1
|
Wang M, Li B, Nie S, Meng X, Wang G, Yang M, Dang W, He K, Sun T, Xu P, Yang X, Ye K. Asparagine endopeptidase cleaves apolipoprotein A1 and accelerates pathogenesis of atherosclerosis. J Clin Invest 2025; 135:e185128. [PMID: 40371638 PMCID: PMC12077905 DOI: 10.1172/jci185128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 03/12/2025] [Indexed: 05/16/2025] Open
Abstract
Atherosclerosis is a slowly progressing inflammatory disease characterized with cholesterol disorder and intimal plaques. Asparagine endopeptidase (AEP) is an endolysosomal protease that is activated under acidic conditions and is elevated substantially in both plasma and plaques of patients with atherosclerosis. However, how AEP accelerates atherosclerosis development remains incompletely understood, especially from the view of cholesterol metabolism. This project aims to reveal the crucial substrate of AEP during atherosclerosis plaque formation and to lay the foundation for developing novel therapeutic agents for Atherosclerosis. Here, we show that AEP is augmented in the atherosclerosis plaques obtained from patients and proteolytically cuts apolipoprotein A1 (APOA1) and impairs cholesterol efflux and high-density lipoprotein (HDL) formation, facilitating atherosclerosis pathologies. AEP is activated in the liver and aorta of apolipoprotein E-null (APOE-null) mice, and deletion of AEP from APOE-/- mice attenuates atherosclerosis. APOA1, an essential lipoprotein in HDL for cholesterol efflux, is cleaved by AEP at N208 residue in the liver and atherosclerotic macrophages of APOE-/- mice. Blockade of APOA1 cleavage by AEP via N208A mutation or its specific inhibitor, #11a, substantially diminishes atherosclerosis in both APOE-/- and LDLR-/- mice. Hence, our findings support that AEP disrupts cholesterol metabolism and accelerates the development of atherosclerosis.
Collapse
Affiliation(s)
- Mengmeng Wang
- Brain Cognition and Brain Disease Institute, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China
| | - Bowei Li
- Faculty of Life and Health Sciences, Shenzhen University of Advanced Technology (SUAT), University of Chinese Academy of Science, Shenzhen, Guangdong, China
| | - Shuke Nie
- Brain Cognition and Brain Disease Institute, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Xin Meng
- Brain Cognition and Brain Disease Institute, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China
| | - Guangxing Wang
- Department of Laboratory Medicine, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Menghan Yang
- Faculty of Life and Health Sciences, Shenzhen University of Advanced Technology (SUAT), University of Chinese Academy of Science, Shenzhen, Guangdong, China
| | - Wenxin Dang
- Faculty of Life and Health Sciences, Shenzhen University of Advanced Technology (SUAT), University of Chinese Academy of Science, Shenzhen, Guangdong, China
| | - Kangning He
- Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, International Campus, Zhejiang University, Haining, China
| | - Tucheng Sun
- Department of Cardiac Surgery, Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of South China Structural Heart Disease, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Ping Xu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Research Unit of Proteomics & Research and Development of New Drug of Chinese Academy of Medical Sciences, Institute of Lifeomics, Beijing, China
| | - Xifei Yang
- Key Laboratory of Modern Toxicology of Shenzhen, Shenzhen Medical Key Discipline of Health Toxicology (2020–2024), Shenzhen Center for Disease Control and Prevention, Shenzhen, Guangdong, China
| | - Keqiang Ye
- Brain Cognition and Brain Disease Institute, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China
- Faculty of Life and Health Sciences, Shenzhen University of Advanced Technology (SUAT), University of Chinese Academy of Science, Shenzhen, Guangdong, China
| |
Collapse
|
2
|
Shen T, Su Y, Wang D, Li G, Liu X, Sun C, Hu T, Pang H, Mi X, Zhang Y, Yue S, Zhang Z, Tan X. HIF2α drives ccRCC metastasis through transcriptional activation of methylation-controlled J protein and enhanced prolegumain secretion. Cell Death Dis 2025; 16:93. [PMID: 39948060 PMCID: PMC11825665 DOI: 10.1038/s41419-025-07432-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 01/21/2025] [Accepted: 02/05/2025] [Indexed: 02/16/2025]
Abstract
The role of hypoxia-inducible factor 2α (HIF2α) in clear cell Renal Cell Carcinoma (ccRCC) is still not fully understood. In this study, we identified that urinary prolegumain levels positively correlated with the malignant characteristics of ccRCC. In cultured 786-O and OSRC-2 cells, HIF2α downregulation reduced prolegumain secretion. RNA sequencing assay revealed that HIF2α induces methylation-controlled J (MCJ), a negative regulator on the mitochondrial respiratory chain. Silencing MCJ reduced prolegumain secretion, and MCJ overexpression restored prolegumain secretion inhibited by HIF2α downregulation. Chromatin immunoprecipitation and luciferase assay confirmed MCJ as a transcription target of HIF2α. Furthermore, we showed the ectopic MCJ overexpression reversed the improved mitochondrial damage resulting from HIF2α downregulation, as evidenced by electron microscope, ATP level, GSSG/GSH ratio, MitoSOX, and DHE staining. Through mass spectrometry analysis, we identified oxidation site His343 on the legumain sequence as contributing to the prolegumain secretion. Therapeutically, silencing MCJ or HIF2α or using ROS scavengers Vitamin C or MitoQ alleviated MMP2 activation as well as cell migration and tube formation. In a mouse orthotopic xenograft model of ccRCC, silencing MCJ or administration of MitoQ significantly protected against mitochondrial damage and subsequently reduced the lung metastasis of tumors. Overall, our study identified MCJ as a target molecule of HIF2α in ccRCC. Silencing MCJ or using ROS scavengers like MitoQ can suppress oxidation site His343 in legumain, preventing prolegumain secretion and subsequently reducing metastasis of ccRCC.
Collapse
Affiliation(s)
- Tianyu Shen
- The School of Medicine, Nankai University; 94 Wei Jin Road, Tianjin, China
| | - Yu Su
- The School of Medicine, Nankai University; 94 Wei Jin Road, Tianjin, China
| | - Dekun Wang
- The School of Medicine, Nankai University; 94 Wei Jin Road, Tianjin, China
| | - Gang Li
- Department of Urology, Tianjin Institute of Urology, the 2nd Hospital of Tianjin Medical University, 23 Ping Jiang Road, Tianjin, China
| | - Xuan Liu
- The School of Medicine, Nankai University; 94 Wei Jin Road, Tianjin, China
| | - Chuangxin Sun
- Department of Urology, Tianjin Institute of Urology, the 2nd Hospital of Tianjin Medical University, 23 Ping Jiang Road, Tianjin, China
| | - Taoyu Hu
- The School of Medicine, Nankai University; 94 Wei Jin Road, Tianjin, China
| | - Haoxiang Pang
- The School of Medicine, Nankai University; 94 Wei Jin Road, Tianjin, China
| | - Xue Mi
- The School of Medicine, Nankai University; 94 Wei Jin Road, Tianjin, China
| | - Yuying Zhang
- The School of Medicine, Nankai University; 94 Wei Jin Road, Tianjin, China
| | - Shijing Yue
- The School of Medicine, Nankai University; 94 Wei Jin Road, Tianjin, China
| | - Zhujun Zhang
- The School of Medicine, Nankai University; 94 Wei Jin Road, Tianjin, China
| | - Xiaoyue Tan
- The School of Medicine, Nankai University; 94 Wei Jin Road, Tianjin, China.
| |
Collapse
|
3
|
Bradić I, Kuentzel KB, Pirchheim A, Rainer S, Schwarz B, Trauner M, Larsen MR, Vujić N, Kratky D. From LAL-D to MASLD: Insights into the role of LAL and Kupffer cells in liver inflammation and lipid metabolism. Biochim Biophys Acta Mol Cell Biol Lipids 2025; 1870:159575. [PMID: 39486573 DOI: 10.1016/j.bbalip.2024.159575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 10/29/2024] [Accepted: 10/29/2024] [Indexed: 11/04/2024]
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is a prevalent liver pathology worldwide, closely associated with obesity and metabolic disorders. Increasing evidence suggests that macrophages play a crucial role in the development of MASLD. Several human studies have shown an inverse correlation between circulating lysosomal acid lipase (LAL) activity and MASLD. LAL is the sole enzyme known to degrade cholesteryl esters (CE) and triacylglycerols in lysosomes. Consequently, these substrates accumulate when their enzymatic degradation is impaired due to LAL deficiency (LALD). This study aimed to investigate the role of hepatic LAL activity and liver-resident macrophages (i.e., Kupffer cells (KC)) in MASLD. To this end, we analyzed lipid metabolism in hepatocyte-specific (hep)Lal-/- mice and depleted KC with clodronate treatment. When fed a high-fat/high-cholesterol diet (HF/HCD), hepLal-/- mice exhibited CE accumulation and an increased number of macrophages in the liver and significant hepatic inflammation. KC were depleted upon clodronate administration, whereas infiltrating/proliferating CD68-expressing macrophages were less affected. This led to exacerbated hepatic CE accumulation and dyslipidemia, as evidenced by increased LDL-cholesterol concentrations. Along with proteomic analysis of liver tissue, these findings indicate that hepatic LAL-D in HF/HCD-fed mice leads to macrophage infiltration into the liver and that KC depletion further exacerbates hepatic CE concentrations and dyslipidemia.
Collapse
Affiliation(s)
- Ivan Bradić
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria; Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Katharina B Kuentzel
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria
| | - Anita Pirchheim
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria
| | - Silvia Rainer
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria
| | - Birgit Schwarz
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria
| | - Michael Trauner
- Hans Popper Laboratory of Molecular Hepatology, Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Martin R Larsen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Nemanja Vujić
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria
| | - Dagmar Kratky
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria; BioTechMed-Graz, Graz, Austria.
| |
Collapse
|
4
|
Martínez-López N, Pereiro P, Saco A, Lama R, Figueras A, Novoa B. Characterization of a fish-specific immunoglobulin-like domain-containing protein (Igldcp) in zebrafish (Danio rerio) induced after nodavirus infection. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2025; 162:105285. [PMID: 39515405 DOI: 10.1016/j.dci.2024.105285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 11/05/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024]
Abstract
One of the most highly induced genes in zebrafish (Danio rerio) larvae after infection with the nodavirus red-spotted grouper nervous necrosis virus (RGNNV) was a member of the immunoglobulin superfamily (IgSF), which has remained uncharacterized and erroneously annotated in zebrafish and other fish species as galectin 17 (lgals17). We characterized this gene and named it immunoglobulin (Ig)-like domain-containing protein (igldcp), a new member of the IgSF that does not possess orthologs in mammals. Igldcp expression is induced by viral infection and it belongs to the group of interferon-stimulated genes (ISGs). In vitro overexpression of igldcp decreased RGNNV replication, whereas in vivo knockdown of this gene had the opposite effect, resulting in increased larval mortality. RNA-Seq analyses of larvae overexpressing igldcp in the absence or presence of infection with RGNNV showed that the main processes affected by Igldcp could be directly involved in the regulation of various cellular processes associated with the modulation of the immune system.
Collapse
Affiliation(s)
| | | | - Amaro Saco
- Institute of Marine Research (IIM-CSIC), Vigo, Spain
| | - Raquel Lama
- Institute of Marine Research (IIM-CSIC), Vigo, Spain
| | | | - Beatriz Novoa
- Institute of Marine Research (IIM-CSIC), Vigo, Spain.
| |
Collapse
|
5
|
Lustenberger SK, Castro Jaramillo CA, Bärtschi LA, Williams R, Schibli R, Mu L, Krämer SD. Towards imaging the immune state of cancer by PET: Targeting legumain with 11C-labeled P1-Asn peptidomimetics carrying a cyano-warhead. Nucl Med Biol 2024; 138-139:108951. [PMID: 39303441 DOI: 10.1016/j.nucmedbio.2024.108951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/29/2024] [Accepted: 09/12/2024] [Indexed: 09/22/2024]
Abstract
PURPOSE M2-type tumor-associated macrophages (TAM) residing in the tumor microenvironment (TME) have been linked to tumor invasiveness, metastasis and poor prognosis. M2 TAMs suppress T cell activation, silencing the recognition of the cancer by the immune system. Targeting TAMs in anti-cancer therapy may support the immune system and immune-checkpoint inhibitor therapies to fight the cancer cells. We aimed to develop a PET tracer for the imaging of M2 TAM infiltration of cancer, using activated legumain as the imaging target. BASIC PROCEDURES Two P1-mimicking inhibitors with a cyano-warhead were labeled with carbon-11 and evaluated in vitro and in vivo with a CT26 tumor mouse model. Target expression and activity were quantified from RT-qPCR and in vitro substrate conversion, respectively. The co-localization of legumain and TAMs was assessed by fluorescence microscopy. The two tracers were evaluated by PET with subsequent biodistribution analysis with the dissected tissues. Parent-to-total radioactivity in plasma was determined at several time points after i.v. tracer injection, using reverse phase radio-UPLC. MAIN FINDINGS Legumain displayed a target density of 40.7 ± 19.1 pmol per mg total protein in tumor lysate (n = 4) with high substrate conversion and colocalization with M2 macrophages in the tumor periphery. [11C]1 and [11C]2 were synthesized with >95 % radiochemical purity and 12.9-382.2 GBq/μmol molar activity at the end of synthesis. We observed heterogeneous tumor accumulation in in vitro autoradiography and PET for both tracers. However, excess unlabeled 1 or 2 did not compete with tracer accumulation. Both [11C]1 and [11C]2 were rapidly metabolized to a polar radiometabolite in vivo. PRINCIPAL CONCLUSIONS The legumain tracers [11C]1 and [11C]2, synthesized with high radiochemical purity and molar activity, accumulate in the legumain-positive CT26 tumor in vivo. However, the lack of competition by excess compound questions their specificity. Both tracers are rapidly metabolized in vivo, requiring structural modifications towards more stable tracers for further investigations.
Collapse
Affiliation(s)
- Severin K Lustenberger
- Radiopharmaceutical Sciences, Institute of Pharmaceutical Sciences, ETH Zürich, 8092 Zürich, Switzerland
| | - Claudia A Castro Jaramillo
- Radiopharmaceutical Sciences, Institute of Pharmaceutical Sciences, ETH Zürich, 8092 Zürich, Switzerland
| | - Lena A Bärtschi
- Radiopharmaceutical Sciences, Institute of Pharmaceutical Sciences, ETH Zürich, 8092 Zürich, Switzerland
| | - Rich Williams
- Queens University Belfast, BT7 1NN Belfast, United Kingdom of Great Britain and Northern Ireland
| | - Roger Schibli
- Radiopharmaceutical Sciences, Institute of Pharmaceutical Sciences, ETH Zürich, 8092 Zürich, Switzerland
| | - Linjing Mu
- Radiopharmaceutical Sciences, Institute of Pharmaceutical Sciences, ETH Zürich, 8092 Zürich, Switzerland
| | - Stefanie D Krämer
- Radiopharmaceutical Sciences, Institute of Pharmaceutical Sciences, ETH Zürich, 8092 Zürich, Switzerland.
| |
Collapse
|
6
|
Momiyama Y, Kishimoto Y, Saita E, Ohmori R, Kondo K. Association between high plasma levels of legumain and cardiovascular events in patients undergoing coronary angiography. Heart Vessels 2024; 39:909-915. [PMID: 38289388 DOI: 10.1007/s00380-024-02373-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 01/24/2024] [Indexed: 09/17/2024]
Abstract
Degradation of vascular extracellular matrix is important in atherosclerosis. Cysteine protease legumain is upregulated in atherosclerotic plaques. We recently reported that plasma legumain levels are high in patients with complex coronary lesions. This study investigated the association between legumain levels and cardiovascular events in 372 patients undergoing coronary angiography. Patients with acute coronary syndrome were excluded. Of the 372 patients, 225 had coronary artery disease (CAD). During a mean follow-up of 7.0 ± 4.3 years, cardiovascular events occured in 62 patients. Compared with 310 patients without events, 62 with events tended to have higher prevalence of complex lesions (15% vs. 10%). Notably, patients with events had higher legumain levels (median 5.51 vs. 4.90 ng/mL, P < 0.01) than those without events. A Kaplan-Meier analysis showed lower event-free survival in patients with legumain > 5.0 ng/mL than in those with ≤ 5.0 ng/mL (P < 0.01). In multivariate Cox regression analysis, legumain level was an independent predictor of cardiovascular events. The hazard ratio for legumain > 5.0 ng/mL for cardiovascular events was 2.18 (95%CI = 1.27-3.77, P < 0.01). Only among 225 patients with CAD, patients with events had higher legumain levels (5.49 vs. 4.73 ng/mL) than without events (P < 0.02). Legumain level was also a predictor of cardiovascular events in patients with CAD. Thus, high plasma legumain levels were associated with an increased risk of cardiovascular events in patients undergoing coronary angiography and those with stable CAD.
