1
|
López‐Delucio KM, Sandoval‐Gurubel TD, Becerril C, Campero‐Basaldua C, González A, Torres‐Machorro AL. The Direct and Individual Transcriptional Function of the Human Homodimeric and Heterodimeric Basic Helix-Loop-Helix Transcription Factors E47 and Scleraxis. FASEB J 2025; 39:e70721. [PMID: 40512054 PMCID: PMC12164732 DOI: 10.1096/fj.202403318rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 05/13/2025] [Accepted: 06/02/2025] [Indexed: 06/16/2025]
Abstract
The basic helix-loop-helix (bHLH) transcription factors (TFs) are essential in development and disease. Their function is regulated at multiple levels, including the structuring of homo- or heterodimeric forms among members of the family. Because most bHLH TFs have numerous dimerization partners, the commonly used overexpression or deletion experimental approaches in humans often generate results influenced by the altered regulatory balance of the TF network. To study the direct transcriptional role of two human bHLH TFs, we expressed them in an isolated system (yeast) with no additional tissue-specific bHLH TFs. The transcriptional effect was measured utilizing a GFP reporter controlled by human regulatory sequences containing different amounts of the bHLH TF consensus binding sites, the E-boxes. The individual transcriptional contributions of heterodimeric SCX-E47 or homodimeric E47 were compared over two human regulatory regions implicated in fibrosis: COL1A2 and TGFB1. Briefly, the heterodimeric SCX-E47 was the best activating form. The COL1A2 regulatory region showed the most significant transcriptional changes despite having fewer E-boxes (five) than the TGFB1 region (13). Finally, the context of the nearby TF binding sites and the core promoter was also relevant for the final individual transcriptional effect of the bHLH TFs tested.
Collapse
Affiliation(s)
- Karla Miranda López‐Delucio
- Laboratorio de Biología Celular, Departamento de Investigación en Fibrosis PulmonarInstituto Nacional de Enfermedades Respiratorias “Ismael Cosío Villegas”Mexico CityMexico
- Posgrado en Ciencias BiológicasUniversidad Nacional Autónoma de MéxicoMexico CityMexico
| | - Tania Dessire Sandoval‐Gurubel
- Laboratorio de Biología Celular, Departamento de Investigación en Fibrosis PulmonarInstituto Nacional de Enfermedades Respiratorias “Ismael Cosío Villegas”Mexico CityMexico
| | - Carina Becerril
- Laboratorio de Biología Celular, Departamento de Investigación en Fibrosis PulmonarInstituto Nacional de Enfermedades Respiratorias “Ismael Cosío Villegas”Mexico CityMexico
| | - Carlos Campero‐Basaldua
- Departamento de Bioquímica y Biología Estructural, Instituto de Fisiología CelularUniversidad Nacional Autónoma de MéxicoMexico CityMexico
| | - Alicia González
- Departamento de Bioquímica y Biología Estructural, Instituto de Fisiología CelularUniversidad Nacional Autónoma de MéxicoMexico CityMexico
| | - Ana Lilia Torres‐Machorro
- Laboratorio de Biología Celular, Departamento de Investigación en Fibrosis PulmonarInstituto Nacional de Enfermedades Respiratorias “Ismael Cosío Villegas”Mexico CityMexico
| |
Collapse
|
2
|
Li D, Zhang J, Su X, Yang Y, Lai J, Wei X, Chen H, Liu Y, Wang H, Sun L. Calpain1 inhibition enhances autophagy-lysosomal pathway and ameliorates tubulointerstitial fibrosis in Nephronophthisis. Mol Med 2025; 31:166. [PMID: 40319239 PMCID: PMC12049798 DOI: 10.1186/s10020-025-01231-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Accepted: 04/24/2025] [Indexed: 05/07/2025] Open
Abstract
BACKGROUND Nephronophthisis (NPH) is classified under the category of renal ciliopathies and is the most common genetic disease leading to renal failure in children. Early-onset and progressive renal tubulointerstitial fibrosis represents one of the most significant features, culminating in renal insufficiency. However, the molecular mechanism of tubulointerstitial fibrosis remains unclear. Previously, we constructed an NPH mouse model via CRISPR-Cas9. This mouse model demonstrated typical features of tubulointerstitial fibrosis. In this study, we aimed to explore the pathogenesis of tubulointerstitial fibrosis in NPH and identify early intervention targets in both the NPH models and patients. METHODS In this study, transcriptome changes in mouse kidneys were analyzed through RNA sequencing to explore the molecular mechanisms of renal tubulointerstitial fibrosis in NPH. We found an increased abundance of calpain1 in both the NPH models and patients. Pathway enrichment analysis indicated autophagy-lysosomal pathway was altered in the NPH models. Western blot, immunofluorescence or immunohistochemical staining were used to verify the expression of calpain1. We also detected autophagy activities in NPH models by lysotracker staining and transmission electron microscopy (TEM). Epithelial or mesenchymal-specific markers and Masson's trichrome staining were used to detect the status of tubulointerstitial fibrosis. Furthermore, NPH models were treated with a calpain1 inhibitor to explore the role of calpain1 in autophagy-lysosomal pathway and tubulointerstitial fibrosis. RESULTS The increased abundance of calpain1 impaired the autophagy-lysosomal pathway and induced tubulointerstitial fibrosis by promoting epithelial-to-mesenchymal transition. On the other hand, calpain1 inhibition could enhance the autophagy-lysosomal pathway and ameliorate the phenotypes of tubulointerstitial fibrosis in NPH models. CONCLUSIONS Calpain1-mediated autophagy-lysosomal pathway disorder may be an important cause of tubulointerstitial fibrosis in NPH. Calpain1 may have therapeutic implications for renal tubulointerstitial fibrosis.
Collapse
Affiliation(s)
- Dantong Li
- Department of Pediatrics, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
- Department of Nephrology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
| | - Jinglan Zhang
- Department of Pediatrics, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
- Department of Pediatrics, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, 510080, China
| | - Xinyu Su
- Department of Pediatrics, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Yichen Yang
- Department of Pediatrics, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Jiayong Lai
- Department of Pediatrics, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Xiaoya Wei
- Department of Pediatrics, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Huamu Chen
- Department of Pediatrics, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Yaqing Liu
- Department of Pediatrics, First Affiliated Hospital of Gannan Medical University, Gannan Medical University, Ganzhou, 341000, China
| | - Haiyan Wang
- Department of Pediatrics, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.
| | - Liangzhong Sun
- Department of Pediatrics, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
3
|
Zhou S, Li Y, Sun W, Ma D, Liu Y, Cheng D, Li G, Ni C. circPVT1 promotes silica-induced epithelial-mesenchymal transition by modulating the miR-497-5p/TCF3 axis. J Biomed Res 2024; 38:163-174. [PMID: 38529638 PMCID: PMC11001589 DOI: 10.7555/jbr.37.20220249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 05/22/2023] [Accepted: 05/25/2023] [Indexed: 03/27/2024] Open
Abstract
Epithelial-mesenchymal transition (EMT) is a vital pathological feature of silica-induced pulmonary fibrosis. However, whether circRNA is involved in the process remains unclear. The present study aimed to investigate the role of circPVT1 in the silica-induced EMT and the underlying mechanisms. We found that an elevated expression of circPVT1 promoted EMT and enhanced the migratory capacity of silica-treated epithelial cells. The isolation of cytoplasmic and nuclear separation assay showed that circPVT1 was predominantly expressed in the cytoplasm. RNA immunoprecipitation assay and RNA pull-down experiment indicated that cytoplasmic-localized circPVT1 was capable of binding to miR-497-5p. Furthermore, we found that miR-497-5p attenuated the silica-induced EMT process by targeting transcription factor 3 (TCF3), an E-cadherin transcriptional repressor, in the silica-treated epithelial cells. Collectively, these results reveal a novel role of the circPVT1/miR-497-5p/TCF3 axis in the silica-induced EMT process in lung epithelial cells. Once validated, this finding may provide a potential theoretical basis for the development of interventions and treatments for pulmonary fibrosis.
