1
|
Yamamoto R, Kon T. Functional and structural significance of the inner-arm-dynein subspecies d in ciliary motility. Cytoskeleton (Hoboken) 2024; 81:569-577. [PMID: 38214410 DOI: 10.1002/cm.21828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/11/2023] [Accepted: 01/01/2024] [Indexed: 01/13/2024]
Abstract
Motile cilia play various important physiological roles in eukaryotic organisms including cell motility and fertility. Inside motile cilia, large motor-protein complexes called "ciliary dyneins" coordinate their activities and drive ciliary motility. The ciliary dyneins include the outer-arm dyneins, the double-headed inner-arm dynein (IDA f/I1), and several single-headed inner-arm dyneins (IDAs a, b, c, d, e, and g). Among these single-headed IDAs, one of the ciliary dyneins, IDA d, is of particular interest because of its unique properties and subunit composition. In addition, defects in this subspecies have recently been associated with several types of ciliopathies in humans, such as primary ciliary dyskinesia and multiple morphologic abnormalities of the flagellum. In this mini-review, we discuss the composition, structure, and motor properties of IDA d, which have been studied in the model organism Chlamydomonas reinhardtii, and further discuss the relationship between IDA d and human ciliopathies. In addition, we provide future perspectives and discuss remaining questions regarding this intriguing dynein subspecies.
Collapse
Affiliation(s)
- Ryosuke Yamamoto
- Department of Biological Sciences, Graduate School of Science, Osaka University, Osaka, Japan
| | - Takahide Kon
- Department of Biological Sciences, Graduate School of Science, Osaka University, Osaka, Japan
| |
Collapse
|
2
|
Wang C, Xie Q, Xia X, Zhang C, Jiang S, Wang S, Zhang X, Hua R, Xue J, Zheng H. ZMYND12 serves as an IDAd subunit that is essential for sperm motility in mice. Cell Mol Life Sci 2024; 81:317. [PMID: 39066891 PMCID: PMC11335240 DOI: 10.1007/s00018-024-05344-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 06/04/2024] [Accepted: 07/01/2024] [Indexed: 07/30/2024]
Abstract
Inner dynein arms (IDAs) are formed from a protein complex that is essential for appropriate flagellar bending and beating. IDA defects have previously been linked to the incidence of asthenozoospermia (AZS) and male infertility. The testes-enriched ZMYND12 protein is homologous with an IDA component identified in Chlamydomonas. ZMYND12 deficiency has previously been tied to infertility in males, yet the underlying mechanism remains uncertain. Here, a CRISPR/Cas9 approach was employed to generate Zmynd12 knockout (Zmynd12-/-) mice. These Zmynd12-/- mice exhibited significant male subfertility, reduced sperm motile velocity, and impaired capacitation. Through a combination of co-immunoprecipitation and mass spectrometry, ZMYND12 was found to interact with TTC29 and PRKACA. Decreases in the levels of PRKACA were evident in the sperm of these Zmynd12-/- mice, suggesting that this change may account for the observed drop in male fertility. Moreover, in a cohort of patients with AZS, one patient carrying a ZMYND12 variant was identified, expanding the known AZS-related variant spectrum. Together, these findings demonstrate that ZMYND12 is essential for flagellar beating, capacitation, and male fertility.
Collapse
Affiliation(s)
- Chang Wang
- College of Nursing, Anhui University of Chinese Medicine, Hefei, Anhui, 230012, China
| | - Qingsong Xie
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, Anhui, 230032, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei, Anhui, 230032, China
| | - Xun Xia
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, Anhui, 230032, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei, Anhui, 230032, China
| | - Chuanying Zhang
- College of Nursing, Anhui University of Chinese Medicine, Hefei, Anhui, 230012, China
| | - Shan Jiang
- College of Nursing, Anhui University of Chinese Medicine, Hefei, Anhui, 230012, China
| | - Sihan Wang
- College of Nursing, Anhui University of Chinese Medicine, Hefei, Anhui, 230012, China
| | - Xi Zhang
- Department of Reproductive Health and Infertility Clinic, The Affiliated Huai'an No. 1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu, 223300, China
| | - Rong Hua
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, China.
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, Anhui, 230032, China.