Collapse
Affiliation(s)
- Yukihiko Momiyama
- Department of Cardiology, NHO Tokyo Medical Center, 2-5-1 Higashigaoka, Meguro-ku, Tokyo, 152-8902, Japan.
| | - Yoshimi Kishimoto
- Department of Food Science and Human Nutrition, Setsunan University, Osaka, Japan
| | - Emi Saita
- Research Institute of Environmental Medicine, Nagoya University, Aichi, Japan
| | - Reiko Ohmori
- Faculty of Regional Design, Utsunomiya University, Tochigi, Japan
| | | |
Collapse
|
7
|
Zhou L, Wu J, Wei Z, Zheng Y. Legumain in cardiovascular diseases. Exp Biol Med (Maywood) 2024; 249:10121. [PMID: 39104790 PMCID: PMC11298360 DOI: 10.3389/ebm.2024.10121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 07/08/2024] [Indexed: 08/07/2024] Open
Abstract
Cardiovascular diseases (CVDs) are the leading cause of death worldwide, having become a global public health problem, so the pathophysiological mechanisms and therapeutic strategies of CVDs need further study. Legumain is a powerful enzyme that is widely distributed in mammals and plays an important role in a variety of biological processes. Recent research suggests that legumain is associated with the occurrence and progression of CVDs. In this review, we provide a comprehensive overview of legumain in the pathogenesis of CVDs. The role of legumain in CVDs, such as carotid atherosclerosis, pulmonary hypertension, coronary artery disease, peripheral arterial disease, aortic aneurysms and dissection, is discussed. The potential applications of legumain as a biomarker of these diseases are also explored. By understanding the role of legumain in the pathogenesis of CVDs, we aim to support new therapeutic strategies to prevent or treat these diseases.
Collapse
Affiliation(s)
- Lei Zhou
- Department of Burns and Plastic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Department of Vascular Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jianqiang Wu
- Institute of Clinical Medicine, National Science and Technology Key Infrastructure on Translational Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zairong Wei
- Department of Burns and Plastic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Yuehong Zheng
- Department of Vascular Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
8
|
Rappold R, Kalogeropoulos K, Auf dem Keller U, Vogel V, Slack E. Salmonella-driven intestinal edema in mice is characterized by tensed fibronectin fibers. FEBS J 2024; 291:3104-3127. [PMID: 38487972 DOI: 10.1111/febs.17120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 12/04/2023] [Accepted: 03/05/2024] [Indexed: 07/19/2024]
Abstract
Intestinal edema is a common manifestation of numerous gastrointestinal diseases and is characterized by the accumulation of fluid in the interstitial space of the intestinal wall. Technical advances in laser capture microdissection and low-biomass proteomics now allow us to specifically characterize the intestinal edema proteome. Using advanced proteomics, we identify peptides derived from antimicrobial factors with high signal intensity, but also highlight major contributions from the blood clotting system, extracellular matrix (ECM) and protease-protease inhibitor networks. The ECM is a complex fibrillar network of macromolecules that provides structural and mechanical support to the intestinal tissue. One abundant component of the ECM observed in Salmonella-driven intestinal edema is the glycoprotein fibronectin, recognized for its structure-function interplay regulated by mechanical forces. Using mechanosensitive staining of fibronectin fibers reveals that they are tensed in the edema, despite the high abundance of proteases able to cleave fibronectin. In contrast, fibronectin fibers increasingly relax in other cecal tissue areas as the infection progresses. Co-staining for fibrin(ogen) indicates the formation of a provisional matrix in the edema, similar to what is observed in response to skin injury, while collagen staining reveals a sparse and disrupted collagen fiber network. These observations plus the absence of low tensional fibronectin fibers and the additional finding of a high number of protease inhibitors in the edema proteome could indicate a critical role of stretched fibronectin fibers in maintaining tissue integrity in the severely inflamed cecum. Understanding these processes may also provide valuable functional diagnostic markers of intestinal disease progression in the future.
Collapse
Affiliation(s)
- Ronja Rappold
- Institute of Translational Medicine, ETH Zurich, Switzerland
- Institute of Food, Nutrition and Health, ETH Zurich, Switzerland
| | | | - Ulrich Auf dem Keller
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Viola Vogel
- Institute of Translational Medicine, ETH Zurich, Switzerland
- Botnar Research Center for Child Health, Basel, Switzerland
| | - Emma Slack
- Institute of Food, Nutrition and Health, ETH Zurich, Switzerland
- Botnar Research Center for Child Health, Basel, Switzerland
| |
Collapse
|
9
|
Wang Q, Huang X, Zeng S, Zhou R, Wang D. Weighted gene co-expression network analysis and machine learning identified the lipid metabolism-related gene LGMN as a novel biomarker for keloid. Exp Dermatol 2024; 33:e14974. [PMID: 37930112 DOI: 10.1111/exd.14974] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 10/05/2023] [Accepted: 10/27/2023] [Indexed: 11/07/2023]
Abstract
The aetiology of keloid formation remains unclear, and existing treatment modalities have not definitively established a successful approach. Therefore, it is necessary to identify reliable and novel keloid biomarkers as potential targets for therapeutic interventions. In this study, we performed differential expression analysis and functional enrichment analysis on the keloid related datasets, and found that multiple metabolism-related pathways were associated with keloid formation. Subsequently, the differentially expressed genes (DEGs) were intersected with the results of weighted gene co-expression network analysis (WGCNA) and the lipid metabolism-related genes (LMGs). Then, three learning machine algorithms (SVM-RFE, LASSO and Random Forest) together identified legumain (LGMN) as the most critical LMGs. LGMN was overexpressed in keloid and had a high diagnostic performance. The protein-protein interaction (PPI) network related to LGMN was constructed by GeneMANIA database. Functional analysis of indicated PPI network was involved in multiple immune response-related biological processes. Furthermore, immune infiltration analysis was conducted using the CIBERSORT method. M2-type macrophages were highly infiltrated in keloid tissues and were found to be significantly and positively correlated with LGMN expression. Gene set variation analysis (GSVA) indicated that LGMN may be related to promoting fibroblast proliferation and inhibiting their apoptosis. Moreover, eight potential drug candidates for keloid treatment were predicted by the DSigDB database. Western blot, qRT-PCR and immunohistochemistry staining results confirmed that LGMN was highly expressed in keloid. Collectively, our findings may identify a new biomarker and therapeutic target for keloid and contribute to the understanding of the potential pathogenesis of keloid.
Collapse
Affiliation(s)
- Qirui Wang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xingtai Huang
- Shanghai Key Laboratory of Stomatology, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Orthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
| | - Siyi Zeng
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Renpeng Zhou
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Danru Wang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
10
|
Qiu Y, Lei C, Zeng J, Xie Y, Cao Y, Yuan Q, Su H, Zhang Z, Zhang C. Asparagine endopeptidase protects podocytes in adriamycin-induced nephropathy by regulating actin dynamics through cleaving transgelin. Mol Ther 2023; 31:3337-3354. [PMID: 37689970 PMCID: PMC10638058 DOI: 10.1016/j.ymthe.2023.09.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 08/04/2023] [Accepted: 09/06/2023] [Indexed: 09/11/2023] Open
Abstract
Focal segmental glomerulosclerosis (FSGS) is the most common glomerular disorder causing end-stage renal diseases worldwide. Central to the pathogenesis of FSGS is podocyte dysfunction, which is induced by diverse insults. However, the mechanism governing podocyte injury and repair remains largely unexplored. Asparagine endopeptidase (AEP), a lysosomal protease, regulates substrates by residue-specific cleavage or degradation. We identified the increased AEP expression in the primary proteinuria model which was induced by adriamycin (ADR) to mimic human FSGS. In vivo, global AEP knockout mice manifested increased injury-susceptibility of podocytes in ADR-induced nephropathy (ADRN). Podocyte-specific AEP knockout mice exhibited much more severe glomerular lesions and podocyte injury after ADR injection. In contrast, podocyte-specific augmentation of AEP in mice protected against ADRN. In vitro, knockdown and overexpression of AEP in human podocytes revealed the cytoprotection of AEP as a cytoskeleton regulator. Furthermore, transgelin, an actin-binding protein regulating actin dynamics, was cleaved by AEP, and, as a result, removed its actin-binding regulatory domain. The truncated transgelin regulated podocyte actin dynamics and repressed podocyte hypermotility, compared to the native full-length transgelin. Together, our data reveal a link between lysosomal protease AEP and podocyte cytoskeletal homeostasis, which suggests a potential therapeutic role for AEP in proteinuria disease.
Collapse
Affiliation(s)
- Yang Qiu
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei, China
| | - Chuntao Lei
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei, China
| | - Jieyu Zeng
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei, China
| | - Yaru Xie
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei, China
| | - Yiling Cao
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei, China
| | - Qian Yuan
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei, China
| | - Hua Su
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei, China
| | - Zhentao Zhang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, China
| | - Chun Zhang
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei, China.
| |
Collapse
|
11
|
Anderson T, Mo J, Gagarin E, Sherwood D, Blumenkrantz M, Mao E, Leon G, Levitz H, Chen HJ, Tseng KC, Fabian P, Crump JG, Smeeton J. Ligament injury in adult zebrafish triggers ECM remodeling and cell dedifferentiation for scar-free regeneration. NPJ Regen Med 2023; 8:51. [PMID: 37726321 PMCID: PMC10509200 DOI: 10.1038/s41536-023-00329-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 08/31/2023] [Indexed: 09/21/2023] Open
Abstract
After traumatic injury, healing of mammalian ligaments is typically associated with fibrotic scarring as opposed to scar-free regeneration. In contrast, here we show that the ligament supporting the jaw joint of adult zebrafish is capable of rapid and complete scar-free healing. Following surgical transection of the jaw joint ligament, we observe breakdown of ligament tissue adjacent to the cut sites, expansion of mesenchymal tissue within the wound site, and then remodeling of extracellular matrix (ECM) to a normal ligament morphology. Lineage tracing of mature ligamentocytes following transection shows that they dedifferentiate, undergo cell cycle re-entry, and contribute to the regenerated ligament. Single-cell RNA sequencing of the regenerating ligament reveals dynamic expression of ECM genes in neural-crest-derived mesenchymal cells, as well as diverse immune cells expressing the endopeptidase-encoding gene legumain. Analysis of legumain mutant zebrafish shows a requirement for early ECM remodeling and efficient ligament regeneration. Our study establishes a new model of adult scar-free ligament regeneration and highlights roles of immune-mesenchyme cross-talk in ECM remodeling that initiates regeneration.
Collapse
Affiliation(s)
- Troy Anderson
- Columbia Stem Cell Initiative, Department of Rehabilitation and Regenerative Medicine, and Department of Genetics and Development, Columbia University Irving Medical Center, Columbia University, New York, NY, 10032, USA
| | - Julia Mo
- Columbia Stem Cell Initiative, Department of Rehabilitation and Regenerative Medicine, and Department of Genetics and Development, Columbia University Irving Medical Center, Columbia University, New York, NY, 10032, USA
| | - Ernesto Gagarin
- Columbia Stem Cell Initiative, Department of Rehabilitation and Regenerative Medicine, and Department of Genetics and Development, Columbia University Irving Medical Center, Columbia University, New York, NY, 10032, USA
| | - Desmarie Sherwood
- Columbia Stem Cell Initiative, Department of Rehabilitation and Regenerative Medicine, and Department of Genetics and Development, Columbia University Irving Medical Center, Columbia University, New York, NY, 10032, USA
| | - Maria Blumenkrantz
- Columbia Stem Cell Initiative, Department of Rehabilitation and Regenerative Medicine, and Department of Genetics and Development, Columbia University Irving Medical Center, Columbia University, New York, NY, 10032, USA
| | - Eric Mao
- Columbia Stem Cell Initiative, Department of Rehabilitation and Regenerative Medicine, and Department of Genetics and Development, Columbia University Irving Medical Center, Columbia University, New York, NY, 10032, USA
- Department of Biological Sciences, Columbia College, Columbia University, New York, NY, 10027, USA
| | - Gianna Leon
- Columbia Stem Cell Initiative, Department of Rehabilitation and Regenerative Medicine, and Department of Genetics and Development, Columbia University Irving Medical Center, Columbia University, New York, NY, 10032, USA
- Packer Collegiate Institute, New York, NY, 11201, USA
| | - Hailey Levitz
- Columbia Stem Cell Initiative, Department of Rehabilitation and Regenerative Medicine, and Department of Genetics and Development, Columbia University Irving Medical Center, Columbia University, New York, NY, 10032, USA
- Department of Chemistry, Barnard College, Columbia University, New York, NY, 10027, USA
| | - Hung-Jhen Chen
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Kuo-Chang Tseng
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Peter Fabian
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - J Gage Crump
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Joanna Smeeton
- Columbia Stem Cell Initiative, Department of Rehabilitation and Regenerative Medicine, and Department of Genetics and Development, Columbia University Irving Medical Center, Columbia University, New York, NY, 10032, USA.
| |
Collapse
|
12
|
Tu W, Qin M, Li Y, Wu W, Tong X. Metformin regulates autophagy via LGMN to inhibit choriocarcinoma. Gene X 2023; 853:147090. [PMID: 36464174 DOI: 10.1016/j.gene.2022.147090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 11/16/2022] [Accepted: 11/28/2022] [Indexed: 12/02/2022] Open
Abstract
Choriocarcinoma has the problem of chemotherapy insensitivity and recurrence. Metformin may be a promising candidate to restrict choriocarcinoma progress because of its indirect and direct beneficial role on inhabitations of cancer cells without severe adverse side effects. In this study, metformin pressed the proliferation and invasion of choriocarcinoma JAR cells in vitro and the growth of the JAR subcutaneous xenografts in vivo. The high throughput sequencing and bioinformatics technology identified the low expression of legumain (LGMN) in lysosomal pathway caused by metformin, which was upregulated in human choriocarcinoma tissues compared with the early pregnancy tissues. As elevating metformin concentration and treatment time, the mRNA and protein expression of LGMN both depressed in two choriocarcinoma cell lines (JAR and JEG-3). LGMN was involved in metformin-mediated inhibition of cell proliferation and invasion. Furthermore, metformin induced autophagy via inhibiting LGMN through AKT/mTOR/LC3II signaling pathway of choriocarcinoma. Autophagy inhibitor could depress metformin-induced autophagy and improve cell proliferation and invasion ability dropped by metformin, while autophagy inducer could partially reverse the change of cell proliferation and invasion modulated by combination of metformin and LGMN overexpression. These results indicated that metformin inhibited cell proliferation and invasion ability by inducing autophagy in a LGMN-dependent manner so as to play a role in the treatment of choriocarcinoma.
Collapse
Affiliation(s)
- Weiyan Tu
- Department of Gynecology, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China.
| | - Menglu Qin
- Department of Gynecology, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yu Li
- Department of Gynecology, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| | - Weimin Wu
- Department of Gynecology, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xiaowen Tong
- Department of Gynecology and Obstetrics, Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai, China.
| |
Collapse
|
13
|
Anderson T, Mo J, Gagarin E, Sherwood D, Blumenkrantz M, Mao E, Leon G, Chen HJ, Tseng KC, Fabian P, Crump JG, Smeeton J. Ligament injury in adult zebrafish triggers ECM remodeling and cell dedifferentiation for scar-free regeneration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.03.527039. [PMID: 36778403 PMCID: PMC9915717 DOI: 10.1101/2023.02.03.527039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
After traumatic injury, healing of mammalian ligaments is typically associated with fibrotic scarring as opposed to scar-free regeneration. In contrast, here we show that the ligament supporting the jaw joint of adult zebrafish is capable of rapid and complete scar-free healing. Following surgical transection of the jaw joint ligament, we observe breakdown of ligament tissue adjacent to the cut sites, expansion of mesenchymal tissue within the wound site, and then remodeling of extracellular matrix (ECM) to a normal ligament morphology. Lineage tracing of mature ligamentocytes following transection shows that they dedifferentiate, undergo cell cycle re-entry, and contribute to the regenerated ligament. Single-cell RNA sequencing of the regenerating ligament reveals dynamic expression of ECM genes in neural-crest-derived mesenchymal cells, as well as diverse immune cells expressing the endopeptidase-encoding gene legumain . Analysis of legumain mutant zebrafish shows a requirement for early ECM remodeling and efficient ligament regeneration. Our study establishes a new model of adult scar-free ligament regeneration and highlights roles of immune-mesenchyme cross-talk in ECM remodeling that initiates regeneration. Highlights Rapid regeneration of the jaw joint ligament in adult zebrafishDedifferentiation of mature ligamentocytes contributes to regenerationscRNAseq reveals dynamic ECM remodeling and immune activation during regenerationRequirement of Legumain for ECM remodeling and ligament healing.
