1
|
Choi JM, Acharya R, Cha HL, Lee KW, Seo J, Yang E, Kim H, Yoon JH, Chang DY, Kim SS, Kim SJ, Birnbaumer L, Suh-Kim H. CB1R activates the epilepsy-associated protein Go to regulate neurotransmitter release and synaptic plasticity in the cerebellum. Proc Natl Acad Sci U S A 2024; 121:e2409773121. [PMID: 39602265 PMCID: PMC11626142 DOI: 10.1073/pnas.2409773121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 10/30/2024] [Indexed: 11/29/2024] Open
Abstract
GNAO1 encodes the alpha subunit of the heterotrimeric Go protein. Despite being the most abundant G protein at synapses, the role of Go in the brain remains unclear, primarily because of the high mortality associated with developmental and epileptic encephalopathy (DEE) 17 in Gnao1 mutated animals. Here, we conducted proteomic analyses with a brain synaptosomal fraction to investigate the Go-interactome and then generated a non-DEE model using Gli1CreERT2 mice to selectively knockout (KO) the presynaptic Gαo within cerebellum. Our findings revealed that Gαo interacts with multiple proteins involved in neurotransmitter release, as well as cannabinoid receptor type 1 (CB1R), a key Gi/o-coupled receptor in presynaptic terminals. In Gnao1 KO mice, synapse formation was reduced in the cerebellum with a concomitant reduction in depolarization-induced suppression of excitation, a manifestation of CB1R-mediated synaptic plasticity found in the cerebellum. These mice displayed motor deficits in rotarod, grip strength, gait, and beam balance tests. Our results suggest that Go plays a critical role in regulating neurotransmitter releases at the presynaptic terminals and its absence in the entire brain may contribute to DEE pathogenesis. This study also provides valuable insights into the signaling pathways in the brain from a Go-dependent perspective.
Collapse
Affiliation(s)
- Jung-Mi Choi
- Department of Anatomy, Ajou University School of Medicine, Suwon16499, South Korea
| | - Rakshya Acharya
- Department of Anatomy, Ajou University School of Medicine, Suwon16499, South Korea
| | - Hye Lim Cha
- Department of Anatomy, Ajou University School of Medicine, Suwon16499, South Korea
| | - Kwang-Wook Lee
- Department of Anatomy, Ajou University School of Medicine, Suwon16499, South Korea
| | - Jewoo Seo
- Department Physiology, Seoul National University College of Medicine, Seoul03080, South Korea
| | - Esther Yang
- Department of Anatomy, College of Medicine, Korea University, Seoul02841, Korea
| | - Hyun Kim
- Department of Anatomy, College of Medicine, Korea University, Seoul02841, Korea
| | - Jong Hyuk Yoon
- Neurodegenerative Diseases Research Group, Korea Brain Research Institute, Daegu41062, South Korea
| | - Da-Young Chang
- Research Center, CELLeBRAIN Co., Ltd., Suwon16681, South Korea
| | - Sung-Soo Kim
- Department of Anatomy, Ajou University School of Medicine, Suwon16499, South Korea
| | - Sang Jeong Kim
- Department Physiology, Seoul National University College of Medicine, Seoul03080, South Korea
| | - Lutz Birnbaumer
- Institute of Biomedical Research, School of Biomedical Sciences, Catholic University of Argentina, Buenos AiresC1107AFF, Argentina
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC27709
| | - Haeyoung Suh-Kim
- Department of Anatomy, Ajou University School of Medicine, Suwon16499, South Korea
- Research Center, CELLeBRAIN Co., Ltd., Suwon16681, South Korea
- Department of Biomedical Sciences, Graduate School, Ajou University School of Medicine, Suwon16499, Korea
| |
Collapse
|
2
|
Bhandari A, Seguin A, Rothenfluh A. Synaptic Mechanisms of Ethanol Tolerance and Neuroplasticity: Insights from Invertebrate Models. Int J Mol Sci 2024; 25:6838. [PMID: 38999947 PMCID: PMC11241699 DOI: 10.3390/ijms25136838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/09/2024] [Accepted: 06/10/2024] [Indexed: 07/14/2024] Open
Abstract
Alcohol tolerance is a neuroadaptive response that leads to a reduction in the effects of alcohol caused by previous exposure. Tolerance plays a critical role in the development of alcohol use disorder (AUD) because it leads to the escalation of drinking and dependence. Understanding the molecular mechanisms underlying alcohol tolerance is therefore important for the development of effective therapeutics and for understanding addiction in general. This review explores the molecular basis of alcohol tolerance in invertebrate models, Drosophila and C. elegans, focusing on synaptic transmission. Both organisms exhibit biphasic responses to ethanol and develop tolerance similar to that of mammals. Furthermore, the availability of several genetic tools makes them a great candidate to study the molecular basis of ethanol response. Studies in invertebrate models show that tolerance involves conserved changes in the neurotransmitter systems, ion channels, and synaptic proteins. These neuroadaptive changes lead to a change in neuronal excitability, most likely to compensate for the enhanced inhibition by ethanol.