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei, Anhui, 230032, China.
| | - Jiangyang Xue
- The Central Laboratory of Birth Defects Prevention and Control, Ningbo Key Laboratory for the Prevention and Treatment of Embryogenic Diseases, Women and Children's Hospital of Ningbo University, Ningbo, Zhejiang, 315000, China.
| | - Haoyu Zheng
- Department of Gynaecology, The Affiliated Huai'an No. 1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu, 223300, China.
| |
Collapse
|
3
|
Yamamoto R, Hwang J, Ishikawa T, Kon T, Sale WS. Composition and function of ciliary inner-dynein-arm subunits studied in Chlamydomonas reinhardtii. Cytoskeleton (Hoboken) 2021; 78:77-96. [PMID: 33876572 DOI: 10.1002/cm.21662] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/30/2021] [Accepted: 04/15/2021] [Indexed: 11/09/2022]
Abstract
Motile cilia (also interchangeably called "flagella") are conserved organelles extending from the surface of many animal cells and play essential functions in eukaryotes, including cell motility and environmental sensing. Large motor complexes, the ciliary dyneins, are present on ciliary outer-doublet microtubules and drive movement of cilia. Ciliary dyneins are classified into two general types: the outer dynein arms (ODAs) and the inner dynein arms (IDAs). While ODAs are important for generation of force and regulation of ciliary beat frequency, IDAs are essential for control of the size and shape of the bend, features collectively referred to as waveform. Also, recent studies have revealed unexpected links between IDA components and human diseases. In spite of their importance, studies on IDAs have been difficult since they are very complex and composed for several types of IDA motors, each unique in composition and location in the axoneme. Thanks in part to genetic, biochemical, and structural analysis of Chlamydomonas reinhardtii, we are beginning to understand the organization and function of the ciliary IDAs. In this review, we summarize the composition of Chlamydomonas IDAs particularly focusing on each subunit, and discuss the assembly, conservation, and functional role(s) of these IDA subunits. Furthermore, we raise several additional questions/challenges regarding IDAs, and discuss future perspectives of IDA studies.
Collapse
Affiliation(s)
- Ryosuke Yamamoto
- Department of Biological Sciences, Graduate School of Science, Osaka University, Osaka, Japan
| | - Juyeon Hwang
- Department of Cell Biology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Takashi Ishikawa
- Department of Biology and Chemistry, Paul Scherrer Institute, Villigen PSI, Switzerland.,Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Takahide Kon
- Department of Biological Sciences, Graduate School of Science, Osaka University, Osaka, Japan
| | - Winfield S Sale
- Department of Cell Biology, Emory University School of Medicine, Atlanta, Georgia, USA
| |
Collapse
|
4
|
Kutomi O, Yamamoto R, Hirose K, Mizuno K, Nakagiri Y, Imai H, Noga A, Obbineni JM, Zimmermann N, Nakajima M, Shibata D, Shibata M, Shiba K, Kita M, Kigoshi H, Tanaka Y, Yamasaki Y, Asahina Y, Song C, Nomura M, Nomura M, Nakajima A, Nakachi M, Yamada L, Nakazawa S, Sawada H, Murata K, Mitsuoka K, Ishikawa T, Wakabayashi KI, Kon T, Inaba K. A dynein-associated photoreceptor protein prevents ciliary acclimation to blue light. SCIENCE ADVANCES 2021; 7:7/9/eabf3621. [PMID: 33637535 PMCID: PMC7909887 DOI: 10.1126/sciadv.abf3621] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 01/14/2021] [Indexed: 05/07/2023]
Abstract
Light-responsive regulation of ciliary motility is known to be conducted through modulation of dyneins, but the mechanism is not fully understood. Here, we report a novel subunit of the two-headed f/I1 inner arm dynein, named DYBLUP, in animal spermatozoa and a unicellular green alga. This subunit contains a BLUF (sensors of blue light using FAD) domain that appears to directly modulate dynein activity in response to light. DYBLUP (dynein-associated BLUF protein) mediates the connection between the f/I1 motor domain and the tether complex that links the motor to the doublet microtubule. Chlamydomonas lacking the DYBLUP ortholog shows both positive and negative phototaxis but becomes acclimated and attracted to high-intensity blue light. These results suggest a mechanism to avoid toxic strong light via direct photoregulation of dyneins.