Collapse
Affiliation(s)
- Siyun Zhou
- Department of Occupational Medical and Environmental Health, Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Yan Li
- Biomedical Publications Center, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Wenqing Sun
- Department of Occupational Medical and Environmental Health, Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Dongyu Ma
- Department of Occupational Medical and Environmental Health, Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Yi Liu
- Gusu School, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Demin Cheng
- Department of Occupational Medical and Environmental Health, Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Guanru Li
- Department of Occupational Medical and Environmental Health, Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Chunhui Ni
- Department of Occupational Medical and Environmental Health, Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| |
Collapse
|
4
|
Chuang KT, Chiou SS, Hsu SH. Recent Advances in Transcription Factors Biomarkers and Targeted Therapies Focusing on Epithelial-Mesenchymal Transition. Cancers (Basel) 2023; 15:3338. [PMID: 37444447 DOI: 10.3390/cancers15133338] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/07/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023] Open
Abstract
Transcription factors involve many proteins in the process of transactivating or transcribing (none-) encoded DNA to initiate and regulate downstream signals, such as RNA polymerase. Their unique characteristic is that they possess specific domains that bind to specific DNA element sequences called enhancer or promoter sequences. Epithelial-mesenchymal transition (EMT) is involved in cancer progression. Many dysregulated transcription factors-such as Myc, SNAIs, Twists, and ZEBs-are key drivers of tumor metastasis through EMT regulation. This review summarizes currently available evidence related to the oncogenic role of classified transcription factors in EMT editing and epigenetic regulation, clarifying the roles of the classified conserved transcription factor family involved in the EMT and how these factors could be used as therapeutic targets in future investigations.
Collapse
Affiliation(s)
- Kai-Ting Chuang
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Shyh-Shin Chiou
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Center of Applied Genomics, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Shih-Hsien Hsu
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Center of Applied Genomics, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| |
Collapse
|
5
|
Trinh A, Huang Y, Shao H, Ram A, Morival J, Wang J, Chung EJ, Downing TL. Targeting the ADPKD methylome using nanoparticle-mediated combination therapy. APL Bioeng 2023; 7:026111. [PMID: 37305656 PMCID: PMC10257530 DOI: 10.1063/5.0151408] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 05/16/2023] [Indexed: 06/13/2023] Open
Abstract
DNA methylation aberrancies are found in autosomal dominant polycystic kidney disease (ADPKD), which suggests the methylome to be a promising therapeutic target. However, the impact of combining DNA methylation inhibitors (DNMTi) and ADPKD drugs in treating ADPKD and on disease-associated methylation patterns has not been fully explored. To test this, ADPKD drugs, metformin and tolvaptan (MT), were delivered in combination with DNMTi 5-aza-2'-deoxycytidine (Aza) to 2D or 3D cystic Pkd1 heterozygous renal epithelial cells (PKD1-Het cells) as free drugs or within nanoparticles to enable direct delivery for future in vivo applications. We found Aza synergizes with MT to reduce cell viability and cystic growth. Reduced representation bisulfite sequencing (RRBS) was performed across four groups: PBS, Free-Aza (Aza), Free-Aza+MT (F-MTAza), and Nanoparticle-Aza+MT (NP-MTAza). Global methylation patterns showed that while Aza alone induces a unimodal intermediate methylation landscape, Aza+MT recovers the bimodality reminiscent of somatic methylomes. Importantly, site-specific methylation changes associated with F-MTAza and NP-MTAza were largely conserved including hypomethylation at ADPKD-associated genes. Notably, we report hypomethylation of cancer-associated genes implicated in ADPKD pathogenesis as well as new target genes that may provide additional therapeutic effects. Overall, this study motivates future work to further elucidate the regulatory mechanisms of observed drug synergy and apply these combination therapies in vivo.
Collapse
Affiliation(s)
| | - Yi Huang
- Department of Biomedical Engineering, University of Southern California, Los Angeles, California 90089, USA
| | | | - Aparna Ram
- Department of Biomedical Engineering, University of Southern California, Los Angeles, California 90089, USA
| | | | - Jonathan Wang
- Department of Biomedical Engineering, University of Southern California, Los Angeles, California 90089, USA
| | - Eun Ji Chung
- Authors to whom correspondence should be addressed: and
| | | |
Collapse
|
6
|
Rysz J, Franczyk B, Rysz-Górzyńska M, Gluba-Brzózka A. Are Alterations in DNA Methylation Related to CKD Development? Int J Mol Sci 2022; 23:7108. [PMID: 35806113 PMCID: PMC9267048 DOI: 10.3390/ijms23137108] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 06/17/2022] [Accepted: 06/18/2022] [Indexed: 12/29/2022] Open
Abstract
The modifications in genomic DNA methylation are involved in the regulation of normal and pathological cellular processes. The epigenetic regulation stimulates biological plasticity as an adaptive response to variations in environmental factors. The role of epigenetic changes is vital for the development of some diseases, including atherogenesis, cancers, and chronic kidney disease (CKD). The results of studies presented in this review have suggested that altered DNA methylation can modulate the expression of pro-inflammatory and pro-fibrotic genes, as well those essential for kidney development and function, thus stimulating renal disease progression. Abnormally increased homocysteine, hypoxia, and inflammation have been suggested to alter epigenetic regulation of gene expression in CKD. Studies of renal samples have demonstrated the relationship between variations in DNA methylation and fibrosis and variations in estimated glomerular filtration rate (eGFR) in human CKD. The unravelling of the genetic-epigenetic profile would enhance our understanding of processes underlying the development of CKD. The understanding of multifaceted relationship between DNA methylation, genes expression, and disease development and progression could improve the ability to identify individuals at risk of CKD and enable the choice of appropriate disease management.
Collapse
Affiliation(s)
- Jacek Rysz
- Department of Nephrology, Hypertension and Family Medicine, Medical University of Lodz, 113 Żeromskego Street, 90-549 Lodz, Poland; (J.R.); (B.F.)
| | - Beata Franczyk
- Department of Nephrology, Hypertension and Family Medicine, Medical University of Lodz, 113 Żeromskego Street, 90-549 Lodz, Poland; (J.R.); (B.F.)
| | - Magdalena Rysz-Górzyńska
- Department of Otolaryngology, Laryngological Oncology, Audiology and Phoniatrics, Medical Univesity of Lodz, 113 Żeromskego Street, 90-549 Lodz, Poland;
| | - Anna Gluba-Brzózka
- Department of Nephrology, Hypertension and Family Medicine, Medical University of Lodz, 113 Żeromskego Street, 90-549 Lodz, Poland; (J.R.); (B.F.)
| |
Collapse
|
7
|
Epithelial Mesenchymal Transition and its transcription factors. Biosci Rep 2021; 42:230017. [PMID: 34708244 PMCID: PMC8703024 DOI: 10.1042/bsr20211754] [Citation(s) in RCA: 142] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 10/26/2021] [Accepted: 10/28/2021] [Indexed: 11/17/2022] Open
Abstract
Epithelial–mesenchymal transition or EMT is an extremely dynamic process involved in conversion of epithelial cells into mesenchymal cells, stimulated by an ensemble of signaling pathways, leading to change in cellular morphology, suppression of epithelial characters and acquisition of properties such as enhanced cell motility and invasiveness, reduced cell death by apoptosis, resistance to chemotherapeutic drugs etc. Significantly, EMT has been found to play a crucial role during embryonic development, tissue fibrosis and would healing, as well as during cancer metastasis. Over the years, work from various laboratories have identified a rather large number of transcription factors (TFs) including the master regulators of EMT, with the ability to regulate the EMT process directly. In this review, we put together these EMT TFs and discussed their role in the process. We have also tried to focus on their mechanism of action, their interdependency, and the large regulatory network they form. Subsequently, it has become clear that the composition and structure of the transcriptional regulatory network behind EMT probably varies based upon various physiological and pathological contexts, or even in a cell/tissue type-dependent manner.