Collapse
Affiliation(s)
- Aakriti Bhandari
- Department of Psychiatry, University of Utah, Salt Lake City, UT 84112, USA
- Molecular Medicine Program, University of Utah, Salt Lake City, UT 84112, USA
- Neuroscience Graduate Program, University of Utah, Salt Lake City, UT 84112, USA
| | - Alexandra Seguin
- Molecular Medicine Program, University of Utah, Salt Lake City, UT 84112, USA
| | - Adrian Rothenfluh
- Department of Psychiatry, University of Utah, Salt Lake City, UT 84112, USA
- Molecular Medicine Program, University of Utah, Salt Lake City, UT 84112, USA
- Neuroscience Graduate Program, University of Utah, Salt Lake City, UT 84112, USA
- Department of Neurobiology, University of Utah, Salt Lake City, UT 84112, USA
- Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA
| |
Collapse
|
3
|
Alcohol induced impairment/abnormalities in brain: Role of MicroRNAs. Neurotoxicology 2021; 87:11-23. [PMID: 34478768 DOI: 10.1016/j.neuro.2021.08.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 08/12/2021] [Accepted: 08/28/2021] [Indexed: 12/21/2022]
Abstract
Alcohol is a highly toxic substance and has teratogenic properties that can lead to a wide range of developmental disorders. Excessive use of alcohol can change the structural and functional aspects of developed brain and other organs. Which can further lead to significant health, social and economic implications in many countries of the world. Convincing evidence support the involvement of microRNAs (miRNAs) as important post-transcriptional regulators of gene expression in neurodevelopment and maintenance. They also show differential expression following an injury. MiRNAs are the special class of small non coding RNAs that can modify the gene by targeting the mRNA and fine tune the development of cells to organs. Numerous pieces of evidences have shown the relationship between miRNA, alcohol and brain damage. These studies also show how miRNA controls different cellular mechanisms involved in the development of alcohol use disorder. With the increasing number of research studies, the roles of miRNAs following alcohol-induced injury could help researchers to recognize alternative therapeutic methods to treat/cure alcohol-induced brain damage. The present review summarizes the available data and brings together the important miRNAs, that play a crucial role in alcohol-induced brain damage, which will help in better understanding complex mechanisms. Identifying these miRNAs will not only expand the current knowledge but can lead to the identification of better targets for the development of novel therapeutic interventions.
Collapse
|
4
|
A unified resource and configurable model of the synapse proteome and its role in disease. Sci Rep 2021; 11:9967. [PMID: 33976238 PMCID: PMC8113277 DOI: 10.1038/s41598-021-88945-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 04/15/2021] [Indexed: 02/03/2023] Open
Abstract
Genes encoding synaptic proteins are highly associated with neuronal disorders many of which show clinical co-morbidity. We integrated 58 published synaptic proteomic datasets that describe over 8000 proteins and combined them with direct protein-protein interactions and functional metadata to build a network resource that reveals the shared and unique protein components that underpin multiple disorders. All the data are provided in a flexible and accessible format to encourage custom use.