Collapse
Affiliation(s)
- Osamu Kutomi
- Shimoda Marine Research Center, University of Tsukuba, 5-10-1 Shimoda, Shizuoka 415-0025, Japan
- Department of Anatomy and Cell Biology, Faculty of Medicine, University of Yamanashi, Chuo, Yamanashi 409-3898, Japan
| | - Ryosuke Yamamoto
- Shimoda Marine Research Center, University of Tsukuba, 5-10-1 Shimoda, Shizuoka 415-0025, Japan
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Keiko Hirose
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
| | - Katsutoshi Mizuno
- Shimoda Marine Research Center, University of Tsukuba, 5-10-1 Shimoda, Shizuoka 415-0025, Japan
- School of Medical Sciences, University of Fukui, Yoshida-gun, Fukui 910-1193, Japan
| | - Yuuhei Nakagiri
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Hiroshi Imai
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Akira Noga
- Laboratory of Biomolecular Research, Paul Scherrer Institute, 5232 Villigen PSI, Switzerland
| | - Jagan Mohan Obbineni
- Laboratory of Biomolecular Research, Paul Scherrer Institute, 5232 Villigen PSI, Switzerland
- School of Agricultural Innovations and Advanced Learning, Vellore Institute of Technology, Vellore, Vellore 632014, Tamil Nadu, India
| | - Noemi Zimmermann
- Laboratory of Biomolecular Research, Paul Scherrer Institute, 5232 Villigen PSI, Switzerland
- Department of Biology, ETH Zurich, 8093 Zurich, Switzerland
| | - Masako Nakajima
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama 226-8503, Japan
| | - Daisuke Shibata
- Shimoda Marine Research Center, University of Tsukuba, 5-10-1 Shimoda, Shizuoka 415-0025, Japan
| | - Misa Shibata
- Shimoda Marine Research Center, University of Tsukuba, 5-10-1 Shimoda, Shizuoka 415-0025, Japan
| | - Kogiku Shiba
- Shimoda Marine Research Center, University of Tsukuba, 5-10-1 Shimoda, Shizuoka 415-0025, Japan
| | - Masaki Kita
- Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8571, Japan
- Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya 464-8601, Japan
| | - Hideo Kigoshi
- Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8571, Japan
| | - Yui Tanaka
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Yuya Yamasaki
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Yuma Asahina
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama 226-8503, Japan
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama 226-8503, Japan
| | - Chihong Song
- National Institute for Physiological Sciences, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki, Aichi 444-8787, Japan
| | - Mami Nomura
- Shimoda Marine Research Center, University of Tsukuba, 5-10-1 Shimoda, Shizuoka 415-0025, Japan
| | - Mamoru Nomura
- Shimoda Marine Research Center, University of Tsukuba, 5-10-1 Shimoda, Shizuoka 415-0025, Japan
| | - Ayako Nakajima
- Shimoda Marine Research Center, University of Tsukuba, 5-10-1 Shimoda, Shizuoka 415-0025, Japan
| | - Mia Nakachi
- Shimoda Marine Research Center, University of Tsukuba, 5-10-1 Shimoda, Shizuoka 415-0025, Japan
| | - Lixy Yamada
- Sugashima Marine Biological Laboratory, Graduate School of Science, Nagoya University, Toba, Mie 517-0004, Japan
| | - Shiori Nakazawa
- Sugashima Marine Biological Laboratory, Graduate School of Science, Nagoya University, Toba, Mie 517-0004, Japan
| | - Hitoshi Sawada
- Sugashima Marine Biological Laboratory, Graduate School of Science, Nagoya University, Toba, Mie 517-0004, Japan
| | - Kazuyoshi Murata
- National Institute for Physiological Sciences, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki, Aichi 444-8787, Japan
| | - Kaoru Mitsuoka
- Research Center for Ultra-High Voltage Electron Microscopy, Osaka University, Ibaraki, Osaka 567-0047, Japan
| | - Takashi Ishikawa
- Laboratory of Biomolecular Research, Paul Scherrer Institute, 5232 Villigen PSI, Switzerland
- Department of Biology, ETH Zurich, 8093 Zurich, Switzerland
| | - Ken-Ichi Wakabayashi
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama 226-8503, Japan
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama 226-8503, Japan
| | - Takahide Kon
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Kazuo Inaba
- Shimoda Marine Research Center, University of Tsukuba, 5-10-1 Shimoda, Shizuoka 415-0025, Japan.
