1
|
Chaudhari YB, Várnai A, Sørlie M, Horn SJ, Eijsink VGH. Engineering cellulases for conversion of lignocellulosic biomass. Protein Eng Des Sel 2023; 36:gzad002. [PMID: 36892404 PMCID: PMC10394125 DOI: 10.1093/protein/gzad002] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 02/13/2023] [Accepted: 02/24/2023] [Indexed: 03/10/2023] Open
Abstract
Lignocellulosic biomass is a renewable source of energy, chemicals and materials. Many applications of this resource require the depolymerization of one or more of its polymeric constituents. Efficient enzymatic depolymerization of cellulose to glucose by cellulases and accessory enzymes such as lytic polysaccharide monooxygenases is a prerequisite for economically viable exploitation of this biomass. Microbes produce a remarkably diverse range of cellulases, which consist of glycoside hydrolase (GH) catalytic domains and, although not in all cases, substrate-binding carbohydrate-binding modules (CBMs). As enzymes are a considerable cost factor, there is great interest in finding or engineering improved and robust cellulases, with higher activity and stability, easy expression, and minimal product inhibition. This review addresses relevant engineering targets for cellulases, discusses a few notable cellulase engineering studies of the past decades and provides an overview of recent work in the field.
Collapse
Affiliation(s)
- Yogesh B Chaudhari
- Faculty of Chemistry, Biotechnology, and Food Science, NMBU-Norwegian University of Life Sciences, P.O. Box 5003, 1432 Ås, Norway
| | - Anikó Várnai
- Faculty of Chemistry, Biotechnology, and Food Science, NMBU-Norwegian University of Life Sciences, P.O. Box 5003, 1432 Ås, Norway
| | - Morten Sørlie
- Faculty of Chemistry, Biotechnology, and Food Science, NMBU-Norwegian University of Life Sciences, P.O. Box 5003, 1432 Ås, Norway
| | - Svein J Horn
- Faculty of Chemistry, Biotechnology, and Food Science, NMBU-Norwegian University of Life Sciences, P.O. Box 5003, 1432 Ås, Norway
| | - Vincent G H Eijsink
- Faculty of Chemistry, Biotechnology, and Food Science, NMBU-Norwegian University of Life Sciences, P.O. Box 5003, 1432 Ås, Norway
| |
Collapse
|
2
|
Schaller KS, Molina GA, Kari J, Schiano-di-Cola C, Sørensen TH, Borch K, Peters GH, Westh P. Virtual Bioprospecting of Interfacial Enzymes: Relating Sequence and Kinetics. ACS Catal 2022. [DOI: 10.1021/acscatal.2c02305] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Kay S. Schaller
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, DK-2800 Kgs. Lyngby, Denmark
- Department of Chemistry, Technical University of Denmark, Kemitorvet, DK-2800 Kgs. Lyngby, Denmark
| | - Gustavo Avelar Molina
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, DK-2800 Kgs. Lyngby, Denmark
| | - Jeppe Kari
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, DK-2800 Kgs. Lyngby, Denmark
- Department of Science and Environment, Roskilde University, Universitetsvej 1, DK-4000 Roskilde, Denmark
| | - Corinna Schiano-di-Cola
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, DK-2800 Kgs. Lyngby, Denmark
| | | | - Kim Borch
- Novozymes A/S, Biologiens Vej 2, DK-2800 Kgs. Lyngby, Denmark
| | - Günther H.J. Peters
- Department of Chemistry, Technical University of Denmark, Kemitorvet, DK-2800 Kgs. Lyngby, Denmark
| | - Peter Westh
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, DK-2800 Kgs. Lyngby, Denmark
| |
Collapse
|
3
|
Wei R, von Haugwitz G, Pfaff L, Mican J, Badenhorst CP, Liu W, Weber G, Austin HP, Bednar D, Damborsky J, Bornscheuer UT. Mechanism-Based Design of Efficient PET Hydrolases. ACS Catal 2022; 12:3382-3396. [PMID: 35368328 PMCID: PMC8939324 DOI: 10.1021/acscatal.1c05856] [Citation(s) in RCA: 97] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/04/2022] [Indexed: 01/06/2023]
Abstract
Polyethylene terephthalate (PET) is the most widespread synthetic polyester, having been utilized in textile fibers and packaging materials for beverages and food, contributing considerably to the global solid waste stream and environmental plastic pollution. While enzymatic PET recycling and upcycling have recently emerged as viable disposal methods for a circular plastic economy, only a handful of benchmark enzymes have been thoroughly described and subjected to protein engineering for improved properties over the last 16 years. By analyzing the specific material properties of PET and the reaction mechanisms in the context of interfacial biocatalysis, this Perspective identifies several limitations in current enzymatic PET degradation approaches. Unbalanced enzyme-substrate interactions, limited thermostability, and low catalytic efficiency at elevated reaction temperatures, and inhibition caused by oligomeric degradation intermediates still hamper industrial applications that require high catalytic efficiency. To overcome these limitations, successful protein engineering studies using innovative experimental and computational approaches have been published extensively in recent years in this thriving research field and are summarized and discussed in detail here. The acquired knowledge and experience will be applied in the near future to address plastic waste contributed by other mass-produced polymer types (e.g., polyamides and polyurethanes) that should also be properly disposed by biotechnological approaches.
Collapse
Affiliation(s)
- Ren Wei
- Institute
of Biochemistry, Department of Biotechnology & Enzyme Catalysis, University of Greifswald, Felix-Hausdorff-Str. 4, D-17487 Greifswald, Germany
| | - Gerlis von Haugwitz
- Institute
of Biochemistry, Department of Biotechnology & Enzyme Catalysis, University of Greifswald, Felix-Hausdorff-Str. 4, D-17487 Greifswald, Germany
| | - Lara Pfaff
- Institute
of Biochemistry, Department of Biotechnology & Enzyme Catalysis, University of Greifswald, Felix-Hausdorff-Str. 4, D-17487 Greifswald, Germany
| | - Jan Mican
- Loschmidt
Laboratories, Department of Experimental Biology and RECETOX, Faculty
of Science, Masaryk University, 625 00 Brno, Czech Republic
- International
Clinical Research Center, St. Anne’s University Hospital and
Faculty of Medicine, Masaryk University, 656 91 Brno, Czech Republic
| | - Christoffel P.