Collapse
Affiliation(s)
- Troy Anderson
- Columbia Stem Cell Initiative, Department of Rehabilitation and Regenerative Medicine, and Department of Genetics and Development, Columbia University Irving Medical Center, Columbia University, New York, NY 10032, USA
| | - Julia Mo
- Columbia Stem Cell Initiative, Department of Rehabilitation and Regenerative Medicine, and Department of Genetics and Development, Columbia University Irving Medical Center, Columbia University, New York, NY 10032, USA
| | - Ernesto Gagarin
- Columbia Stem Cell Initiative, Department of Rehabilitation and Regenerative Medicine, and Department of Genetics and Development, Columbia University Irving Medical Center, Columbia University, New York, NY 10032, USA
| | - Desmarie Sherwood
- Columbia Stem Cell Initiative, Department of Rehabilitation and Regenerative Medicine, and Department of Genetics and Development, Columbia University Irving Medical Center, Columbia University, New York, NY 10032, USA
| | - Maria Blumenkrantz
- Columbia Stem Cell Initiative, Department of Rehabilitation and Regenerative Medicine, and Department of Genetics and Development, Columbia University Irving Medical Center, Columbia University, New York, NY 10032, USA
| | - Eric Mao
- Columbia Stem Cell Initiative, Department of Rehabilitation and Regenerative Medicine, and Department of Genetics and Development, Columbia University Irving Medical Center, Columbia University, New York, NY 10032, USA
- Department of Biological Sciences, Columbia College, Columbia University NY 10027, USA
| | - Gianna Leon
- Columbia Stem Cell Initiative, Department of Rehabilitation and Regenerative Medicine, and Department of Genetics and Development, Columbia University Irving Medical Center, Columbia University, New York, NY 10032, USA
- Packer Collegiate Institute, New York, NY 11201, USA
| | - Hung-Jhen Chen
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Kuo-Chang Tseng
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Peter Fabian
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - J. Gage Crump
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Joanna Smeeton
- Columbia Stem Cell Initiative, Department of Rehabilitation and Regenerative Medicine, and Department of Genetics and Development, Columbia University Irving Medical Center, Columbia University, New York, NY 10032, USA
| |
Collapse
|
14
|
Solberg R, Lunde NN, Forbord KM, Okla M, Kassem M, Jafari A. The Mammalian Cysteine Protease Legumain in Health and Disease. Int J Mol Sci 2022; 23:ijms232415983. [PMID: 36555634 PMCID: PMC9788469 DOI: 10.3390/ijms232415983] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/05/2022] [Accepted: 12/10/2022] [Indexed: 12/23/2022] Open
Abstract
The cysteine protease legumain (also known as asparaginyl endopeptidase or δ-secretase) is the only known mammalian asparaginyl endopeptidase and is primarily localized to the endolysosomal system, although it is also found extracellularly as a secreted protein. Legumain is involved in the regulation of diverse biological processes and tissue homeostasis, and in the pathogenesis of various malignant and nonmalignant diseases. In addition to its proteolytic activity that leads to the degradation or activation of different substrates, legumain has also been shown to have a nonproteolytic ligase function. This review summarizes the current knowledge about legumain functions in health and disease, including kidney homeostasis, hematopoietic homeostasis, bone remodeling, cardiovascular and cerebrovascular diseases, fibrosis, aging and senescence, neurodegenerative diseases and cancer. In addition, this review addresses the effects of some marketed drugs on legumain. Expanding our knowledge on legumain will delineate the importance of this enzyme in regulating physiological processes and disease conditions.
Collapse
Affiliation(s)
- Rigmor Solberg
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, N-0316 Oslo, Norway
- Correspondence: (R.S.); (A.J.); Tel.: +47-22-857-514 (R.S.); +45-35-337-423 (A.J.)
| | - Ngoc Nguyen Lunde
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, N-0316 Oslo, Norway
| | - Karl Martin Forbord
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, N-0316 Oslo, Norway
- Department of Endocrinology and Metabolism, Odense University Hospital, University of Southern Denmark, DK-5000 Odense, Denmark
| | - Meshail Okla
- Department of Endocrinology and Metabolism, Odense University Hospital, University of Southern Denmark, DK-5000 Odense, Denmark
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh 12372, Saudi Arabia
| | - Moustapha Kassem
- Department of Endocrinology and Metabolism, Odense University Hospital, University of Southern Denmark, DK-5000 Odense, Denmark
- Department of Cellular and Molecular Medicine, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Abbas Jafari
- Department of Endocrinology and Metabolism, Odense University Hospital, University of Southern Denmark, DK-5000 Odense, Denmark
- Department of Cellular and Molecular Medicine, University of Copenhagen, DK-2200 Copenhagen, Denmark
- Correspondence: (R.S.); (A.J.); Tel.: +47-22-857-514 (R.S.); +45-35-337-423 (A.J.)
| |
Collapse
|
15
|
Fetal Programming of the Endocrine Pancreas: Impact of a Maternal Low-Protein Diet on Gene Expression in the Perinatal Rat Pancreas. Int J Mol Sci 2022; 23:ijms231911057. [PMID: 36232358 PMCID: PMC9569808 DOI: 10.3390/ijms231911057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/08/2022] [Accepted: 09/10/2022] [Indexed: 11/26/2022] Open
Abstract
In rats, the time of birth is characterized by a transient rise in beta cell replication, as well as beta cell neogenesis and the functional maturation of the endocrine pancreas. However, the knowledge of the gene expression during this period of beta cell expansion is incomplete. The aim was to characterize the perinatal rat pancreas transcriptome and to identify regulatory pathways differentially regulated at the whole organ level in the offspring of mothers fed a regular control diet (CO) and of mothers fed a low-protein diet (LP). We performed mRNA expression profiling via the microarray analysis of total rat pancreas samples at embryonic day (E) 20 and postnatal days (P) 0 and 2. In the CO group, pancreas metabolic pathways related to sterol and lipid metabolism were highly enriched, whereas the LP diet induced changes in transcripts involved in RNA transcription and gene regulation, as well as cell migration and apoptosis. Moreover, a number of individual transcripts were markedly upregulated at P0 in the CO pancreas: growth arrest specific 6 (Gas6), legumain (Lgmn), Ets variant gene 5 (Etv5), alpha-fetoprotein (Afp), dual-specificity phosphatase 6 (Dusp6), and angiopoietin-like 4 (Angptl4). The LP diet induced the downregulation of a large number of transcripts, including neurogenin 3 (Neurog3), Etv5, Gas6, Dusp6, signaling transducer and activator of transcription 3 (Stat3), growth hormone receptor (Ghr), prolactin receptor (Prlr), and Gas6 receptor (AXL receptor tyrosine kinase; Axl), whereas upregulated transcripts were related to inflammatory responses and cell motility. We identified differentially regulated genes and transcriptional networks in the perinatal pancreas. These data revealed marked adaptations of exocrine and endocrine in the pancreas to the low-protein diet, and the data can contribute to identifying novel regulators of beta cell mass expansion and functional maturation and may provide a valuable tool in the generation of fully functional beta cells from stem cells to be used in replacement therapy.
Collapse
|
16
|
Zheng S, Cai Y, Hong Y, Gong Y, Gao L, Li Q, Li L, Sun X. Legumain/pH dual-responsive lytic peptide-paclitaxel conjugate for synergistic cancer therapy. Drug Deliv 2022; 29:1764-1775. [PMID: 35638851 PMCID: PMC9176665 DOI: 10.1080/10717544.2022.2081380] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
After molecule targeted drug, monoclonal antibody and antibody–drug conjugates (ADCs), peptide–drug conjugates (PDCs) have become the next generation targeted anti-tumor drugs due to its properties of low molecule weight, efficient cell penetration, low immunogenicity, good pharmacokinetic and large-scale synthesis by solid phase synthesis. Herein, we present a lytic peptide PTP7-drug paclitaxel conjugate assembling nanoparticles (named PPP) that can sequentially respond to dual stimuli in the tumor microenvironment, which was designed for passive tumor-targeted delivery and on-demand release of a tumor lytic peptide (PTP-7) as well as a chemotherapeutic agent of paclitaxel (PTX). To achieve this, tumor lytic peptide PTP-7 was connected with polyethylene glycol by a peptide substrate of legumain to serve as hydrophobic segments of nanoparticles to protect the peptide from enzymatic degradation. After that, PTX was connected to the amino group of the polypeptide side chain through an acid-responsive chemical bond (2-propionic-3-methylmaleic anhydride, CDM). Therefore, the nanoparticle (PPP) collapsed when it encountered the weakly acidic tumor microenvironment where PTX molecules fell off, and further triggered the cleavage of the peptide substrate by legumain that is highly expressed in tumor stroma and tumor cell surface. Moreover, PPP presents improved stability, improved drug solubility, prolonged blood circulation and significant inhibition ability on tumor growth, which gives a reasonable strategy to accurately deliver small molecule drugs and active peptides simultaneously to tumor sites.
Collapse
Affiliation(s)
- Shanshan Zheng
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals & College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Yue Cai
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals & College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Yulu Hong
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals & College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Yubei Gong
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals & College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Licheng Gao
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals & College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Qingyong Li
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals & College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Le Li
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals & College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Xuanrong Sun
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals & College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| |
Collapse
|
17
|
Pan L, Bai P, Weng X, Liu J, Chen Y, Chen S, Ma X, Hu K, Sun A, Ge J. Legumain Is an Endogenous Modulator of Integrin αvβ3 Triggering Vascular Degeneration, Dissection, and Rupture. Circulation 2022; 145:659-674. [PMID: 35100526 DOI: 10.1161/circulationaha.121.056640] [Citation(s) in RCA: 89] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
BACKGROUND The development of thoracic aortic dissection (TAD) is closely related to extracellular matrix degradation and vascular smooth muscle cell (VSMC) transformation from contractile to synthetic type. LGMN (legumain) degrades extracellular matrix components directly or by activating downstream signals. The role of LGMN in VSMC differentiation and the occurrence of TAD remains elusive. METHODS Microarray datasets concerning vascular dissection or aneurysm were downloaded from the Gene Expression Omnibus database to screen differentially expressed genes. Four-week-old male Lgmn knockout mice (Lgmn-/-), macrophage-specific Lgmn knockout mice (LgmnF/F;LysMCre), and RR-11a-treated C57BL/6 mice were given BAPN (β-aminopropionitrile monofumarate; 1 g/kg/d) in drinking water for 4 weeks for TAD modeling. RNA sequencing analysis was performed to recapitulate transcriptome profile changes. Cell interaction was examined in macrophage and VSMC coculture system. The reciprocity of macrophage-derived LGMN with integrin αvβ3 in VSMCs was tested by coimmunoprecipitation assay and colocalization analyses. RESULTS Microarray datasets from the Gene Expression Omnibus database indicated upregulated LGMN in aorta from patients with TAD and mice with angiotensin II-induced AAA. Elevated LGMN was evidenced in aorta and sera from patients with TAD and mice with BAPN-induced TAD. BAPN-induced TAD progression was significantly ameliorated in Lgmn-deficient or inhibited mice. Macrophage-specific deletion of Lgmn alleviated BAPN-induced extracellular matrix degradation. Unbiased profiler polymerase chain reaction array and Gene Ontology analysis displayed that LGMN regulated VSMC phenotype transformation. Macrophage-specific deletion of Lgmn ameliorated VSMC phenotypic switch in BAPN-treated mice. Macrophage-derived LGMN inhibited VSMC differentiation in vitro as assessed by macrophages and the VSMC coculture system. Macrophage-derived LGMN bound to integrin αvβ3 in VSMCs and blocked integrin αvβ3, thereby attenuating Rho GTPase activation, downregulating VSMC differentiation markers and eventually exacerbating TAD development. ROCK (Rho kinase) inhibitor Y-27632 reversed the protective role of LGMN depletion in vascular dissection. CONCLUSIONS LGMN signaling may be a novel target for the prevention and treatment of TAD.
Collapse
Affiliation(s)
- Lihong Pan
- Institutes of Biomedical Sciences, Fudan University, Shanghai, China (L.P., S.C., A.S., J.G.).,Key Laboratory of Viral Heart Diseases, National Health Commission, Shanghai, China (L.P., P.B., X.W., J.L., S.C., X.M., A.S., J.G.).,Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai, China (L.P., P.B., X.W., J.L., S.C., X.M., A.S., J.G.)
| | - Peiyuan Bai
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, China (P.B., X.W., J.L., X.M., K.H., A.S., J.G.).,Key Laboratory of Viral Heart Diseases, National Health Commission, Shanghai, China (L.P., P.B., X.W., J.L., S.C., X.M., A.S., J.G.).,Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai, China (L.P., P.B., X.W., J.L., S.C., X.M., A.S., J.G.)
| | - Xinyu Weng
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, China (P.B., X.W., J.L., X.M., K.H., A.S., J.G.).,Key Laboratory of Viral Heart Diseases, National Health Commission, Shanghai, China (L.P., P.B., X.W., J.L., S.C., X.M., A.S., J.G.).,Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai, China (L.P., P.B., X.W., J.L., S.C., X.M., A.S., J.G.)
| | - Jin Liu
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, China (P.B., X.W., J.L., X.M., K.H., A.S., J.G.).,Key Laboratory of Viral Heart Diseases, National Health Commission, Shanghai, China (L.P., P.B., X.W., J.L., S.C., X.M., A.S., J.G.).,Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai, China (L.P., P.B., X.W., J.L., S.C., X.M., A.S., J.G.)
| | - Yingjie Chen
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson (Y.C.)
| | - Siqin Chen
- Institutes of Biomedical Sciences, Fudan University, Shanghai, China (L.P., S.C., A.S., J.G.).,Key Laboratory of Viral Heart Diseases, National Health Commission, Shanghai, China (L.P., P.B., X.W., J.L., S.C., X.M., A.S., J.G.).,Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai, China (L.P., P.B., X.W., J.L., S.C., X.M., A.S., J.G.)
| | - Xiurui Ma
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, China (P.B., X.W., J.L., X.M., K.H., A.S., J.G.).,Key Laboratory of Viral Heart Diseases, National Health Commission, Shanghai, China (L.P., P.B., X.W., J.L., S.C., X.M., A.S., J.G.).,Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai, China (L.P., P.B., X.W., J.L., S.C., X.M., A.S., J.G.)
| | - Kai Hu
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, China (P.B., X.W., J.L., X.M., K.H., A.S., J.G.)
| | - Aijun Sun
- Institutes of Biomedical Sciences, Fudan University, Shanghai, China (L.P., S.C., A.S., J.G.).,Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, China (P.B., X.W., J.L., X.M., K.H., A.S., J.G.).,Key Laboratory of Viral Heart Diseases, National Health Commission, Shanghai, China (L.P., P.B., X.W., J.L., S.C., X.M., A.S., J.G.).,Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai, China (L.P., P.B., X.W., J.L., S.C., X.M., A.S., J.G.)
| | - Junbo Ge
- Institutes of Biomedical Sciences, Fudan University, Shanghai, China (L.P., S.C., A.S., J.G.).,Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, China (P.B., X.W., J.L., X.M., K.H., A.S., J.G.).,Key Laboratory of Viral Heart Diseases, National Health Commission, Shanghai, China (L.P., P.B., X.W., J.L., S.C., X.M., A.S., J.G.).,Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai, China (L.P., P.B., X.W., J.L., S.C., X.M., A.S., J.G.)
| |
Collapse
|
18
|
Asparaginyl endopeptidase protects against podocyte injury in diabetic nephropathy through cleaving cofilin-1. Cell Death Dis 2022; 13:184. [PMID: 35217650 PMCID: PMC8881581 DOI: 10.1038/s41419-022-04621-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 01/31/2022] [Accepted: 02/08/2022] [Indexed: 11/08/2022]
Abstract
AbstractPodocyte injury and loss are critical events in diabetic nephropathy (DN); however, the underlying molecular mechanisms remain unclear. Here, we demonstrate that asparaginyl endopeptidase (AEP) protects against podocyte injury through modulating the dynamics of the cytoskeleton. AEP was highly upregulated in diabetic glomeruli and hyperglycemic stimuli treated-podocytes; however, AEP gene knockout and its compound inhibitor treatment accelerated DN in streptozotocin-induced diabetic mice, whereas specific induction of AEP in glomerular cells attenuated podocyte injury and renal function deterioration. In vitro, elevated AEP was involved in actin cytoskeleton maintenance and anti-apoptosis effects. Mechanistically, we found that AEP directly cleaved the actin-binding protein cofilin-1 after the asparagine 138 (N138) site. The protein levels of endogenous cofilin-1 1-138 fragments were upregulated in diabetic podocytes, consistent with the changes in AEP levels. Importantly, we found that cofilin-1 1-138 fragments were remarkably unphosphorylated than full-length cofilin-1, indicating the enhanced cytoskeleton maintenance activity of cofilin-1 1-138. Then we validated cofilin-1 1-138 could rescue podocytes from cytoskeleton disarrangement and injury in diabetic conditions. Taken together, our data suggest a protective role of elevated AEP in podocyte injury during DN progression through cleaving cofilin-1 to maintain podocyte cytoskeleton dynamics and defend damage.