| |
Collapse
|
5
|
Mutations in PIH proteins MOT48, TWI1 and PF13 define common and unique steps for preassembly of each, different ciliary dynein. PLoS Genet 2020; 16:e1009126. [PMID: 33141819 PMCID: PMC7608865 DOI: 10.1371/journal.pgen.1009126] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 09/21/2020] [Indexed: 12/16/2022] Open
Abstract
Ciliary dyneins are preassembled in the cytoplasm before being transported into cilia, and a family of proteins containing the PIH1 domain, PIH proteins, are involved in the assembly process. However, the functional differences and relationships between members of this family of proteins remain largely unknown. Using Chlamydomonas reinhardtii as a model, we isolated and characterized two novel Chlamydomonas PIH preassembly mutants, mot48-2 and twi1-1. A new allele of mot48 (ida10), mot48-2, shows large defects in ciliary dynein assembly in the axoneme and altered motility. A second mutant, twi1-1, shows comparatively smaller defects in motility and dynein assembly. A double mutant mot48-2; twi1-1 displays greater reduction in motility and in dynein assembly compared to each single mutant. Similarly, a double mutant twi1-1; pf13 also shows a significantly greater defect in motility and dynein assembly than either parent mutant. Thus, MOT48 (IDA10), TWI1 and PF13 may define different steps, and have partially overlapping functions, in a pathway required for ciliary dynein preassembly. Together, our data suggest the three PIH proteins function in preassembly steps that are both common and unique for different ciliary dyneins. Motile cilia are hair-like organelles that protrude from many eukaryotic cells, and play vital roles in organisms including cell motility, environmental sensing and removal of infectious materials. Motile cilia are driven by gigantic motor protein complexes, called ciliary dyneins, defects in which cause abnormal ciliary motility, ultimately resulting in human diseases collectively called primary ciliary dyskinesia (PCD). Ciliary dyneins are preassembled in the cytoplasm before being transported into cilia, and preassembly requires a family of potential co-chaperones, the PIH proteins. Mutations in the PIH proteins cause defective assembly of ciliary dyneins and can result in PCD. However, despite their importance, the precise functions, and functional relationships, between the PIH proteins are unclear. In this study, using Chlamydomonas reinhardtii, we assessed the functional relationship between three PIH proteins with respect to dynein preassembly and motility. We found that these PIH proteins have complicated and related roles in dynein assembly, possibly with each playing common and unique roles in dynein assembly. Our results provide new information on each conserved PIH protein for dynein assembly and provide a new understanding of PCD caused by PIH mutations.
Collapse
|
6
|
Dutcher SK. Asymmetries in the cilia of Chlamydomonas. Philos Trans R Soc Lond B Biol Sci 2020; 375:20190153. [PMID: 31884924 PMCID: PMC7017335 DOI: 10.1098/rstb.2019.0153] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/01/2019] [Indexed: 01/10/2023] Open
Abstract
The generation of ciliary waveforms requires the spatial and temporal regulation of dyneins. This review catalogues many of the asymmetric structures and proteins in the cilia of Chlamydomonas, a unicellular alga with two cilia that are used for motility in liquid medium. These asymmetries, which have been identified through mutant analysis, cryo-EM tomography and proteomics, provide a wealth of information to use for modelling how waveforms are generated and propagated. This article is part of the Theo Murphy meeting issue 'Unity and diversity of cilia in locomotion and transport'.
Collapse
Affiliation(s)
- Susan K. Dutcher
- Department of Genetics, Washington University in St Louis, Saint Louis, MO, USA
| |
Collapse
|
7
|
Viswanadha R, Sale WS, Porter ME. Ciliary Motility: Regulation of Axonemal Dynein Motors. Cold Spring Harb Perspect Biol 2017; 9:9/8/a018325. [PMID: 28765157 DOI: 10.1101/cshperspect.a018325] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Ciliary motility is crucial for the development and health of many organisms. Motility depends on the coordinated activity of multiple dynein motors arranged in a precise pattern on the outer doublet microtubules. Although significant progress has been made in elucidating the composition and organization of the dyneins, a comprehensive understanding of dynein regulation is lacking. Here, we focus on two conserved signaling complexes located at the base of the radial spokes. These include the I1/f inner dynein arm associated with radial spoke 1 and the calmodulin- and spoke-associated complex and the nexin-dynein regulatory complex associated with radial spoke 2. Current research is focused on understanding how these two axonemal hubs coordinate and regulate the dynein motors and ciliary motility.
Collapse
Affiliation(s)
- Rasagnya Viswanadha
- Department of Cell Biology, Emory University School of Medicine, Atlanta, Georgia 30322
| | - Winfield S Sale
- Department of Cell Biology, Emory University School of Medicine, Atlanta, Georgia 30322
| | - Mary E Porter
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota 55455
| |
Collapse
|
8
|
Abstract
Anton van Leeuwenhoek's startling microscopic observations in the 1600s first stimulated fascination with the way that cells use cilia to generate currents and to swim in a fluid environment. Research in recent decades has yielded deep knowledge about the mechanical and biochemical nature of these organelles but only opened a greater fascination about how such beautifully intricate and multifunctional structures arose during evolution. Answers to this evolutionary puzzle are not only sought to satisfy basic curiosity, but also, as stated so eloquently by Dobzhansky (Am Zool 4: 443 [1964]), because "nothing in biology makes sense except in the light of evolution." Here I attempt to summarize current knowledge of what ciliary organelles of the last eukaryotic common ancestor (LECA) were like, explore the ways in which cilia have evolved since that time, and speculate on the selective processes that might have generated these organelles during early eukaryotic evolution.