S. Badenhorst
- Institute
of Biochemistry, Department of Biotechnology & Enzyme Catalysis, University of Greifswald, Felix-Hausdorff-Str. 4, D-17487 Greifswald, Germany
| | - Weidong Liu
- Tianjin
Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport
Economic Area, Tianjin, 300308, China
| | - Gert Weber
- Macromolecular
Crystallography, Helmholtz-Zentrum Berlin
für Materialien und Energie, Albert-Einstein-Straße 15, D-12489 Berlin, Germany
| | - Harry P. Austin
- Institute
of Biochemistry, Department of Biotechnology & Enzyme Catalysis, University of Greifswald, Felix-Hausdorff-Str. 4, D-17487 Greifswald, Germany
| | - David Bednar
- Loschmidt
Laboratories, Department of Experimental Biology and RECETOX, Faculty
of Science, Masaryk University, 625 00 Brno, Czech Republic
- International
Clinical Research Center, St. Anne’s University Hospital and
Faculty of Medicine, Masaryk University, 656 91 Brno, Czech Republic
| | - Jiri Damborsky
- Loschmidt
Laboratories, Department of Experimental Biology and RECETOX, Faculty
of Science, Masaryk University, 625 00 Brno, Czech Republic
- International
Clinical Research Center, St. Anne’s University Hospital and
Faculty of Medicine, Masaryk University, 656 91 Brno, Czech Republic
| | - Uwe T. Bornscheuer
- Institute
of Biochemistry, Department of Biotechnology & Enzyme Catalysis, University of Greifswald, Felix-Hausdorff-Str. 4, D-17487 Greifswald, Germany
| |
Collapse
|
4
|
Sprenger K, Roeters SJ, Mauri S, Mertig R, Nishiyama Y, Pfaendtner J, Weidner T. Direct Evidence for Aligned Binding of Cellulase Enzymes to Cellulose Surfaces. J Phys Chem Lett 2021; 12:10684-10688. [PMID: 34709817 DOI: 10.1021/acs.jpclett.1c02757] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The conversion of biomass into green fuels and chemicals is of great societal interest. Engineers have been designing new cellulase enzymes for the breakdown of otherwise insoluble cellulose materials. A barrier to the rational design of new enzymes has been our lack of a molecular picture of how cellulase binding occurs. A critical factor is the attachment via the enzyme's carbohydrate binding module (CBM). To elucidate the structural and mechanistic details of cellulase adsorption, we have combined experimental data from sum frequency generation spectroscopy with molecular dynamics simulations to probe the equilibrium structure and surface alignment of a 14-residue peptide mimicking the CBM. The data show that binding is driven by hydrogen bonding and that tyrosine side chains within the CBM align the cellulase with the registry of the cellulose surface. Such an alignment is favorable for the translocation and effective cellulose breakdown and is therefore likely an important parameter for the design of novel enzymes.
Collapse
Affiliation(s)
- Kayla Sprenger
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Steven J Roeters
- Department of Chemistry, Aarhus University, 8000 Aarhus C, Denmark
| | - Sergio Mauri
- Max Planck Institute for Polymer Research, 55128 Mainz, Germany
| | - Rolf Mertig
- Department of Chemistry, Aarhus University, 8000 Aarhus C, Denmark
| | | | - Jim Pfaendtner
- Department of Chemical Engineering, University of Washington, Seattle, Washington 98192, United States
| | - Tobias Weidner
- Department of Chemistry, Aarhus University, 8000 Aarhus C, Denmark
- Department of Chemical Engineering, University of Washington, Seattle, Washington 98192, United States
| |
Collapse
|
5
|
Gado JE, Harrison BE, Sandgren M, Ståhlberg J, Beckham GT, Payne CM. Machine learning reveals sequence-function relationships in family 7 glycoside hydrolases. J Biol Chem 2021; 297:100931. [PMID: 34216620 PMCID: PMC8329511 DOI: 10.1016/j.jbc.2021.100931] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 06/18/2021] [Accepted: 06/29/2021] [Indexed: 11/28/2022] Open
Abstract
Family 7 glycoside hydrolases (GH7) are among the principal enzymes for cellulose degradation in nature and industrially. These enzymes are often bimodular, including a catalytic domain and carbohydrate-binding module (CBM) attached via a flexible linker, and exhibit an active site that binds cello-oligomers of up to ten glucosyl moieties. GH7 cellulases consist of two major subtypes: cellobiohydrolases (CBH) and endoglucanases (EG). Despite the critical importance of GH7 enzymes, there remain gaps in our understanding of how GH7 sequence and structure relate to function. Here, we employed machine learning to gain data-driven insights into relationships between sequence, structure, and function across the GH7 family. Machine-learning models, trained only on the number of residues in the active-site loops as features, were able to discriminate GH7 CBHs and EGs with up to 99% accuracy, demonstrating that the lengths of loops A4, B2, B3, and B4 strongly correlate with functional subtype across the GH7 family. Classification rules were derived such that specific residues at 42 different sequence positions each predicted the functional subtype with accuracies surpassing 87%. A random forest model trained on residues at 19 positions in the catalytic domain predicted the presence of a CBM with 89.5% accuracy. Our machine learning results recapitulate, as top-performing features, a substantial number of the sequence positions determined by previous experimental studies to play vital roles in GH7 activity. We surmise that the yet-to-be-explored sequence positions among the top-performing features also contribute to GH7 functional variation and may be exploited to understand and manipulate function.
Collapse
Affiliation(s)
- Japheth E Gado
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, Kentucky, USA; Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, Colorado, USA
| | - Brent E Harrison
- Department of Computer Science, University of Kentucky, Lexington, Kentucky, USA
| | - Mats Sandgren
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Jerry Ståhlberg
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Gregg T Beckham
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, Colorado, USA
| | - Christina M Payne
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, Kentucky, USA.
| |
Collapse
|
6
|
Christensen SJ, Badino SF, Cavaleiro AM, Borch K, Westh P. Functional analysis of chimeric TrCel6A enzymes with different carbohydrate binding modules. Protein Eng Des Sel 2020; 32:401-409. [PMID: 32100026 DOI: 10.1093/protein/gzaa003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 01/10/2019] [Accepted: 01/13/2019] [Indexed: 11/14/2022] Open
Abstract
The glycoside hydrolase (GH) family 6 is an important group of enzymes that constitute an essential part of industrial enzyme cocktails used to convert lignocellulose into fermentable sugars. In nature, enzymes from this family often have a carbohydrate binding module (CBM) from the CBM family 1. These modules are known to promote adsorption to the cellulose surface and influence enzymatic activity. Here, we have investigated the functional diversity of CBMs found within the GH6 family. This was done by constructing five chimeric enzymes based on the model enzyme, TrCel6A, from the soft-rot fungus Trichoderma reesei. The natural CBM of this enzyme was exchanged with CBMs from other GH6 enzymes originating from different cellulose degrading fungi. The chimeric enzymes were expressed in the same host and investigated in adsorption and quasi-steady-state kinetic experiments. Our results quantified functional differences of these phylogenetically distant binding modules. Thus, the partitioning coefficient for substrate binding varied 4-fold, while the maximal turnover (kcat) showed a 2-fold difference. The wild-type enzyme showed the highest cellulose affinity on all tested substrates and the highest catalytic turnover. The CBM from Serendipita indica strongly promoted the enzyme's ability to form productive complexes with sites on the substrate surface but showed lower turnover of the complex. We conclude that the CBM plays an important role for the functional differences between GH6 wild-type enzymes.