Collapse
|
19
|
Demir F, Kizhakkedathu JN, Rinschen MM, Huesgen PF. MANTI: Automated Annotation of Protein N-Termini for Rapid Interpretation of N-Terminome Data Sets. Anal Chem 2021; 93:5596-5605. [PMID: 33729755 PMCID: PMC8027985 DOI: 10.1021/acs.analchem.1c00310] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 03/04/2021] [Indexed: 12/23/2022]
Abstract
Site-specific proteolytic processing is an important, irreversible post-translational protein modification with implications in many diseases. Enrichment of protein N-terminal peptides followed by mass spectrometry-based identification and quantification enables proteome-wide characterization of proteolytic processes and protease substrates but is challenged by the lack of specific annotation tools. A common problem is, for example, ambiguous matches of identified peptides to multiple protein entries in the databases used for identification. We developed MaxQuant Advanced N-termini Interpreter (MANTI), a standalone Perl software with an optional graphical user interface that validates and annotates N-terminal peptides identified by database searches with the popular MaxQuant software package by integrating information from multiple data sources. MANTI utilizes diverse annotation information in a multistep decision process to assign a conservative preferred protein entry for each N-terminal peptide, enabling automated classification according to the likely origin and determines significant changes in N-terminal peptide abundance. Auxiliary R scripts included in the software package summarize and visualize key aspects of the data. To showcase the utility of MANTI, we generated two large-scale TAILS N-terminome data sets from two different animal models of chemically and genetically induced kidney disease, puromycin adenonucleoside-treated rats (PAN), and heterozygous Wilms Tumor protein 1 mice (WT1). MANTI enabled rapid validation and autonomous annotation of >10 000 identified terminal peptides, revealing novel proteolytic proteoforms in 905 and 644 proteins, respectively. Quantitative analysis indicated that proteolytic activities with similar sequence specificity are involved in the pathogenesis of kidney injury and proteinuria in both models, whereas coagulation processes and complement activation were specifically induced after chemical injury.
Collapse
Affiliation(s)
- Fatih Demir
- Department
of Biomedicine, Aarhus University, Høegh-Guldbergsgade 10, 8000 Aarhus C, Denmark
- Central
Institute for Engineering, Electronics and Analytics, ZEA-3, Forschungszentrum
Jülich GmbH, 52425 Jülich, Germany
| | - Jayachandran N. Kizhakkedathu
- Centre
for Blood Research, Department of Pathology & Laboratory Medicine,
School of Biomedical Engineering, Department of Chemistry, University of British Columbia, 251-2222 Health Sciences Mall, Vancouver V6T 1Z3, British Columbia, Canada
| | - Markus M. Rinschen
- Department
of Biomedicine, Aarhus University, Høegh-Guldbergsgade 10, 8000 Aarhus C, Denmark
- III.
Department of Medicine, University Medical
Center Hamburg-Eppendorf, Martinistraße 52, 20251 Hamburg, Germany
| | - Pitter F. Huesgen
- Central
Institute for Engineering, Electronics and Analytics, ZEA-3, Forschungszentrum
Jülich GmbH, 52425 Jülich, Germany
- Cologne
Excellence Cluster Cellular Stress Response in Aging-Associated Diseases
(CECAD), Medical Faculty and University Hospital, Institute of Biochemistry,
Department of Chemistry, University of Cologne, Joseph-Stelzmann-Str. 26, 50931 Cologne, Germany
| |
Collapse
|
20
|
Chen C, Wang D, Yu Y, Zhao T, Min N, Wu Y, Kang L, Zhao Y, Du L, Zhang M, Gong J, Zhang Z, Zhang Y, Mi X, Yue S, Tan X. Legumain promotes tubular ferroptosis by facilitating chaperone-mediated autophagy of GPX4 in AKI. Cell Death Dis 2021; 12:65. [PMID: 33431801 PMCID: PMC7801434 DOI: 10.1038/s41419-020-03362-4] [Citation(s) in RCA: 205] [Impact Index Per Article: 51.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 12/01/2020] [Indexed: 12/12/2022]
Abstract
Legumain is required for maintenance of normal kidney homeostasis. However, its role in acute kidney injury (AKI) is still unclear. Here, we induced AKI by bilateral ischemia-reperfusion injury (IRI) of renal arteries or folic acid in lgmnWT and lgmnKO mice. We assessed serum creatinine, blood urea nitrogen, histological indexes of tubular injury, and expression of KIM-1 and NGAL. Inflammatory infiltration was evaluated by immunohistological staining of CD3 and F4/80, and expression of TNF-α, CCL-2, IL-33, and IL-1α. Ferroptosis was evaluated by Acsl4, Cox-2, reactive oxygen species (ROS) indexes H2DCFDA and DHE, MDA and glutathione peroxidase 4 (GPX4). We induced ferroptosis by hypoxia or erastin in primary mouse renal tubular epithelial cells (mRTECs). Cellular survival, Acsl4, Cox-2, LDH release, ROS, and MDA levels were measured. We analyzed the degradation of GPX4 through inhibition of proteasomes or autophagy. Lysosomal GPX4 was assessed to determine GPX4 degradation pathway. Immunoprecipitation (IP) was used to determine the interactions between legumain, GPX4, HSC70, and HSP90. For tentative treatment, RR-11a was administrated intraperitoneally to a mouse model of IRI-induced AKI. Our results showed that legumain deficiency attenuated acute tubular injury, inflammation, and ferroptosis in either IRI or folic acid-induced AKI model. Ferroptosis induced by hypoxia or erastin was dampened in lgmnKO mRTECs compared with lgmnWT control. Deficiency of legumain prevented chaperone-mediated autophagy of GPX4. Results of IP suggested interactions between legumain, HSC70, HSP90, and GPX4. Administration of RR-11a ameliorated ferroptosis and renal injury in the AKI model. Together, our data indicate that legumain promotes chaperone-mediated autophagy of GPX4 therefore facilitates tubular ferroptosis in AKI.
Collapse
Affiliation(s)
- Chuan'ai Chen
- School of Medicine, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, China
| | - Dekun Wang
- School of Medicine, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, China
| | - Yangyang Yu
- School of Medicine, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, China
| | - Tianyuan Zhao
- School of Medicine, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, China
| | - Ningning Min
- School of Medicine, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, China
| | - Yan Wu
- School of Medicine, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, China
| | - Lichun Kang
- School of Medicine, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, China
| | - Yong Zhao
- School of Medicine, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, China
| | - Lingfang Du
- School of Medicine, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, China
| | - Mianzhi Zhang
- Dongfang Hospital of Beijing University of Chinese Medicine, Beijing, 100078, China
| | - Junbo Gong
- Tianjin Key Laboratory of Modern Drug Delivery and High Efficiency, Tianjin University, Tianjin, 300072, China
| | - Zhujun Zhang
- School of Medicine, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, China
| | - Yuying Zhang
- School of Medicine, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, China
| | - Xue Mi
- School of Medicine, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, China
| | - Shijing Yue
- School of Medicine, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, China
| | - Xiaoyue Tan
- School of Medicine, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, China.
| |
Collapse
|
21
|
Legumain is a predictor of all-cause mortality and potential therapeutic target in acute myocardial infarction. Cell Death Dis 2020; 11:1014. [PMID: 33243972 PMCID: PMC7691341 DOI: 10.1038/s41419-020-03211-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 10/28/2020] [Accepted: 11/02/2020] [Indexed: 12/23/2022]
Abstract
The prognostic impact of extracellular matrix (ECM) modulation and its regulatory mechanism post-acute myocardial infarction (AMI), require further clarification. Herein, we explore the predictive role of legumain—which showed the ability in ECM degradation—in an AMI patient cohort and investigate the underlying mechanisms. A total of 212 AMI patients and 323 healthy controls were enrolled in the study. Moreover, AMI was induced in mice by permanent ligation of the left anterior descending artery and fibroblasts were adopted for mechanism analysis. Based on the cut-off value for the receiver-operating characteristics curve, AMI patients were stratified into low (n = 168) and high (n = 44) plasma legumain concentration (PLG) groups. However, PLG was significantly higher in AMI patients than that in the healthy controls (median 5.9 μg/L [interquartile range: 4.2–9.3 μg/L] vs. median 4.4 μg/L [interquartile range: 3.2–6.1 μg/L], P < 0.001). All-cause mortality was significantly higher in the high PLG group compared to that in the low PLG group (median follow-up period, 39.2 months; 31.8% vs. 12.5%; P = 0.002). Multivariate Cox regression analysis showed that high PLG was associated with increased all-cause mortality after adjusting for clinical confounders (HR = 3.1, 95% confidence interval (CI) = 1.4–7.0, P = 0.005). In accordance with the clinical observations, legumain concentration was also increased in peripheral blood, and infarcted cardiac tissue from experimental AMI mice. Pharmacological blockade of legumain with RR-11a, improved cardiac function, decreased cardiac rupture rate, and attenuated left chamber dilation and wall thinning post-AMI. Hence, plasma legumain concentration is of prognostic value in AMI patients. Moreover, legumain aggravates cardiac remodelling through promoting ECM degradation which occurs, at least partially, via activation of the MMP-2 pathway.
Collapse
|
22
|
Gregersen I, Michelsen AE, Lunde NN, Åkerblom A, Lakic TG, Skjelland M, Ryeng Skagen K, Becker RC, Lindbäck J, Himmelmann A, Solberg R, Johansen HT, James SK, Siegbahn A, Storey RF, Kontny F, Aukrust P, Ueland T, Wallentin L, Halvorsen B. Legumain in Acute Coronary Syndromes: A Substudy of the PLATO (Platelet Inhibition and Patient Outcomes) Trial. J Am Heart Assoc 2020; 9:e016360. [PMID: 32809893 PMCID: PMC7660754 DOI: 10.1161/jaha.120.016360] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Background The cysteine protease legumain is increased in patients with atherosclerosis, but its causal role in atherogenesis and cardiovascular disease is still unclear. The aim of the study was to investigate the association of legumain with clinical outcome in a large cohort of patients with acute coronary syndrome. Methods and Results Serum levels of legumain were analyzed in 4883 patients with acute coronary syndrome from a substudy of the PLATO (Platelet Inhibition and Patient Outcomes) trial. Levels were analyzed at admission and after 1 month follow-up. Associations between legumain and a composite of cardiovascular death, spontaneous myocardial infarction or stroke, and its individual components were assessed by multivariable Cox regression analyses. At baseline, a 50% increase in legumain level was associated with a hazard ratio (HR) of 1.13 (95% CI, 1.04-1.21), P=0.0018, for the primary composite end point, adjusted for randomized treatment. The association remained significant after adjustment for important clinical and demographic variables (HR, 1.10; 95% CI, 1.02-1.19; P=0.013) but not in the fully adjusted model. Legumain levels at 1 month were not associated with the composite end point but were negatively associated with stroke (HR, 0.62; 95% CI, 0.44-0.88; P=0.0069), including in the fully adjusted model (HR, 0.57; 95% CI, 0.37-0.88; P=0.0114). Conclusions Baseline legumain was associated with the primary outcome in patients with acute coronary syndrome, but not in the fully adjusted model. The association between high levels of legumain at 1 month and decreased occurrence of stroke could be of interest from a mechanistic point of view, illustrating the potential dual role of legumain during atherogenesis and acute coronary syndrome. Registration URL: https://www.clinicaltrials.gov; Unique identifier: NCT00391872.
Collapse
Affiliation(s)
- Ida Gregersen
- Research Institute for Internal Medicine Oslo University Hospital Rikshospitalet Oslo Norway.,Institute of Clinical Medicine Faculty of Medicine University of Oslo Norway
| | - Annika E Michelsen
- Research Institute for Internal Medicine Oslo University Hospital Rikshospitalet Oslo Norway.,Institute of Clinical Medicine Faculty of Medicine University of Oslo Norway
| | - Ngoc Nguyen Lunde
- Section of Pharmacology and Pharmaceutical Biosciences Department of Pharmacy University of Oslo Norway
| | - Axel Åkerblom
- Department of Medical Sciences, Cardiology and Uppsala Clinical Research Center Uppsala University Uppsala Sweden
| | - Tatevik G Lakic
- Uppsala Clinical Research Center Uppsala University Uppsala Sweden
| | - Mona Skjelland
- Department of Neurology Oslo University Hospital Rikshospitalet Oslo Norway
| | | | - Richard C Becker
- Division of Cardiovascular Health and Disease Heart, Lung and Vascular Institute Academic Health Center Cincinnati OH
| | - Johan Lindbäck
- Uppsala Clinical Research Center Uppsala University Uppsala Sweden
| | | | - Rigmor Solberg
- Section of Pharmacology and Pharmaceutical Biosciences Department of Pharmacy University of Oslo Norway
| | - Harald T Johansen
- Section of Pharmacology and Pharmaceutical Biosciences Department of Pharmacy University of Oslo Norway
| | - Stefan K James
- Department of Medical Sciences, Cardiology and Uppsala Clinical Research Center Uppsala University Uppsala Sweden
| | - Agneta Siegbahn
- Uppsala Clinical Research Center Uppsala University Uppsala Sweden
| | - Robert F Storey
- Department of Infection, Immunity and Cardiovascular Disease University of Sheffield Sheffield United Kingdom
| | - Frederic Kontny
- Department of Cardiology Stavanger University Hospital Stavanger Norway.,Drammen Heart Center Drammen Norway
| | - Pål Aukrust
- Research Institute for Internal Medicine Oslo University Hospital Rikshospitalet Oslo Norway.,Institute of Clinical Medicine Faculty of Medicine University of Oslo Norway.,Section of Clinical Immunology and Infectious Diseases Oslo University Hospital Rikshospitalet Oslo Norway.,K.G. Jebsen TREC The Faculty of Health Sciences The Arctic University of Tromsø Tromsø Norway
| | - Thor Ueland
- Research Institute for Internal Medicine Oslo University Hospital Rikshospitalet Oslo Norway.,Institute of Clinical Medicine Faculty of Medicine University of Oslo Norway.,K.G. Jebsen TREC The Faculty of Health Sciences The Arctic University of Tromsø Tromsø Norway
| | - Lars Wallentin
- Department of Medical Sciences, Cardiology and Uppsala Clinical Research Center Uppsala University Uppsala Sweden
| | - Bente Halvorsen
- Research Institute for Internal Medicine Oslo University Hospital Rikshospitalet Oslo Norway.,Institute of Clinical Medicine Faculty of Medicine University of Oslo Norway
| |
Collapse
|
23
|
The LGMN pseudogene promotes tumor progression by acting as a miR-495-3p sponge in glioblastoma. Cancer Lett 2020; 490:111-123. [PMID: 32711096 DOI: 10.1016/j.canlet.2020.07.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 07/08/2020] [Accepted: 07/10/2020] [Indexed: 12/19/2022]
Abstract
Pseudogenes, which are long noncoding RNAs that originate from protein-coding genes, have been suggested to play important roles in disease. Although studies have revealed high expression of legumain (LGMN) in many types of tumors, the regulation of LGMN remains largely unknown. Here, we found that a novel LGMN pseudogene (LGMNP1) was upregulated in glioblastoma (GBM) tissues and high LGMNP1 expression in GBM cells enhanced proliferation and invasion. Biochemical analysis showed that cytoplasmic LGMNP1 functionally targeted miR-495-3p in a manner involving an RNA-induced silencing complex. Dual-luciferase reporter assays demonstrated that LGMN was a target of miR-495-3p, and LGMN was upregulated and positively correlated with LGMNP1 in GBM. Moreover, miR-495-3p was downregulated and negatively correlated with LGMNP1 in GBM tissues. Notably, the tumor-promoting effects of LGMNP1 upregulation could be alleviated by miR-495-3p mimics. Furthermore, GBM cells overexpressing LGMNP1 exhibited more aggressive tumor progression and elevated LGMN expression in vivo. Thus, our data illustrate that LGMNP1 exerts its oncogenic activity, at least in part, as a competitive endogenous RNA (ceRNA) that elevates LGMN expression by sponging miR-495-3p. CeRNA-mediated miRNA sequestration might be a novel therapeutic strategy in GBM.
Collapse
|
24
|
Chen HC, Rui W, You SY, Liu XW, Huang J, Chen HY. Evaluation of the anti-cervical cancer effect of a prodrug :CBZ-AAN-DOX with hypoxic cell culture and tumor-bearing zebrafish models. Exp Cell Res 2020; 391:111980. [PMID: 32229193 DOI: 10.1016/j.yexcr.2020.111980] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 02/20/2020] [Accepted: 03/26/2020] [Indexed: 10/24/2022]
Abstract
BACKGROUND Prodrugs are medications or compounds that, after administration, can be converted into pharmacologically active drugs through metabolism. Unlike conventional drugs, prodrugs have reduced adverse or unintended effects, which could become critical limitations in treatments such as chemotherapy. Previously through computer-aided drug design and chemical synthesis, we have obtained and examined a prodrug N-benzyloxycarbonyl-Ala-Asn-Doxorubicin (CBZ-AAN-DOX). CBZ-AAN-DOX is essentially Doxorubicin that is chemically-modified with tripeptides to target Legumain, a highly expressed protein in cancer cells and is involved in tumor metastasis and tumor microvessel formation. The difficulty to test the safety and efficacy of the prodrug (including the pharmacodynamic parameters of CBZ-AAN-DOX on metastasis and invasion of tumors, as well as cardiac and vascular toxicity) primarily comes from the lack of appropriate experimental models. METHODS Human cervical cancer cell lines CaSki under hypoxic conditions were used to evaluate the cell viability by CCK-8 assay after the prodrug treatment. Western blotting method was performed for Legumain protein determination in the cell culture. Wound healing and transwell invasion assays were performed to determine the effects of the prodrug on tumor metastasis and invasion, respectively. Zebrafish models were constructed for toxicity and angiogenesis visual analysis after in vivo treatment with the prodrug. RESULTS The CCK-8 results showed that CBZ-AAN-DOX exhibits an IC50 of 28.7 μM in 48 h on CaSki cells that had a lower cell inhibition rate than DOX 80.3 μM for 24 h. Legumain expression was significantly increased in a time-dependent manner in 48 h under hypoxia conditions. The results also showed that 13.9 μM of the prodrug significantly inhibited the migration and invasion of cells and the effects were significantly stronger than that of 41.8 μM of DOX under hypoxia conditions after 48 h. The effects of 160 μM of the prodrug on the survival rate of zebrafish after 72 h and heart-toxicity showed no obvious abnormalities. Cell metastasis and angiogenesis were also inhibited in tumor-bearing zebrafish model. CONCLUSION The findings in this study demonstrated that CBZ-AAN-DOX is a promising chemotherapy candidate with low toxicity and high efficiency for cervical cancer. Remarkably, the hypoxic culture model together with the zebrafish model serve as a good system for the evaluation of the toxicity, targeting and impact of the prodrug on tumor invasion and metastasis.