Collapse
Affiliation(s)
- David R Mitchell
- Department of Cell and Developmental Biology, SUNY Upstate Medical University, Syracuse, New York 13210
| |
Collapse
|
9
|
Shimizu Y, Sakakibara H, Kojima H, Oiwa K. Slow axonemal dynein e facilitates the motility of faster dynein c. Biophys J 2014; 106:2157-65. [PMID: 24853744 DOI: 10.1016/j.bpj.2014.04.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Revised: 04/02/2014] [Accepted: 04/04/2014] [Indexed: 01/23/2023] Open
Abstract
We highly purified the Chlamydomonas inner-arm dyneins e and c, considered to be single-headed subspecies. These two dyneins reside side-by-side along the peripheral doublet microtubules of the flagellum. Electron microscopic observations and single particle analysis showed that the head domains of these two dyneins were similar, whereas the tail domain of dynein e was short and bent in contrast to the straight tail of dynein c. The ATPase activities, both basal and microtubule-stimulated, of dynein e (kcat = 0.27 s(-1) and kcat,MT = 1.09 s(-1), respectively) were lower than those of dynein c (kcat = 1.75 s(-1) and kcat,MT = 2.03 s(-1), respectively). From in vitro motility assays, the apparent velocity of microtubule translocation by dynein e was found to be slow (Vap = 1.2 ± 0.1 μm/s) and appeared independent of the surface density of the motors, whereas dynein c was very fast (Vmax = 15.8 ± 1.5 μm/s) and highly sensitive to decreases in the surface density (Vmin = 2.2 ± 0.7 μm/s). Dynein e was expected to be a processive motor, since the relationship between the microtubule landing rate and the surface density of dynein e fitted well with first-power dependence. To obtain insight into the in vivo roles of dynein e, we measured the sliding velocity of microtubules driven by a mixture of dynein e and c at various ratios. The microtubule translocation by the fast dynein c became even faster in the presence of the slow dynein e, which could be explained by assuming that dynein e does not retard motility of faster dyneins. In flagella, dynein e likely acts as a facilitator by holding adjacent microtubules to aid dynein c's power stroke.
Collapse
Affiliation(s)
- Youské Shimizu
- National Institute of Information and Communications Technology (NICT), Advanced ICT Research Institute, Hyogo, Japan
| | - Hitoshi Sakakibara
- National Institute of Information and Communications Technology (NICT), Advanced ICT Research Institute, Hyogo, Japan
| | - Hiroaki Kojima
- National Institute of Information and Communications Technology (NICT), Advanced ICT Research Institute, Hyogo, Japan
| | - Kazuhiro Oiwa
- National Institute of Information and Communications Technology (NICT), Advanced ICT Research Institute, Hyogo, Japan; Japan Science and Technology Agency (JST), Core Research for Evolutionary Science and Technology (CREST), Tokyo, Japan.
| |
Collapse
|
10
|
Kamiya R, Yagi T. Functional Diversity of Axonemal Dyneins as Assessed by in Vitro and in Vivo Motility Assays ofChlamydomonasMutants. Zoolog Sci 2014; 31:633-44. [DOI: 10.2108/zs140066] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
11
|
Bui KH, Yagi T, Yamamoto R, Kamiya R, Ishikawa T. Polarity and asymmetry in the arrangement of dynein and related structures in the Chlamydomonas axoneme. ACTA ACUST UNITED AC 2013; 198:913-25. [PMID: 22945936 PMCID: PMC3432765 DOI: 10.1083/jcb.201201120] [Citation(s) in RCA: 134] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Cryoelectron tomography and subtomogram averaging reveal a high degree of structural asymmetry and polarization in dynein localization in the Chlamydomonas flagella. Understanding the molecular architecture of the flagellum is crucial to elucidate the bending mechanism produced by this complex organelle. The current known structure of the flagellum has not yet been fully correlated with the complex composition and localization of flagellar components. Using cryoelectron tomography and subtomogram averaging while distinguishing each one of the nine outer doublet microtubules, we systematically collected and reconstructed the three-dimensional structures in different regions of the Chlamydomonas flagellum. We visualized the radial and longitudinal differences in the flagellum. One doublet showed a distinct structure, whereas the other eight were similar but not identical to each other. In the proximal region, some dyneins were missing or replaced by minor dyneins, and outer–inner arm dynein links were variable among different microtubule doublets. These findings shed light on the intricate organization of Chlamydomonas flagella, provide clues to the mechanism that produces asymmetric flagellar beating, and pose a new challenge for the functional study of the flagella.