Collapse
|
8
|
Xiao Y, Jiang X, Peng C, Zhang Y, Xiao Y, Liang D, Shi M, Wang Y, Zhang F, Guo B. BMP-7/Smads-induced inhibitor of differentiation 2 (Id2) upregulation and Id2/Twist interaction was involved in attenuating diabetic renal tubulointerstitial fibrosis. Int J Biochem Cell Biol 2019; 116:105613. [PMID: 31539631 DOI: 10.1016/j.biocel.2019.105613] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 07/13/2019] [Accepted: 09/16/2019] [Indexed: 12/15/2022]
Abstract
Renal tubular epithelial-mesenchymal transition (EMT) is the main pathological change in diabetic renal tubulointerstitial fibrosis. Mounting evidence indicates that the inhibitor of differentiation 2 (Id2) protein acts as a negative regulatory factor in organ fibrosis and can inhibit or reverse the process of fibrosis. However, its specific regulatory mechanism is not clear. Diabetes mellitus (DM) rat models were established by injecting rats with streptozotocin and sacrificing them after 16 weeks. Rat renal tubular epithelial cells (NRK-52E) were cultured with normal and high glucose. Immunohistochemical analysis, double immunofluorescence staining, co-immunoprecipitation, Western blot analysis, and real-time polymerase chain reaction were used to determine the expression of Id2, Twist, Smad1/5/8, E-cadherin, α-smooth muscle actin (α-SMA), and collagen Ⅳ. The results showed that bone morphogenetic protein-7 (BMP-7) upregulated the expression of Id2 against high-glucose-induced EMT and extracellular matrix secretion. Moreover, only the simultaneous knockdown of Smad1, Smad5, and Smad8 downregulated the expression of Id2, which was not altered by the individual knockdown of Smad1, Smad5, and Smad8. Basic helix-loop-helix (bHLH) transcription factors were essential for Id2 to regulate the role of downstream target genes, and Twist was a bHLH transcription factor. Therefore, the expression of Twist was examined in this study. Twist was found to be highly expressed in the kidney of DM rats and renal tubular epithelial cells cultured with high glucose. The overexpression of Id2 did not alter the expression of Twist, but the interaction between Id2 and Twist was enhanced. In conclusion, the data showed the specific mechanism underlying Id2 negative regulation in diabetic renal tubulointerstitial fibrosis.
Collapse
Affiliation(s)
- Ying Xiao
- Department of Pathophysiology, Guizhou Medical University, Guiyang, Guizhou 550025, China; Guizhou Provincial Key Laboratory of Pathogenesis & Drug Research on Common Chronic Diseases & State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, China.
| | - Xiaohan Jiang
- Jiangsu Taizhou People's Hospital, Taizhou, Jiangsu 225300, China.
| | - Can Peng
- Department of Pathophysiology, Guizhou Medical University, Guiyang, Guizhou 550025, China; Guizhou Provincial Key Laboratory of Pathogenesis & Drug Research on Common Chronic Diseases & State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, China.
| | - Yingying Zhang
- Department of Pathophysiology, Guizhou Medical University, Guiyang, Guizhou 550025, China; Guizhou Provincial Key Laboratory of Pathogenesis & Drug Research on Common Chronic Diseases & State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, China.
| | - Yawen Xiao
- Department of Pathophysiology, Guizhou Medical University, Guiyang, Guizhou 550025, China; Guizhou Provincial Key Laboratory of Pathogenesis & Drug Research on Common Chronic Diseases & State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, China.
| | - Dan Liang
- Department of Pathophysiology, Guizhou Medical University, Guiyang, Guizhou 550025, China; Guizhou Provincial Key Laboratory of Pathogenesis & Drug Research on Common Chronic Diseases & State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, China.
| | - Mingjun Shi
- Department of Pathophysiology, Guizhou Medical University, Guiyang, Guizhou 550025, China; Guizhou Provincial Key Laboratory of Pathogenesis & Drug Research on Common Chronic Diseases & State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, China.
| | - Yuanyuan Wang
- Department of Pathophysiology, Guizhou Medical University, Guiyang, Guizhou 550025, China; Guizhou Provincial Key Laboratory of Pathogenesis & Drug Research on Common Chronic Diseases & State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, China.
| | - Fan Zhang
- Department of Pathophysiology, Guizhou Medical University, Guiyang, Guizhou 550025, China; Guizhou Provincial Key Laboratory of Pathogenesis & Drug Research on Common Chronic Diseases & State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, China.
| | - Bing Guo
- Department of Pathophysiology, Guizhou Medical University, Guiyang, Guizhou 550025, China; Guizhou Provincial Key Laboratory of Pathogenesis & Drug Research on Common Chronic Diseases & State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, China.
| |
Collapse
|
9
|
Umino H, Hasegawa K, Minakuchi H, Muraoka H, Kawaguchi T, Kanda T, Tokuyama H, Wakino S, Itoh H. High Basolateral Glucose Increases Sodium-Glucose Cotransporter 2 and Reduces Sirtuin-1 in Renal Tubules through Glucose Transporter-2 Detection. Sci Rep 2018; 8:6791. [PMID: 29717156 PMCID: PMC5931531 DOI: 10.1038/s41598-018-25054-y] [Citation(s) in RCA: 130] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 04/16/2018] [Indexed: 12/20/2022] Open
Abstract
Under diabetic conditions, sodium-glucose cotransporter 2 (SGLT2) for glucose uptake in proximal tubules (PTs) increases, whereas NAD+-dependent protein deacetylase silent mating type information regulation 2 homolog 1 (Sirtuin-1; SIRT1) for PT survival decreases. Therefore, we hypothesized that increased glucose influx by SGLT2 reduces SIRT1 expression. To test this hypothesis, db/db mice with diabetes and high-glucose (HG)-cultured porcine PT LLC-PK1 cells in a two-chamber system were treated with the SGLT2 inhibitor canagliflozin. We also examined SIRT1 and SGLT2 expression in human kidney biopsies. In db/db mice, SGLT2 expression increased with concomitant decreases in SIRT1, but was inhibited by canagliflozin. For determination of the polarity of SGLT2 and SIRT1 expression, LLC-PK1 cells were seeded into Transwell chambers (pore size, 0.4 µm; Becton Dickinson, Oxford, UK). HG medium was added to either or to both of the upper and lower chambers, which corresponded to the apical and basolateral sides of the cells, respectively. In this system, the lower chamber with HG showed increased SGLT2 and decreased SIRT1 expression. Canagliflozin reversed HG-induced SIRT1 downregulation. Gene silencing and inhibitors for glucose transporter 2 (GLUT2) blocked HG-induced SGLT2 expression upregulation. Gene silencing for the hepatic nuclear factor-1α (HNF-1α), whose nuclear translocation was enhanced by HG, blocked HG-induced SGLT2 expression upregulation. Similarly, gene silencing for importin-α1, a chaperone protein bound to GLUT2, blocked HG-induced HNF-1α nuclear translocation and SGLT2 expression upregulation. In human kidney, SIRT1 immunostaining was negatively correlated with SGLT2 immunostaining. Thus, under diabetic conditions, SIRT1 expression in PTs was downregulated by an increase in SGLT2 expression, which was stimulated by basolateral HG through activation of the GLUT2/importin-α1/HNF-1α pathway.
