1
|
Foster AJ, van den Noort M, Poolman B. Bacterial cell volume regulation and the importance of cyclic di-AMP. Microbiol Mol Biol Rev 2024; 88:e0018123. [PMID: 38856222 PMCID: PMC11332354 DOI: 10.1128/mmbr.00181-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2024] Open
Abstract
SUMMARYNucleotide-derived second messengers are present in all domains of life. In prokaryotes, most of their functionality is associated with general lifestyle and metabolic adaptations, often in response to environmental fluctuations of physical parameters. In the last two decades, cyclic di-AMP has emerged as an important signaling nucleotide in many prokaryotic lineages, including Firmicutes, Actinobacteria, and Cyanobacteria. Its importance is highlighted by the fact that both the lack and overproduction of cyclic di-AMP affect viability of prokaryotes that utilize cyclic di-AMP, and that it generates a strong innate immune response in eukaryotes. In bacteria that produce the second messenger, most molecular targets of cyclic di-AMP are associated with cell volume control. Besides, other evidence links the second messenger to cell wall remodeling, DNA damage repair, sporulation, central metabolism, and the regulation of glycogen turnover. In this review, we take a biochemical, quantitative approach to address the main cellular processes that are directly regulated by cyclic di-AMP and show that these processes are very connected and require regulation of a similar set of proteins to which cyclic di-AMP binds. Altogether, we argue that cyclic di-AMP is a master regulator of cell volume and that other cellular processes can be connected with cyclic di-AMP through this core function. We further highlight important directions in which the cyclic di-AMP field has to develop to gain a full understanding of the cyclic di-AMP signaling network and why some processes are regulated, while others are not.
Collapse
Affiliation(s)
- Alexander J. Foster
- Department of Biochemistry, Groningen Biomolecular Science and Biotechnology Institute, University of Groningen, Groningen, the Netherlands
| | - Marco van den Noort
- Department of Biochemistry, Groningen Biomolecular Science and Biotechnology Institute, University of Groningen, Groningen, the Netherlands
| | - Bert Poolman
- Department of Biochemistry, Groningen Biomolecular Science and Biotechnology Institute, University of Groningen, Groningen, the Netherlands
| |
Collapse
|
2
|
van den Noort M, Drougkas P, Paulino C, Poolman B. The substrate-binding domains of the osmoregulatory ABC importer OpuA transiently interact. eLife 2024; 12:RP90996. [PMID: 38695350 PMCID: PMC11065425 DOI: 10.7554/elife.90996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2024] Open
Abstract
Bacteria utilize various strategies to prevent internal dehydration during hypertonic stress. A common approach to countering the effects of the stress is to import compatible solutes such as glycine betaine, leading to simultaneous passive water fluxes following the osmotic gradient. OpuA from Lactococcus lactis is a type I ABC-importer that uses two substrate-binding domains (SBDs) to capture extracellular glycine betaine and deliver the substrate to the transmembrane domains for subsequent transport. OpuA senses osmotic stress via changes in the internal ionic strength and is furthermore regulated by the 2nd messenger cyclic-di-AMP. We now show, by means of solution-based single-molecule FRET and analysis with multi-parameter photon-by-photon hidden Markov modeling, that the SBDs transiently interact in an ionic strength-dependent manner. The smFRET data are in accordance with the apparent cooperativity in transport and supported by new cryo-EM data of OpuA. We propose that the physical interactions between SBDs and cooperativity in substrate delivery are part of the transport mechanism.
Collapse
Affiliation(s)
- Marco van den Noort
- Department of Biochemistry, Groningen Biomolecular Science and Biotechnology Institute, University of GroningenGroningenNetherlands
| | - Panagiotis Drougkas
- Department of Biochemistry, Groningen Biomolecular Science and Biotechnology Institute, University of GroningenGroningenNetherlands
- Biochemistry Center, Heidelberg UniversityHeidelbergGermany
| | - Cristina Paulino
- Department of Biochemistry, Groningen Biomolecular Science and Biotechnology Institute, University of GroningenGroningenNetherlands
- Biochemistry Center, Heidelberg UniversityHeidelbergGermany
| | - Bert Poolman
- Department of Biochemistry, Groningen Biomolecular Science and Biotechnology Institute, University of GroningenGroningenNetherlands
| |
Collapse
|
3
|
Liu G, Chang H, Qiao Y, Huang K, Zhang A, Zhao Y, Feng Z. Profiles of Small Regulatory RNAs at Different Growth Phases of Streptococcus thermophilus During pH-Controlled Batch Fermentation. Front Microbiol 2021; 12:765144. [PMID: 35035386 PMCID: PMC8753986 DOI: 10.3389/fmicb.2021.765144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 11/05/2021] [Indexed: 12/02/2022] Open
Abstract
Small regulatory RNA (sRNA) has been shown to play an important role under various stress conditions in bacteria, and it plays a vital role in regulating growth, adaptation and survival through posttranscriptional control of gene expression in bacterial cells. Streptococcus thermophilus is widely used as a starter culture in the manufacture of fermented dairy products. However, the lack of reliable information on the expression profiles and potential physiological functions of sRNAs in this species hinders our understanding of the importance of sRNAs in S. thermophilus. The present study was conducted to assess the expression profiles of sRNAs in S. thermophilus and to identify sRNAs that exhibited significant changes. A total of 530 potential sRNAs were identified, including 198 asRNAs, 135 sRNAs from intergenic regions, and 197 sRNAs from untranslated regions (UTRs). Significant changes occurred in the expression of 238, 83, 194, and 139 sRNA genes during the lag, early exponential growth, late exponential growth, and stationary phases, respectively. The expression of 14 of the identified sRNAs was verified by qRT-PCR. Predictions of the target genes of these candidate sRNAs showed that the primary metabolic pathways targeted were involved in carbon metabolism, biosynthesis of amino acids, ABC transporters, the metabolism of amino and nucleotide sugars, purine metabolism, and the phosphotransferase system. The expression of the predicted target genes was further analyzed to better understand the roles of sRNAs during different growth stages. The results suggested that these sRNAs play crucial roles by regulating biological pathways during different growth phases of S. thermophilus. According to the results, sRNAs sts141, sts392, sts318, and sts014 are involved in the regulation of osmotic stress. sRNAs sts508, sts087, sts372, sts141, sts375, and sts119 are involved in the regulation of starvation stress. sRNAs sts129, sts226, sts166, sts231, sts204, sts145, and sts236 are involved in arginine synthesis. sRNAs sts033, sts341, sts492, sts140, sts230, sts172, and sts377 are involved in the ADI pathway. The present study provided valuable information for the functional study of sRNAs in S. thermophilus and indicated a future research direction for sRNA in S. thermophilus. Overall, our results provided new insights for understanding the complex regulatory network of sRNAs in S. thermophilus.