Collapse
Affiliation(s)
- Khanh Huy Bui
- Laboratory of Biomolecular Research, Paul Scherrer Institute, CH-5232 Villigen, Switzerland
| | | | | | | | | |
Collapse
|
12
|
Wirschell M, Olbrich H, Werner C, Tritschler D, Bower R, Sale WS, Loges NT, Pennekamp P, Lindberg S, Stenram U, Carlén B, Horak E, Köhler G, Nürnberg P, Nürnberg G, Porter ME, Omran H. The nexin-dynein regulatory complex subunit DRC1 is essential for motile cilia function in algae and humans. Nat Genet 2013; 45:262-8. [PMID: 23354437 DOI: 10.1038/ng.2533] [Citation(s) in RCA: 159] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Accepted: 12/21/2012] [Indexed: 01/26/2023]
Abstract
Primary ciliary dyskinesia (PCD) is characterized by dysfunction of respiratory cilia and sperm flagella and random determination of visceral asymmetry. Here, we identify the DRC1 subunit of the nexin-dynein regulatory complex (N-DRC), an axonemal structure critical for the regulation of dynein motors, and show that mutations in the gene encoding DRC1, CCDC164, are involved in PCD pathogenesis. Loss-of-function mutations disrupting DRC1 result in severe defects in assembly of the N-DRC structure and defective ciliary movement in Chlamydomonas reinhardtii and humans. Our results highlight a role for N-DRC integrity in regulating ciliary beating and provide the first direct evidence that mutations in DRC genes cause human disease.
Collapse
Affiliation(s)
- Maureen Wirschell
- Department of Cell Biology, Emory University School of Medicine, Atlanta, Georgia, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
King SM. Integrated control of axonemal dynein AAA(+) motors. J Struct Biol 2012; 179:222-8. [PMID: 22406539 DOI: 10.1016/j.jsb.2012.02.013] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2012] [Revised: 02/13/2012] [Accepted: 02/16/2012] [Indexed: 11/17/2022]
Abstract
Axonemal dyneins are AAA(+) enzymes that convert ATP hydrolysis to mechanical work. This leads to the sliding of doublet microtubules with respect to each other and ultimately the generation of ciliary/flagellar beating. However, in order for useful work to be generated, the action of individual dynein motors must be precisely controlled. In addition, cells modulate the motility of these organelles through a variety of second messenger systems and these signals too must be integrated by the dynein motors to yield an appropriate output. This review describes the current status of efforts to understand dynein control mechanisms and their connectivity focusing mainly on studies of the outer dynein arm from axonemes of the unicellular biflagellate green alga Chlamydomonas.
Collapse
Affiliation(s)
- Stephen M King
- Department of Molecular, Microbial and Structural Biology, University of Connecticut Health Center, 263 Farmington Avenue, Farmington, CT 06030-3305, USA.
| |
Collapse
|
14
|
Yamamoto R, Hirono M, Kamiya R. Discrete PIH proteins function in the cytoplasmic preassembly of different subsets of axonemal dyneins. ACTA ACUST UNITED AC 2010; 190:65-71. [PMID: 20603327 PMCID: PMC2911668 DOI: 10.1083/jcb.201002081] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Axonemal dyneins are preassembled in the cytoplasm before being transported into cilia and flagella. Recently, PF13/KTU, a conserved protein containing a PIH (protein interacting with HSP90) domain, was identified as a protein responsible for dynein preassembly in humans and Chlamydomonas reinhardtii. This protein is involved in the preassembly of outer arm dynein and some inner arm dyneins, possibly as a cofactor of molecular chaperones. However, it is not known which factors function in the preassembly of other inner arm dyneins. Here, we analyzed a novel C. reinhardtii mutant, ida10, and found that another conserved PIH family protein, MOT48, is responsible for the formation of another subset of inner arm dyneins. A variety of organisms with motile cilia and flagella typically have three to four PIH proteins, including potential homologues of MOT48 and PF13/KTU, whereas organisms without them have no, or only one, such protein. These findings raise the possibility that multiple PIH proteins are commonly involved in the preassembly of different subsets of axonemal dyneins.
Collapse
Affiliation(s)
- Ryosuke Yamamoto
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Tokyo 113-0033, Japan
| | | | | |
Collapse
|
15
|
King SM. Purification of axonemal dyneins and dynein-associated components from Chlamydomonas. Methods Cell Biol 2009; 92:31-48. [PMID: 20409797 DOI: 10.1016/s0091-679x(08)92003-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Axonemal dyneins are responsible for generating the force required to power ciliary and flagellar motility. These highly complex enzymes form the inner and outer arms associated with the outer doublet microtubules. They are built around one or more ~520kD heavy chains that exhibit motor activity and also include additional components that are required for assembly within the axonemal superstructure and/or regulation of motor function in response to a broad range of signaling inputs. The dyneins from flagella of Chlamydomonas have been extensively studied as this organism is amenable to genetic, biochemical, and physiological approaches. In this chapter, I describe methods that have been devised by a number of laboratories to extract and purify individual dyneins from Chlamydomonas. When combined with the wide range of available mutants, these methods allow for the analysis of dyneins lacking individual components or motor units.