Collapse
Affiliation(s)
- Stefan Jarl Christensen
- Research Unit for Functional Biomaterials, Department of Science and Environment, Roskilde University, building 28B, DK-4000, Roskilde, Denmark
| | - Silke Flindt Badino
- Research Unit for Functional Biomaterials, Department of Science and Environment, Roskilde University, building 28B, DK-4000, Roskilde, Denmark
| | - Ana Mafalda Cavaleiro
- Research Unit for Functional Biomaterials, Department of Science and Environment, Roskilde University, building 28B, DK-4000, Roskilde, Denmark.,Novozymes A/S, Department of Enzyme Discovery, Rævehøjvej 32A, DK-2800 Kgs. Lyngby, Denmark
| | - Kim Borch
- Novozymes A/S, Department of Enzyme Discovery, Rævehøjvej 32A, DK-2800 Kgs. Lyngby, Denmark
| | - Peter Westh
- Department of Biotechnology and Biomedicine, Technical University of Denmark, building 224, DK-2800, Kgs. Lyngby, Denmark
| |
Collapse
|
7
|
Abstract
Mesostructured silica nanoparticles offer a unique opportunity in the field of biocatalysis thanks to their outstanding properties. The tunable pore size in the range of mesopores allows for immobilizing bulky enzyme molecules. The large surface area improves the catalytic efficiency by increasing enzyme loading and finely dispersing the biocatalyst molecules. The easily tunable pore morphology allows for creating a proper environment to host an enzyme. The confining effect of mesopores can improve the enzyme stability and its resistance to extreme pH and temperatures. Benefits also arise from other peculiarities of nanoparticles such as Brownian motion and easy dispersion. Fossil fuel depletion and environmental pollution have led to the need for alternative sustainable and renewable energy sources such as biofuels. In this context, lignocellulosic biomass has been considered as a strategic fuel source. Cellulases are a class of hydrolytic enzymes that convert cellulose into fermentable sugars. This review is intended to survey the immobilization of cellulolytic enzymes (cellulases and β-glucosidase) onto mesoporous silica nanoparticles and their catalytic performance, with the aim to give a contribution to the urgent action required against climate change and its impacts, by biorefineries’ development.
Collapse
|
8
|
Patel AK, Singhania RR, Sim SJ, Pandey A. Thermostable cellulases: Current status and perspectives. BIORESOURCE TECHNOLOGY 2019; 279:385-392. [PMID: 30685132 DOI: 10.1016/j.biortech.2019.01.049] [Citation(s) in RCA: 114] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 01/09/2019] [Accepted: 01/11/2019] [Indexed: 05/18/2023]
Abstract
It is envisaged that the utilization of lignocellulosic biomass for ethanol production for transport sector, would make cellulases the most demanded industrial enzyme. The greatest potential of cellulolytic enzymes lies in ethanol production from biomass by enzymatic hydrolysis of cellulose but low thermostability and low titer of cellulase production resulting into high cost of the enzyme which is the major set-back. A number of research groups are working on cellulase to improve its thermostability so as to be able to perform hydrolysis at elevated temperatures which would eventually increase the efficiency of cellulose hydrolysis. The technologies developed from lignocellulosic biomass via cellulose hydrolysis promise environmental and economical sustainability in the long run along with non-dependence on nonrenewable energy source. This review deals with the important sources of thermostable cellulases, mechanism, its regulation, strategies to enhance the thermostability further with respect to its importance for biofuel applications.
Collapse
Affiliation(s)
- Anil K Patel
- Department of Chemical and Biological Engineering, Korea University, Seoul 02841, Republic of Korea
| | | | - Sang Jun Sim
- Department of Chemical and Biological Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Ashok Pandey
- Centre for Innovation and Translational Research, Indian Institute of Toxicological Research, Lucknow 226 001, India
| |
Collapse
|
9
|
An Insight into Fungal Cellulases and Their Industrial Applications. Fungal Biol 2019. [DOI: 10.1007/978-3-030-14726-6_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
10
|
Kari J, Olsen JP, Jensen K, Badino SF, Krogh KBRM, Borch K, Westh P. Sabatier Principle for Interfacial (Heterogeneous) Enzyme Catalysis. ACS Catal 2018. [DOI: 10.1021/acscatal.8b03547] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Jeppe Kari
- Research Unit for Functional Biomaterials, Roskilde University, 1 Universitetsvej, DK-4000 Roskilde, Denmark
| | - Johan P. Olsen
- Novozymes A/S, Krogshøjvej 36, DK-2880 Bagsværd, Denmark
| | - Kenneth Jensen
- Novozymes A/S, Krogshøjvej 36, DK-2880 Bagsværd, Denmark
| | - Silke F. Badino
- Research Unit for Functional Biomaterials, Roskilde University, 1 Universitetsvej, DK-4000 Roskilde, Denmark
| | | | - Kim Borch
- Novozymes A/S, Krogshøjvej 36, DK-2880 Bagsværd, Denmark
| | - Peter Westh
- Research Unit for Functional Biomaterials, Roskilde University, 1 Universitetsvej, DK-4000 Roskilde, Denmark
| |
Collapse
|
11
|
Westh P, Borch K, Sørensen T, Tokin R, Kari J, Badino S, Cavaleiro MA, Røjel N, Christensen S, Vesterager CS, Schiano-di-Cola C. Thermoactivation of a cellobiohydrolase. Biotechnol Bioeng 2018; 115:831-838. [PMID: 29240229 DOI: 10.1002/bit.26513] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 11/21/2017] [Accepted: 12/04/2017] [Indexed: 01/11/2023]
Abstract
We have measured activity and substrate affinity of the thermostable cellobiohydrolase, Cel7A, from Rasamsonia emersonii over a broad range of temperatures. For the wild type enzyme, which does not have a Carbohydrate Binding Module (CBM), higher temperature only led to moderately increased activity against cellulose, and we ascribed this to a pronounced, temperature induced desorption of enzyme from the substrate surface. We also tested a "high affinity" variant of R. emersonii Cel7A with a linker and CBM from a related enzyme. At room temperature, the activity of the variant was similar to the wild type, but the variant was more accelerated by temperature and about two-fold faster around 70 °C. This better thermoactivation of the high-affinity variant could not be linked to differences in stability or the catalytic process, but coincided with less desorption as temperature increased. Based on these observations and earlier reports on moderate thermoactivation of cellulases, we suggest that better cellulolytic activity at industrially relevant temperatures may be attained by engineering improved substrate affinity into enzymes that already possess good thermostability.