Collapse
Affiliation(s)
- Gefei Liu
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, 600 Chanjiang Road,150030, Harbin, Heilongjiang, China
| | - Haode Chang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, 600 Chanjiang Road,150030, Harbin, Heilongjiang, China
| | - Yali Qiao
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, 600 Chanjiang Road,150030, Harbin, Heilongjiang, China
| | - Kai Huang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, 600 Chanjiang Road,150030, Harbin, Heilongjiang, China
| | - Ao Zhang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, 600 Chanjiang Road,150030, Harbin, Heilongjiang, China
| | - Yu Zhao
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning, 571533, Hainan, China
- Yu Zhao,
| | - Zhen Feng
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, 600 Chanjiang Road,150030, Harbin, Heilongjiang, China
- College of Food and Biological Engineering, Qiqihar University, 42 Wenhua Road, 160006, Qiqihar, China
- *Correspondence: Zhen Feng,
| |
Collapse
|
4
|
Bandera AM, Bartho J, Lammens K, Drexler DJ, Kleinschwärzer J, Hopfner KP, Witte G. BusR senses bipartite DNA binding motifs by a unique molecular ruler architecture. Nucleic Acids Res 2021; 49:10166-10177. [PMID: 34432045 PMCID: PMC8517857 DOI: 10.1093/nar/gkab736] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 07/27/2021] [Accepted: 08/12/2021] [Indexed: 12/18/2022] Open
Abstract
The cyclic dinucleotide second messenger c-di-AMP is a major player in regulation of potassium homeostasis and osmolyte transport in a variety of bacteria. Along with various direct interactions with proteins such as potassium channels, the second messenger also specifically binds to transcription factors, thereby altering the processes in the cell on the transcriptional level. We here describe the structural and biochemical characterization of BusR from the human pathogen Streptococcus agalactiae. BusR is a member of a yet structurally uncharacterized subfamily of the GntR family of transcription factors that downregulates transcription of the genes for the BusA (OpuA) glycine-betaine transporter upon c-di-AMP binding. We report crystal structures of full-length BusR, its apo and c-di-AMP bound effector domain, as well as cryo-EM structures of BusR bound to its operator DNA. Our structural data, supported by biochemical and biophysical data, reveal that BusR utilizes a unique domain assembly with a tetrameric coiled-coil in between the binding platforms, serving as a molecular ruler to specifically recognize a 22 bp separated bipartite binding motif. Binding of c-di-AMP to BusR induces a shift in equilibrium from an inactivated towards an activated state that allows BusR to bind the target DNA, leading to transcriptional repression.
Collapse
Affiliation(s)
- Adrian M Bandera
- Gene Center, Ludwig-Maximilians-Universität München, Feodor-Lynen-Str. 25, D-81377 München, Germany.,Department of Biochemistry, Ludwig-Maximilians-Universität München, Feodor-Lynen-Str. 25, D-81377 München, Germany
| | - Joseph Bartho
- Gene Center, Ludwig-Maximilians-Universität München, Feodor-Lynen-Str. 25, D-81377 München, Germany.,Department of Biochemistry, Ludwig-Maximilians-Universität München, Feodor-Lynen-Str. 25, D-81377 München, Germany
| | - Katja Lammens
- Gene Center, Ludwig-Maximilians-Universität München, Feodor-Lynen-Str. 25, D-81377 München, Germany.,Department of Biochemistry, Ludwig-Maximilians-Universität München, Feodor-Lynen-Str. 25, D-81377 München, Germany
| | - David Jan Drexler
- Gene Center, Ludwig-Maximilians-Universität München, Feodor-Lynen-Str. 25, D-81377 München, Germany.,Department of Biochemistry, Ludwig-Maximilians-Universität München, Feodor-Lynen-Str. 25, D-81377 München, Germany
| | - Jasmin Kleinschwärzer
- Gene Center, Ludwig-Maximilians-Universität München, Feodor-Lynen-Str. 25, D-81377 München, Germany.,Department of Biochemistry, Ludwig-Maximilians-Universität München, Feodor-Lynen-Str. 25, D-81377 München, Germany
| | - Karl-Peter Hopfner
- Gene Center, Ludwig-Maximilians-Universität München, Feodor-Lynen-Str. 25, D-81377 München, Germany.,Department of Biochemistry, Ludwig-Maximilians-Universität München, Feodor-Lynen-Str. 25, D-81377 München, Germany
| | - Gregor Witte
- Gene Center, Ludwig-Maximilians-Universität München, Feodor-Lynen-Str. 25, D-81377 München, Germany.,Department of Biochemistry, Ludwig-Maximilians-Universität München, Feodor-Lynen-Str. 25, D-81377 München, Germany
| |
Collapse
|
5
|
Abstract
The cytoplasm of bacterial cells is a highly crowded cellular compartment that possesses considerable osmotic potential. As a result, and owing to the semipermeable nature of the cytoplasmic membrane and the semielastic properties of the cell wall, osmotically driven water influx will generate turgor, a hydrostatic pressure considered critical for growth and viability. Both increases and decreases in the external osmolarity inevitably trigger water fluxes across the cytoplasmic membrane, thus impinging on the degree of cellular hydration, molecular crowding, magnitude of turgor, and cellular integrity. Here, we assess mechanisms that permit the perception of osmotic stress by bacterial cells and provide an overview of the systems that allow them to genetically and physiologically cope with this ubiquitous environmental cue. We highlight recent developments implicating the secondary messenger c-di-AMP in cellular adjustment to osmotic stress and the role of osmotic forces in the life of bacteria-assembled in biofilms.
Collapse
Affiliation(s)
- Erhard Bremer
- Laboratory for Microbiology, Department of Biology; and Center for Synthetic Microbiology, Philipps-Universität Marburg, 35043 Marburg, Germany;
| | - Reinhard Krämer
- Institute of Biochemistry, University of Cologne, 50674 Cologne, Germany;
| |
Collapse
|
6
|
Identification of a GntR family regulator BusR Tha and its regulatory mechanism in the glycine betaine ABC transport system of Tetragenococcus halophilus. Extremophiles 2019; 23:451-460. [PMID: 31053934 DOI: 10.1007/s00792-019-01096-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 04/25/2019] [Indexed: 10/26/2022]
Abstract
Glycine betaine is one of the most effective compatible solutes of the halophilic lactic acid bacterium Tetragenococcus halophilus, the transportation of which is essential for its survival under salinity stress condition. In the current study, we attempted to define a glycine betaine ABC transporter system of T. halophilus, busATha, which plays an important role in adapting to salinity condition. The expression of busATha enhanced the growth of the recombinant strain under high salinity. BusRTha, a transcription regulator that represses the expression of busATha, was characterized, and the repression was abrogated under high salinity. The binding of the regulator was demonstrated through electrophoretic mobility shift assays, and the binding sites were characterized as 5'-AAA(T/G)TGAC(C/A)(G/A)T(C/A)C-3'. This is the first studied transcription regulator of T. halophilus, and our findings provide insights into the molecular mechanism of halophilic life and tools for further application of halophiles as chassis in industrial biotechnology.