Collapse
Affiliation(s)
- Stephen M King
- Department of Molecular, Microbial and Structural Biology, University of Connecticut Health Center, Farmington, 06030-3305, USA
| |
Collapse
|
16
|
Portman N, Gull K. The paraflagellar rod of kinetoplastid parasites: from structure to components and function. Int J Parasitol 2009; 40:135-48. [PMID: 19879876 PMCID: PMC2813431 DOI: 10.1016/j.ijpara.2009.10.005] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2009] [Revised: 10/13/2009] [Accepted: 10/16/2009] [Indexed: 01/06/2023]
Abstract
The role of the eukaryotic flagellum in cell motility is well established but its importance in many other aspects of cell biology, from cell signalling to developmental regulation, is becoming increasingly apparent. In addition to this diversity of function the core structure of the flagellum, which has been inherited from the earliest ancestor of all eukaryotes, is embellished with a range of extra-axonemal structures in many organisms. One of the best studied of these structures is the paraflagellar rod of kinetoplastid protozoa in which the morphological characteristics have been well defined and some of the major protein constituents have been identified. Here we discuss recent advances in the identification of further molecular components of the paraflagellar rod, how these impact on our understanding of its function and regulation and the implications for therapeutic intervention in a number of devastating human pathologies.
Collapse
Affiliation(s)
- Neil Portman
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX13RE, UK
| | | |
Collapse
|
17
|
Yagi T, Uematsu K, Liu Z, Kamiya R. Identification of dyneins that localize exclusively to the proximal portion of Chlamydomonas flagella. J Cell Sci 2009; 122:1306-14. [DOI: 10.1242/jcs.045096] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The movements of cilia and flagella are driven by multiple species of dynein heavy chains (DHCs), which constitute inner- and outer-dynein arms. In Chlamydomonas, 11 DHC proteins have been identified in the axoneme, but 14 genes encoding axonemal DHCs are present in the genome. Here, we assigned each previously unassigned DHC gene to a particular DHC protein and found that DHC3, DHC4 and DHC11 encode novel, relatively low abundance DHCs. Immunofluorescence microcopy revealed that DHC11 is localized exclusively to the proximal ∼2 μm region of the ∼12 μm long flagellum. Analyses of growing flagella suggested that DHC3 and DHC4 are also localized to the proximal region. By contrast, the DHC of a previously identified inner-arm dynein, dynein b, displayed an inverse distribution pattern. Thus, the proximal portion of the flagellar axoneme apparently differs in dynein composition from the remaining portion; this difference might be relevant to the special function performed by the flagellar base.
Collapse
Affiliation(s)
- Toshiki Yagi
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Tokyo, 113-0033, Japan
- Department of Biological Science, Graduate School of Science, Kyoto University, Kyoto, 606-8502, Japan
| | - Keigo Uematsu
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Tokyo, 113-0033, Japan
| | - Zhongmei Liu
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Tokyo, 113-0033, Japan
| | - Ritsu Kamiya
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Tokyo, 113-0033, Japan
| |
Collapse
|
18
|
Omran H, Kobayashi D, Olbrich H, Tsukahara T, Loges NT, Hagiwara H, Zhang Q, Leblond G, O'Toole E, Hara C, Mizuno H, Kawano H, Fliegauf M, Yagi T, Koshida S, Miyawaki A, Zentgraf H, Seithe H, Reinhardt R, Watanabe Y, Kamiya R, Mitchell DR, Takeda H. Ktu/PF13 is required for cytoplasmic pre-assembly of axonemal dyneins. Nature 2008; 456:611-6. [PMID: 19052621 PMCID: PMC3279746 DOI: 10.1038/nature07471] [Citation(s) in RCA: 284] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2008] [Accepted: 09/25/2008] [Indexed: 12/18/2022]
Abstract
Cilia and flagella are highly conserved organelles that have diverse roles in cell motility and sensing extracellular signals. Motility defects in cilia and flagella often result in primary ciliary dyskinesia. However, the mechanisms underlying cilia formation and function, and in particular the cytoplasmic assembly of dyneins that power ciliary motility, are only poorly understood. Here we report a new gene, kintoun (ktu), involved in this cytoplasmic process. This gene was first identified in a medaka mutant, and found to be mutated in primary ciliary dyskinesia patients from two affected families as well as in the pf13 mutant of Chlamydomonas. In the absence of Ktu/PF13, both outer and inner dynein arms are missing or defective in the axoneme, leading to a loss of motility. Biochemical and immunohistochemical studies show that Ktu/PF13 is one of the long-sought proteins involved in pre-assembly of dynein arm complexes in the cytoplasm before intraflagellar transport loads them for the ciliary compartment.