Collapse
Affiliation(s)
- Peter Westh
- Department of Science and Environment, INM, Universitetsvej 1, Roskilde, Denmark
| | | | - Trine Sørensen
- Department of Science and Environment, INM, Universitetsvej 1, Roskilde, Denmark
| | - Radina Tokin
- Department of Science and Environment, INM, Universitetsvej 1, Roskilde, Denmark
| | - Jeppe Kari
- Department of Science and Environment, INM, Universitetsvej 1, Roskilde, Denmark
| | - Silke Badino
- Department of Science and Environment, INM, Universitetsvej 1, Roskilde, Denmark
| | | | - Nanna Røjel
- Department of Science and Environment, INM, Universitetsvej 1, Roskilde, Denmark
| | - Stefan Christensen
- Department of Science and Environment, INM, Universitetsvej 1, Roskilde, Denmark
| | - Cynthia S Vesterager
- Department of Science and Environment, INM, Universitetsvej 1, Roskilde, Denmark
| | | |
Collapse
|
12
|
Characterization of a novel thermostable GH45 endoglucanase from Chaetomium thermophilum and its biodegradation of pectin. J Biosci Bioeng 2017; 124:271-276. [DOI: 10.1016/j.jbiosc.2017.03.017] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 01/30/2017] [Accepted: 03/31/2017] [Indexed: 01/21/2023]
|
13
|
Yang JK, Xiong W, Chen FY, Xu L, Han ZG. Aromatic amino acids in the cellulose binding domain of Penicillium crustosum endoglucanase EGL1 differentially contribute to the cellulose affinity of the enzyme. PLoS One 2017; 12:e0176444. [PMID: 28475645 PMCID: PMC5419506 DOI: 10.1371/journal.pone.0176444] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 04/10/2017] [Indexed: 11/29/2022] Open
Abstract
The cellulose binding domain (CBD) of cellulase binding to cellulosic materials is the initiation of a synergistic action on the enzymatic hydrolysis of the most abundant renewable biomass resources in nature. The binding of the CBD domain to cellulosic substrates generally relies on the interaction between the aromatic amino acids structurally located on the flat face of the CBD domain and the glucose rings of cellulose. In this study, we found the CBD domain of a newly cloned Penicillium crustosum endoglucanase EGL1, which was phylogenetically related to Aspergillus, Fusarium and Rhizopus, and divergent from the well-characterized Trichoderma reeseis cellulase CBD domain, contain two conserved aromatic amino acid-rich regions, Y451-Y452 and Y477-Y478-Y479, among which three amino acids Y451, Y477, and Y478 structurally sited on a flat face of this domain. Cellulose binding assays with green fluorescence protein as the marker, adsorption isotherm assays and an isothermal titration calorimetry assays revealed that although these three amino acids participated in this process, the Y451-Y452 appears to contribute more to the cellulose binding than Y477-Y478-Y479. Further glycine scanning mutagenesis and structural modelling revealed that the binding between CBD domain and cellulosic materials might be multi-amino-acids that participated in this process. The flexible poly-glucose molecule could contact Y451, Y477, and Y478 which form the contacting flat face of CBD domain as the typical model, some other amino acids in or outside the flat face might also participate in the interaction. Thus, it is possible that the conserved Y451-Y452 of CBD might have a higher chance of contacting the cellulosic substrates, contributing more to the affinity of CBD than the other amino acids.
Collapse
Affiliation(s)
- Jiang-Ke Yang
- College of Biology and Pharmaceutical Engineering, Wuhan Polytechnic University, Wuhan, China
- * E-mail:
| | - Wei Xiong
- College of Biology and Pharmaceutical Engineering, Wuhan Polytechnic University, Wuhan, China
| | - Fang-Yuan Chen
- College of Biology and Pharmaceutical Engineering, Wuhan Polytechnic University, Wuhan, China
| | - Li Xu
- College of Biology and Pharmaceutical Engineering, Wuhan Polytechnic University, Wuhan, China
| | - Zheng-Gang Han
- College of Biology and Pharmaceutical Engineering, Wuhan Polytechnic University, Wuhan, China
| |
Collapse
|
14
|
Recabarren R, Fuenzalida-Valdivia I, Alzate-Morales J. Studying the binding mechanisms of veratryl alcohol to P. chrysosporium lignin peroxidase: insights from theoretical approaches. Theor Chem Acc 2016. [DOI: 10.1007/s00214-016-1828-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
15
|
Happs RM, Guan X, Resch MG, Davis MF, Beckham GT, Tan Z, Crowley MF. O-glycosylation effects on family 1 carbohydrate-binding module solution structures. FEBS J 2015; 282:4341-56. [PMID: 26307003 DOI: 10.1111/febs.13500] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 08/18/2015] [Accepted: 08/21/2015] [Indexed: 01/20/2023]
Abstract
UNLABELLED Family 1 carbohydrate-binding modules (CBMs) are ubiquitous components of multimodular fungal enzymes that degrade plant cell wall polysaccharides and bind specifically to cellulose. Native glycosylation of family 1 CBMs has been shown to substantially impact multiple physical properties, including thermal and proteolytic stability and cellulose binding affinity. To gain molecular insights into the changes in CBM properties upon glycosylation, solution structures of two glycoforms of a Trichoderma reesei family 1 CBM were studied by NMR spectroscopy: a glycosylated family 1 CBM with a mannose group attached to both Thr1 and Ser3 and a second family 1 CBM with single mannose groups attached to Thr1, Ser3 and Ser14. The structures clearly reveal that monosaccharides at both Ser3 and Ser14 on family 1 CBMs present additional cellulose binding platforms, similar to well-characterized aromatic residues at the binding interface, which align to the cellulose surface. These results are in agreement with previous experimental work demonstrating that glycans at Ser3 and Ser14 impart significant improvements in binding affinity. Additionally, detailed analysis of the NMR structures and molecular simulations indicates that the protein backbone of the CBM is not significantly altered by attachment of monosaccharides, and that the mannose attached to Ser14 may be more flexible than the mannose at Ser3. Overall, the present study reveals how family 1 CBM structures are affected by covalent attachment of monosaccharides, which are likely important post-translational modifications of these common subdomains of fungal plant cell wall degrading enzymes. DATABASE Structural data have been deposited in the RCSB Protein Data Bank (PDB codes: 2MWJ and 2MWK) and the BioMagRes Bank (BMRB codes: 25331 and 25332) for CBM_M2 and CBM_M3, respectively.