Collapse
Affiliation(s)
- Hong-Ce Chen
- Department of Pathogenic Biology and Immunology, School of Life Sciences and Biopharmaceuticals, Guangdong Pharmaceutical University, Guangzhou, 510632, Guangdong Province, PR China
| | - Wen Rui
- Centre for Novel Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou, 510006, Guangdong Province, PR China; Guangdong Engineering & Technology Research Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou, 510006, Guangdong Province, PR China; Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM, Guangzhou, 510006, Guangdong Province, PR China
| | - Si-Yuan You
- Department of Pathogenic Biology and Immunology, School of Life Sciences and Biopharmaceuticals, Guangdong Pharmaceutical University, Guangzhou, 510632, Guangdong Province, PR China
| | - Xia-Wan Liu
- Department of Pathogenic Biology and Immunology, School of Life Sciences and Biopharmaceuticals, Guangdong Pharmaceutical University, Guangzhou, 510632, Guangdong Province, PR China
| | - Jun Huang
- Key Laboratory of Immunology, Sino-French Hoffmann Institute, School of Basic Medical Sciences; Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, Guangdong Province, PR China
| | - Hong-Yuan Chen
- Department of Pathogenic Biology and Immunology, School of Life Sciences and Biopharmaceuticals, Guangdong Pharmaceutical University, Guangzhou, 510632, Guangdong Province, PR China; Guangdong Engineering & Technology Research Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou, 510006, Guangdong Province, PR China; Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM, Guangzhou, 510006, Guangdong Province, PR China.
| |
Collapse
|
25
|
Zhang Z, Tian Y, Ye K. δ-secretase in neurodegenerative diseases: mechanisms, regulators and therapeutic opportunities. Transl Neurodegener 2020; 9:1. [PMID: 31911834 PMCID: PMC6943888 DOI: 10.1186/s40035-019-0179-3] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 11/26/2019] [Indexed: 11/10/2022] Open
Abstract
Mammalian asparagine endopeptidase (AEP) is a cysteine protease that cleaves its protein substrates on the C-terminal side of asparagine residues. Converging lines of evidence indicate that AEP may be involved in the pathogenesis of several neurological diseases, including Alzheimer's disease, Parkinson's disease, and frontotemporal dementia. AEP is activated in the aging brain, cleaves amyloid precursor protein (APP) and promotes the production of amyloid-β (Aβ). We renamed AEP to δ-secretase to emphasize its role in APP fragmentation and Aβ production. AEP also cleaves other substrates, such as tau, α-synuclein, SET, and TAR DNA-binding protein 43, generating neurotoxic fragments and disturbing their physiological functions. The activity of δ-secretase is tightly regulated at both the transcriptional and posttranslational levels. Here, we review the recent advances in the role of δ-secretase in neurodegenerative diseases, with a focus on its biochemical properties and the transcriptional and posttranslational regulation of its activity, and discuss the clinical implications of δ-secretase as a diagnostic biomarker and therapeutic target for neurodegenerative diseases.
Collapse
Affiliation(s)
- Zhentao Zhang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, 430060 People’s Republic of China
| | - Ye Tian
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, 430060 People’s Republic of China
| | - Keqiang Ye
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322 USA
| |
Collapse
|
26
|
Lunde NN, Gregersen I, Ueland T, Shetelig C, Holm S, Kong XY, Michelsen AE, Otterdal K, Yndestad A, Broch K, Gullestad L, Nyman TA, Bendz B, Eritsland J, Hoffmann P, Skagen K, Gonçalves I, Nilsson J, Grenegård M, Poreba M, Drag M, Seljeflot I, Sporsheim B, Espevik T, Skjelland M, Johansen HT, Solberg R, Aukrust P, Björkbacka H, Andersen GØ, Halvorsen B. Legumain is upregulated in acute cardiovascular events and associated with improved outcome - potentially related to anti-inflammatory effects on macrophages. Atherosclerosis 2019; 296:74-82. [PMID: 31870625 DOI: 10.1016/j.atherosclerosis.2019.12.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 11/20/2019] [Accepted: 12/12/2019] [Indexed: 01/01/2023]
Abstract
BACKGROUND AND AIMS We have previously found increased levels of the cysteine protease legumain in plasma and plaques from patients with carotid atherosclerosis. This study further investigated legumain during acute cardiovascular events. METHODS Circulating levels of legumain from patients and legumain released from platelets were assessed by enzyme-linked-immunosorbent assay. Quantitative PCR and immunoblotting were used to study expression, while localization was visualized by immunohistochemistry. RESULTS In the SUMMIT Malmö cohort (n = 339 with or without type 2 diabetes and/or cardiovascular disease [CVD], and 64 healthy controls), the levels of circulating legumain were associated with the presence of CVD in non-diabetics, with no relation to outcome. In symptomatic carotid plaques and in samples from both coronary and intracerebral thrombi obtained during acute cardiovascular events, legumain was co-localized with macrophages in the same regions as platelets. In vitro, legumain was shown to be present in and released from platelets upon activation. In addition, THP-1 macrophages exposed to releasate from activated platelets showed increased legumain expression. Interestingly, primary peripheral blood mononuclear cells stimulated with recombinant legumain promoted anti-inflammatory responses. Finally, in a STEMI population (POSTEMI; n = 272), patients had significantly higher circulating legumain before and immediately after percutaneous coronary intervention compared with healthy controls (n = 67), and high levels were associated with improved outcome. CONCLUSIONS Our data demonstrate for the first time that legumain is upregulated during acute cardiovascular events and is associated with improved outcome.
Collapse
Affiliation(s)
- Ngoc Nguyen Lunde
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Oslo, Norway.
| | - Ida Gregersen
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway; Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Thor Ueland
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway; Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway; K.G. Jebsen Thrombosis Research and Expertise Center, University of Tromsø, Tromsø, Norway
| | - Christian Shetelig
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway; Center for Clinical Heart Research, Department of Cardiology, Oslo University Hospital Ullevål, Oslo, Norway; Department of Cardiology, Oslo University Hospital Ullevål, Oslo, Norway
| | - Sverre Holm
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Xiang Yi Kong
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway; Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Annika E Michelsen
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway; Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Kari Otterdal
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Arne Yndestad
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway; Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Kaspar Broch
- Department of Cardiology, Oslo University Hospital Rikshospitalet, Oslo, Norway; KG Jebsen Center for Cardiac Research, University of Oslo, Oslo, Norway and Center for Heart Failure Research, Oslo University Hospital, Oslo, Norway
| | - Lars Gullestad
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway; Department of Cardiology, Oslo University Hospital Rikshospitalet, Oslo, Norway; KG Jebsen Center for Cardiac Research, University of Oslo, Oslo, Norway and Center for Heart Failure Research, Oslo University Hospital, Oslo, Norway
| | - Tuula A Nyman
- Proteomics Core Facility, Department of Immunology, Institute of Clinical Medicine, University of Oslo and Rikshospitalet Oslo, Oslo, Norway
| | - Bjørn Bendz
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway; Department of Cardiology, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Jan Eritsland
- Department of Cardiology, Oslo University Hospital Ullevål, Oslo, Norway
| | - Pavel Hoffmann
- Section of Interventional Cardiology, Oslo University Hospital Ullevål, Oslo, Norway
| | - Karolina Skagen
- Department of Neurology, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Isabel Gonçalves
- Experimental Cardiovascular Research Unit, Dept. of Clinical Sciences, Malmö Lund University, Malmö, Sweden; Department of Cardiology, Skåne University Hospital, Sweden
| | - Jan Nilsson
- Experimental Cardiovascular Research Unit, Dept. of Clinical Sciences, Malmö Lund University, Malmö, Sweden
| | | | - Marcin Poreba
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wroclaw University of Technology, Wroclaw, Poland
| | - Marcin Drag
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wroclaw University of Technology, Wroclaw, Poland
| | - Ingebjørg Seljeflot
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway; Center for Clinical Heart Research, Department of Cardiology, Oslo University Hospital Ullevål, Oslo, Norway; Department of Cardiology, Oslo University Hospital Ullevål, Oslo, Norway
| | - Bjørnar Sporsheim
- Centre of Molecular Inflammation Research, Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Terje Espevik
- Centre of Molecular Inflammation Research, Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Mona Skjelland
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway; Department of Neurology, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Harald Thidemann Johansen
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Oslo, Norway
| | - Rigmor Solberg
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Oslo, Norway
| | - Pål Aukrust
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway; Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway; K.G. Jebsen Thrombosis Research and Expertise Center, University of Tromsø, Tromsø, Norway; Section of Clinical Immunology and Infectious Diseases, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Harry Björkbacka
- Experimental Cardiovascular Research Unit, Dept. of Clinical Sciences, Malmö Lund University, Malmö, Sweden
| | - Geir Øystein Andersen
- Center for Clinical Heart Research, Department of Cardiology, Oslo University Hospital Ullevål, Oslo, Norway; Department of Cardiology, Oslo University Hospital Ullevål, Oslo, Norway
| | - Bente Halvorsen
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway; Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
27
|
Anderson BM, de Almeida LGN, Sekhon H, Young D, Dufour A, Edgington-Mitchell LE. N-Terminomics/TAILS Profiling of Macrophages after Chemical Inhibition of Legumain. Biochemistry 2019; 59:329-340. [PMID: 31774660 DOI: 10.1021/acs.biochem.9b00821] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Legumain (asparaginyl endopeptidase) is the only protease with a preference for cleavage after asparagine residues. Increased legumain activity is a hallmark of inflammation, neurodegenerative diseases, and cancer, and legumain inhibitors have exhibited therapeutic effects in mouse models of these pathologies. Improved knowledge of its substrates and cellular functions is a requisite to further validation of legumain as a drug target. We, therefore, aimed to investigate the effects of legumain inhibition in macrophages using an unbiased and systematic approach. By shotgun proteomics, we identified 16 094 unique peptides in RAW264.7 cells. Among these, 326 unique peptides were upregulated in response to legumain inhibition, while 241 were downregulated. Many of these proteins were associated with mitochondria and metabolism, especially iron metabolism, indicating that legumain may have a previously unknown impact on related processes. Furthermore, we used N-terminomics/TAILS (terminal amine isotopic labeling of substrates) to identify potential substrates of legumain. We identified three new proteins that are cleaved after asparagine residues, which may reflect legumain-dependent cleavage. We confirmed that frataxin, a mitochondrial protein associated with the formation of iron-sulfur clusters, can be cleaved by legumain. This further asserts a potential contribution of legumain to mitochondrial function and iron metabolism. Lastly, we also identified a potential new cleavage site within legumain itself that may give rise to a 25 kDa form of legumain that has previously been observed in multiple cell and tissue types. Collectively, these data shed new light on the potential functions of legumain and will be critical for understanding its contribution to disease.
Collapse
Affiliation(s)
- Bethany M Anderson
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute , The University of Melbourne , Parkville , Victoria 3052 , Australia
| | - Luiz G N de Almeida
- Department of Physiology and Pharmacology , University of Calgary , Calgary , Alberta T2N 4N1 , Canada.,McCaig Institute for Bone and Joint Health , University of Calgary , Calgary , Alberta T2N 4N1 , Canada
| | - Henna Sekhon
- Department of Physiology and Pharmacology , University of Calgary , Calgary , Alberta T2N 4N1 , Canada.,McCaig Institute for Bone and Joint Health , University of Calgary , Calgary , Alberta T2N 4N1 , Canada
| | - Daniel Young
- Department of Physiology and Pharmacology , University of Calgary , Calgary , Alberta T2N 4N1 , Canada.,McCaig Institute for Bone and Joint Health , University of Calgary , Calgary , Alberta T2N 4N1 , Canada
| | - Antoine Dufour
- Department of Physiology and Pharmacology , University of Calgary , Calgary , Alberta T2N 4N1 , Canada.,McCaig Institute for Bone and Joint Health , University of Calgary , Calgary , Alberta T2N 4N1 , Canada
| | - Laura E Edgington-Mitchell
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute , The University of Melbourne , Parkville , Victoria 3052 , Australia.,Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences , Monash University , Parkville , Victoria 3052 , Australia.,Department of Oral and Maxillofacial Surgery , New York University College of Dentistry, Bluestone Center for Clinical Research , New York , New York 10010 , United States
| |
Collapse
|
28
|
Umei TC, Kishimoto Y, Aoyama M, Saita E, Niki H, Ikegami Y, Ohmori R, Kondo K, Momiyama Y. High Plasma Levels of Legumain in Patients with Complex Coronary Lesions. J Atheroscler Thromb 2019; 27:711-717. [PMID: 31735728 PMCID: PMC7406406 DOI: 10.5551/jat.52027] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Aim: The degradation of the vascular extracellular matrix is important for atherosclerosis. The cysteine protease legumain was shown to be upregulated in atherosclerotic plaques, especially unstable plaques. However, no study has reported blood legumain levels in patients with coronary artery disease (CAD). Methods: We investigated plasma legumain and C-reactive protein (CRP) levels in 372 patients undergoing elective coronary angiography. Results: CAD was found in 225 patients. Compared with patients without CAD, those with CAD had higher CRP levels (median 0.60 [0.32, 1.53] vs. 0.46 [0.22, 0.89] mg/L, P < 0.001), but no difference was found in legumain levels between patients with and without CAD (median 5.08 [3.87, 6.82] vs. 4.99 [3.84, 6.88] ng/mL). A stepwise increase in CRP was found depending on the number of > 50% stenotic vessels: 0.55 mg/L in 1-vessel, 0.71 mg/L in 2-vessel, and 0.86 mg/L in 3-vessel diseases (P < 0.001). However, legumain did not differ among 1-, 2-, and 3-vessel diseases (5.20, 4.93, and 5.01 ng/mL, respectively). Of 225 patients with CAD, 40 (18%) had complex lesions. No difference was found in CRP levels between patients with CAD with and without complex lesions (0.60 [0.34, 1.53] vs. 0.60 [0.32, 1.51] mg/L). Notably, legumain levels were higher in patients with CAD with complex lesions than without such lesions (6.05 [4.64, 8.64] vs. 4.93 [3.76, 6.52] ng/mL, P < 0.01). In multivariate analysis, legumain levels were not a factor for CAD, but were a factor for complex lesions. The odds ratio for complex lesions was 2.45 (95% CI = 1.26–4.79) for legumain > 5.5 ng/mL. Conclusion: Plasma legumain levels were associated with the presence of complex coronary lesions.
Collapse
Affiliation(s)
- Tomohiko C Umei
- Department of Cardiology, National Hospital Organization Tokyo Medical Center
| | - Yoshimi Kishimoto
- Endowed Research Department "Food for Health", Ochanomizu University
| | - Masayuki Aoyama
- Department of Cardiology, National Hospital Organization Tokyo Medical Center
| | - Emi Saita
- Endowed Research Department "Food for Health", Ochanomizu University
| | - Hanako Niki
- Department of Cardiology, National Hospital Organization Tokyo Medical Center
| | - Yukinori Ikegami
- Department of Cardiology, National Hospital Organization Tokyo Medical Center
| | - Reiko Ohmori
- Faculty of Regional Design, Utsunomiya University
| | - Kazuo Kondo
- Endowed Research Department "Food for Health", Ochanomizu University.,Institute of Life Innovation Studies, Toyo University
| | - Yukihiko Momiyama
- Department of Cardiology, National Hospital Organization Tokyo Medical Center
| |
Collapse
|
29
|
Lunde NN, Bosnjak T, Solberg R, Johansen HT. Mammalian legumain – A lysosomal cysteine protease with extracellular functions? Biochimie 2019; 166:77-83. [DOI: 10.1016/j.biochi.2019.06.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 06/04/2019] [Indexed: 12/31/2022]
|
30
|
Legumain Promotes Atherosclerotic Vascular Remodeling. Int J Mol Sci 2019; 20:ijms20092195. [PMID: 31060209 PMCID: PMC6539540 DOI: 10.3390/ijms20092195] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 04/26/2019] [Accepted: 04/28/2019] [Indexed: 12/19/2022] Open
Abstract
Legumain, a recently discovered cysteine protease, is increased in both carotid plaques and plasma of patients with carotid atherosclerosis. Legumain increases the migration of human monocytes and human umbilical vein endothelial cells (HUVECs). However, the causal relationship between legumain and atherosclerosis formation is not clear. We assessed the expression of legumain in aortic atheromatous plaques and after wire-injury-induced femoral artery neointimal thickening and investigated the effect of chronic legumain infusion on atherogenesis in Apoe-/- mice. We also investigated the associated cellular and molecular mechanisms in vitro, by assessing the effects of legumain on inflammatory responses in HUVECs and THP-1 monocyte-derived macrophages; macrophage foam cell formation; and migration, proliferation, and extracellular matrix protein expression in human aortic smooth muscle cells (HASMCs). Legumain was expressed at high levels in atheromatous plaques and wire injury-induced neointimal lesions in Apoe-/- mice. Legumain was also expressed abundantly in THP-1 monocytes, THP-1 monocyte-derived macrophages, HASMCs, and HUVECs. Legumain suppressed lipopolysaccharide-induced mRNA expression of vascular cell adhesion molecule-1 (VCAM1), but potentiated the expression of interleukin-6 (IL6) and E-selectin (SELE) in HUVECs. Legumain enhanced the inflammatory M1 phenotype and oxidized low-density lipoprotein-induced foam cell formation in macrophages. Legumain did not alter the proliferation or apoptosis of HASMCs, but it increased their migration. Moreover, legumain increased the expression of collagen-3, fibronectin, and elastin, but not collagen-1, in HASMCs. Chronic infusion of legumain into Apoe-/- mice potentiated the development of atherosclerotic lesions, accompanied by vascular remodeling, an increase in the number of macrophages and ASMCs, and increased collagen-3 expression in plaques. Our study provides the first evidence that legumain contributes to the induction of atherosclerotic vascular remodeling.