Collapse
|
7
|
Onward and [K +]Upward: a New Potassium Importer under the Spell of Cyclic di-AMP. J Bacteriol 2019; 201:JB.00150-19. [PMID: 30858295 DOI: 10.1128/jb.00150-19] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Cyclic di-AMP (c-di-AMP) is a second messenger which plays a major role in osmotic homeostasis in bacteria. In work by Quintana et al. (I. M. Quintana, J. Gibhardt, A. Turdiev, E. Hammer, et al., J Bacteriol 201:e00028-19, 2019, https://doi.org/10.1128/jb.00028-19), two Kup homologs from Lactococcus lactis were identified as high-affinity K+ importers whose activities are inhibited by direct binding of c-di-AMP. The results broaden the scope of K+ level regulation by c-di-AMP, with Kup homologs found in a number of pathogenic, commensal, and industrial bacteria.
Collapse
|
8
|
Pham HT, Nhiep NTH, Vu TNM, Huynh TN, Zhu Y, Huynh ALD, Chakrabortti A, Marcellin E, Lo R, Howard CB, Bansal N, Woodward JJ, Liang ZX, Turner MS. Enhanced uptake of potassium or glycine betaine or export of cyclic-di-AMP restores osmoresistance in a high cyclic-di-AMP Lactococcus lactis mutant. PLoS Genet 2018; 14:e1007574. [PMID: 30074984 PMCID: PMC6108528 DOI: 10.1371/journal.pgen.1007574] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 08/24/2018] [Accepted: 07/20/2018] [Indexed: 11/22/2022] Open
Abstract
The broadly conserved bacterial signalling molecule cyclic-di-adenosine monophosphate (c-di-AMP) controls osmoresistance via its regulation of potassium (K+) and compatible solute uptake. High levels of c-di-AMP resulting from inactivation of c-di-AMP phosphodiesterase activity leads to poor growth of bacteria under high osmotic conditions. To better understand how bacteria can adjust in response to excessive c-di-AMP levels and to identify signals that feed into the c-di-AMP network, we characterised genes identified in a screen for osmoresistant suppressor mutants of the high c-di-AMP Lactococcus ΔgdpP strain. Mutations were identified which increased the uptake of osmoprotectants, including gain-of-function mutations in a Kup family K+ importer (KupB) and inactivation of the glycine betaine transporter transcriptional repressor BusR. The KupB mutations increased the intracellular K+ level while BusR inactivation increased the glycine betaine level. In addition, BusR was found to directly bind c-di-AMP and repress expression of the glycine betaine transporter in response to elevated c-di-AMP. Interestingly, overactive KupB activity or loss of BusR triggered c-di-AMP accumulation, suggesting turgor pressure changes act as a signal for this second messenger. In another group of suppressors, overexpression of an operon encoding an EmrB family multidrug resistance protein allowed cells to lower their intracellular level of c-di-AMP through active export. Lastly evidence is provided that c-di-AMP levels in several bacteria are rapidly responsive to environmental osmolarity changes. Taken together, this work provides evidence for a model in which high c-di-AMP containing cells are dehydrated due to lower K+ and compatible solute levels and that this osmoregulation system is able to sense and respond to cellular water stress.
Collapse
Affiliation(s)
- Huong Thi Pham
- School of Agriculture and Food Sciences, University of Queensland, Brisbane, Queensland, Australia
- The University of Danang, University of Science and Technology, Da Nang, Vietnam
| | - Nguyen Thi Hanh Nhiep
- School of Agriculture and Food Sciences, University of Queensland, Brisbane, Queensland, Australia
| | - Thu Ngoc Minh Vu
- School of Agriculture and Food Sciences, University of Queensland, Brisbane, Queensland, Australia
| | - TuAnh Ngoc Huynh
- Department of Microbiology, University of Washington, Seattle, WA, United States of America
| | - Yan Zhu
- Monash Biomedicine Discovery Institute, Monash University, Melbourne, Australia
| | - Anh Le Diep Huynh
- School of Agriculture and Food Sciences, University of Queensland, Brisbane, Queensland, Australia
| | | | - Esteban Marcellin
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Brisbane, Queensland, Australia
| | - Raquel Lo
- School of Agriculture and Food Sciences, University of Queensland, Brisbane, Queensland, Australia
| | - Christopher B. Howard
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Brisbane, Queensland, Australia
| | - Nidhi Bansal
- School of Agriculture and Food Sciences, University of Queensland, Brisbane, Queensland, Australia
| | - Joshua J. Woodward
- Department of Microbiology, University of Washington, Seattle, WA, United States of America
| | - Zhao-Xun Liang
- School of Biological Sciences, Nanyang Technological University, Singapore
| | - Mark S. Turner
- School of Agriculture and Food Sciences, University of Queensland, Brisbane, Queensland, Australia
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
9
|
Kok J, van Gijtenbeek LA, de Jong A, van der Meulen SB, Solopova A, Kuipers OP. The Evolution of gene regulation research in Lactococcus lactis. FEMS Microbiol Rev 2018; 41:S220-S243. [PMID: 28830093 DOI: 10.1093/femsre/fux028] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 06/15/2017] [Indexed: 11/12/2022] Open
Abstract
Lactococcus lactis is a major microbe. This lactic acid bacterium (LAB) is used worldwide in the production of safe, healthy, tasteful and nutritious milk fermentation products. Its huge industrial importance has led to an explosion of research on the organism, particularly since the early 1970s. The upsurge in the research on L. lactis coincided not accidentally with the advent of recombinant DNA technology in these years. The development of methods to take out and re-introduce DNA in L. lactis, to clone genes and to mutate the chromosome in a targeted way, to control (over)expression of proteins and, ultimately, the availability of the nucleotide sequence of its genome and the use of that information in transcriptomics and proteomics research have enabled to peek deep into the functioning of the organism. Among many other things, this has provided an unprecedented view of the major gene regulatory pathways involved in nitrogen and carbon metabolism and their overlap, and has led to the blossoming of the field of L. lactis systems biology. All of these advances have made L. lactis the paradigm of the LAB. This review will deal with the exciting path along which the research on the genetics of and gene regulation in L. lactis has trodden.