Collapse
Affiliation(s)
- Renee M Happs
- National Renewable Energy Laboratory, National Bioenergy Center, Golden, CO, USA
| | - Xiaoyang Guan
- Department of Chemistry and Biochemistry and BioFrontiers Institute, University of Colorado, Boulder, CO, USA
| | - Michael G Resch
- National Renewable Energy Laboratory, National Bioenergy Center, Golden, CO, USA
| | - Mark F Davis
- National Renewable Energy Laboratory, National Bioenergy Center, Golden, CO, USA
| | - Gregg T Beckham
- National Renewable Energy Laboratory, National Bioenergy Center, Golden, CO, USA
| | - Zhongping Tan
- Department of Chemistry and Biochemistry and BioFrontiers Institute, University of Colorado, Boulder, CO, USA
| | - Michael F Crowley
- National Renewable Energy Laboratory, Biosciences Center, Golden, CO, USA
| |
Collapse
|
16
|
Payne CM, Knott BC, Mayes HB, Hansson H, Himmel ME, Sandgren M, Ståhlberg J, Beckham GT. Fungal Cellulases. Chem Rev 2015; 115:1308-448. [DOI: 10.1021/cr500351c] [Citation(s) in RCA: 533] [Impact Index Per Article: 53.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Christina M. Payne
- Department
of Chemical and Materials Engineering and Center for Computational
Sciences, University of Kentucky, 177 F. Paul Anderson Tower, Lexington, Kentucky 40506, United States
| | - Brandon C. Knott
- National
Bioenergy Center, National Renewable Energy Laboratory, 15013 Denver
West Parkway, Golden, Colorado 80401, United States
| | - Heather B. Mayes
- Department
of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Henrik Hansson
- Department
of Chemistry and Biotechnology, Swedish University of Agricultural Sciences, Uppsala BioCenter, Almas allé 5, SE-75651 Uppsala, Sweden
| | - Michael E. Himmel
- Biosciences
Center, National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, Colorado 80401, United States
| | - Mats Sandgren
- Department
of Chemistry and Biotechnology, Swedish University of Agricultural Sciences, Uppsala BioCenter, Almas allé 5, SE-75651 Uppsala, Sweden
| | - Jerry Ståhlberg
- Department
of Chemistry and Biotechnology, Swedish University of Agricultural Sciences, Uppsala BioCenter, Almas allé 5, SE-75651 Uppsala, Sweden
| | - Gregg T. Beckham
- National
Bioenergy Center, National Renewable Energy Laboratory, 15013 Denver
West Parkway, Golden, Colorado 80401, United States
| |
Collapse
|
17
|
Greene ER, Himmel ME, Beckham GT, Tan Z. Glycosylation of Cellulases: Engineering Better Enzymes for Biofuels. Adv Carbohydr Chem Biochem 2015; 72:63-112. [PMID: 26613815 DOI: 10.1016/bs.accb.2015.08.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Cellulose in plant cell walls is the largest reservoir of renewable carbon on Earth. The saccharification of cellulose from plant biomass into soluble sugars can be achieved using fungal and bacterial cellulolytic enzymes, cellulases, and further converted into fuels and chemicals. Most fungal cellulases are both N- and O-glycosylated in their native form, yet the consequences of glycosylation on activity and structure are not fully understood. Studying protein glycosylation is challenging as glycans are extremely heterogeneous, stereochemically complex, and glycosylation is not under direct genetic control. Despite these limitations, many studies have begun to unveil the role of cellulase glycosylation, especially in the industrially relevant cellobiohydrolase from Trichoderma reesei, Cel7A. Glycosylation confers many beneficial properties to cellulases including enhanced activity, thermal and proteolytic stability, and structural stabilization. However, glycosylation must be controlled carefully as such positive effects can be dampened or reversed. Encouragingly, methods for the manipulation of glycan structures have been recently reported that employ genetic tuning of glycan-active enzymes expressed from homogeneous and heterologous fungal hosts. Taken together, these studies have enabled new strategies for the exploitation of protein glycosylation for the production of enhanced cellulases for biofuel production.
Collapse
|
18
|
Carbohydrate-binding modules of fungal cellulases: occurrence in nature, function, and relevance in industrial biomass conversion. ADVANCES IN APPLIED MICROBIOLOGY 2014; 88:103-65. [PMID: 24767427 DOI: 10.1016/b978-0-12-800260-5.00004-8] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
In this review, the present knowledge on the occurrence of cellulases, with a special emphasis on the presence of carbohydrate-binding modules (CBMs) in various fungal strains, has been summarized. The importance of efficient fungal cellulases is growing due to their potential uses in biorefinery processes where lignocellulosic biomasses are converted to platform sugars and further to biofuels and chemicals. Most secreted cellulases studied in detail have a bimodular structure containing an active core domain attached to a CBM. CBMs are traditionally been considered as essential parts in cellulases, especially in cellobiohydrolases. However, presently available genome data indicate that many cellulases lack the binding domains in cellulose-degrading organisms. Recent data also demonstrate that CBMs are not necessary for the action of cellulases and they solely increase the concentration of enzymes on the substrate surfaces. On the other hand, in practical industrial processes where high substrate concentrations with low amounts of water are employed, the enzymes have been shown to act equally efficiently with and without CBM. Furthermore, available kinetic data show that enzymes without CBMs can desorb more readily from the often lignaceous substrates, that is, they are not stuck on the substrates and are thus available for new actions. In this review, the available data on the natural habitats of different wood-degrading organisms (with emphasis on the amount of water present during wood degradation) and occurrence of cellulose-binding domains in their genome have been assessed in order to identify evolutionary advantages for the development of CBM-less cellulases in nature.
Collapse
|
19
|
Specificity of O-glycosylation in enhancing the stability and cellulose binding affinity of Family 1 carbohydrate-binding modules. Proc Natl Acad Sci U S A 2014; 111:7612-7. [PMID: 24821760 DOI: 10.1073/pnas.1402518111] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The majority of biological turnover of lignocellulosic biomass in nature is conducted by fungi, which commonly use Family 1 carbohydrate-binding modules (CBMs) for targeting enzymes to cellulose. Family 1 CBMs are glycosylated, but the effects of glycosylation on CBM function remain unknown. Here, the effects of O-mannosylation are examined on the Family 1 CBM from the Trichoderma reesei Family 7 cellobiohydrolase at three glycosylation sites. To enable this work, a procedure to synthesize glycosylated Family 1 CBMs was developed. Subsequently, a library of 20 CBMs was synthesized with mono-, di-, or trisaccharides at each site for comparison of binding affinity, proteolytic stability, and thermostability. The results show that, although CBM mannosylation does not induce major conformational changes, it can increase the thermolysin cleavage resistance up to 50-fold depending on the number of mannose units on the CBM and the attachment site. O-Mannosylation also increases the thermostability of CBM glycoforms up to 16 °C, and a mannose disaccharide at Ser3 seems to have the largest themostabilizing effect. Interestingly, the glycoforms with small glycans at each site displayed higher binding affinities for crystalline cellulose, and the glycoform with a single mannose at each of three positions conferred the highest affinity enhancement of 7.4-fold. Overall, by combining chemical glycoprotein synthesis and functional studies, we show that specific glycosylation events confer multiple beneficial properties on Family 1 CBMs.