Collapse
|
5
|
Fairweather SJ, Shah N, Brӧer S. Heteromeric Solute Carriers: Function, Structure, Pathology and Pharmacology. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 21:13-127. [PMID: 33052588 DOI: 10.1007/5584_2020_584] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Solute carriers form one of three major superfamilies of membrane transporters in humans, and include uniporters, exchangers and symporters. Following several decades of molecular characterisation, multiple solute carriers that form obligatory heteromers with unrelated subunits are emerging as a distinctive principle of membrane transporter assembly. Here we comprehensively review experimentally established heteromeric solute carriers: SLC3-SLC7 amino acid exchangers, SLC16 monocarboxylate/H+ symporters and basigin/embigin, SLC4A1 (AE1) and glycophorin A exchanger, SLC51 heteromer Ost α-Ost β uniporter, and SLC6 heteromeric symporters. The review covers the history of the heteromer discovery, transporter physiology, structure, disease associations and pharmacology - all with a focus on the heteromeric assembly. The cellular locations, requirements for complex formation, and the functional role of dimerization are extensively detailed, including analysis of the first complete heteromer structures, the SLC7-SLC3 family transporters LAT1-4F2hc, b0,+AT-rBAT and the SLC6 family heteromer B0AT1-ACE2. We present a systematic analysis of the structural and functional aspects of heteromeric solute carriers and conclude with common principles of their functional roles and structural architecture.
Collapse
Affiliation(s)
- Stephen J Fairweather
- Research School of Biology, Australian National University, Canberra, ACT, Australia. .,Resarch School of Chemistry, Australian National University, Canberra, ACT, Australia.
| | - Nishank Shah
- Research School of Biology, Australian National University, Canberra, ACT, Australia
| | - Stefan Brӧer
- Research School of Biology, Australian National University, Canberra, ACT, Australia.
| |
Collapse
|
6
|
Honer WG, Ramos-Miguel A, Alamri J, Sawada K, Barr AM, Schneider JA, Bennett DA. The synaptic pathology of cognitive life
. DIALOGUES IN CLINICAL NEUROSCIENCE 2020; 21:271-279. [PMID: 31749651 PMCID: PMC6829169 DOI: 10.31887/dcns.2019.21.3/whoner] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Prospective, community-based studies allow evaluation of associations between
cognitive functioning and synaptic measures, controlled for age-related pathologies.
Findings from >400 community-based participants are reviewed. Levels of two
presynaptic proteins, complexin-I (inhibitory terminals), and complexin-II (excitatory
terminals) contributed to cognitive variation from normal to dementia. Adding the amount
of protein-protein interaction between two others, synaptosome-associated protein-25 and
syntaxin, explained 6% of overall variance. The presynaptic protein Munc18-1 long
variant was localized to inhibitory terminals, and like complexin-I, was positively
associated with cognition. Associations depended on Braak stage, with the level of
complexin-I contributing nearly 15% to cognitive variation in stages 0-II, while
complexin-II contributed 7% in stages V-VI. Non-denaturing gels identified multiple
soluble N-ethylmaleimide-sensitive factor attachment protein receptor protein-protein
(SNARE) complexes in frontal and in temporal lobes, making specific contributions to
cognitive functions. Multiple mechanisms of presynaptic plasticity contribute to
cognitive function during aging.
Collapse
Affiliation(s)
- William G Honer
- Departments of Psychiatry, University of British Columbia, Vancouver, British Columbia, Canada
| | - Alfredo Ramos-Miguel
- Department of Pharmacology, University of the Basque Country, and Centro de Investigación Biomédica en Red de Salud Mental, CIBERSAM, Madrid, Spain
| | - Jehan Alamri
- Departments of Anaesthesia, Pharmacology & Therapeutics, University of British Columbia, Vancouver, British Columbia, Canada
| | | | - Alasdair M Barr
- Departments of Anaesthesia, Pharmacology & Therapeutics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Julie A Schneider
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, US
| | - David A Bennett
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, US
| |
Collapse
|
7
|
Ingham NJ, Pearson SA, Vancollie VE, Rook V, Lewis MA, Chen J, Buniello A, Martelletti E, Preite L, Lam CC, Weiss FD, Powis Z, Suwannarat P, Lelliott CJ, Dawson SJ, White JK, Steel KP. Mouse screen reveals multiple new genes underlying mouse and human hearing loss. PLoS Biol 2019; 17:e3000194. [PMID: 30973865 PMCID: PMC6459510 DOI: 10.1371/journal.pbio.3000194] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 03/07/2019] [Indexed: 11/23/2022] Open
Abstract
Adult-onset hearing loss is very common, but we know little about the underlying molecular pathogenesis impeding the development of therapies. We took a genetic approach to identify new molecules involved in hearing loss by screening a large cohort of newly generated mouse mutants using a sensitive electrophysiological test, the auditory brainstem response (ABR). We review here the findings from this screen. Thirty-eight unexpected genes associated with raised thresholds were detected from our unbiased sample of 1,211 genes tested, suggesting extreme genetic heterogeneity. A wide range of auditory pathophysiologies was found, and some mutant lines showed normal development followed by deterioration of responses, revealing new molecular pathways involved in progressive hearing loss. Several of the genes were associated with the range of hearing thresholds in the human population and one, SPNS2, was involved in childhood deafness. The new pathways required for maintenance of hearing discovered by this screen present new therapeutic opportunities.