Collapse
Affiliation(s)
- Hiroyuki Umino
- Department of Internal Medicine, School of Medicine, Keio University, Tokyo, 160-8584, Japan
| | - Kazuhiro Hasegawa
- Department of Internal Medicine, School of Medicine, Keio University, Tokyo, 160-8584, Japan
| | - Hitoshi Minakuchi
- Department of Internal Medicine, School of Medicine, Keio University, Tokyo, 160-8584, Japan
| | - Hirokazu Muraoka
- Department of Internal Medicine, School of Medicine, Keio University, Tokyo, 160-8584, Japan
| | - Takahisa Kawaguchi
- Department of Internal Medicine, School of Medicine, Keio University, Tokyo, 160-8584, Japan
| | - Takeshi Kanda
- Department of Internal Medicine, School of Medicine, Keio University, Tokyo, 160-8584, Japan
| | - Hirobumi Tokuyama
- Department of Internal Medicine, School of Medicine, Keio University, Tokyo, 160-8584, Japan
| | - Shu Wakino
- Department of Internal Medicine, School of Medicine, Keio University, Tokyo, 160-8584, Japan.
| | - Hiroshi Itoh
- Department of Internal Medicine, School of Medicine, Keio University, Tokyo, 160-8584, Japan
| |
Collapse
|
10
|
Sun W, Min B, Du D, Yang F, Meng J, Wang W, Zhao J, Tan X, Li Z, Sun J. miR-181c protects CsA-induced renal damage and fibrosis through inhibiting EMT. FEBS Lett 2017; 591:3588-3599. [PMID: 28976551 DOI: 10.1002/1873-3468.12872] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 09/17/2017] [Accepted: 09/26/2017] [Indexed: 01/09/2023]
Abstract
Cyclosporine A (CsA), a widely used immunosuppressive drug in organ transplantation and autoimmune disorders, frequently induces renal damage and fibrosis. Recent evidence has implicated epithelial-mesenchymal transition (EMT) in CsA-induced nephrotoxicity. Microarray analysis disclosed miR-181c as the microRNA most dramatically repressed by CsA. Downregulation of miR-181c expression at the transcriptional level by CsA is dependent on the transcription factor Nrf2. miR-181c mimics or inhibitors attenuate or aggravate CsA-induced EMT gene changes, respectively. Importantly, in Nrf2-/- mice, CsA-induced renal damage, fibrosis, and EMT gene changes are restored by miR-181c mimics. Mechanistically, we identified Notch2 as a potential target of miR-181c. Collectively, our data support the notion that miR-181c may serve as an important factor for protecting renal tissues from CsA-induced nephrotoxicity.
Collapse
Affiliation(s)
- Wenjuan Sun
- Nephrology Division, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Binying Min
- Department of Ultrasound, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Dewei Du
- Nephrology Division, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Feng Yang
- Nephrology Division, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Junping Meng
- Nephrology Division, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Wen Wang
- Nephrology Division, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Jie Zhao
- Nephrology Division, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Xiaomeng Tan
- Nephrology Division, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Zhanting Li
- Nephrology Division, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Jifeng Sun
- Nephrology Division, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| |
Collapse
|
11
|
PAK5-mediated E47 phosphorylation promotes epithelial-mesenchymal transition and metastasis of colon cancer. Oncogene 2015. [PMID: 26212009 DOI: 10.1038/onc.2015.259] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The p21-activated kinase 5 (PAK5) is overexpressed in advanced cancer and the transcription factor E47 is a direct repressor of E-cadherin and inducer of epithelial-mesenchymal transition (EMT). However, the relationship between PAK5 and E47 has not been explored. In this study, we found that PAK5-mediated E47 phosphorylation promoted EMT in advanced colon cancer. PAK5 interacted with E47 and phosphorylated E47 on Ser39 under hepatocyte growth factor (HGF) stimulation, which decreased cell-cell cohesion, increased cell migration and invasion in vitro and promoted metastasis in a xenograft model. Furthermore, phosphorylation of E47 facilitated its accumulating in nucleus in an importin α-dependent manner, and enhanced E47 binding to E-cadherin promoter directly, leading to inhibition of E-cadherin transcription. In contrast, PAK5-knockdown resulted in blockage of HGF-induced E47 phosphorylation, attenuated association of E47 with importin α and decreased E47 binding to E-cadherin promoter. In addition, we demonstrated a close correlation between PAK5 and phospho-Ser39 E47 expression in colon cancer specimens. More importantly, high expression of phospho-E47 was associated with an aggressive phenotype of colon cancer and nuclear phospho-E47 staining was found in certain cases of colon cancer with metastasis. Collectively, E47 is a novel substrate of PAK5, and PAK5-mediated phosphorylation of E47 promotes EMT and metastasis of colon cancer, suggesting that phosphorylated E47 on Ser39 may be a potential therapeutic target in progressive colon cancer.
Collapse
|
12
|
Overexpression of inhibitor of DNA-binding 2 attenuates pulmonary fibrosis through regulation of c-Abl and Twist. THE AMERICAN JOURNAL OF PATHOLOGY 2015; 185:1001-11. [PMID: 25661109 DOI: 10.1016/j.ajpath.2014.12.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Revised: 11/10/2014] [Accepted: 12/16/2014] [Indexed: 12/15/2022]
Abstract
Fibrosis is a multicellular process leading to excessive extracellular matrix deposition. Factors that affect lung epithelial cell proliferation and activation may be important regulators of the extent of fibrosis after injury. We and others have shown that activated alveolar epithelial cells (AECs) directly contribute to fibrogenesis by secreting mesenchymal proteins, such as type I collagen. Recent evidence suggests that epithelial cell acquisition of mesenchymal features during carcinogenesis and fibrogenesis is regulated by several mesenchymal transcription factors. Induced expression of direct inhibitors to these mesenchymal transcription factors offers a potentially novel therapeutic strategy. Inhibitor of DNA-binding 2 (Id2) is an inhibitory helix-loop-helix transcription factor that is highly expressed by lung epithelial cells during development and has been shown to coordinate cell proliferation and differentiation of cancer cells. We found that overexpression of Id2 in primary AECs promotes proliferation by inhibiting a retinoblastoma protein/c-Abl interaction leading to greater c-Abl activity. Id2 also blocks transforming growth factor β1-mediated expression of type I collagen by inhibiting Twist, a prominent mesenchymal basic helix-loop-helix transcription factor. In vivo, Id2 induced AEC proliferation and protected mice from lung fibrosis. By using a high-throughput screen, we found that histone deacetylase inhibitors induce Id2 expression by adult AECs. Collectively, these findings suggest that Id2 expression by AECs can be induced, and overexpression of Id2 affects AEC phenotype, leading to protection from fibrosis.
Collapse
|
13
|
Wing MR, Devaney JM, Joffe MM, Xie D, Feldman HI, Dominic EA, Guzman NJ, Ramezani A, Susztak K, Herman JG, Cope L, Harmon B, Kwabi-Addo B, Gordish-Dressman H, Go AS, He J, Lash JP, Kusek JW, Raj DS. DNA methylation profile associated with rapid decline in kidney function: findings from the CRIC study. Nephrol Dial Transplant 2014; 29:864-72. [PMID: 24516231 DOI: 10.1093/ndt/gft537] [Citation(s) in RCA: 117] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Epigenetic mechanisms may be important in the progression of chronic kidney disease (CKD). METHODS We studied the genome-wide DNA methylation pattern associated with rapid loss of kidney function using the Infinium HumanMethylation 450 K BeadChip in 40 Chronic Renal Insufficiency (CRIC) study participants (n = 3939) with the highest and lowest rates of decline in estimated glomerular filtration rate. RESULTS The mean eGFR slope was 2.2 (1.4) and -5.1 (1.2) mL/min/1.73 m(2) in the stable kidney function group and the rapid progression group, respectively. CpG islands in NPHP4, IQSEC1 and TCF3 were hypermethylated to a larger extent in subjects with stable kidney function (P-values of 7.8E-05 to 9.5E-05). These genes are involved in pathways known to promote the epithelial to mesenchymal transition and renal fibrosis. Other CKD-related genes that were differentially methylated are NOS3, NFKBIL2, CLU, NFKBIB, TGFB3 and TGFBI, which are involved in oxidative stress and inflammatory pathways (P-values of 4.5E-03 to 0.046). Pathway analysis using Ingenuity Pathway Analysis showed that gene networks related to cell signaling, carbohydrate metabolism and human behavior are epigenetically regulated in CKD. CONCLUSIONS Epigenetic modifications may be important in determining the rate of loss of kidney function in patients with established CKD.