Collapse
Affiliation(s)
- Jan Kok
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747 AG Groningen, the Netherlands
| | - Lieke A van Gijtenbeek
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747 AG Groningen, the Netherlands
| | - Anne de Jong
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747 AG Groningen, the Netherlands
| | - Sjoerd B van der Meulen
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747 AG Groningen, the Netherlands
| | - Ana Solopova
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747 AG Groningen, the Netherlands
| | - Oscar P Kuipers
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747 AG Groningen, the Netherlands
| |
Collapse
|
10
|
Devaux L, Sleiman D, Mazzuoli MV, Gominet M, Lanotte P, Trieu-Cuot P, Kaminski PA, Firon A. Cyclic di-AMP regulation of osmotic homeostasis is essential in Group B Streptococcus. PLoS Genet 2018; 14:e1007342. [PMID: 29659565 PMCID: PMC5919688 DOI: 10.1371/journal.pgen.1007342] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 04/26/2018] [Accepted: 03/28/2018] [Indexed: 02/03/2023] Open
Abstract
Cyclic nucleotides are universally used as secondary messengers to control cellular physiology. Among these signalling molecules, cyclic di-adenosine monophosphate (c-di-AMP) is a specific bacterial second messenger recognized by host cells during infections and its synthesis is assumed to be necessary for bacterial growth by controlling a conserved and essential cellular function. In this study, we sought to identify the main c-di-AMP dependent pathway in Streptococcus agalactiae, the etiological agent of neonatal septicaemia and meningitis. By conditionally inactivating dacA, the only diadenyate cyclase gene, we confirm that c-di-AMP synthesis is essential in standard growth conditions. However, c-di-AMP synthesis becomes rapidly dispensable due to the accumulation of compensatory mutations. We identified several mutations restoring the viability of a ΔdacA mutant, in particular a loss-of-function mutation in the osmoprotectant transporter BusAB. Identification of c-di-AMP binding proteins revealed a conserved set of potassium and osmolyte transporters, as well as the BusR transcriptional factor. We showed that BusR negatively regulates busAB transcription by direct binding to the busAB promoter. Loss of BusR repression leads to a toxic busAB expression in absence of c-di-AMP if osmoprotectants, such as glycine betaine, are present in the medium. In contrast, deletion of the gdpP c-di-AMP phosphodiesterase leads to hyperosmotic susceptibility, a phenotype dependent on a functional BusR. Taken together, we demonstrate that c-di-AMP is essential for osmotic homeostasis and that the predominant mechanism is dependent on the c-di-AMP binding transcriptional factor BusR. The regulation of osmotic homeostasis is likely the conserved and essential function of c-di-AMP, but each species has evolved specific c-di-AMP mechanisms of osmoregulation to adapt to its environment. Nucleotide-based second messengers play central functions in bacterial physiology and host-pathogen interactions. Among these signalling nucleotides, cyclic-di-AMP (c-di-AMP) synthesis was originally assumed to be essential for bacterial growth. In this study, we confirmed that the only di-adenylate cyclase enzyme in the opportunistic pathogen Streptococcus agalactiae is essential in standard growth conditions. However, c-di-AMP synthesis becomes rapidly dispensable by accumulating spontaneous mutations in genes involved in osmotic regulation. We identified that c-di-AMP binds directly to four proteins necessary to maintain osmotic homeostasis, including three osmolyte transporters and the BusR transcriptional factor. We demonstrated that BusR negatively controls the expression of the busAB operon and that it is the main component leading to growth inhibition in the absence of c-di-AMP synthesis if osmoprotectants are present in the environment. Overall, c-di-AMP is essential to maintain osmotic homeostasis by coordinating osmolyte uptake and thus bacteria have developed specific mechanisms to keep c-di-AMP as the central regulator of osmotic homeostasis.
Collapse
Affiliation(s)
- Laura Devaux
- Institut Pasteur, Unité Biologie des Bactéries Pathogènes à Gram-positif, CNRS ERL 6002, Paris, France
- Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Dona Sleiman
- Institut Pasteur, Unité Biologie des Bactéries Pathogènes à Gram-positif, CNRS ERL 6002, Paris, France
| | - Maria-Vittoria Mazzuoli
- Institut Pasteur, Unité Biologie des Bactéries Pathogènes à Gram-positif, CNRS ERL 6002, Paris, France
- Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Myriam Gominet
- Institut Pasteur, Unité Biologie des Bactéries Pathogènes à Gram-positif, CNRS ERL 6002, Paris, France
| | - Philippe Lanotte
- Université de Tours, Infectiologie et Santé Publique, Bactéries et Risque Materno-Fœtal, INRA UMR1282, Tours France
- Hôpital Bretonneau, Centre Hospitalier Régional et Universitaire de Tours, Service de Bactériologie-Virologie, Tours France
| | - Patrick Trieu-Cuot
- Institut Pasteur, Unité Biologie des Bactéries Pathogènes à Gram-positif, CNRS ERL 6002, Paris, France
| | - Pierre-Alexandre Kaminski
- Institut Pasteur, Unité Biologie des Bactéries Pathogènes à Gram-positif, CNRS ERL 6002, Paris, France
| | - Arnaud Firon
- Institut Pasteur, Unité Biologie des Bactéries Pathogènes à Gram-positif, CNRS ERL 6002, Paris, France
- * E-mail:
| |
Collapse
|
11
|
Czech L, Hermann L, Stöveken N, Richter AA, Höppner A, Smits SHJ, Heider J, Bremer E. Role of the Extremolytes Ectoine and Hydroxyectoine as Stress Protectants and Nutrients: Genetics, Phylogenomics, Biochemistry, and Structural Analysis. Genes (Basel) 2018; 9:genes9040177. [PMID: 29565833 PMCID: PMC5924519 DOI: 10.3390/genes9040177] [Citation(s) in RCA: 149] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Revised: 03/13/2018] [Accepted: 03/15/2018] [Indexed: 01/26/2023] Open
Abstract
Fluctuations in environmental osmolarity are ubiquitous stress factors in many natural habitats of microorganisms, as they inevitably trigger osmotically instigated fluxes of water across the semi-permeable cytoplasmic membrane. Under hyperosmotic conditions, many microorganisms fend off the detrimental effects of water efflux and the ensuing dehydration of the cytoplasm and drop in turgor through the accumulation of a restricted class of organic osmolytes, the compatible solutes. Ectoine and its derivative 5-hydroxyectoine are prominent members of these compounds and are synthesized widely by members of the Bacteria and a few Archaea and Eukarya in response to high salinity/osmolarity and/or growth temperature extremes. Ectoines have excellent function-preserving properties, attributes that have led to their description as chemical chaperones and fostered the development of an industrial-scale biotechnological production process for their exploitation in biotechnology, skin care, and medicine. We review, here, the current knowledge on the biochemistry of the ectoine/hydroxyectoine biosynthetic enzymes and the available crystal structures of some of them, explore the genetics of the underlying biosynthetic genes and their transcriptional regulation, and present an extensive phylogenomic analysis of the ectoine/hydroxyectoine biosynthetic genes. In addition, we address the biochemistry, phylogenomics, and genetic regulation for the alternative use of ectoines as nutrients.