Collapse
|
31
|
Renal Consequences of Gestational Diabetes Mellitus in Term Neonates: A Multidisciplinary Approach to the DOHaD Perspective in the Prevention and Early Recognition of Neonates of GDM Mothers at Risk of Hypertension and Chronic Renal Diseases in Later Life. J Clin Med 2019; 8:jcm8040429. [PMID: 30925803 PMCID: PMC6518288 DOI: 10.3390/jcm8040429] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 03/14/2019] [Accepted: 03/25/2019] [Indexed: 12/29/2022] Open
Abstract
Fetal exposure to gestational diabetes mellitus (GDM) seems to stimulate a negative impact on the kidneys. Renal volumes and urinary biomarkers of renal function and tubular impairment and injury were evaluated in 30–40-day old newborns of GDM mothers (n = 139) who needed insulin therapy during pregnancy. We found that neonates of mothers who maintained strict control over normoglycemia (n = 65) during pregnancy and fulfilled the other criteria of the GDM management program showed no differences compared to control (n = 55). Conversely, those (n = 74), whose mothers did not maintain glycemic control and were not compliant to the management program, exhibited significantly lower levels of renal volumes and higher activity of N-acetyl-β-d-glucosaminidase and cathepsin B. Differences due to maternal pre-gestational and gestational body mass index (BMI) as well as to maternal weight gain were demonstrated. Our findings indicate that a multidisciplinary approach, which involves an appropriate management of GDM, prevents the negative effects of GDM on the kidneys at 30–40 days of postnatal age, indicating the fundamental role of glycemic control, as well as of an adequate range of maternal weight gain. Total renal volume, cortical volume, and urinary activity of N-acetyl-β-d-glucosaminidase and cathepsin B may be suggested as indicators for the early recognition of GDM neonates at long-term risk of hypertension and kidney disease.
Collapse
|
32
|
Martínez-Fábregas J, Prescott A, van Kasteren S, Pedrioli DL, McLean I, Moles A, Reinheckel T, Poli V, Watts C. Lysosomal protease deficiency or substrate overload induces an oxidative-stress mediated STAT3-dependent pathway of lysosomal homeostasis. Nat Commun 2018; 9:5343. [PMID: 30559339 PMCID: PMC6297226 DOI: 10.1038/s41467-018-07741-6] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 11/18/2018] [Indexed: 12/21/2022] Open
Abstract
Diverse cellular processes depend on the lysosomal protease system but how cells regulate lysosomal proteolytic capacity is only partly understood. We show here that cells can respond to protease/substrate imbalance in this compartment by de novo expression of multiple lysosomal hydrolases. This response, exemplified here either by loss of asparagine endopeptidase (AEP) or other lysosomal cysteine proteases, or by increased endocytic substrate load, is not dependent on the transcription factor EB (TFEB) but rather is triggered by STAT3 activation downstream of lysosomal oxidative stress. Similar lysosomal adaptations are seen in mice and cells expressing a constitutively active form of STAT3. Our results reveal how cells can increase lysosomal protease capacity under ‘fed’ rather than ‘starved’ conditions that activate the TFEB system. In addition, STAT3 activation due to lysosomal stress likely explains the hyperproliferative kidney disease and splenomegaly observed in AEP-deficient mice. How cells regulate their lysosomal proteolytic capacity is only partly understood. Here, the authors show that lysosomal protease deficiency or substrate overload induces lysosomal stress leading to activation of a STAT3-dependent, TFEB-independent pathway of lysosomal hydrolase expression.
Collapse
Affiliation(s)
- Jonathan Martínez-Fábregas
- Division of Cell Signalling and Immunology, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK.
| | - Alan Prescott
- Division of Cell Signalling and Immunology, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK
| | - Sander van Kasteren
- Division of Bio-Organic Chemistry, Leiden Institute of Chemistry, Einsteinweg 55, Leiden, 2333CC, Netherlands
| | - Deena Leslie Pedrioli
- Division of Molecular Medicine, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK.,Department of Molecular Mechanisms of Disease, University of Zurich, Winterthurestrasse190, 8057 Zurich, Switzerland
| | - Irwin McLean
- Division of Molecular Medicine, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK
| | - Anna Moles
- Fibrosis Research Group, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK.,Institute of Biomedical Research of Barcelona, Spanish Research Council, Barcelona, 08036, Spain
| | - Thomas Reinheckel
- Institute of Molecular Medicine and Cell Research, Medical Faculty, Albert-Ludwigs-University, Freiburg, D-79104, Germany
| | - Valeria Poli
- Department of Genetics, Biology and Biochemistry, University of Turin, Via Nizza 52, 10126, Turin, Italy
| | - Colin Watts
- Division of Cell Signalling and Immunology, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK.
| |
Collapse
|
33
|
Isozyme-specific comprehensive characterization of transglutaminase-crosslinked substrates in kidney fibrosis. Sci Rep 2018; 8:7306. [PMID: 29743665 PMCID: PMC5943318 DOI: 10.1038/s41598-018-25674-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 04/20/2018] [Indexed: 12/20/2022] Open
Abstract
Chronic kidney disease is characterized by prolonged decline in renal function, excessive accumulation of ECM, and progressive tissue fibrosis. Transglutaminase (TG) is a crosslinking enzyme that catalyzes the formation of covalent bonds between glutamine and lysine residues, and is involved in the induction of renal fibrosis via the stabilization of ECM and the activation of TGF-β1. Despite the accumulating evidences indicating that TG2 is a key enzyme in fibrosis, genetic knockout of TG2 reduced by only 50% the elevated protein crosslinking and fibrous protein in renal fibrosis model, whereas treatment with TG inhibitor almost completely reduced these levels. Here, we also clarified the distributions of TG isozymes and their in situ activities and identified the isozyme-specific crosslinked substrates for both TG1 and TG2 in fibrotic kidney. We found that TG1 activity was markedly enhanced in renal tubular epithelium and interstitial areas, whereas TG2 activity increased only in the extracellular space. In total, 47 and 67 possible candidates were identified as TG1 and TG2 substrates, respectively, only in fibrotic kidney. Among them, several possible substrates related to renal disease and fibrosis were identified. These findings provide novel insights into the mechanisms of renal fibrosis through the targeting of isozyme-specific TG substrates.
Collapse
|
34
|
Abstract
Plant vacuoles are multifunctional organelles. On the one hand, most vegetative tissues develop lytic vacuoles that have a role in degradation. On the other hand, seed cells have two types of storage vacuoles: protein storage vacuoles (PSVs) in endosperm and embryonic cells and metabolite storage vacuoles in seed coats. Vacuolar proteins and metabolites are synthesized on the endoplasmic reticulum and then transported to the vacuoles via Golgi-dependent and Golgi-independent pathways. Proprotein precursors delivered to the vacuoles are converted into their respective mature forms by vacuolar processing enzyme, which also regulates various kinds of programmed cell death in plants. We summarize two types of vacuolar membrane dynamics that occur during defense responses: vacuolar membrane collapse to attack viral pathogens and fusion of vacuolar and plasma membranes to attack bacterial pathogens. We also describe the chemical defense against herbivores brought about by the presence of PSVs in the idioblast myrosin cell.
Collapse
Affiliation(s)
- Tomoo Shimada
- Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan;
| | - Junpei Takagi
- Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan;
- Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan
- Graduate School of Natural Science, Konan University, Kobe 658-8501, Japan
| | - Takuji Ichino
- Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan;
- Research Institute for Sustainable Humanosphere, Kyoto University, Uji 611-0011, Japan
| | - Makoto Shirakawa
- Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan;
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma 630-0192, Japan
| | - Ikuko Hara-Nishimura
- Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan;
- Graduate School of Natural Science, Konan University, Kobe 658-8501, Japan
| |
Collapse
|
35
|
Wang D, Xiong M, Chen C, Du L, Liu Z, Shi Y, Zhang M, Gong J, Song X, Xiang R, Liu E, Tan X. Legumain, an asparaginyl endopeptidase, mediates the effect of M2 macrophages on attenuating renal interstitial fibrosis in obstructive nephropathy. Kidney Int 2018; 94:91-101. [PMID: 29656902 DOI: 10.1016/j.kint.2017.12.025] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 11/11/2017] [Accepted: 12/14/2017] [Indexed: 02/05/2023]
Abstract
Two distinct macrophage phenotypes contribute to kidney injury and repair during the progression of renal interstitial fibrosis; proinflammatory (M1) and antiinflammatory (M2) macrophages. Legumain, an asparaginyl endopeptidase of the cysteine protease family, is overexpressed in macrophages in some pathological conditions. However, the macrophage subtype and function of macrophage-derived legumain remains unclear. To resolve this we tested whether M2 macrophages contribute to the accumulation of legumain in the unilateral ureteral obstruction model. Legumain-null mice exhibited more severe fibrotic lesions after obstruction compared with wild-type control. In vitro, IL4-stimulated M2 polarization led to the overexpression and secretion of legumain. The levels of fibronectin and collagen I/III, major components of the extracellular matrix, were reduced in the conditioned medium of TGF-β1-stimulated tubular epithelial cells or fibroblasts after treatment with legumain or conditioned medium from IL4-stimulated macrophages. Administration of the legumain inhibitor RR-11a exacerbated fibrotic lesions following obstruction. Therapeutically, adoptive transfer of legumain-overexpressing macrophages or IL4-stimulated macrophages ameliorated the deposition of collagen and fibronectin induced by ureteral obstruction, either in the wild-type mice or in lgmn-/- mice. Thus, M2 macrophages overexpress and secret legumain and legumain mediates the anti-fibrotic effect of M2 macrophages in obstructive nephropathy.
Collapse
Affiliation(s)
- Dekun Wang
- Department of Pathology, College of Medicine, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China
| | - Min Xiong
- Department of Pathology, College of Medicine, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China
| | - Chuan'ai Chen
- Department of Pathology, College of Medicine, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China
| | - Lingfang Du
- Department of Pathology, College of Medicine, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China
| | - Ze Liu
- Department of Pathology, College of Medicine, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China
| | - Yuzhi Shi
- Department of Pathology, College of Medicine, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China
| | - Mianzhi Zhang
- Nephrology Division, Gong'an Hospital, Tianjin, China
| | - Junbo Gong
- Tianjin Key Laboratory of Modern Drug, Delivery and High Efficiency, Tianjin University, Tianjin, China
| | - Xiangrong Song
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Rong Xiang
- Department of Pathology, College of Medicine, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China
| | - Ergang Liu
- Tianjin Key Laboratory of Modern Drug, Delivery and High Efficiency, Tianjin University, Tianjin, China
| | - Xiaoyue Tan
- Department of Pathology, College of Medicine, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China.
| |
Collapse
|
36
|
Yamane T, Kato-Ose I, Sakamoto T, Nakano Y. Secretion of Legumain Increases in Conditioned Medium from DJ-1-Knockout Cells and in Serum from DJ-1-Knockout Mice. Open Biochem J 2018. [PMID: 29541256 PMCID: PMC5842380 DOI: 10.2174/1874091x01812010029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Background Asparaginyl endopeptidase, also known as legumain (EC 3.4.22.34) shows strong activity in the mouse kidney. Legumain is also highly expressed in tumors. DJ-1/PARK7 is a Parkinson's disease- and cancer-associated protein. DJ-1 is a coactivator of various transcription factors. Recently, we reported that transcription of the legumain gene is regulated by p53 through DJ-1. Methods We measured the secretion levels of legumain in a conditioned medium of DJ-1 knockout cells and in serum from DJ-1 knockout mice using Western blotting and ELISA. We performed immunocytochemical staining of legumain to examine the localization of legumain in DJ-1-knockout cells. Results We found that the secretion levels of legumain were increased in the conditioned medium of DJ-1-knockout cells and in serum from DJ-1-knockout mice. Dot structures of legumain were also increased in DJ-1-knockout cells. Conclusion The results suggest that legumain secretion from DJ-1-knockout cells and in mice increases through its increased expression and accumulation in membrane-associated vesicles.
Collapse
Affiliation(s)
- Takuya Yamane
- Center for Research and Development Bioresources, Research Organization for University-Community Collaborations, Osaka Prefecture University, Sakai, Osaka 599-8570, Japan.,Department of Applied Life Sciences, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Osaka 599-8531, Japan
| | - Izumi Kato-Ose
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-ku, Sapporo 060-0812, Japan
| | - Tatsuji Sakamoto
- Center for Research and Development Bioresources, Research Organization for University-Community Collaborations, Osaka Prefecture University, Sakai, Osaka 599-8570, Japan.,Department of Applied Life Sciences, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Osaka 599-8531, Japan
| | - Yoshihisa Nakano
- Center for Research and Development Bioresources, Research Organization for University-Community Collaborations, Osaka Prefecture University, Sakai, Osaka 599-8570, Japan
| |
Collapse
|
37
|
Asparaginyl endopeptidase promotes the invasion and metastasis of gastric cancer through modulating epithelial-to-mesenchymal transition and analysis of their phosphorylation signaling pathways. Oncotarget 2018; 7:34356-70. [PMID: 27102302 PMCID: PMC5085161 DOI: 10.18632/oncotarget.8879] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 03/28/2016] [Indexed: 02/06/2023] Open
Abstract
Asparaginyl endopeptidase (AEP) is a lysosomal protease often overexpressed in gastric cancer. AEP was expressed higher in peritoneal metastatic loci than in primary gastric cancer. Then we overexpressed AEP or knocked it down with a lentiviral vector in gastric cancer cell lines and detected the cell cycle arrest and the changes of the invasive and metastatic ability in vitro and in vivo. When AEP was knocked-down, the proliferative, invasive and metastatic capacity of gastric cancer cells were inhibited, and the population of sub-G1 cells increased. AEP knockdown led to significant decrease of expression of transcription factor Twist and the mesenchymal markers N-cadherin, ß-catenin and Vimentin and to increased expression of epithelial marker E-cadherin. These results showed that AEP could promote invasion and metastasis by modulating EMT. We used phosphorylation-specific antibody microarrays to investigate the mechanism how AEP promotes gastric cancer invasion and metastasis, and found that the phosphorylation level of AKT and MAPK signaling pathways was decreased significantly if AEP was knocked-down. Therefore, AKT and MAPK signaling pathways took part in the modulation.
Collapse
|
38
|
Liu X, Wang Z, Zhang G, Zhu Q, Zeng H, Wang T, Gao F, Qi Z, Zhang J, Wang R. Overexpression of asparaginyl endopeptidase is significant for esophageal carcinoma metastasis and predicts poor patient prognosis. Oncol Lett 2017; 15:1229-1235. [PMID: 29399177 DOI: 10.3892/ol.2017.7433] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 09/22/2017] [Indexed: 12/20/2022] Open
Abstract
Esophageal cancer is one of the most common types of cancer with poor prognosis. The molecular mechanisms of esophageal cancer progression remain unknown. In the present study, the aim was to investigate the clinical significance and biological function of protease asparaginyl endopeptidase (AEP) in esophageal cancer. The expression of AEP in esophageal cancer was examined, and its association with clinicopathological factors and patient prognosis was analyzed. A series of functional and mechanistic assays were performed to further investigate the underlying molecular mechanisms, and functions in esophageal cancer. The expression of AEP was elevated in esophageal cancer tissues, and patients with high AEP expression displayed a significantly shorter survival time compared with those with low AEP expression. In addition, loss of function experiments demonstrated that knockdown of AEP significantly reduced the migration and invasion ability of esophageal cancer cells. Furthermore, the pro-oncogenic effects of AEP in esophageal cancer were mediated by the upregulation of matrix-metalloproteinase 2 and 3. Taken together, the data from the present study indicates that high AEP expression is associated with esophageal cancer progression and AEP is an indicator of poor prognosis in patients with esophageal cancer. AEP therefore, may be considered as a novel prognostic biomarker or potential therapeutic target in esophageal cancer.