Collapse
Affiliation(s)
- Maria R Wing
- Division of Renal Diseases and Hypertension, The George Washington University School of Medicine, Washington, DC, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Huang A, Zhao H, Quan Y, Jin R, Feng B, Zheng M. E2A predicts prognosis of colorectal cancer patients and regulates cancer cell growth by targeting miR-320a. PLoS One 2014; 9:e85201. [PMID: 24454819 PMCID: PMC3890311 DOI: 10.1371/journal.pone.0085201] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Accepted: 11/25/2013] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND AND OBJECTIVE Transcriptional factor E2A is crucial for the normal development and differentiation of B and T lymphocytes. Dysregulation of E2A leads to leukemia and tumorigenesis of some solid tumors. The expression and clinical significance of E2A as well as its role in colorectal cancer (CRC) are still unknown. This study aims to assess E2A expression in CRC tissues, evaluate its prognosis value, and investigate its role in colon cancer cell growth. METHODS E2A expression in CRC tissues and normal mucosa was detected by immunohistochemical staining; Kaplan-Meier survival curve and Cox regression model were used to evaluate the prognostic value of E2A. Lentivirus was used to construct E2A stably knocked-down cells. MTT assay was employed to detect cell proliferation change; cell cycle was analyzed by flow cytometry; and chromatin immunoprecipitation (ChIP) assay was used to validate the predicted binding target of E2A. RESULTS Expression of E2A was lower in CRC tissues than normal mucosa; low E2A expression correlated with advanced TNM stage and larger tumor size, and predicted poor prognosis of CRC patients. E2A knockdown resulted in increased cell proliferation rate and cell cycle acceleration. ChIP assay showed miR-320a was a direct target of E2A and upregulation of miR-320a in E2A downregulated cells could reverse cell proliferation and cell cycle changes caused by E2A deficiency. CONCLUSIONS E2A is an independent prognostic factor for CRC patients and targets miR-320a to regulate cell proliferation of colon cancer cells.
Collapse
Affiliation(s)
- Ao Huang
- Department of Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
- Shanghai Institute of Digestive Surgery, Shanghai, China
- Shanghai Minimally Invasive Surgery Center, Shanghai, China
| | - Hongchao Zhao
- Department of Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
- Shanghai Institute of Digestive Surgery, Shanghai, China
- Shanghai Minimally Invasive Surgery Center, Shanghai, China
| | - Yingjun Quan
- Department of Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
- Shanghai Institute of Digestive Surgery, Shanghai, China
- Shanghai Minimally Invasive Surgery Center, Shanghai, China
| | - Runsen Jin
- Department of Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
- Shanghai Institute of Digestive Surgery, Shanghai, China
- Shanghai Minimally Invasive Surgery Center, Shanghai, China
| | - Bo Feng
- Department of Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
- Shanghai Institute of Digestive Surgery, Shanghai, China
- Shanghai Minimally Invasive Surgery Center, Shanghai, China
| | - Minhua Zheng
- Department of Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
- Shanghai Institute of Digestive Surgery, Shanghai, China
- Shanghai Minimally Invasive Surgery Center, Shanghai, China
- * E-mail:
| |
Collapse
|
15
|
Abstract
As members of the basic helix-loop-helix (bHLH) family of transcription factors, E proteins function in the immune system by directing and maintaining a vast transcriptional network that regulates cell survival, proliferation, differentiation, and function. Proper activity of this network is essential to the functionality of the immune system. Aberrations in E protein expression or function can cause numerous defects, ranging from impaired lymphocyte development and immunodeficiency to aberrant function, cancer, and autoimmunity. Additionally, disruption of inhibitor of DNA-binding (Id) proteins, natural inhibitors of E proteins, can induce additional defects in development and function. Although E proteins have been investigated for several decades, their study continues to yield novel and exciting insights into the workings of the immune system. The goal of this chapter is to discuss the various classical roles of E proteins in lymphocyte development and highlight new and ongoing research into how these roles, if compromised, can lead to disease.
Collapse
Affiliation(s)
- Ian Belle
- Department of Immunology, Duke University Medical Center, Durham North Carolina, USA.
| | - Yuan Zhuang
- Department of Immunology, Duke University Medical Center, Durham North Carolina, USA
| |
Collapse
|
16
|
The roles of HLH transcription factors in epithelial mesenchymal transition and multiple molecular mechanisms. Clin Exp Metastasis 2013; 31:367-77. [PMID: 24158354 DOI: 10.1007/s10585-013-9621-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Accepted: 10/10/2013] [Indexed: 02/06/2023]
Abstract
Epithelial-to-mesenchymal transition (EMT) is presently recognized as an important event and the initiating stage for tumor invasion and metastasis. Several EMT inducers have been identified, among which the big family of helix-loop-helix (HLH) transcription factors are rising as a novel and promising family of proteins in EMT mediation, such as Twist1, Twist2, E47, and HIFs, etc. Due to the variety and complexities of HLH members, the pathways and mechanisms they employ to promote EMT are also complex and characteristic. In this review, we will discuss the roles of various HLH proteins in the regulation and sustenance of the EMT and multiple cellular mechanisms, attempting to provide a novel and broadened view towards the link between HLH proteins and EMT.
Collapse
|
17
|
Activation-induced cytidine deaminase (AID) is necessary for the epithelial-mesenchymal transition in mammary epithelial cells. Proc Natl Acad Sci U S A 2013; 110:E2977-86. [PMID: 23882083 DOI: 10.1073/pnas.1301021110] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Activation-induced cytidine deaminase (AID), which functions in antibody diversification, is also expressed in a variety of germ and somatic cells. Evidence that AID promotes DNA demethylation in epigenetic reprogramming phenomena, and that it is induced by inflammatory signals, led us to investigate its role in the epithelial-mesenchymal transition (EMT), a critical process in normal morphogenesis and tumor metastasis. We find that expression of AID is induced by inflammatory signals that induce the EMT in nontransformed mammary epithelial cells and in ZR75.1 breast cancer cells. shRNA-mediated knockdown of AID blocks induction of the EMT and prevents cells from acquiring invasive properties. Knockdown of AID suppresses expression of several key EMT transcriptional regulators and is associated with increased methylation of CpG islands proximal to the promoters of these genes; furthermore, the DNA demethylating agent 5 aza-2'deoxycytidine (5-Aza-dC) antagonizes the effects of AID knockdown on the expression of EMT factors. We conclude that AID is necessary for the EMT in this breast cancer cell model and in nontransformed mammary epithelial cells. Our results suggest that AID may act near the apex of a hierarchy of regulatory steps that drive the EMT, and are consistent with this effect being mediated by cytosine demethylation. This evidence links our findings to other reports of a role for AID in epigenetic reprogramming and control of gene expression.