Collapse
Affiliation(s)
- Laura Czech
- Laboratory for Microbiology, Department of Biology, Philipps-University Marburg, Karl-von-Frisch Str. 8, D-35043 Marburg, Germany.
| | - Lucas Hermann
- Laboratory for Microbiology, Department of Biology, Philipps-University Marburg, Karl-von-Frisch Str. 8, D-35043 Marburg, Germany.
| | - Nadine Stöveken
- Laboratory for Microbiology, Department of Biology, Philipps-University Marburg, Karl-von-Frisch Str. 8, D-35043 Marburg, Germany.
- LOEWE-Center for Synthetic Microbiology, Philipps-University Marburg, Hans-Meerwein Str. 6, D-35043 Marburg, Germany.
| | - Alexandra A Richter
- Laboratory for Microbiology, Department of Biology, Philipps-University Marburg, Karl-von-Frisch Str. 8, D-35043 Marburg, Germany.
| | - Astrid Höppner
- Center for Structural Studies, Heinrich-Heine University Düsseldorf, Universitäts Str. 1, D-40225 Düsseldorf, Germany.
| | - Sander H J Smits
- Center for Structural Studies, Heinrich-Heine University Düsseldorf, Universitäts Str. 1, D-40225 Düsseldorf, Germany.
- Institute of Biochemistry, Heinrich-Heine University Düsseldorf, Universitäts Str. 1, D-40225 Düsseldorf, Germany.
| | - Johann Heider
- Laboratory for Microbiology, Department of Biology, Philipps-University Marburg, Karl-von-Frisch Str. 8, D-35043 Marburg, Germany.
- LOEWE-Center for Synthetic Microbiology, Philipps-University Marburg, Hans-Meerwein Str. 6, D-35043 Marburg, Germany.
| | - Erhard Bremer
- Laboratory for Microbiology, Department of Biology, Philipps-University Marburg, Karl-von-Frisch Str. 8, D-35043 Marburg, Germany.
- LOEWE-Center for Synthetic Microbiology, Philipps-University Marburg, Hans-Meerwein Str. 6, D-35043 Marburg, Germany.
| |
Collapse
|
12
|
Hoffmann T, Bleisteiner M, Sappa PK, Steil L, Mäder U, Völker U, Bremer E. Synthesis of the compatible solute proline by Bacillus subtilis: point mutations rendering the osmotically controlled proHJ promoter hyperactive. Environ Microbiol 2017; 19:3700-3720. [PMID: 28752945 DOI: 10.1111/1462-2920.13870] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 07/09/2017] [Accepted: 07/24/2017] [Indexed: 01/29/2023]
Abstract
The ProJ and ProH enzymes of Bacillus subtilis catalyse together with ProA (ProJ-ProA-ProH), osmostress-adaptive synthesis of the compatible solute proline. The proA-encoded gamma-glutamyl phosphate reductase is also used for anabolic proline synthesis (ProB-ProA-ProI). Transcription of the proHJ operon is osmotically inducible whereas that of the proBA operon is not. Targeted and quantitative proteome analysis revealed that the amount of ProA is not limiting for the interconnected anabolic and osmostress-responsive proline production routes. A key player for enhanced osmostress-adaptive proline production is the osmotically regulated proHJ promoter. We used site-directed mutagenesis to study the salient features of this stress-responsive promoter. Two important features were identified: (i) deviations of the proHJ promoter from the consensus sequence of SigA-type promoters serve to keep transcription low under non-inducing growth conditions, while still allowing a finely tuned induction of transcriptional activity when the external osmolarity is increased and (ii) a suboptimal spacer length for SigA-type promoters of either 16-bp (the natural proHJ promoter), or 18-bp (a synthetic promoter variant) is strictly required to allow regulation of promoter activity in proportion to the external salinity. Collectively, our data suggest that changes in the local DNA structure at the proHJ promoter are important determinants for osmostress-inducibility of transcription.
Collapse
Affiliation(s)
- Tamara Hoffmann
- Department of Biology, Laboratory for Microbiology, Philipps-University Marburg, Karl-von-Frisch-Str. 8, Marburg D-35043, Germany
| | - Monika Bleisteiner
- Department of Biology, Laboratory for Microbiology, Philipps-University Marburg, Karl-von-Frisch-Str. 8, Marburg D-35043, Germany
| | - Praveen Kumar Sappa
- Interfaculty Institute of Genetics and Functional Genomics, Department Functional Genomics, University Medicine Greifswald, Friedrich-Ludwig-Jahn-Str. 15, Greifswald D-17475, Germany
| | - Leif Steil
- Interfaculty Institute of Genetics and Functional Genomics, Department Functional Genomics, University Medicine Greifswald, Friedrich-Ludwig-Jahn-Str. 15, Greifswald D-17475, Germany
| | - Ulrike Mäder
- Interfaculty Institute of Genetics and Functional Genomics, Department Functional Genomics, University Medicine Greifswald, Friedrich-Ludwig-Jahn-Str. 15, Greifswald D-17475, Germany
| | - Uwe Völker
- Interfaculty Institute of Genetics and Functional Genomics, Department Functional Genomics, University Medicine Greifswald, Friedrich-Ludwig-Jahn-Str. 15, Greifswald D-17475, Germany
| | - Erhard Bremer
- Department of Biology, Laboratory for Microbiology, Philipps-University Marburg, Karl-von-Frisch-Str. 8, Marburg D-35043, Germany
- LOEWE-Center for Synthetic Microbiology, Philipps-University Marburg, Hans-Meerweinstr. 6, Marburg D-35043, Germany
| |
Collapse
|
13
|
Qi J, Caiyin Q, Wu H, Tian K, Wang B, Li Y, Qiao J. The novel sRNA s015 improves nisin yield by increasing acid tolerance of Lactococcus lactis F44. Appl Microbiol Biotechnol 2017; 101:6483-6493. [PMID: 28689267 DOI: 10.1007/s00253-017-8399-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 06/16/2017] [Accepted: 06/19/2017] [Indexed: 11/29/2022]
Abstract
Nisin, a polycyclic antibacterial peptide produced by Lactococcus lactis, is stable at low pH. Improving the acid tolerance of L. lactis could thus enhance nisin yield. Small non-coding RNAs (sRNAs) play essential roles in acid tolerance by regulating their target mRNAs at the post-transcriptional level. In this study, a novel sRNA, s015, was identified in L. lactis F44 via the use of RNA sequencing, qRT-PCR analysis, and Northern blotting. s015 improved the acid tolerance of L. lactis and boosted nisin yield at low pH. In silico predictions enabled us to construct a library of possible s015 target mRNAs. Statistical analysis and validation suggested that s015 contains a highly conserved region (5'-GAAAAAAAC-3') that likely encompasses the regulatory core of the sRNA. atpG, busAB, cysD, ilvB, tcsR, ung, yudD, and ywdA were verified as direct targets of s015, and the interactions between s015 and its target genes were elucidated. This work provided new insight into the adaptation mechanism of L. lactis under acid stress.