Collapse
Affiliation(s)
- Xinyang Liu
- Endoscopy Center and Endoscopy Research Institute, Zhongshan Hospital Fudan University, Shanghai 200032, P.R. China
| | - Zhichao Wang
- Liver Cancer Institute, Zhongshan Hospital Fudan University, Shanghai 200032, P.R. China
| | - Guoliang Zhang
- Department of Thoracic Surgery, Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
| | - Qikun Zhu
- Department of Thoracic Surgery, Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
| | - Hui Zeng
- Department of Thoracic Surgery, Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
| | - Tao Wang
- Department of Thoracic Surgery, Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
| | - Feng Gao
- Department of Thoracic Surgery, Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
| | - Zhan Qi
- Department of Thoracic Surgery, Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
| | - Jinwen Zhang
- Department of Medical Affairs, Hebei Chest Hospital, Shijiazhuang, Hebei 050041, P.R. China
| | - Rui Wang
- Department of Thoracic Surgery, Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
| |
Collapse
|
39
|
Qi Q, Obianyo O, Du Y, Fu H, Li S, Ye K. Blockade of Asparagine Endopeptidase Inhibits Cancer Metastasis. J Med Chem 2017; 60:7244-7255. [PMID: 28820254 DOI: 10.1021/acs.jmedchem.7b00228] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Asparagine endopeptidase (AEP), also called legumain, is highly expressed in various solid tumors, promoting cancer cell invasion, migration, and metastasis. It has been proposed to be a prognostic marker and therapeutic target for cancer treatment. However, an effective nonpeptide, small-molecule inhibitor against this protease has not yet been identified. Here we show that a family of xanthine derivatives selectively inhibit AEP and suppress matrix metalloproteinase (MMP) cleavage, leading to the inhibition of cancer metastasis. Through structure-activity relationship (SAR) analysis, we obtained an optimized lead compound (38u) that represses breast cancer invasion and migration. Chronic treatment of nude mice, which had been inoculated with MDA-MB-231 cells, with inhibitor 38u via oral administration robustly inhibits breast cancer lung metastasis in a dose-dependent manner, associated with blockade of MMP-2 by AEP. Therefore, our study supports that 38u might act as a potent and specific AEP inhibitor useful for cancer treatment.
Collapse
Affiliation(s)
- Qi Qi
- Department of Pathology and Laboratory Medicine ‡Department of Pharmacology, Emory Chemical Biology Discovery Center Emory University School of Medicine Atlanta, Georgia 30322, United States
| | - Obiamaka Obianyo
- Department of Pathology and Laboratory Medicine ‡Department of Pharmacology, Emory Chemical Biology Discovery Center Emory University School of Medicine Atlanta, Georgia 30322, United States
| | - Yuhong Du
- Department of Pathology and Laboratory Medicine ‡Department of Pharmacology, Emory Chemical Biology Discovery Center Emory University School of Medicine Atlanta, Georgia 30322, United States
| | - Haian Fu
- Department of Pathology and Laboratory Medicine ‡Department of Pharmacology, Emory Chemical Biology Discovery Center Emory University School of Medicine Atlanta, Georgia 30322, United States
| | - Shiyong Li
- Department of Pathology and Laboratory Medicine ‡Department of Pharmacology, Emory Chemical Biology Discovery Center Emory University School of Medicine Atlanta, Georgia 30322, United States
| | - Keqiang Ye
- Department of Pathology and Laboratory Medicine ‡Department of Pharmacology, Emory Chemical Biology Discovery Center Emory University School of Medicine Atlanta, Georgia 30322, United States
| |
Collapse
|
40
|
Bhaskaran N, Ghosh SK, Yu X, Qin S, Weinberg A, Pandiyan P, Ye F. Kaposi's sarcoma-associated herpesvirus infection promotes differentiation and polarization of monocytes into tumor-associated macrophages. Cell Cycle 2017; 16:1611-1621. [PMID: 28750175 DOI: 10.1080/15384101.2017.1356509] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Tumor associated macrophages (TAMs) promote angiogenesis, tumor invasion and metastasis, and suppression of anti-tumor immunity. These myeloid cells originate from monocytes, which differentiate into TAMs upon exposure to the local tumor microenvironment. We previously reported that Kaposi's sarcoma-associated herpes virus (KSHV) infection of endothelial cells induces the cytokine angiopoietin-2 (Ang-2) to promote migration of monocytes into tumors. Here we report that KSHV infection of endothelial cells induces additional cytokines including interleukin-6 (IL-6), interleukin-10 (IL-10), and interleukin-13 (IL-13) that drive monocytes to differentiate and polarize into TAMs. The KSHV-induced TAMs not only express TAM-specific markers such as CD-163 and legumain (LGMN) but also display a gene expression profile with characteristic features of viral infection. More importantly, KSHV-induced TAMs enhance tumor growth in nude mice. These results are consistent with the strong presence of TAMs in Kaposi's sarcoma (KS) tumors. Therefore, KSHV infection of endothelial cells generates a local microenvironment that not only promotes the recruitment of monocytes but also induces their differentiation and polarization into TAMs. These findings reveal a new mechanism of KSHV contribution to KS tumor development.
Collapse
Affiliation(s)
- Natarajan Bhaskaran
- a Department of Biological Sciences , School of Dental Medicine, Case Western Reserve University , Cleveland , OH , USA
| | - Santosh K Ghosh
- a Department of Biological Sciences , School of Dental Medicine, Case Western Reserve University , Cleveland , OH , USA
| | - Xiaolan Yu
- a Department of Biological Sciences , School of Dental Medicine, Case Western Reserve University , Cleveland , OH , USA.,b Hubei Collaborative Innovation Center for Green Transformation of Bio-resource , College of Life Sciences, Hubei University , Wuhan , Hubei , China
| | - Sanhai Qin
- a Department of Biological Sciences , School of Dental Medicine, Case Western Reserve University , Cleveland , OH , USA
| | - Aaron Weinberg
- a Department of Biological Sciences , School of Dental Medicine, Case Western Reserve University , Cleveland , OH , USA
| | - Pushpa Pandiyan
- a Department of Biological Sciences , School of Dental Medicine, Case Western Reserve University , Cleveland , OH , USA
| | - Fengchun Ye
- a Department of Biological Sciences , School of Dental Medicine, Case Western Reserve University , Cleveland , OH , USA
| |
Collapse
|
41
|
Zhou H, Sun H, Lv S, Zhang D, Zhang X, Tang Z, Chen X. Legumain-cleavable 4-arm poly(ethylene glycol)-doxorubicin conjugate for tumor specific delivery and release. Acta Biomater 2017; 54:227-238. [PMID: 28315495 DOI: 10.1016/j.actbio.2017.03.019] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 03/03/2017] [Accepted: 03/13/2017] [Indexed: 10/20/2022]
Abstract
Traditional chemotherapy strategy exists undesirable toxic side-effects to normal tissues due to the low selectively to cancer cells of micromolecule cytotoxic drugs. One considered method to realizing the targeted delivery and increasing the specificity to tumor tissues of the cytotoxic drug is to transporting and discharging it through an environment-sensitive mechanism. In this study, a novel enzyme-sensitive polymer-doxorubicin conjugate was designed to delivery chemotherapeutic drug in a tumor-specific behavior and selectively activated in tumor tissue. Briefly, doxorubicin (DOX) was conjugated to carboxyl-terminated 4-arm poly(ethylene glycol) through a tetrapeptide linker, alanine-alanine-asparagine-leucine (AANL), which was one of the substrates of legumain, an asparaginyl endopeptidase that was found presented in plants, mammals and also highly expressed in human tumor tissues. Hereinafter, the polymer-DOX conjugate was termed as 4-arm PEG-AANL-DOX. Dynamic laser scattering (DLS) and transmission electron microscopy (TEM) measurements indicated that the 4-arm PEG-AANL-DOX could self-assemble into micelles in aqueous solution. Drug release and in vitro cytotoxicity studies revealed that the 4-arm PEG-AANL-DOX could be cleaved by legumain. Ex vivo DOX fluorescence imaging measurements demonstrated that the 4-arm PEG-AANL-DOX had an improved tumor-targeting delivery as compared with the free DOX·HCl. In vivo studies on nude mice bearing MDA-MB-435 tumors revealed that the 4-arm PEG-AANL-DOX had a comparable anticancer efficacy with the free DOX·HCl but without DOX-related toxicities to normal tissues as measured by body weight change and histological assessments, indicating that the 4-arm PEG-AANL-DOX had an improved therapeutic index for cancer therapy. STATEMENT OF SIGNIFICANCE Herein we describe the construction of a novel tumor environment-sensitive delivery system through the instruction of a legumain-cleavable linkage to a polymer-DOX conjugate (4-arm PEG-AANL-DOX). This particular design strategy allows for polymer-DOX conjugates to be delivered in a tumor-specific manner and selectively activable in tumor microenvironment so that it can combine the advantages of tumor-specific delivery and tumor intracellular microenvironment-triggered release systems.
Collapse
|
42
|
Zhu Q, Tang M, Wang X. The expression of asparaginyl endopeptidase promotes growth potential in epithelial ovarian cancer. Cancer Biol Ther 2017; 18:222-228. [PMID: 28278071 DOI: 10.1080/15384047.2017.1294290] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
Epithelial ovarian cancer (EOC) is the most common and lethal cancer-related death among females in the world. Asparaginyl endopeptidase (AEP) is a member of C13 family peptidases and expressed in the extracellular matrix and tumor cells. The aim of this article is to explore the function of asparaginyl endopeptidase in epithelial ovarian cancer. The expression of AEP was examined in 20 EOC samples, 3 EOC metastasis samples, 6 fallopian tube metastasis samples, 4 peritoneum metastasis samples and 20 benign ovarian tumor samples by immunohistochemistry. The expression of AEP was also evaluated in serum and ascites of EOC patients by elisa. And we used a lentiviral vector to overexpress AEP in human epithelial ovarian cancer cell lines SKOV3ip and detected the function of AEP-SKOV3ip cells both in vitro and in vivo. The growth of AEP-SKOV3ip cells was observed by MTT, migration and tube formation assays in vitro. Additionally, the subcutaneous mice model was used to identify the tumor growth and metastasis in vivo. Mice tumors were stained for CD31 to determine the microvessel density (MVD). We demonstrated that AEP was highly expressed in the EOC patient tissues and ascites. The AEP transfected SKOV3ip cells could both promote tumor growth in vitro and in vivo. The MVD in AEP-SKOV3ip group was higher than that in NC-SKOV3ip group. Therefore, our results demonstrated that AEP could induce EOC growth and progressionboth in vitro and in vivo.
Collapse
Affiliation(s)
- Qinyi Zhu
- a Department of Gynecology , Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine , Shanghai , P.R. China
| | - Meiling Tang
- a Department of Gynecology , Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine , Shanghai , P.R. China
| | - Xipeng Wang
- a Department of Gynecology , Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine , Shanghai , P.R. China
| |
Collapse
|
43
|
Cui Y, Li Q, Li H, Wang Y, Wang H, Chen W, Zhang S, Cao J, Liu T. Asparaginyl endopeptidase improves the resistance of microtubule-targeting drugs in gastric cancer through IQGAP1 modulating the EGFR/JNK/ERK signaling pathway. Onco Targets Ther 2017; 10:627-643. [PMID: 28223821 PMCID: PMC5304996 DOI: 10.2147/ott.s125579] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
PURPOSE In recent years, understanding of the role of asparaginyl endopeptidase (AEP) in tumorigenesis has steadily increased. In this study, we investigated whether AEP expression correlates with sensitivity to chemotherapeutic drugs in gastric cancer and explored the mechanism. PATIENTS AND METHODS AEP expression in the serum of patients' peripheral blood was measured by enzyme-linked immunosorbent assay. Patient survival time was evaluated using univariate and multivariate analyses. Mass spectrometry and co-immunoprecipitation assays were utilized to discover proteins that interact with AEP. Gastric cancer cell lines were established, in which AEP was overexpressed or knocked out using lentiviral CRISPR. The proliferative abilities of these cell lines in response to chemotherapy agents were evaluated using the Cell Counting Kit-8 method. Gene expression changes in these lines were assessed by real-time polymerase chain reaction and Western blot. RESULTS Patients with low expression of AEP were significantly more likely to have a good prognosis and experience complete response or partial response after treatment with docetaxel/S-1 regimen. Mass spectrum analysis showed that several proteins in the focal adhesion and mitogen-activated protein kinase signaling pathways interacted with AEP. IQGAP1 was confirmed to be one of the proteins interacting with AEP, and its protein level increased when AEP was knocked out. AEP knockout decreased resistance to microtubule inhibitors, including paclitaxel, docetaxel, and T-DM1. The expression levels of MDR1, p-EGFR, p-JNK, p-ERK, and p-Rac1/cdc42 were decreased in AEP knockout gastric cancer cell lines, and inhibitors of both JNK and ERK could block AEP-induced expression of MDR1. CONCLUSION AEP was not only a prognostic factor but also a predictive marker. AEP knockout could inhibit the activity of the EGFR/JNK/ERK signaling pathway and improve sensitivity to microtubule inhibitors through interacting with IQGAP1.
Collapse
Affiliation(s)
| | | | | | | | - Hongshan Wang
- General Surgery Department, Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Weidong Chen
- General Surgery Department, Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Shangmin Zhang
- Pathology Department, Yale School of Medicine, New Haven, CT, USA
| | - Jian Cao
- Pathology Department, Yale School of Medicine, New Haven, CT, USA
| | | |
Collapse
|
44
|
Jafari A, Qanie D, Andersen TL, Zhang Y, Chen L, Postert B, Parsons S, Ditzel N, Khosla S, Johansen HT, Kjærsgaard-Andersen P, Delaisse JM, Abdallah BM, Hesselson D, Solberg R, Kassem M. Legumain Regulates Differentiation Fate of Human Bone Marrow Stromal Cells and Is Altered in Postmenopausal Osteoporosis. Stem Cell Reports 2017; 8:373-386. [PMID: 28162997 PMCID: PMC5312427 DOI: 10.1016/j.stemcr.2017.01.003] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 01/03/2017] [Accepted: 01/04/2017] [Indexed: 12/21/2022] Open
Abstract
Secreted factors are a key component of stem cell niche and their dysregulation compromises stem cell function. Legumain is a secreted cysteine protease involved in diverse biological processes. Here, we demonstrate that legumain regulates lineage commitment of human bone marrow stromal cells and that its expression level and cellular localization are altered in postmenopausal osteoporotic patients. As shown by genetic and pharmacological manipulation, legumain inhibited osteoblast (OB) differentiation and in vivo bone formation through degradation of the bone matrix protein fibronectin. In addition, genetic ablation or pharmacological inhibition of legumain activity led to precocious OB differentiation and increased vertebral mineralization in zebrafish. Finally, we show that localized increased expression of legumain in bone marrow adipocytes was inversely correlated with adjacent trabecular bone mass in a cohort of patients with postmenopausal osteoporosis. Our data suggest that altered proteolytic activity of legumain in the bone microenvironment contributes to decreased bone mass in postmenopausal osteoporosis. Legumain determines differentiation fate of BMSCs in vitro and in vivo Legumain regulates BMSC proliferation independent of its enzymatic activity Inhibition of legumain leads to precocious bone formation in zebrafish Legumain is overexpressed in bone marrow adipocytes of osteoporotic patients
Collapse
Affiliation(s)
- Abbas Jafari
- Department of Cellular and Molecular Medicine, Danish Stem Cell Center (DanStem), University of Copenhagen, 2200 Copenhagen, Denmark; Molecular Endocrinology & Stem Cell Research Unit (KMEB), Department of Endocrinology and Metabolism, Odense University Hospital & University of Southern Denmark, J.B. Winsloewsvej 25, 1st Floor, 5000 Odense C, Denmark
| | - Diyako Qanie
- Molecular Endocrinology & Stem Cell Research Unit (KMEB), Department of Endocrinology and Metabolism, Odense University Hospital & University of Southern Denmark, J.B. Winsloewsvej 25, 1st Floor, 5000 Odense C, Denmark
| | - Thomas L Andersen
- Department of Clinical Cell Biology, Vejle/ Lillebaelt Hospital, Institute of Regional Health Research, University of Southern Denmark, 7100, Vejle, Denmark
| | - Yuxi Zhang
- Diabetes and Metabolism Division, Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
| | - Li Chen
- Molecular Endocrinology & Stem Cell Research Unit (KMEB), Department of Endocrinology and Metabolism, Odense University Hospital & University of Southern Denmark, J.B. Winsloewsvej 25, 1st Floor, 5000 Odense C, Denmark
| | - Benno Postert
- Diabetes and Metabolism Division, Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
| | - Stuart Parsons
- Diabetes and Metabolism Division, Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
| | - Nicholas Ditzel
- Molecular Endocrinology & Stem Cell Research Unit (KMEB), Department of Endocrinology and Metabolism, Odense University Hospital & University of Southern Denmark, J.B. Winsloewsvej 25, 1st Floor, 5000 Odense C, Denmark
| | - Sundeep Khosla
- Endocrine Research Unit, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | | | | | - Jean-Marie Delaisse
- Department of Clinical Cell Biology, Vejle/ Lillebaelt Hospital, Institute of Regional Health Research, University of Southern Denmark, 7100, Vejle, Denmark
| | - Basem M Abdallah
- Molecular Endocrinology & Stem Cell Research Unit (KMEB), Department of Endocrinology and Metabolism, Odense University Hospital & University of Southern Denmark, J.B. Winsloewsvej 25, 1st Floor, 5000 Odense C, Denmark; Department of Biological Sciences, College of Science, King Faisal University, Hofuf 6996, Saudi Arabia
| | - Daniel Hesselson
- Diabetes and Metabolism Division, Garvan Institute of Medical Research, Sydney, NSW 2010, Australia; St Vincent's Clinical School, UNSW Australia, Sydney, NSW 2010, Australia
| | - Rigmor Solberg
- Department of Pharmaceutical Biosciences, School of Pharmacy, University of Oslo, 0363 Oslo, Norway
| | - Moustapha Kassem
- Department of Cellular and Molecular Medicine, Danish Stem Cell Center (DanStem), University of Copenhagen, 2200 Copenhagen, Denmark; Molecular Endocrinology & Stem Cell Research Unit (KMEB), Department of Endocrinology and Metabolism, Odense University Hospital & University of Southern Denmark, J.B. Winsloewsvej 25, 1st Floor, 5000 Odense C, Denmark; Stem Cell Unit, Department of Anatomy, Faculty of Medicine, King Saud University, Riyadh 12372, Saudi Arabia.