Collapse
|
18
|
Cubillo E, Diaz-Lopez A, Cuevas EP, Moreno-Bueno G, Peinado H, Montes A, Santos V, Portillo F, Cano A. E47 and Id1 interplay in epithelial-mesenchymal transition. PLoS One 2013; 8:e59948. [PMID: 23555842 PMCID: PMC3608585 DOI: 10.1371/journal.pone.0059948] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Accepted: 02/19/2013] [Indexed: 01/05/2023] Open
Abstract
E12/E47 proteins (encoded by E2A gene) are members of the class I basic helix-loop-helix (bHLH) transcription factors (also known as E proteins). E47 has been described as repressor of E-cadherin and inducer of epithelial-mesenchymal transition (EMT). We reported previously that EMT mediated by E47 in MDCK cells occurs with a concomitant overexpression of Id1 and Id3 proteins. Id proteins belong to class V of HLH factors that lack the basic domain; they dimerise with E proteins and prevent their DNA interaction, thus, acting as dominant negative of E proteins. Here, we show that E47 interacts with Id1 in E47 overexpressing MDCK cells that underwent a full EMT as well as in mesenchymal breast carcinoma and melanoma cell lines. By conducting chromatin immunoprecipitation assays we demonstrate that E47 binds directly to the endogenous E-cadherin promoter of mesenchymal MDCK-E47 cells in a complex devoid of Id1. Importantly, our data suggest that both E47 and Id1 are required to maintain the mesenchymal phenotype of MDCK-E47 cells. These data support the collaboration between E47 and Id1 in the maintenance of EMT by mechanisms independent of the dominant negative action of Id1 on E47 binding to E-cadherin promoter. Finally, the analysis of several N0 breast tumour series indicates that the expression of E47 and ID1 is significantly associated with the basal-like phenotype supporting the biological significance of the present findings.
Collapse
Affiliation(s)
- Eva Cubillo
- Departamento de Bioquímica, Facultad de Medicina, Universidad Autónoma de Madrid (UAM), Instituto de Investigaciones Biomédicas “Alberto Sols” (CSIC-UAM), IdiPAZ, Madrid, Spain
| | - Antonio Diaz-Lopez
- Departamento de Bioquímica, Facultad de Medicina, Universidad Autónoma de Madrid (UAM), Instituto de Investigaciones Biomédicas “Alberto Sols” (CSIC-UAM), IdiPAZ, Madrid, Spain
| | - Eva P. Cuevas
- Departamento de Bioquímica, Facultad de Medicina, Universidad Autónoma de Madrid (UAM), Instituto de Investigaciones Biomédicas “Alberto Sols” (CSIC-UAM), IdiPAZ, Madrid, Spain
| | - Gema Moreno-Bueno
- Departamento de Bioquímica, Facultad de Medicina, Universidad Autónoma de Madrid (UAM), Instituto de Investigaciones Biomédicas “Alberto Sols” (CSIC-UAM), IdiPAZ, Madrid, Spain
- MD Anderson Cancer Center Madrid, Madrid, Spain
| | - Hector Peinado
- Departamento de Bioquímica, Facultad de Medicina, Universidad Autónoma de Madrid (UAM), Instituto de Investigaciones Biomédicas “Alberto Sols” (CSIC-UAM), IdiPAZ, Madrid, Spain
| | - Amalia Montes
- Departamento de Bioquímica, Facultad de Medicina, Universidad Autónoma de Madrid (UAM), Instituto de Investigaciones Biomédicas “Alberto Sols” (CSIC-UAM), IdiPAZ, Madrid, Spain
| | - Vanesa Santos
- Departamento de Bioquímica, Facultad de Medicina, Universidad Autónoma de Madrid (UAM), Instituto de Investigaciones Biomédicas “Alberto Sols” (CSIC-UAM), IdiPAZ, Madrid, Spain
| | - Francisco Portillo
- Departamento de Bioquímica, Facultad de Medicina, Universidad Autónoma de Madrid (UAM), Instituto de Investigaciones Biomédicas “Alberto Sols” (CSIC-UAM), IdiPAZ, Madrid, Spain
| | - Amparo Cano
- Departamento de Bioquímica, Facultad de Medicina, Universidad Autónoma de Madrid (UAM), Instituto de Investigaciones Biomédicas “Alberto Sols” (CSIC-UAM), IdiPAZ, Madrid, Spain
- * E-mail:
| |
Collapse
|
19
|
Lee K, Nelson CM. New insights into the regulation of epithelial-mesenchymal transition and tissue fibrosis. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2012; 294:171-221. [PMID: 22364874 DOI: 10.1016/b978-0-12-394305-7.00004-5] [Citation(s) in RCA: 121] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Tissue fibrosis often presents as the final outcome of chronic disease and is a significant cause of morbidity and mortality worldwide. Fibrosis is driven by continuous expansion of fibroblasts and myofibroblasts. Epithelial-mesenchymal transition (EMT) is a form of cell plasticity in which epithelia acquire mesenchymal phenotypes and is increasingly recognized as an integral aspect of tissue fibrogenesis. In this review, we describe recent insight into the molecular and cellular factors that regulate EMT and its underlying signaling pathways. We also consider how mechanical cues from the microenvironment affect the regulation of EMT. Finally, we discuss the role of EMT in fibrotic diseases and propose approaches for detecting and treating fibrogenesis by targeting EMT.
Collapse
Affiliation(s)
- KangAe Lee
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey, USA
| | | |
Collapse
|
20
|
Torikoshi K, Abe H, Matsubara T, Hirano T, Ohshima T, Murakami T, Araki M, Mima A, Iehara N, Fukatsu A, Kita T, Arai H, Doi T. Protein inhibitor of activated STAT, PIASy regulates α-smooth muscle actin expression by interacting with E12 in mesangial cells. PLoS One 2012; 7:e41186. [PMID: 22829926 PMCID: PMC3400623 DOI: 10.1371/journal.pone.0041186] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2012] [Accepted: 06/18/2012] [Indexed: 01/05/2023] Open
Abstract
Phenotypic transformation of mesangial cells (MCs) is implicated in the development of glomerular disease; however, the mechanisms underlying their altered genetic program is still unclear. α-smooth muscle actin (α-SMA) is known to be a crucial marker for phenotypic transformation of MCs. Recently, E-boxes and the class I basic helix-loop-helix proteins, such as E12 have been shown to regulateα-SMA expression. Therefore, we tried to identify a novel E12 binding protein in MCs and to examine its role in glomerulonephritis. We found that PIASy, one of the protein inhibitors of activated STAT family protein, interacted with E12 by yeast two-hybrid screens and coimmunopreciptation assays. Overexpression of E12 significantly enhanced theα-SMA promoter activity, and the increase was blocked by co-transfection of PIASy, but not by a PIASy RING mutant. In vivo sumoylation assays revealed that PIASy was a SUMO E3 ligase for E12. Furthermore, transforming growth factor-β (TGF-β) treatment induced expression of both PIASy and E12, consistent with α-SMA expression. Moreover, reduced expression of PIASy protein by siRNA specific for PIASy resulted in increased TGF-β-mediated α-SMA expression. In vivo, PIASy and E12 were dramatically upregulated along with α-SMA and TGF-β in the proliferative phase of Thy1 glomerulonephritis. Furthermore, an association between PIASy and E12 proteins was observed at day 6 by IP-western blotting, but not at day 0. These results suggest that TGF-β up-regulates PIASy expression in MCs to down-regulateα-SMA gene transcription by the interaction with E12.