Collapse
|
20
|
Increased enzyme binding to substrate is not necessary for more efficient cellulose hydrolysis. Proc Natl Acad Sci U S A 2013; 110:10922-7. [PMID: 23784776 DOI: 10.1073/pnas.1213426110] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Substrate binding is typically one of the rate-limiting steps preceding enzyme catalytic action during homogeneous reactions. However, interfacial-based enzyme catalysis on insoluble crystalline substrates, like cellulose, has additional bottlenecks of individual biopolymer chain decrystallization from the substrate interface followed by its processive depolymerization to soluble sugars. This additional decrystallization step has ramifications on the role of enzyme-substrate binding and its relationship to overall catalytic efficiency. We found that altering the crystalline structure of cellulose from its native allomorph I(β) to III(I) results in 40-50% lower binding partition coefficient for fungal cellulases, but surprisingly, it enhanced hydrolytic activity on the latter allomorph. We developed a comprehensive kinetic model for processive cellulases acting on insoluble substrates to explain this anomalous finding. Our model predicts that a reduction in the effective binding affinity to the substrate coupled with an increase in the decrystallization procession rate of individual cellulose chains from the substrate surface into the enzyme active site can reproduce our anomalous experimental findings.
Collapse
|
21
|
Guo J, Catchmark JM. Binding Specificity and Thermodynamics of Cellulose-Binding Modules from Trichoderma reesei Cel7A and Cel6A. Biomacromolecules 2013; 14:1268-77. [DOI: 10.1021/bm300810t] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Jing Guo
- Intercollege
Graduate Degree Program in Plant Biology, §Department of Agricultural and Biological
Engineering, ‡Center for NanoCellulosics, The Pennsylvania State University, University Park, Pennsylvania 16802,
United States
| | - Jeffrey M. Catchmark
- Intercollege
Graduate Degree Program in Plant Biology, §Department of Agricultural and Biological
Engineering, ‡Center for NanoCellulosics, The Pennsylvania State University, University Park, Pennsylvania 16802,
United States
| |
Collapse
|
22
|
Liu G, Qin Y, Hu Y, Gao M, Peng S, Qu Y. An endo-1,4-β-glucanase PdCel5C from cellulolytic fungus Penicillium decumbens with distinctive domain composition and hydrolysis product profile. Enzyme Microb Technol 2013; 52:190-5. [DOI: 10.1016/j.enzmictec.2012.12.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2012] [Revised: 12/10/2012] [Accepted: 12/17/2012] [Indexed: 11/25/2022]
|
23
|
Cheng G, Datta S, Liu Z, Wang C, Murton JK, Brown PA, Jablin MS, Dubey M, Majewski J, Halbert CE, Browning JF, Esker AR, Watson BJ, Zhang H, Hutcheson SW, Huber DL, Sale KL, Simmons BA, Kent MS. Interactions of endoglucanases with amorphous cellulose films resolved by neutron reflectometry and quartz crystal microbalance with dissipation monitoring. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2012; 28:8348-58. [PMID: 22554348 DOI: 10.1021/la300955q] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
A study of the interaction of four endoglucanases with amorphous cellulose films by neutron reflectometry (NR) and quartz crystal microbalance with dissipation monitoring (QCM-D) is reported. The endoglucanases include a mesophilic fungal endoglucanase (Cel45A from H. insolens), a processive endoglucanase from a marine bacterium (Cel5H from S. degradans ), and two from thermophilic bacteria (Cel9A from A. acidocaldarius and Cel5A from T. maritima ). The use of amorphous cellulose is motivated by the promise of ionic liquid pretreatment as a second generation technology that disrupts the native crystalline structure of cellulose. The endoglucanases displayed highly diverse behavior. Cel45A and Cel5H, which possess carbohydrate-binding modules (CBMs), penetrated and digested within the bulk of the films to a far greater extent than Cel9A and Cel5A, which lack CBMs. While both Cel45A and Cel5H were active within the bulk of the films, striking differences were observed. With Cel45A, substantial film expansion and interfacial broadening were observed, whereas for Cel5H the film thickness decreased with little interfacial broadening. These results are consistent with Cel45A digesting within the interior of cellulose chains as a classic endoglucanase, and Cel5H digesting predominantly at chain ends consistent with its designation as a processive endoglucanase.
Collapse
Affiliation(s)
- Gang Cheng
- Joint BioEnergy Institute, Emeryville, California, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
He HL, Guo J, Chen XL, Xie BB, Zhang XY, Yu Y, Chen B, Zhou BC, Zhang YZ. Structural and functional characterization of mature forms of metalloprotease E495 from Arctic sea-ice bacterium Pseudoalteromonas sp. SM495. PLoS One 2012; 7:e35442. [PMID: 22523598 PMCID: PMC3327674 DOI: 10.1371/journal.pone.0035442] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2011] [Accepted: 03/16/2012] [Indexed: 11/19/2022] Open
Abstract
E495 is the most abundant protease secreted by the Arctic sea-ice bacterium Pseudoalteromonas sp. SM495. As a thermolysin family metalloprotease, E495 was found to have multiple active forms in the culture of strain SM495. E495-M (containing only the catalytic domain) and E495-M-C1 (containing the catalytic domain and one PPC domain) were two stable mature forms, and E495-M-C1-C2 (containing the catalytic domain and two PPC domains) might be an intermediate. Compared to E495-M, E495-M-C1 had similar affinity and catalytic efficiency to oligopeptides, but higher affinity and catalytic efficiency to proteins. The PPC domains from E495 were expressed as GST-fused proteins. Both of the recombinant PPC domains were shown to have binding ability to proteins C-phycocyanin and casein, and domain PPC1 had higher affinity to C-phycocyanin than domain PPC2. These results indicated that the domain PPC1 in E495-M-C1 could be helpful in binding protein substrate, and therefore, improving the catalytic efficiency. Site-directed mutagenesis on the PPC domains showed that the conserved polar and aromatic residues, D26, D28, Y30, Y/W65, in the PPC domains played key roles in protein binding. Our study may shed light on the mechanism of organic nitrogen degradation in the Arctic sea ice.