| |
Collapse
|
45
|
Yamane T, Kozuka M, Yamamoto Y, Nakano Y, Nakagaki T, Ohkubo I, Ariga H. Protease activity of legumain is inhibited by an increase of cystatin E/M in the DJ-1-knockout mouse spleen, cerebrum and heart. Biochem Biophys Rep 2017; 9:187-192. [PMID: 28956004 PMCID: PMC5614579 DOI: 10.1016/j.bbrep.2016.12.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Revised: 11/28/2016] [Accepted: 12/19/2016] [Indexed: 11/15/2022] Open
Abstract
Legumain (EC 3.4.22.34) is an asparaginyl endopeptidase. Legumain activity has been detected in various mouse tissues including the kidney, spleen and epididymis. Legumain is overexpressed in the majority of human solid tumors and transcription of the legumain gene is regulated by the p53 tumor suppressor in HCT116 cells. The legumain activity is also increased under acid conditions in Alzheimer's disease brains. DJ-1/PARK7, a cancer- and Parkinson's disease-associated protein, works as a coactivator to various transcription factors, including the androgen receptor, p53, PSF, Nrf2, SREBP and RREB1. Recently, we found that legumain expression, activation and cleavage of annexin A2 are regulated by DJ-1 through p53. In this study, we found that the expression levels of legumain mRNA were increased in the cerebrum, kidney, spleen, heart, lung, epididymis, stomach, small intestine and pancreas from DJ-1-knockout mice, although legumain activity levels were decreased in the cerebrum, spleen and heart from DJ-1-knockout mice. Furthermore, we found that cystatin E/M expression was increased in the spleen, cerebrum and heart from DJ-1-knockout mice. These results suggest that reduction of legumain activity is caused by an increase of cystatin E/M expression in the spleen, cerebrum and heart from DJ-1-knockout mice. Legumain is strongly activated in the epididymis from DJ-1-knockout mice. Expression level of legumain mRNA is increased but activity is decreased in the spleen, cerebrum and heart from DJ-1-knockout mice. Expression level of cystatin E/M is increased in the spleen, cerebrum and heart from DJ-1-knockout mice.
Collapse
Affiliation(s)
- Takuya Yamane
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-ku, Sapporo 060-0812, Japan
| | - Miyuki Kozuka
- Department of Health and Nutrition, Faculty of Human Science, Hokkaido Bunkyo University, Eniwa 061-1449, Japan
| | - Yoshio Yamamoto
- Laboratory of Environmental Chemistry, Mie University Iga Research Institute, Yumegaoka, Iga 518-0131, Japan
| | - Yoshihisa Nakano
- Center for Research and Development Bioresources, Research Organization for University-Community Collaborations, Osaka Prefecture University, Sakai, Osaka 599-8570, Japan
| | - Takenori Nakagaki
- Institute of Food Sciences, Nakagaki Consulting Engineer and Co., Ltd, Nishi-ku, Sakai 593-8328, Japan
| | - Iwao Ohkubo
- Department of Nutrition, School of Nursing and Nutrition, Tenshi College, Higashi-ku, Sapporo 065-0013, Japan
| | - Hiroyoshi Ariga
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-ku, Sapporo 060-0812, Japan
| |
Collapse
|
46
|
Hetland G, Eide DM, Tangen JM, Haugen MH, Mirlashari MR, Paulsen JE. The Agaricus blazei-Based Mushroom Extract, Andosan™, Protects against Intestinal Tumorigenesis in the A/J Min/+ Mouse. PLoS One 2016; 11:e0167754. [PMID: 28002446 PMCID: PMC5176274 DOI: 10.1371/journal.pone.0167754] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 11/18/2016] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND The novel A/J Min/+ mouse, which is a model for human Familial Adenomatous Polyposis (FAP), develops spontaneously multiple adenocarcinomas in the colon as well as in the small intestine. Agaricus blazei Murill (AbM) is an edible Basidiomycetes mushroom that has been used in traditional medicine against cancer and other diseases. The mushroom contains immunomodulating β-glucans and is shown to have antitumor effects in murine cancer models. Andosan™ is a water extract based on AbM (82%), but it also contains the medicinal Basidiomycetes mushrooms Hericeum erinaceus and Grifola frondosa. METHODS AND FINDINGS Tap water with 10% Andosan™ was provided as the only drinking water for 15 or 22 weeks to A/J Min/+ mice and A/J wild-type mice (one single-nucleotide polymorphism (SNP) difference), which then were exsanguinated and their intestines preserved in formaldehyde and the serum frozen. The intestines were examined blindly by microscopy and also stained for the tumor-associated protease, legumain. Serum cytokines (pro- and anti-inflammatory, Th1-, Th2 -and Th17 type) were measured by Luminex multiplex analysis. Andosan™ treated A/J Min/+ mice had a significantly lower number of adenocarcinomas in the intestines, as well as a 60% significantly reduced intestinal tumor load (number of tumors x size) compared to control. There was also reduced legumain expression in intestines from Andosan™ treated animals. Moreover, Andosan™ had a significant cytotoxic effect correlating with apoptosis on the human cancer colon cell line, Caco-2, in vitro. When examining serum from both A/J Min/+ and wild type mice, there was a significant increase in anti-tumor Th1 type and pro-inflammatory cytokines in the Andosan™ treated mice. CONCLUSIONS The results from this mouse model for colorectal cancer shows significant protection of orally administered Andosan™ against development of intestinal cancer. This is supported by the finding of less legumain in intestines of Andosan™ treated mice and increased systemic Th1 cytokine response. The mechanism is probably both immuno-modulatory and growth inhibition of tumor cells by induction of apoptosis.
Collapse
Affiliation(s)
- Geir Hetland
- Department of Immunology, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Dag M. Eide
- Department of Chemicals and Radiation, Norwegian Institute of Public Health, Oslo, Norway
| | - Jon M. Tangen
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Acute Medicine & National CBRNE Medical and Advisory Centre–Norway, Oslo University Hospital, Oslo, Norway
| | - Mads H. Haugen
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital – The Norwegian Radium Hospital, Oslo, Norway
| | | | - Jan E. Paulsen
- Norwegian University of Life Sciences, Department of Food Safety and Infection Biology, Oslo, Norway
| |
Collapse
|
47
|
Lunde NN, Holm S, Dahl TB, Elyouncha I, Sporsheim B, Gregersen I, Abbas A, Skjelland M, Espevik T, Solberg R, Johansen HT, Halvorsen B. Increased levels of legumain in plasma and plaques from patients with carotid atherosclerosis. Atherosclerosis 2016; 257:216-223. [PMID: 27940038 DOI: 10.1016/j.atherosclerosis.2016.11.026] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 11/14/2016] [Accepted: 11/23/2016] [Indexed: 02/02/2023]
Abstract
BACKGROUND AND AIMS The cysteine protease legumain has been shown to be up-regulated in unstable atherosclerotic plaques. This study aims to further elucidate legumain in atherosclerosis, by examining legumain in plasma and carotid plaques from patients with carotid stenosis. Furthermore, legumain secretion from monocyte-derived macrophages treated with atherogenic lipids during macrophage polarization was studied. METHODS Plasma levels of legumain from patients with carotid stenosis (n = 254), healthy controls (n = 91), and secreted from monocyte-derived macrophages were assessed by enzyme-linked-immunosorbent assay. Quantitative PCR and immunoblotting of legumain were performed on isolated plaques and legumain localization was visualized by immunohistochemistry and fluorescence microscopy. Monocyte-derived macrophages polarized to M1 or M2 macrophages were treated with VLDL, oxLDL or cholesterol crystals (CC) and the level of legumain analysed. RESULTS Patients with carotid stenosis had significantly higher levels of plasma legumain compared with healthy controls (median 2.0 versus 1.5 ng/ml, respectively; p = 0.003), although there was no correlation between the level of legumain and the degree of stenosis, and legumain was not an independent factor to identify patients with carotid plaques. Moreover, patients with symptoms the last 2 months had higher expressions of mature legumain, cystatin C and E/M, and the macrophage markers CD80 (M1) and CD163 (M2). Legumain co-localized with both M1 and M2 macrophages within plaques, whereas legumain mRNA expression was significantly higher (p < 0.0001) in plaques compared to non-atherosclerotic arteries (controls). Furthermore, in vitro studies showed significantly increased secretion of legumain from pro-inflammatory M1 compared to pro-resolving M2 macrophages (p = 0.014), and particularly in M1 treated with CC. In plaques, legumain was localized to structures resembling foam cells. CONCLUSIONS Legumain is increased in both plasma and plaques of patients with carotid stenosis and might be a new and early biomarker of atherosclerosis.
Collapse
Affiliation(s)
- Ngoc Nguyen Lunde
- Department of Pharmaceutical Biosciences, School of Pharmacy, University of Oslo, Oslo, Norway
| | - Sverre Holm
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway; Hospital for Rheumatic Diseases, Lillehammer, Norway
| | - Tuva B Dahl
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway; Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway; K.G. Jebsen Inflammation Research Centre, University of Oslo, Oslo, Norway
| | - Inass Elyouncha
- Department of Pharmaceutical Biosciences, School of Pharmacy, University of Oslo, Oslo, Norway
| | - Bjørnar Sporsheim
- Centre of Molecular Inflammation Research, Norwegian University of Science and Technology, Trondheim, Norway
| | - Ida Gregersen
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway; Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Azhar Abbas
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway; Department of Neurology, Oslo University Hospital Rikshospitalet, Oslo, Norway; Østfold Hospital Trust, Kalnes, Norway
| | - Mona Skjelland
- Department of Neurology, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Terje Espevik
- Centre of Molecular Inflammation Research, Norwegian University of Science and Technology, Trondheim, Norway
| | - Rigmor Solberg
- Department of Pharmaceutical Biosciences, School of Pharmacy, University of Oslo, Oslo, Norway.
| | | | - Bente Halvorsen
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway; Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway; K.G. Jebsen Inflammation Research Centre, University of Oslo, Oslo, Norway
| |
Collapse
|
48
|
Xu C, Cao L, Liu J, Qian Z, Peng Y, Zhu W, Qiu Y, Lin Y. Suppression of Asparaginyl Endopeptidase Inhibits Polyomavirus Middle T Antigen-Induced Tumor Formation and Metastasis. Oncol Res 2016; 25:407-415. [PMID: 27660925 PMCID: PMC7841005 DOI: 10.3727/096504016x14743350548249] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Elevated circulating asparaginyl endopeptidase (AEP), a novel lysosomal protease, has been found in breast cancer, and AEP is thus considered to be a prognostic factor in this disease. However, the pathological functions of circulating AEP in the development of breast cancer and the potential of AEP-targeted therapy remain unclear. We used MMTV-PyVmT transgenic mice, which spontaneously develop mammary tumors. Western blotting showed overexpression of AEP in both primary tumor tissue and lung metastases compared to their normal counterparts. Moreover, the concentration of circulating AEP gradually increased in the serum during the development of mammary tumors. Purified AEP protein injected through the tail vein promoted tumor growth and mammary tumor metastasis and shortened survival, whereas AEP-specific small compound inhibitors (AEPIs) effectively suppressed tumor progression and prolonged host survival. Further analysis of the molecular mechanism revealed that AEP was important for PI3K/AKT pathway activation. Thus, an elevated serum AEP level was closely related to mammary cancer progression and metastasis, and AEP is a potential target for breast cancer therapy in the clinic.
Collapse
|
49
|
Ashley SL, Xia M, Murray S, O’Dwyer DN, Grant E, White ES, Flaherty KR, Martinez FJ, Moore BB. Six-SOMAmer Index Relating to Immune, Protease and Angiogenic Functions Predicts Progression in IPF. PLoS One 2016; 11:e0159878. [PMID: 27490795 PMCID: PMC4973878 DOI: 10.1371/journal.pone.0159878] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 07/08/2016] [Indexed: 12/31/2022] Open
Abstract
RATIONALE Biomarkers in easily accessible compartments like peripheral blood that can predict disease progression in idiopathic pulmonary fibrosis (IPF) would be clinically useful regarding clinical trial participation or treatment decisions for patients. In this study, we used unbiased proteomics to identify relevant disease progression biomarkers in IPF. METHODS Plasma from IPF patients was measured using an 1129 analyte slow off-rate modified aptamer (SOMAmer) array, and patient outcomes were followed over the next 80 weeks. Receiver operating characteristic (ROC) curves evaluated sensitivity and specificity for levels of each biomarker and estimated area under the curve (AUC) when prognostic biomarker thresholds were used to predict disease progression. Both logistic and Cox regression models advised biomarker selection for a composite disease progression index; index biomarkers were weighted via expected progression-free days lost during follow-up with a biomarker on the unfavorable side of the threshold. RESULTS A six-analyte index, scaled 0 to 11, composed of markers of immune function, proteolysis and angiogenesis [high levels of ficolin-2 (FCN2), cathepsin-S (Cath-S), legumain (LGMN) and soluble vascular endothelial growth factor receptor 2 (VEGFsR2), but low levels of inducible T cell costimulator (ICOS) or trypsin 3 (TRY3)] predicted better progression-free survival in IPF with a ROC AUC of 0.91. An index score ≥ 3 (group ≥ 2) was strongly associated with IPF progression after adjustment for age, gender, smoking status, immunomodulation, forced vital capacity % predicted and diffusing capacity for carbon monoxide % predicted (HR 16.8, 95% CI 2.2-126.7, P = 0.006). CONCLUSION This index, derived from the largest proteomic analysis of IPF plasma samples to date, could be useful for clinical decision making in IPF, and the identified analytes suggest biological processes that may promote disease progression.
Collapse
Affiliation(s)
- Shanna L. Ashley
- Graduate Program in Immunology, University of Michigan, Ann Arbor, MI, United States of America
| | - Meng Xia
- Biostatistics Department, University of Michigan School of Public Health, Ann Arbor, MI, United States of America
| | - Susan Murray
- Biostatistics Department, University of Michigan School of Public Health, Ann Arbor, MI, United States of America
| | - David N. O’Dwyer
- Pulmonary and Critical Care Medicine Division, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, United States of America
| | - Ethan Grant
- MedImmune, Gaithersburg, MD, United States of America
| | - Eric S. White
- Pulmonary and Critical Care Medicine Division, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, United States of America
| | - Kevin R. Flaherty
- Pulmonary and Critical Care Medicine Division, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, United States of America
| | - Fernando J. Martinez
- Department of Internal Medicine, Weill Cornell Medical College, New York, NY, United States of America
| | - Bethany B. Moore
- Pulmonary and Critical Care Medicine Division, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, United States of America
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, United States of America
| |
Collapse
|
50
|
Counter Selection Substrate Library Strategy for Developing Specific Protease Substrates and Probes. Cell Chem Biol 2016; 23:1023-35. [PMID: 27478158 DOI: 10.1016/j.chembiol.2016.05.020] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 05/11/2016] [Accepted: 05/30/2016] [Indexed: 01/29/2023]
Abstract
Legumain (AEP) is a lysosomal cysteine protease that was first characterized in leguminous seeds and later discovered in higher eukaryotes. AEP upregulation is linked to a number of diseases including inflammation, arteriosclerosis, and tumorigenesis. Thus this protease is an excellent molecular target for the development of new chemical markers. We deployed a hybrid combinatorial substrate library (HyCoSuL) approach to obtain P1-Asp fluorogenic substrates and biotin-labeled inhibitors that targeted legumain. Since this approach led to probes that were also recognized by caspases, we introduced a Counter Selection Substrate Library (CoSeSuL) approach that biases the peptidic scaffold against caspases, thus delivering highly selective legumain probes. The selectivity of these tools was validated using M38L and HEK293 cells. We also propose that the CoSeSuL methodology can be considered as a general principle in the design of selective probes for other protease families where selectivity is difficult to achieve by conventional sequence-based profiling.
Collapse
|