Collapse
Affiliation(s)
- Kazuo Torikoshi
- Department of Nephrology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Hideharu Abe
- Department of Nephrology, Health-Bioscience Institute, University of Tokushima Graduate School of Medicine, Tokushima, Japan
| | - Takeshi Matsubara
- Department of Nephrology, Kyoto University Graduate School of Medicine, Kyoto, Japan
- * E-mail:
| | - Takahiro Hirano
- Department of Nephrology, Health-Bioscience Institute, University of Tokushima Graduate School of Medicine, Tokushima, Japan
| | - Takayuki Ohshima
- Faculty of Pharmaceutical Science at Kagawa Campus, Tokushima Bunri University, Kagawa, Japan
| | - Taichi Murakami
- Department of Nephrology, Health-Bioscience Institute, University of Tokushima Graduate School of Medicine, Tokushima, Japan
| | - Makoto Araki
- Department of Nephrology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Akira Mima
- Department of Nephrology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Noriyuki Iehara
- Department of Nephrology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Atsushi Fukatsu
- Department of Nephrology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Toru Kita
- Kobe City Medical Center General Hospital, Kobe, Japan
| | - Hidenori Arai
- Department of Human Health Sciences, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Toshio Doi
- Department of Nephrology, Health-Bioscience Institute, University of Tokushima Graduate School of Medicine, Tokushima, Japan
| |
Collapse
|
21
|
Schindler AJ, Sherwood DR. The transcription factor HLH-2/E/Daughterless regulates anchor cell invasion across basement membrane in C. elegans. Dev Biol 2011; 357:380-91. [PMID: 21784067 DOI: 10.1016/j.ydbio.2011.07.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2011] [Revised: 06/17/2011] [Accepted: 07/07/2011] [Indexed: 10/18/2022]
Abstract
Cell invasion through basement membrane is a specialized cellular behavior critical for many developmental processes and leukocyte trafficking. Invasive cellular behavior is also inappropriately co-opted during cancer progression. Acquisition of an invasive phenotype is accompanied by changes in gene expression that are thought to coordinate the steps of invasion. The transcription factors responsible for these changes in gene expression, however, are largely unknown. C. elegans anchor cell (AC) invasion is a genetically tractable in vivo model of invasion through basement membrane. AC invasion requires the conserved transcription factor FOS-1A, but other transcription factors are thought to act in parallel to FOS-1A to control invasion. Here we identify the transcription factor HLH-2, the C. elegans ortholog of Drosophila Daughterless and vertebrate E proteins, as a regulator of AC invasion. Reduction of HLH-2 function by RNAi or with a hypomorphic allele causes defects in AC invasion. Genetic analysis indicates that HLH-2 has functions outside of the FOS-1A pathway. Using expression analysis, we identify three genes that are transcriptionally regulated by HLH-2: the protocadherin cdh-3, and two genes encoding secreted extracellular matrix proteins, mig-6/papilin and him-4/hemicentin. Further, we show that reduction of HLH-2 function causes defects in polarization of F-actin to the invasive cell membrane, a process required for the AC to generate protrusions that breach the basement membrane. This work identifies HLH-2 as a regulator of the invasive phenotype in the AC, adding to our understanding of the transcriptional networks that control cell invasion.
Collapse
|
22
|
Identification of novel indicators of cyclosporine A nephrotoxicity in a CD-1 mouse model. Toxicol Appl Pharmacol 2011; 252:201-10. [DOI: 10.1016/j.taap.2011.02.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2010] [Revised: 02/16/2011] [Accepted: 02/17/2011] [Indexed: 12/22/2022]
|
23
|
Hwang-Verslues WW, Chang PH, Wei PC, Yang CY, Huang CK, Kuo WH, Shew JY, Chang KJ, Lee EYHP, Lee WH. miR-495 is upregulated by E12/E47 in breast cancer stem cells, and promotes oncogenesis and hypoxia resistance via downregulation of E-cadherin and REDD1. Oncogene 2011; 30:2463-74. [PMID: 21258409 DOI: 10.1038/onc.2010.618] [Citation(s) in RCA: 165] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
MicroRNAs (miRNAs) are involved in tumorigenecity by regulating specific oncogenes and tumor suppressor genes, and their roles in breast cancer stem cells (BCSCs) are becoming apparent. Distinct from the CD44(+)/CD24(-/low) sub-population, we have isolated a novel PROCR(+)/ESA(+) BCSC sub-population. To explore miRNA-regulatory mechanisms in this sub-population, we performed miRNA expression profiling and found miR-495 as the most highly upegulated miRNA in PROCR(+)/ESA(+) cells. Coincidently, high upregulation of miR-495 was also found in CD44(+)/CD24(-/low) BCSCs, reflecting its potential importance in maintaining common BCSC properties. Ectopic expression of miR-495 in breast cancer cells promoted their colony formation in vitro and tumorigenesis in mice. miR-495 directly suppressed E-cadherin expression to promote cell invasion and inhibited REDD1 expression to enhance cell proliferation in hypoxia through post-transcriptional mechanism. miR-495 expression was directly modulated by transcription factor E12/E47, which itself is highly expressed in BCSCs. These findings reveal a novel regulatory pathway centered on miR-495 that contributes to BCSC properties and hypoxia resistance.
Collapse
|
24
|
Abstract
BACKGROUND Cyclosporine A (CsA)-induced chronic nephrotoxicity is characterized by renal dysfunction and interstitial fibrosis. Early and progressive renal macrophage influx, correlating with latter interstitial fibrotic areas, has been associated with CsA treatment. This study investigated the role of macrophages, the nitric oxide (NO) pathway, and the oxidative stress on chronic CsA nephrotoxicity. METHODS The macrophages were depleted by clodronate liposomes. Animals were distributed into four groups: vehicle (olive oil for 21 days), CsA 7.5 mg/kg per day (21 days), CsA plus clodronate (5 mg/mL intraperitoneally on days -4, 1, 4, 11, and 18 of CsA treatment), or vehicle plus clodronate. On day 22, glomerular filtration rate, renal blood flow, renal tubulointerstitial fibrosis, CsA blood levels, serum malondialdehyde and renal tissue immunohistochemistry for macrophages, inducible NO synthase, transforming growth factor-beta, nuclear factor-kbeta, alpha-smooth muscle actin, vimentin, and nitrotyrosine were assessed. RESULTS CsA-induced increase in the macrophage was prevented by clodronate. Macrophage depletion attenuated the reductions in the glomerular filtration rate and renal blood flow, the development of tubulointerstitial fibrosis, malondialdehyde increase and increases in nuclear factor-kbeta, transforming growth factor-beta, vimentin, inducible NO synthase, and nitrotyrosine expression provoked by CsA. Clodronate did not affect alpha-smooth muscle actin expression and CsA blood levels. CONCLUSIONS Renal macrophage influx plays an important role in CsA-induced chronic nephrotoxicity. The NO pathway and oxidative stress are likely mechanisms involved in the genesis of this form of renal injury.
Collapse
|
25
|
Aldehni F, Spitzner M, Martins JR, Barro-Soria R, Schreiber R, Kunzelmann K. Bestrophin 1 promotes epithelial-to-mesenchymal transition of renal collecting duct cells. J Am Soc Nephrol 2009; 20:1556-64. [PMID: 19470678 PMCID: PMC2709680 DOI: 10.1681/asn.2008090987] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2008] [Accepted: 02/26/2009] [Indexed: 01/13/2023] Open
Abstract
Bestrophin 1 (Best1) controls intracellular Ca(2+) concentration, induces Ca(2+)-activated Cl(-) conductance, and increases proliferation of colon carcinoma cells. Here, we show that expression of Best1 in mouse renal collecting duct (CD) cells causes i) an increase in cell proliferation, ii) a loss of amiloride-sensitive Na(+) absorption, iii) induction of Ca(2+)-dependent Cl(-) conductance (CaCC), and iv) epithelial-to-mesenchymal transition. During conditions of high proliferation or when we exposed CD cells to serum or TGF-beta1, we observed upregulation of Best1, increased CaCC, redistribution of the epithelial-to-mesenchymal transition marker beta-catenin, and upregulation of vimentin. In contrast, suppression of Best1 by RNAi inhibited proliferation, reduced CaCC, and downregulated markers of EMT. CaCC and expression of Best1 were independent of the cell cycle but clearly correlated to cell proliferation and cell density. During renal inflammation in LPS-treated mice or after unilateral ureteral obstruction, we observed transient upregulation of Best1. These data indicate that repression of cell proliferation, CaCC, and expression of Best1 occurs during mesenchymal-to-epithelial transition once CD cells polarize and terminally differentiate. These results may suggest a role for Best1 in renal fibrosis and tissue repair.
