubiquitin chain generated by the complex is not formed by Lys linkages, but by linkages between the C- and N-termini of ubiquitin, indicating that the ligase complex possesses a unique feature to assemble a novel head-to-tail linear polyubiquitin chain. Moreover, the complex regulates the stability of Ub-GFP (a GFP fusion protein with an N-terminal ubiquitin). The linear polyubiquitin chain generated post-translationally may function as a new modulator of proteins.
Collapse
Affiliation(s)
- Takayoshi Kirisako
- Department of Molecular Cell Biology, Graduate School of Medicine, Osaka City University, Osaka, Japan
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Corporation, Kawaguchi, Saitama, Japan
| | - Kiyoko Kamei
- Department of Molecular Cell Biology, Graduate School of Medicine, Osaka City University, Osaka, Japan
| | - Shigeo Murata
- Laboratory of Frontier Science, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
- Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Corporation, Kawaguchi, Saitama, Japan
| | - Michiko Kato
- Department of Molecular Cell Biology, Graduate School of Medicine, Osaka City University, Osaka, Japan
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Corporation, Kawaguchi, Saitama, Japan
| | - Hiromi Fukumoto
- Department of Molecular Cell Biology, Graduate School of Medicine, Osaka City University, Osaka, Japan
| | - Masato Kanie
- Department of Molecular Cell Biology, Graduate School of Medicine, Osaka City University, Osaka, Japan
| | - Soichi Sano
- Department of Molecular Cell Biology, Graduate School of Medicine, Osaka City University, Osaka, Japan
| | - Fuminori Tokunaga
- Department of Molecular Cell Biology, Graduate School of Medicine, Osaka City University, Osaka, Japan
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Corporation, Kawaguchi, Saitama, Japan
| | - Keiji Tanaka
- Laboratory of Frontier Science, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Kazuhiro Iwai
- Department of Molecular Cell Biology, Graduate School of Medicine, Osaka City University, Osaka, Japan
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Corporation, Kawaguchi, Saitama, Japan
- Department of Molecular Cell Biology, Graduate School of Medicine, Osaka City University, 1-4-3 Asahi-Machi, Abeno-Ku, Osaka 545-8585, Japan. Tel.: +81 6 6645 3905; Fax: +81 6 6645 3907; E-mail:
| |
Collapse
|
30
|
Wallander ML, Leibold EA, Eisenstein RS. Molecular control of vertebrate iron homeostasis by iron regulatory proteins. BIOCHIMICA ET BIOPHYSICA ACTA 2006; 1763:668-89. [PMID: 16872694 PMCID: PMC2291536 DOI: 10.1016/j.bbamcr.2006.05.004] [Citation(s) in RCA: 210] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/26/2006] [Revised: 05/09/2006] [Accepted: 05/10/2006] [Indexed: 02/06/2023]
Abstract
Both deficiencies and excesses of iron represent major public health problems throughout the world. Understanding the cellular and organismal processes controlling iron homeostasis is critical for identifying iron-related diseases and in advancing the clinical treatments for such disorders of iron metabolism. Iron regulatory proteins (IRPs) 1 and 2 are key regulators of vertebrate iron metabolism. These RNA binding proteins post-transcriptionally control the stability or translation of mRNAs encoding proteins involved in iron homeostasis thereby controlling the uptake, utilization, storage or export of iron. Recent evidence provides insight into how IRPs selectively control the translation or stability of target mRNAs, how IRP RNA binding activity is controlled by iron-dependent and iron-independent effectors, and the pathological consequences of dysregulation of the IRP system.
Collapse
Affiliation(s)
- Michelle L. Wallander
- Department of Oncological Sciences, University of Utah, 15N. 2030E., Salt Lake City, UT 84112, USA
- Eccles Program in Human Molecular Biology and Genetics, University of Utah, 15N. 2030E., Salt Lake City, UT 84112, USA
| | - Elizabeth A. Leibold
- Department of Medicine, University of Utah, 15N. 2030E., Salt Lake City, UT 84112, USA
- Department of Oncological Sciences, University of Utah, 15N. 2030E., Salt Lake City, UT 84112, USA
- Eccles Program in Human Molecular Biology and Genetics, University of Utah, 15N. 2030E., Salt Lake City, UT 84112, USA
| | - Richard S. Eisenstein
- Department of Nutritional Sciences, University of Wisconsin, 1415 Linden Drive, Madison, WI 53706, USA
| |
Collapse
|