Collapse
Affiliation(s)
- Heymut Omran
- Department of Pediatrics and Adolescent Medicine, University Hospital Freiburg Mathildenstrasse 1, D-79106 Freiburg, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Ralston KS, Hill KL. The flagellum of Trypanosoma brucei: new tricks from an old dog. Int J Parasitol 2008; 38:869-84. [PMID: 18472102 PMCID: PMC3210513 DOI: 10.1016/j.ijpara.2008.03.003] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2008] [Revised: 03/03/2008] [Accepted: 03/03/2008] [Indexed: 11/30/2022]
Abstract
African trypanosomes, i.e. Trypanosoma brucei and related sub-species, are devastating human and animal pathogens that cause significant human mortality and limit sustained economic development in sub-Saharan Africa. T. brucei is a highly motile protozoan parasite and coordinated motility is central to both disease pathogenesis in the mammalian host and parasite development in the tsetse fly vector. Therefore, understanding unique aspects of the T. brucei flagellum may uncover novel targets for therapeutic intervention in African sleeping sickness. Moreover, studies of conserved features of the T. brucei flagellum are directly relevant to understanding fundamental aspects of flagellum and cilium function in other eukaryotes, making T. brucei an important model system. The T. brucei flagellum contains a canonical 9+2 axoneme, together with additional features that are unique to kinetoplastids and a few closely-related organisms. Until recently, much of our knowledge of the structure and function of the trypanosome flagellum was based on analogy and inference from other organisms. There has been an explosion in functional studies in T. brucei in recent years, revealing conserved as well as novel and unexpected structural and functional features of the flagellum. Most notably, the flagellum has been found to be an essential organelle, with critical roles in parasite motility, morphogenesis, cell division and immune evasion. This review highlights recent discoveries on the T. brucei flagellum.
Collapse
Affiliation(s)
- Katherine S. Ralston
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, CA 90095 USA
| | - Kent L. Hill
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, CA 90095 USA
- Molecular Biology Institute, University of California, Los Angeles, CA 90095 USA
| |
Collapse
|
20
|
Novel 44-kilodalton subunit of axonemal Dynein conserved from chlamydomonas to mammals. EUKARYOTIC CELL 2007; 7:154-61. [PMID: 17981992 DOI: 10.1128/ec.00341-07] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Cilia and flagella have multiple dyneins in their inner and outer arms. Chlamydomonas inner-arm dynein contains at least seven major subspecies (dynein a to dynein g), of which all but dynein f (also called dynein I1) are the single-headed type that are composed of a single heavy chain, actin, and either centrin or a 28-kDa protein (p28). Dynein d was found to associate with two additional proteins of 38 kDa (p38) and 44 kDa (p44). Following the characterization of the p38 protein (R. Yamamoto, H. A. Yanagisawa, T. Yagi, and R. Kamiya, FEBS Lett. 580:6357-6360, 2006), we have identified p44 as a novel component of dynein d by using an immunoprecipitation approach. p44 is present along the length of the axonemes and is diminished, but not absent, in the ida4 and ida5 mutants, both lacking this dynein. In the ida5 axoneme, p44 and p38 appear to form a complex, suggesting that they constitute the docking site of dynein d on the outer doublet. p44 has potential homologues in other ciliated organisms. For example, the mouse homologue of p44, NYD-SP14, was found to be strongly expressed in tissues with motile cilia and flagella. These results suggest that inner-arm dynein d and its subunit organization are widely conserved.
Collapse
|
21
|
Abstract
Dyneins are large minus-end-directed microtubule motors. Each dynein contains at least one dynein heavy chain (DHC) and a variable number of intermediate chains (IC), light intermediate chains (LIC) and light chains (LC). Here, we used genome sequence data from 24 diverse eukaryotes to assess the distribution of DHCs, ICs, LICs and LCs across Eukaryota. Phylogenetic inference identified nine DHC families (two cytoplasmic and seven axonemal) and six IC families (one cytoplasmic). We confirm that dyneins have been lost from higher plants and show that this is most likely because of a single loss of cytoplasmic dynein 1 from the ancestor of Rhodophyta and Viridiplantae, followed by lineage-specific losses of other families. Independent losses in Entamoeba mean that at least three extant eukaryotic lineages are entirely devoid of dyneins. Cytoplasmic dynein 2 is associated with intraflagellar transport (IFT), but in two chromalveolate organisms, we find an IFT footprint without the retrograde motor. The distribution of one family of outer-arm dyneins accounts for 2-headed or 3-headed outer-arm ultrastructures observed in different organisms. One diatom species builds motile axonemes without any inner-arm dyneins (IAD), and the unexpected conservation of IAD I1 in non-flagellate algae and LC8 (DYNLL1/2) in all lineages reveals a surprising fluidity to dynein function.
Collapse
|