Collapse
Affiliation(s)
- Fadi Aldehni
- Department of Physiology, University of Regensburg, University Street 31, Regensburg 93053, Germany
| | | | | | | | | | | |
Collapse
|
26
|
Calvo-Garcia MA, Campbell KM, O'Hara SM, Khoury P, Mitsnefes MM, Strife CF. Acquired renal cysts after pediatric liver transplantation: association with cyclosporine and renal dysfunction. Pediatr Transplant 2008; 12:666-71. [PMID: 18331544 DOI: 10.1111/j.1399-3046.2007.00872.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
ACKD has been observed in children on dialysis and with chronic renal insufficiency. In one report, ACKD was observed in 30% of pediatric liver transplant recipients after 10 yr. We retrospectively reviewed all renal imaging and measurements of GFR of 235 childhood liver transplant recipients with no known risk for renal cyst formation, no evidence of renal cyst(s) at the time of transplantation and renal imaging at least one yr post-transplant. Twenty-six patients (11%) developed one or more cyst(s). Mean GFR was significantly lower in patients with renal cyst(s). Two (1.4%) of the 146 patients treated with tacrolimus and 24 (27%) of the 89 patients treated with CsA acquired renal cyst(s) (p < 0.001). CsA-treated patients had significantly lower GFR. Multivariate analysis identified CsA as the only independent variable associated with ACKD. These results confirm that ACKD can be a late complication of pediatric liver transplantation. Those at most risk are at least 10-yr post-liver transplantation, have been treated with CsA and have impaired renal function. We speculate that ACKD in these patients is the result of calcineurin inhibitor nephrotoxicity. Whether patients with ACKD will be prone to develop solid renal tumors is unknown.
Collapse
Affiliation(s)
- M A Calvo-Garcia
- Department of Pediatric Radiology and Pediatrics, Cincinnati Children's Hospital Medical Center and the University of Cincinnata, Cincinnata, OH 45229, USA
| | | | | | | | | | | |
Collapse
|
27
|
Plotkin M, Pelger L. Regulation of the bHLH transcription factor E2A in epithelial cells by interaction with the Na/K-ATPase beta1 subunit. Arch Biochem Biophys 2008; 480:68-74. [PMID: 18727914 DOI: 10.1016/j.abb.2008.08.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2008] [Revised: 07/31/2008] [Accepted: 08/01/2008] [Indexed: 01/07/2023]
Abstract
The bHLH transcription factor E2A controls proliferation and differentiation in many cell types including kidney epithelial cells. To identify regulatory binding partners of E2A in the kidney, a yeast two-hybrid assay with a human adult kidney cDNA library was performed. Results demonstrated E2A interactions with other HLH proteins including Id1-3 and Pod1 and the Na/K-ATPase beta1 subunit. The specificity of beta1 subunit binding was confirmed by co-immunoprecipitation of E2A and beta1 subunit deletion constructs in HEK cells demonstrating E2A binding to the cytoplasmic tail of the beta1 subunit. Immunofluorescence and Western analysis of HEK cells co-transfected with GFP-beta1 subunit and E2A demonstrated E2A membrane binding and increased beta1 subunit membrane localization. Increased beta1 subunit expression resulted in decreased nuclear E2A expression and protein half-life and reduced E2A induced gene expression. These results suggest that E2A and Na/K-ATPase beta1 subunit expression in epithelial cells are regulated by interactions between these proteins.
Collapse
Affiliation(s)
- Matthew Plotkin
- New York Medical College, Renal Research Division, BSB C06, 95 Grasslands Road, Valhalla, NY 10595, USA.
| | | |
Collapse
|
28
|
Gong N, Chen X, Ding Z, Ming C, Chen X. Chronic Allograft Nephropathy: The Mechanisms and Strategies. ACTA ACUST UNITED AC 2007. [DOI: 10.1016/s1561-5413(08)60002-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
29
|
Arciniegas E, Frid MG, Douglas IS, Stenmark KR. Perspectives on endothelial-to-mesenchymal transition: potential contribution to vascular remodeling in chronic pulmonary hypertension. Am J Physiol Lung Cell Mol Physiol 2007; 293:L1-8. [PMID: 17384082 DOI: 10.1152/ajplung.00378.2006] [Citation(s) in RCA: 260] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
All forms of pulmonary hypertension are characterized by structural changes in pulmonary arteries. Increased numbers of cells expressing α-smooth muscle (α-SM) actin is a nearly universal finding in the remodeled artery. Traditionally, it was assumed that resident smooth muscle cells were the exclusive source of these newly appearing α-SM actin-expressing cells. However, rapidly emerging experimental evidence suggests other, alternative cellular sources of these cells. One possibility is that endothelial cells can transition into mesenchymal cells expressing α-SM actin and that this process contributes to the accumulation of SM-like cells in vascular pathologies. We review the evidence that endothelial-mesenchymal transition is an important contributor to cardiac and vascular development as well as to pathophysiological vascular remodeling. Recent work has provided evidence for the role of transforming growth factor-β, Wnt, and Notch signaling in this process. The potential roles of matrix metalloproteinases and serine proteases are also discussed. Importantly, endothelial-mesenchymal transition may be reversible. Thus insights into the mechanisms controlling endothelial-mesenchymal transition are relevant to vascular remodeling and are important as we consider new therapies aimed at reversing pulmonary vascular remodeling.
Collapse
Affiliation(s)
- Enrique Arciniegas
- Laboratorio de Microscopia Electrónica, Servicio Autónomo Instituto de Biomedicina, Facultad de Medicina, Universidad Central de Venezuela, Caracas, Venezuela
| | | | | | | |
Collapse
|
30
|
Robertson H, Kirby JA, Yip WW, Jones DEJ, Burt AD. Biliary epithelial-mesenchymal transition in posttransplantation recurrence of primary biliary cirrhosis. Hepatology 2007; 45:977-81. [PMID: 17393507 DOI: 10.1002/hep.21624] [Citation(s) in RCA: 118] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
UNLABELLED Primary biliary cirrhosis (PBC) recurs in the allograft after liver transplantation. Study of early tissue changes in the time-course of disease recurrence provides a unique insight into the initial stages of the disease process, which, in nontransplant patients, occurs long before clinical presentation. We describe a patient who developed classical clinical, biochemical, immunological, and histological features of PBC within 9 months after transplantation. Use of tissue from this patient before and during the development of PBC allowed us to identify biliary epithelial cell (BEC) epithelial-mesenchymal transition (EMT) as a key pathogenetic process. BEC expression of S100A4 (an early fibroblast lineage marker established as a robust marker of EMT), vimentin, and pSmad 2/3 [a marker of transforming growth factor beta (TGF-beta) pathway signaling] were identified immunohistochemically in most BECs in liver tissue from this patient at the point of diagnosis of recurrent disease. BEC expression of S100A4 and pSmad 2/3 was seen as early as 24 days after orthotopic liver transplantation (OLT), although no other features of recurrent PBC were present at this time. CONCLUSION S100A4, vimentin, and pSmad 2/3 expression in early recurrent PBC after OLT suggests that BEC EMT is occurring (potentially explaining BEC loss) and that this process is driven by TGF-beta. S100A4 expression by BEC appears to occur before the development of any other features of recurrent PBC, suggesting that EMT may be an initiating event.
Collapse
Affiliation(s)
- Helen Robertson
- Applied Immunobiology and Transplantation Research Group, Newcastle University, Newcastle-upon-Tyne, NE2 4HH, UK
| | | | | | | | | |
Collapse
|