Collapse
Affiliation(s)
- Jiakun Qi
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China.,Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin, China
| | - Qinggele Caiyin
- Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin, China
| | - Hao Wu
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China.,Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin, China
| | - Kairen Tian
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China.,Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin, China
| | - Binbin Wang
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China.,Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin, China
| | - Yanni Li
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China.,Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin, China
| | - Jianjun Qiao
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China. .,Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin, China. .,SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, China.
| |
Collapse
|
14
|
Li Z, Li X, Gao X, Shen QW, Du M, Zhang D. Phosphorylation prevents in vitro myofibrillar proteins degradation by μ-calpain. Food Chem 2016; 218:455-462. [PMID: 27719935 DOI: 10.1016/j.foodchem.2016.09.048] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 09/04/2016] [Accepted: 09/06/2016] [Indexed: 11/15/2022]
Abstract
Myofibrillar proteins degradation contributes to meat tenderisation during post-mortem ageing. Protein phosphorylation has been revealed to be associated with meat tenderness in recent years. This study was undertaken to determine the impact of myofibrillar proteins phosphorylation on the degradation susceptibility by μ-calpain. Myofibrillar proteins were first incubated with protein kinase A (PKA) or alkaline phosphatase (AP) to increase or decrease the phosphorylation level, following μ-calpain hydrolysis. Myosin heavy chain, actin, desmin and troponin T showed different levels of degradation in control, AP and PKA groups under different Ca2+ concentrations. Generally, more degradation products were detected with the increase of Ca2+ concentration. Compared to the control, the protein degradation was higher in AP-treated group and lower in PKA-treated group. This study shows that phosphorylation prevents proteolytic susceptibility of myofibrillar proteins to degradation by μ-calpain, indicating that protein phosphorylation plays an important role in meat tenderisation during post-mortem ageing.
Collapse
Affiliation(s)
- Zheng Li
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing 100193, PR China.
| | - Xin Li
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing 100193, PR China
| | - Xing Gao
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing 100193, PR China
| | - Qingwu W Shen
- College of Food Science and Technology, Hunan Agricultural University, Changsha, Hunan 410128, PR China
| | - Manting Du
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing 100193, PR China
| | - Dequan Zhang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing 100193, PR China.
| |
Collapse
|
15
|
Abstract
Lactic acid bacteria (LAB) are important starter, commensal, or pathogenic microorganisms. The stress physiology of LAB has been studied in depth for over 2 decades, fueled mostly by the technological implications of LAB robustness in the food industry. Survival of probiotic LAB in the host and the potential relatedness of LAB virulence to their stress resilience have intensified interest in the field. Thus, a wealth of information concerning stress responses exists today for strains as diverse as starter (e.g., Lactococcus lactis), probiotic (e.g., several Lactobacillus spp.), and pathogenic (e.g., Enterococcus and Streptococcus spp.) LAB. Here we present the state of the art for LAB stress behavior. We describe the multitude of stresses that LAB are confronted with, and we present the experimental context used to study the stress responses of LAB, focusing on adaptation, habituation, and cross-protection as well as on self-induced multistress resistance in stationary phase, biofilms, and dormancy. We also consider stress responses at the population and single-cell levels. Subsequently, we concentrate on the stress defense mechanisms that have been reported to date, grouping them according to their direct participation in preserving cell energy, defending macromolecules, and protecting the cell envelope. Stress-induced responses of probiotic LAB and commensal/pathogenic LAB are highlighted separately due to the complexity of the peculiar multistress conditions to which these bacteria are subjected in their hosts. Induction of prophages under environmental stresses is then discussed. Finally, we present systems-based strategies to characterize the "stressome" of LAB and to engineer new food-related and probiotic LAB with improved stress tolerance.
Collapse
|
16
|
Hoffmann T, Wensing A, Brosius M, Steil L, Völker U, Bremer E. Osmotic control of opuA expression in Bacillus subtilis and its modulation in response to intracellular glycine betaine and proline pools. J Bacteriol 2013; 195:510-22. [PMID: 23175650 PMCID: PMC3554007 DOI: 10.1128/jb.01505-12] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2012] [Accepted: 11/14/2012] [Indexed: 11/20/2022] Open
Abstract
Glycine betaine is an effective osmoprotectant for Bacillus subtilis. Its import into osmotically stressed cells led to the buildup of large pools, whose size was sensitively determined by the degree of the osmotic stress imposed. The amassing of glycine betaine caused repression of the formation of an osmostress-adaptive pool of proline, the only osmoprotectant that B. subtilis can synthesize de novo. The ABC transporter OpuA is the main glycine betaine uptake system of B. subtilis. Expression of opuA was upregulated in response to both sudden and sustained increases in the external osmolarity. Nonionic osmolytes exerted a stronger inducing effect on transcription than ionic osmolytes, and this was reflected in the development of corresponding OpuA-mediated glycine betaine pools. Primer extension analysis and site-directed mutagenesis pinpointed the osmotically controlled opuA promoter. Deviations from the consensus sequence of SigA-type promoters serve to keep the transcriptional activity of the opuA promoter low in the absence of osmotic stress. opuA expression was downregulated in a finely tuned manner in response to increases in the intracellular glycine betaine pool, regardless of whether this osmoprotectant was imported or was newly synthesized from choline. Such an effect was also exerted by carnitine, an effective osmoprotectant for B. subtilis that is not a substrate for the OpuA transporter. opuA expression was upregulated in a B. subtilis mutant that was unable to synthesize proline in response to osmotic stress. Collectively, our data suggest that the intracellular solute pool is a key determinant for the osmotic control of opuA expression.