Collapse
Affiliation(s)
- Neil J Ingham
- Wellcome Trust Sanger Institute, Hinxton, United Kingdom
- Wolfson Centre for Age-Related Diseases, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | | | | | - Victoria Rook
- Wolfson Centre for Age-Related Diseases, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Morag A Lewis
- Wellcome Trust Sanger Institute, Hinxton, United Kingdom
- Wolfson Centre for Age-Related Diseases, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Jing Chen
- Wellcome Trust Sanger Institute, Hinxton, United Kingdom
- Wolfson Centre for Age-Related Diseases, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Annalisa Buniello
- Wellcome Trust Sanger Institute, Hinxton, United Kingdom
- Wolfson Centre for Age-Related Diseases, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Elisa Martelletti
- Wolfson Centre for Age-Related Diseases, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Lorenzo Preite
- Wolfson Centre for Age-Related Diseases, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Chi Chung Lam
- Wolfson Centre for Age-Related Diseases, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Felix D Weiss
- Wolfson Centre for Age-Related Diseases, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Zӧe Powis
- Department of Emerging Genetics Medicine, Ambry Genetics, Aliso Viejo, California, United States of America
| | - Pim Suwannarat
- Mid-Atlantic Permanente Medical Group, Rockville, Maryland, United States of America
| | | | - Sally J Dawson
- UCL Ear Institute, University College London, London, United Kingdom
| | | | - Karen P Steel
- Wellcome Trust Sanger Institute, Hinxton, United Kingdom
- Wolfson Centre for Age-Related Diseases, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| |
Collapse
|
8
|
Ramos-Miguel A, Barakauskas V, Alamri J, Miyauchi M, Barr AM, Beasley CL, Rosoklija G, Mann JJ, Dwork AJ, Moradian A, Morin GB, Honer WG. The SNAP25 Interactome in Ventromedial Caudate in Schizophrenia Includes the Mitochondrial Protein ARF1. Neuroscience 2019; 420:97-111. [PMID: 30610939 DOI: 10.1016/j.neuroscience.2018.12.045] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 12/21/2018] [Accepted: 12/24/2018] [Indexed: 12/11/2022]
Abstract
Abnormalities of SNAP25 (synaptosome-associated protein 25) amount and protein-protein interactions occur in schizophrenia, and may contribute to abnormalities of neurotransmitter release in patients. However, presynaptic terminal function depends on multiple subcellular mechanisms, including energy provided by mitochondria. To explore the SNAP25 interactome in schizophrenia, we immunoprecipitated SNAP25 along with interacting proteins from the ventromedial caudate of 15 cases of schizophrenia and 13 controls. Proteins were identified with mass spectrometry-based proteomics. As well as 15 SNARE- (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) associated proteins, we identified 17 mitochondria-associated and four other proteins. The mitochondrial small GTPase ARF1 (ADP-ribosylation factor 1) was identified in eight schizophrenia SNAP25 immunoprecipitates and none from controls (P = 0.004). Although the ARF1-SNAP25 interaction may be increased, immunoblotting demonstrated 21% lower ARF1-21 (21 kiloDaltons) in schizophrenia samples (P = 0.04). In contrast, the mitochondrial protein UQCRC1 (ubiquinol-cytochrome c reductase core protein 1) did not differ. Lower ARF1-21 levels were associated with the previously reported increased SNAP25-syntaxin interaction in schizophrenia (r = -0.39, P = 0.04). Additional immunoprecipitation studies confirmed the ARF1-21-SNAP25 interaction, independent of UQCRC1. Both ARF1 and SNAP25 were localized to synaptosomes. Confocal microscopy demonstrated co-localization of ARF1 and SNAP25, and further suggested fivefold enrichment of ARF1 in synaptosomes containing an excitatory marker (vesicular glutamate transporter) compared with synaptosomes containing an inhibitory marker (vesicular GABA transporter). The present findings suggest an association between abnormalities of SNARE proteins involved with vesicular neurotransmission and the mitochondrial protein ARF1 that may contribute to the pathophysiology of schizophrenia.