Collapse
Affiliation(s)
- Hai-Lun He
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Jinan, China
| | - Jun Guo
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Jinan, China
| | - Xiu-Lan Chen
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Jinan, China
| | - Bin-Bin Xie
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Jinan, China
| | - Xi-Ying Zhang
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Jinan, China
| | - Yong Yu
- SOA Key Laboratory for Polar Science, Polar Research Institute of China, Shanghai, China
| | - Bo Chen
- SOA Key Laboratory for Polar Science, Polar Research Institute of China, Shanghai, China
| | - Bai-Cheng Zhou
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Jinan, China
| | - Yu-Zhong Zhang
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Jinan, China
- * E-mail:
| |
Collapse
|
25
|
Taylor CB, Talib MF, McCabe C, Bu L, Adney WS, Himmel ME, Crowley MF, Beckham GT. Computational investigation of glycosylation effects on a family 1 carbohydrate-binding module. J Biol Chem 2012; 287:3147-55. [PMID: 22147693 PMCID: PMC3270969 DOI: 10.1074/jbc.m111.270389] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2011] [Revised: 12/01/2011] [Indexed: 11/06/2022] Open
Abstract
Carbohydrate-binding modules (CBMs) are ubiquitous components of glycoside hydrolases, which degrade polysaccharides in nature. CBMs target specific polysaccharides, and CBM binding affinity to cellulose is known to be proportional to cellulase activity, such that increasing binding affinity is an important component of performance improvement. To ascertain the impact of protein and glycan engineering on CBM binding, we use molecular simulation to quantify cellulose binding of a natively glycosylated Family 1 CBM. To validate our approach, we first examine aromatic-carbohydrate interactions on binding, and our predictions are consistent with previous experiments, showing that a tyrosine to tryptophan mutation yields a 2-fold improvement in binding affinity. We then demonstrate that enhanced binding of 3-6-fold over a nonglycosylated CBM is achieved by the addition of a single, native mannose or a mannose dimer, respectively, which has not been considered previously. Furthermore, we show that the addition of a single, artificial glycan on the anterior of the CBM, with the native, posterior glycans also present, can have a dramatic impact on binding affinity in our model, increasing it up to 140-fold relative to the nonglycosylated CBM. These results suggest new directions in protein engineering, in that modifying glycosylation patterns via heterologous expression, manipulation of culture conditions, or introduction of artificial glycosylation sites, can alter CBM binding affinity to carbohydrates and may thus be a general strategy to enhance cellulase performance. Our results also suggest that CBM binding studies should consider the effects of glycosylation on binding and function.
Collapse
Affiliation(s)
| | - M. Faiz Talib
- From the Departments of Chemical and Biomolecular Engineering and
| | - Clare McCabe
- From the Departments of Chemical and Biomolecular Engineering and
- Chemistry, Vanderbilt University, Nashville, Tennessee 37235
| | | | - William S. Adney
- the Biosciences Center, National Renewable Energy Laboratory, Golden, Colorado 80401, and
| | - Michael E. Himmel
- the Biosciences Center, National Renewable Energy Laboratory, Golden, Colorado 80401, and
| | - Michael F. Crowley
- the Biosciences Center, National Renewable Energy Laboratory, Golden, Colorado 80401, and
| | - Gregg T. Beckham
- the National Bioenergy Center and
- the Department of Chemical Engineering, Colorado School of Mines, Golden, Colorado 80401
| |
Collapse
|
26
|
Li DC, Li AN, Papageorgiou AC. Cellulases from thermophilic fungi: recent insights and biotechnological potential. Enzyme Res 2011; 2011:308730. [PMID: 22145076 PMCID: PMC3226318 DOI: 10.4061/2011/308730] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2011] [Revised: 09/05/2011] [Accepted: 09/07/2011] [Indexed: 11/24/2022] Open
Abstract
Thermophilic fungal cellulases are promising enzymes in protein engineering efforts aimed at optimizing industrial processes, such as biomass degradation and biofuel production. The cloning and expression in recent years of new cellulase genes from thermophilic fungi have led to a better understanding of cellulose degradation in these species. Moreover, crystal structures of thermophilic fungal cellulases are now available, providing insights into their function and stability. The present paper is focused on recent progress in cloning, expression, regulation, and structure of thermophilic fungal cellulases and the current research efforts to improve their properties for better use in biotechnological applications.
Collapse
Affiliation(s)
- Duo-Chuan Li
- Department of Environmental Biology, Shandong Agricultural University, Taian, Shandong 271018, China
| | - An-Na Li
- Department of Environmental Biology, Shandong Agricultural University, Taian, Shandong 271018, China
| | | |
Collapse
|
27
|
Chundawat SP, Beckham GT, Himmel ME, Dale BE. Deconstruction of Lignocellulosic Biomass to Fuels and Chemicals. Annu Rev Chem Biomol Eng 2011; 2:121-45. [PMID: 22432613 DOI: 10.1146/annurev-chembioeng-061010-114205] [Citation(s) in RCA: 476] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Shishir P.S. Chundawat
- Great Lakes Bioenergy Research Center, East Lansing, Michigan 48824;
- Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, Michigan 48824
| | - Gregg T. Beckham
- National Bioenergy Center, National Renewable Energy Laboratory, Golden, Colorado 80401
- National Advanced Biofuels Consortium, National Renewable Energy Laboratory, Golden, Colorado 80401
- Department of Chemical Engineering, Colorado School of Mines, Golden, Colorado 80401
- Renewable and Sustainable Energy Institute, Boulder, Colorado 80309
| | - Michael E. Himmel
- Biosciences Center, National Renewable Energy Laboratory, Golden, Colorado 80401;
- Bioenergy Science Center, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831
| | - Bruce E. Dale
- Great Lakes Bioenergy Research Center, East Lansing, Michigan 48824;
- Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, Michigan 48824
| |
Collapse
|
28
|
The impact of Trichoderma reesei Cel7A carbohydrate binding domain mutations on its binding to a cellulose surface: a molecular dynamics free energy study. J Mol Model 2011; 18:1355-64. [DOI: 10.1007/s00894-011-1167-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2011] [Accepted: 06/27/2011] [Indexed: 10/18/2022]
|
29
|
Hall M, Bansal P, Lee JH, Realff MJ, Bommarius AS. Biological pretreatment of cellulose: enhancing enzymatic hydrolysis rate using cellulose-binding domains from cellulases. BIORESOURCE TECHNOLOGY 2011; 102:2910-5. [PMID: 21111611 DOI: 10.1016/j.biortech.2010.11.010] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2010] [Revised: 10/27/2010] [Accepted: 11/01/2010] [Indexed: 05/11/2023]
Abstract
In this study, cellulose-binding domains (CBDs) of cellulases from Trichoderma reesei were used in a pretreatment step and were found to effectively reduce the crystallinity of cellulose (both Avicel and fibrous cellulose). This, in turn, led to higher glucose concentrations (up to 25% increase) in subsequent hydrolysis of cellulose using a mixture of cellulases and without the need for any intermediate purification step. CBDs were shown to be active in a range of temperatures (up to 50°C), while cellulase hydrolytic activity was greatly reduced after incubation at 50°C. This was explained by retention of full binding capacity after incubation at 50°C for 15 h. Our findings suggest that CBDs may be a valuable tool in pretreating cellulose and eventually afford faster enzymatic conversion of cellulose to glucose, thus contributing to more affordable processes in the production of biofuels.