Collapse
Affiliation(s)
- Tamara Hoffmann
- Philipps-University Marburg, Department of Biology, Laboratory for Microbiology, Marburg, Germany
| | - Annette Wensing
- Philipps-University Marburg, Department of Biology, Laboratory for Microbiology, Marburg, Germany
| | - Margot Brosius
- Philipps-University Marburg, Department of Biology, Laboratory for Microbiology, Marburg, Germany
| | - Leif Steil
- Interfaculty Institute for Genetics and Functional Genomics, Department of Functional Genomics, Ernst-Moritz-Arndt University, Greifswald, Germany
| | - Uwe Völker
- Interfaculty Institute for Genetics and Functional Genomics, Department of Functional Genomics, Ernst-Moritz-Arndt University, Greifswald, Germany
| | - Erhard Bremer
- Philipps-University Marburg, Department of Biology, Laboratory for Microbiology, Marburg, Germany
| |
Collapse
|
17
|
Heat resistance and salt hypersensitivity in Lactococcus lactis due to spontaneous mutation of llmg_1816 (gdpP) induced by high-temperature growth. Appl Environ Microbiol 2012; 78:7753-9. [PMID: 22923415 DOI: 10.1128/aem.02316-12] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
During construction of several gene deletion mutants in Lactococcus lactis MG1363 which involved a high-temperature (37.5°C) incubation step, additional spontaneous mutations were observed which resulted in stable heat resistance and in some cases salt-hypersensitive phenotypes. Whole-genome sequencing of one strain which was both heat resistant and salt hypersensitive, followed by PCR and sequencing of four other mutants which shared these phenotypes, revealed independent mutations in llmg_1816 in all cases. This gene encodes a membrane-bound stress signaling protein of the GdpP family, members of which exhibit cyclic dimeric AMP (c-di-AMP)-specific phosphodiesterase activity. Mutations were predicted to lead to single amino acid substitutions or protein truncations. An independent llmg_1816 mutant (Δ1816), created using a suicide vector, also displayed heat resistance and salt hypersensitivity phenotypes which could be restored to wild-type levels following plasmid excision. L. lactis Δ1816 also displayed improved growth in response to sublethal concentrations of penicillin G. High-temperature incubation of a wild-type industrial L. lactis strain also resulted in spontaneous mutation of llmg_1816 and heat-resistant and salt-hypersensitive phenotypes, suggesting that this is not a strain-specific phenomenon and that it is independent of a plasmid integration event. Acidification of milk by the llmg_1816-altered strain was inhibited by lower salt concentrations than the parent strain. This study demonstrates that spontaneous mutations can occur during high-temperature growth of L. lactis and that inactivation of llmg_1816 leads to temperature resistance and salt hypersensitivity.
Collapse
|
18
|
de Jong A, Pietersma H, Cordes M, Kuipers OP, Kok J. PePPER: a webserver for prediction of prokaryote promoter elements and regulons. BMC Genomics 2012; 13:299. [PMID: 22747501 PMCID: PMC3472324 DOI: 10.1186/1471-2164-13-299] [Citation(s) in RCA: 114] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2011] [Accepted: 04/13/2012] [Indexed: 11/29/2022] Open
Abstract
Background Accurate prediction of DNA motifs that are targets of RNA polymerases, sigma factors and transcription factors (TFs) in prokaryotes is a difficult mission mainly due to as yet undiscovered features in DNA sequences or structures in promoter regions. Improved prediction and comparison algorithms are currently available for identifying transcription factor binding sites (TFBSs) and their accompanying TFs and regulon members. Results We here extend the current databases of TFs, TFBSs and regulons with our knowledge on Lactococcus lactis and developed a webserver for prediction, mining and visualization of prokaryote promoter elements and regulons via a novel concept. This new approach includes an all-in-one method of data mining for TFs, TFBSs, promoters, and regulons for any bacterial genome via a user-friendly webserver. We demonstrate the power of this method by mining WalRK regulons in Lactococci and Streptococci and, vice versa, use L. lactis regulon data (CodY) to mine closely related species. Conclusions The PePPER webserver offers, besides the all-in-one analysis method, a toolbox for mining for regulons, promoters and TFBSs and accommodates a new L. lactis regulon database in addition to already existing regulon data. Identification of putative regulons and full annotation of intergenic regions in any bacterial genome on the basis of existing knowledge on a related organism can now be performed by biologists and it can be done for a wide range of regulons. On the basis of the PePPER output, biologist can design experiments to further verify the existence and extent of the proposed regulons. The PePPER webserver is freely accessible at http://pepper.molgenrug.nl.
Collapse
Affiliation(s)
- Anne de Jong
- Department of Molecular Genetics, University of Groningen, Groningen Biomolecular Sciences and Biotechnology Institute, 9747 AG Groningen, The Netherlands
| | | | | | | | | |
Collapse
|
19
|
Siezen RJ, Bayjanov JR, Felis GE, van der Sijde MR, Starrenburg M, Molenaar D, Wels M, van Hijum SAFT, van Hylckama Vlieg JET. Genome-scale diversity and niche adaptation analysis of Lactococcus lactis by comparative genome hybridization using multi-strain arrays. Microb Biotechnol 2011; 4:383-402. [PMID: 21338475 PMCID: PMC3818997 DOI: 10.1111/j.1751-7915.2011.00247.x] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Lactococcus lactis produces lactic acid and is widely used in the manufacturing of various fermented dairy products. However, the species is also frequently isolated from non-dairy niches, such as fermented plant material. Recently, these non-dairy strains have gained increasing interest, as they have been described to possess flavour-forming activities that are rarely found in dairy isolates and have diverse metabolic properties. We performed an extensive whole-genome diversity analysis on 39 L. lactis strains, isolated from dairy and plant sources. Comparative genome hybridization analysis with multi-strain microarrays was used to assess presence or absence of genes and gene clusters in these strains, relative to all L. lactis sequences in public databases, whereby chromosomal and plasmid-encoded genes were computationally analysed separately. Nearly 3900 chromosomal orthologous groups (chrOGs) were defined on basis of four sequenced chromosomes of L. lactis strains (IL1403, KF147, SK11, MG1363). Of these, 1268 chrOGs are present in at least 35 strains and represent the presently known core genome of L. lactis, and 72 chrOGs appear to be unique for L. lactis. Nearly 600 and 400 chrOGs were found to be specific for either the subspecies lactis or subspecies cremoris respectively. Strain variability was found in presence or absence of gene clusters related to growth on plant substrates, such as genes involved in the consumption of arabinose, xylan, α-galactosides and galacturonate. Further niche-specific differences were found in gene clusters for exopolysaccharides biosynthesis, stress response (iron transport, osmotolerance) and bacterial defence mechanisms (nisin biosynthesis). Strain variability of functions encoded on known plasmids included proteolysis, lactose fermentation, citrate uptake, metal ion resistance and exopolysaccharides biosynthesis. The present study supports the view of L. lactis as a species with a very flexible genome.
Collapse
Affiliation(s)
- Roland J Siezen
- Kluyver Centre for Genomics of Industrial Fermentation, NIZO food research, P.O. Box 20, 6710 BA Ede, the Netherlands.