Collapse
Affiliation(s)
- Alfredo Ramos-Miguel
- BC Mental Health and Addictions Research Institute, 938 West 28th Ave, Vancouver, BC V5Z 4H4, Canada; Department of Psychiatry, University of British Columbia, 2255 Wesbrook Mall, Vancouver, BC V6T 2A1, Canada; Department of Pharmacology, University of the Basque Country, Centro de Investigación Biomédica en Red de Salud Mental, CIBERSAM, Barrio Sarriena, s/n, 48940 Leioa, Biscay, Spain
| | - Vilte Barakauskas
- BC Mental Health and Addictions Research Institute, 938 West 28th Ave, Vancouver, BC V5Z 4H4, Canada; Department of Pathology and Laboratory Medicine, University of British Columbia, 2J9-4500 Oak St., Vancouver, BC V6H 3B1, Canada
| | - Jehan Alamri
- BC Mental Health and Addictions Research Institute, 938 West 28th Ave, Vancouver, BC V5Z 4H4, Canada
| | - Masatoshi Miyauchi
- BC Mental Health and Addictions Research Institute, 938 West 28th Ave, Vancouver, BC V5Z 4H4, Canada; Department of Psychiatry, University of British Columbia, 2255 Wesbrook Mall, Vancouver, BC V6T 2A1, Canada
| | - Alasdair M Barr
- BC Mental Health and Addictions Research Institute, 938 West 28th Ave, Vancouver, BC V5Z 4H4, Canada; Department of Anesthesiology, Pharmacology, & Therapeutics, University of British Columbia, 2176 Health Sciences Mall Vancouver, BC V6T 1Z3, Canada
| | - Clare L Beasley
- BC Mental Health and Addictions Research Institute, 938 West 28th Ave, Vancouver, BC V5Z 4H4, Canada; Department of Psychiatry, University of British Columbia, 2255 Wesbrook Mall, Vancouver, BC V6T 2A1, Canada
| | - Gorazd Rosoklija
- Department of Psychiatry, Columbia University, 1051 Riverside Drive, New York, NY 10032, USA
| | - J John Mann
- Department of Psychiatry, Columbia University, 1051 Riverside Drive, New York, NY 10032, USA
| | - Andrew J Dwork
- Department of Psychiatry, Columbia University, 1051 Riverside Drive, New York, NY 10032, USA
| | - Annie Moradian
- Department of Medical Genetics, University of British Columbia, C234-4500 Oak St., Vancouver, BC V6H 3B1, Canada
| | - Gregg B Morin
- Department of Medical Genetics, University of British Columbia, C234-4500 Oak St., Vancouver, BC V6H 3B1, Canada
| | - William G Honer
- BC Mental Health and Addictions Research Institute, 938 West 28th Ave, Vancouver, BC V5Z 4H4, Canada; Department of Psychiatry, University of British Columbia, 2255 Wesbrook Mall, Vancouver, BC V6T 2A1, Canada.