Collapse
Affiliation(s)
- Mélanie Hall
- Department of Chemistry, Organic and Bioorganic Chemistry, Heinrichstraße 28, 8010 Graz, Austria
| | | | | | | | | |
Collapse
|
30
|
Promotion of efficient Saccharification of crystalline cellulose by Aspergillus fumigatus Swo1. Appl Environ Microbiol 2010; 76:2556-61. [PMID: 20173066 DOI: 10.1128/aem.02499-09] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Swollenin is a protein from Trichoderma reesei that has a unique activity for disrupting cellulosic materials, and it has sequence similarity to expansins, plant cell wall proteins that have a loosening effect that leads to cell wall enlargement. In this study we cloned a gene encoding a swollenin-like protein, Swo1, from the filamentous fungus Aspergillus fumigatus, and designated the gene Afswo1. AfSwo1 has a bimodular structure composed of a carbohydrate-binding module family 1 (CBM1) domain and a plant expansin-like domain. AfSwo1 was produced using Aspergillus oryzae for heterologous expression and was easily isolated by cellulose-affinity chromatography. AfSwo1 exhibited weak endoglucanase activity toward carboxymethyl cellulose (CMC) and bound not only to crystalline cellulose Avicel but also to chitin, while showing no detectable affinity to xylan. Treatment by AfSwo1 caused disruption of Avicel into smaller particles without any detectable reducing sugar. Furthermore, simultaneous incubation of AfSwo1 with a cellulase mixture facilitated saccharification of Avicel. Our results provide a novel approach for efficient bioconversion of crystalline cellulose into glucose by use of the cellulose-disrupting protein AfSwo1.
Collapse
|
31
|
Beckham GT, Matthews JF, Bomble YJ, Bu L, Adney WS, Himmel ME, Nimlos MR, Crowley MF. Identification of Amino Acids Responsible for Processivity in a Family 1 Carbohydrate-Binding Module from a Fungal Cellulase. J Phys Chem B 2010; 114:1447-53. [DOI: 10.1021/jp908810a] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Gregg T. Beckham
- National Bioenergy Center, National Renewable Energy Laboratory, Golden, Colorado 80401, and Chemical and Biosciences Center, National Renewable Energy Laboratory, Golden, Colorado 80401
| | - James F. Matthews
- National Bioenergy Center, National Renewable Energy Laboratory, Golden, Colorado 80401, and Chemical and Biosciences Center, National Renewable Energy Laboratory, Golden, Colorado 80401
| | - Yannick J. Bomble
- National Bioenergy Center, National Renewable Energy Laboratory, Golden, Colorado 80401, and Chemical and Biosciences Center, National Renewable Energy Laboratory, Golden, Colorado 80401
| | - Lintao Bu
- National Bioenergy Center, National Renewable Energy Laboratory, Golden, Colorado 80401, and Chemical and Biosciences Center, National Renewable Energy Laboratory, Golden, Colorado 80401
| | - William S. Adney
- National Bioenergy Center, National Renewable Energy Laboratory, Golden, Colorado 80401, and Chemical and Biosciences Center, National Renewable Energy Laboratory, Golden, Colorado 80401
| | - Michael E. Himmel
- National Bioenergy Center, National Renewable Energy Laboratory, Golden, Colorado 80401, and Chemical and Biosciences Center, National Renewable Energy Laboratory, Golden, Colorado 80401
| | - Mark R. Nimlos
- National Bioenergy Center, National Renewable Energy Laboratory, Golden, Colorado 80401, and Chemical and Biosciences Center, National Renewable Energy Laboratory, Golden, Colorado 80401
| | - Michael F. Crowley
- National Bioenergy Center, National Renewable Energy Laboratory, Golden, Colorado 80401, and Chemical and Biosciences Center, National Renewable Energy Laboratory, Golden, Colorado 80401
| |
Collapse
|
32
|
Wang Y, Yuan H, Wang J, Yu Z. Truncation of the cellulose binding domain improved thermal stability of endo-beta-1,4-glucanase from Bacillus subtilis JA18. BIORESOURCE TECHNOLOGY 2009; 100:345-9. [PMID: 18632263 DOI: 10.1016/j.biortech.2008.06.001] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2008] [Revised: 06/01/2008] [Accepted: 06/04/2008] [Indexed: 05/23/2023]
Abstract
The C-terminus region of endo-beta-glucanase Egl499 from Bacillus subtilis JA18 was suggested to be a putative family 3 cellulose-binding domain (CBD) by computer analysis. To prove this proposal, C-terminus truncation mutant Egl330 was constructed and expressed. Compared with Egl499, Egl330 lost the cellulose binding capability at 4 degrees C, confirming the C-terminus region was a CBD. Binding of the CBD to Avicel was inhibited by carboxymethylcellulose (CMC), but not by barley beta-glucan and glucose at concentration of 0.1% and 0.5%. Kinetic analysis showed both the turnover rate (k(cat)) and the catalytic efficiency (k(cat)/K(m)) of Egl330 increased for the substrate CMC compared to Egl499. A great improvement in thermal stability was observed in Egl330. The half life of Egl330 at 65 degrees C increased to three folds that of Egl499, from 10 to 29 min. After treated at 80 degrees C for 10 min, Egl330 could recover more than 60% of its original activity while Egl499 only recovered 12% activity. UV spectrometry analysis showed Egl330 and Egl499 differed in refolding efficiency after heat treatment.
Collapse
Affiliation(s)
- Yujuan Wang
- Key Laboratory of Ion Beam Bioengineering, Chinese Academy of Sciences, Hefei, PR China
| | | | | | | |
Collapse
|
33
|
Brotman Y, Briff E, Viterbo A, Chet I. Role of swollenin, an expansin-like protein from Trichoderma, in plant root colonization. PLANT PHYSIOLOGY 2008; 147:779-89. [PMID: 18400936 PMCID: PMC2409044 DOI: 10.1104/pp.108.116293] [Citation(s) in RCA: 131] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Swollenin, a protein first characterized in the saprophytic fungus Trichoderma reesei, contains an N-terminal carbohydrate-binding module family 1 domain (CBD) with cellulose-binding function and a C-terminal expansin-like domain. This protein was identified by liquid chromatography-mass spectrometry among many other cellulolytic proteins secreted in the coculture hydroponics medium of cucumber (Cucumis sativus) seedlings and Trichoderma asperellum, a well-known biocontrol agent and inducer of plant defense responses. The swollenin gene was isolated and its coding region was overexpressed in the same strain under the control of the constitutive pki1 promoter. Trichoderma transformants showed a remarkably increased ability to colonize cucumber roots within 6 h after inoculation. On the other hand, overexpressors of a truncated swollenin sequence bearing a 36-amino acid deletion of the CBD did not differ from the wild type, showing in vivo that this domain is necessary for full protein activity. Root colonization rates were reduced in transformants silenced in swollenin gene expression. A synthetic 36-mer swollenin CBD peptide was shown to be capable of stimulating local defense responses in cucumber roots and leaves and to afford local protection toward Botrytis cinerea and Pseudomonas syringae pv lachrymans infection. This indicates that the CBD domain might be recognized by the plant as a microbe-associated molecular pattern in the Trichoderma-plant interaction.
Collapse
Affiliation(s)
- Yariv Brotman
- Department of Plant Pathology and Microbiology, Faculty of Agricultural, Food and Environmental Quality Sciences, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | | | | | | |
Collapse
|