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Ziegler C, Bremer E, Krämer R. The BCCT family of carriers: from physiology to crystal structure. Mol Microbiol 2011; 78:13-34. [PMID: 20923416 DOI: 10.1111/j.1365-2958.2010.07332.x] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Increases in the environmental osmolarity are key determinants for the growth of microorganisms. To ensure a physiologically acceptable level of cellular hydration and turgor at high osmolarity, many bacteria accumulate compatible solutes. Osmotically controlled uptake systems allow the scavenging of these compounds from scarce environmental sources as effective osmoprotectants. A number of these systems belong to the BCCT family (betaine-choline-carnitine-transporter), sodium- or proton-coupled transporters (e.g. BetP and BetT respectively) that are ubiquitous in microorganisms. The BCCT family also contains CaiT, an L-carnitine/γ-butyrobetaine antiporter that is not involved in osmotic stress responses. The glycine betaine transporter BetP from Corynebacterium glutamicum is a representative for osmoregulated symporters of the BCCT family and functions both as an osmosensor and osmoregulator. The crystal structure of BetP in an occluded conformation in complex with its substrate glycine betaine and two crystal structures of CaiT in an inward-facing open conformation in complex with L-carnitine and γ-butyrobetaine were reported recently. These structures and the wealth of biochemical data on the activity control of BetP in response to osmotic stress enable a correlation between the sensing of osmotic stress by a transporter protein with the ensuing regulation of transport activity. Molecular determinants governing the high-affinity binding of the compatible solutes by BetP and CaiT, the coupling in symporters and antiporters, and the osmoregulatory properties are discussed in detail for BetP and various BCCT carriers.
Collapse
Affiliation(s)
- Christine Ziegler
- Max-Planck Institute for Biophysics, Max-von-Laue Street 3, D-60438 Frankfurt, Germany
| | | | | |
Collapse
|
21
|
Wolters JC, Berntsson RPA, Gul N, Karasawa A, Thunnissen AMWH, Slotboom DJ, Poolman B. Ligand binding and crystal structures of the substrate-binding domain of the ABC transporter OpuA. PLoS One 2010; 5:e10361. [PMID: 20454456 PMCID: PMC2861598 DOI: 10.1371/journal.pone.0010361] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2010] [Accepted: 03/31/2010] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND The ABC transporter OpuA from Lactococcus lactis transports glycine betaine upon activation by threshold values of ionic strength. In this study, the ligand binding characteristics of purified OpuA in a detergent-solubilized state and of its substrate-binding domain produced as soluble protein (OpuAC) was characterized. PRINCIPAL FINDINGS The binding of glycine betaine to purified OpuA and OpuAC (K(D) = 4-6 microM) did not show any salt dependence or cooperative effects, in contrast to the transport activity. OpuAC is highly specific for glycine betaine and the related proline betaine. Other compatible solutes like proline and carnitine bound with affinities that were 3 to 4 orders of magnitude lower. The low affinity substrates were not noticeably transported by membrane-reconstituted OpuA. OpuAC was crystallized in an open (1.9 A) and closed-liganded (2.3 A) conformation. The binding pocket is formed by three tryptophans (Trp-prism) coordinating the quaternary ammonium group of glycine betaine in the closed-liganded structure. Even though the binding site of OpuAC is identical to that of its B. subtilis homolog, the affinity for glycine betaine is 4-fold higher. CONCLUSIONS Ionic strength did not affect substrate binding to OpuA, indicating that regulation of transport is not at the level of substrate binding, but rather at the level of translocation. The overlap between the crystal structures of OpuAC from L.lactis and B.subtilis, comprising the classical Trp-prism, show that the differences observed in the binding affinities originate from outside of the ligand binding site.
Collapse
Affiliation(s)
- Justina C. Wolters
- Biochemistry Department, Groningen Biomolecular Sciences and Biotechnology Institute, Netherlands Proteomics Centre, Zernike Institute for Advanced Materials, University of Groningen, Groningen, The Netherlands
| | - Ronnie P-A. Berntsson
- Biochemistry Department, Groningen Biomolecular Sciences and Biotechnology Institute, Netherlands Proteomics Centre, Zernike Institute for Advanced Materials, University of Groningen, Groningen, The Netherlands
| | - Nadia Gul
- Biochemistry Department, Groningen Biomolecular Sciences and Biotechnology Institute, Netherlands Proteomics Centre, Zernike Institute for Advanced Materials, University of Groningen, Groningen, The Netherlands
| | - Akira Karasawa
- Biochemistry Department, Groningen Biomolecular Sciences and Biotechnology Institute, Netherlands Proteomics Centre, Zernike Institute for Advanced Materials, University of Groningen, Groningen, The Netherlands
| | - Andy-Mark W. H. Thunnissen
- Biophysical Chemistry Department, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands
| | - Dirk-Jan Slotboom
- Biochemistry Department, Groningen Biomolecular Sciences and Biotechnology Institute, Netherlands Proteomics Centre, Zernike Institute for Advanced Materials, University of Groningen, Groningen, The Netherlands
| | - Bert Poolman
- Biochemistry Department, Groningen Biomolecular Sciences and Biotechnology Institute, Netherlands Proteomics Centre, Zernike Institute for Advanced Materials, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
22
|
Sirén N, Salonen K, Leisola M, Nyyssölä A. A new salt inducible expression system for Lactococcus lactis. Biochem Eng J 2009. [DOI: 10.1016/j.bej.2009.08.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
23
|
Kurz M. Compatible solute influence on nucleic acids: many questions but few answers. SALINE SYSTEMS 2008; 4:6. [PMID: 18522725 PMCID: PMC2430576 DOI: 10.1186/1746-1448-4-6] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2008] [Accepted: 06/03/2008] [Indexed: 12/21/2022]
Abstract
Compatible solutes are small organic osmolytes including but not limited to sugars, polyols, amino acids, and their derivatives. They are compatible with cell metabolism even at molar concentrations. A variety of organisms synthesize or take up compatible solutes for adaptation to extreme environments. In addition to their protective action on whole cells, compatible solutes display significant effects on biomolecules in vitro. These include stabilization of native protein and nucleic acid structures. They are used as additives in polymerase chain reactions to increase product yield and specificity, but also in other nucleic acid and protein applications. Interactions of compatible solutes with nucleic acids and protein-nucleic acid complexes are much less understood than the corresponding interactions of compatible solutes with proteins. Although we may begin to understand solute/nucleic acid interactions there are only few answers to the many questions we have. I summarize here the current state of knowledge and discuss possible molecular mechanisms and thermodynamics.
Collapse
Affiliation(s)
- Matthias Kurz
- Institut für Mikrobiologie & Biotechnologie, Rheinische Friedrich Wilhelms-Universität Bonn, Bonn, Germany.
| |
Collapse
|