| |
Collapse
|
9
|
Piccini A, Castroflorio E, Valente P, Guarnieri FC, Aprile D, Michetti C, Bramini M, Giansante G, Pinto B, Savardi A, Cesca F, Bachi A, Cattaneo A, Wren JD, Fassio A, Valtorta F, Benfenati F, Giovedì S. APache Is an AP2-Interacting Protein Involved in Synaptic Vesicle Trafficking and Neuronal Development. Cell Rep 2018; 21:3596-3611. [PMID: 29262337 DOI: 10.1016/j.celrep.2017.11.073] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 10/23/2017] [Accepted: 11/20/2017] [Indexed: 11/25/2022] Open
Abstract
Synaptic transmission is critically dependent on synaptic vesicle (SV) recycling. Although the precise mechanisms of SV retrieval are still debated, it is widely accepted that a fundamental role is played by clathrin-mediated endocytosis, a form of endocytosis that capitalizes on the clathrin/adaptor protein complex 2 (AP2) coat and several accessory factors. Here, we show that the previously uncharacterized protein KIAA1107, predicted by bioinformatics analysis to be involved in the SV cycle, is an AP2-interacting clathrin-endocytosis protein (APache). We found that APache is highly enriched in the CNS and is associated with clathrin-coated vesicles via interaction with AP2. APache-silenced neurons exhibit a severe impairment of maturation at early developmental stages, reduced SV density, enlarged endosome-like structures, and defects in synaptic transmission, consistent with an impaired clathrin/AP2-mediated SV recycling. Our data implicate APache as an actor in the complex regulation of SV trafficking, neuronal development, and synaptic plasticity.
Collapse
Affiliation(s)
- Alessandra Piccini
- Department of Experimental Medicine, University of Genova, 16132 Genova, Italy
| | - Enrico Castroflorio
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, 16132 Genova, Italy
| | - Pierluigi Valente
- Department of Experimental Medicine, University of Genova, 16132 Genova, Italy
| | - Fabrizia C Guarnieri
- San Raffaele Scientific Institute and Vita Salute University, 20132 Milano, Italy
| | - Davide Aprile
- Department of Experimental Medicine, University of Genova, 16132 Genova, Italy
| | - Caterina Michetti
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, 16132 Genova, Italy
| | - Mattia Bramini
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, 16132 Genova, Italy
| | - Giorgia Giansante
- Department of Experimental Medicine, University of Genova, 16132 Genova, Italy
| | - Bruno Pinto
- Local Micro-environment and Brain Development Laboratory, Istituto Italiano di Tecnologia, 16163 Genova, Italy; Bio@SNS, Scuola Normale Superiore, 56126 Pisa, Italy
| | - Annalisa Savardi
- Department of Experimental Medicine, University of Genova, 16132 Genova, Italy; Local Micro-environment and Brain Development Laboratory, Istituto Italiano di Tecnologia, 16163 Genova, Italy
| | - Fabrizia Cesca
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, 16132 Genova, Italy
| | - Angela Bachi
- IFOM, FIRC Institute of Molecular Oncology, 20132 Milano, Italy
| | - Angela Cattaneo
- IFOM, FIRC Institute of Molecular Oncology, 20132 Milano, Italy
| | - Jonathan D Wren
- Department of Arthritis and Clinical Immunology, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104-5005, USA
| | - Anna Fassio
- Department of Experimental Medicine, University of Genova, 16132 Genova, Italy; Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, 16132 Genova, Italy
| | - Flavia Valtorta
- San Raffaele Scientific Institute and Vita Salute University, 20132 Milano, Italy
| | - Fabio Benfenati
- Department of Experimental Medicine, University of Genova, 16132 Genova, Italy; Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, 16132 Genova, Italy.
| | - Silvia Giovedì
- Department of Experimental Medicine, University of Genova, 16132 Genova, Italy.
| |
Collapse
|
10
|
Zhang ZY, Qian LL, Wang RX. Molecular Mechanisms Underlying Renin-Angiotensin-Aldosterone System Mediated Regulation of BK Channels. Front Physiol 2017; 8:698. [PMID: 28955251 PMCID: PMC5601423 DOI: 10.3389/fphys.2017.00698] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 08/30/2017] [Indexed: 12/21/2022] Open
Abstract
Large-conductance calcium-activated potassium channels (BK channels) belong to a family of Ca2+-sensitive voltage-dependent potassium channels and play a vital role in various physiological activities in the human body. The renin-angiotensin-aldosterone system is acknowledged as being vital in the body's hormone system and plays a fundamental role in the maintenance of water and electrolyte balance and blood pressure regulation. There is growing evidence that the renin-angiotensin-aldosterone system has profound influences on the expression and bioactivity of BK channels. In this review, we focus on the molecular mechanisms underlying the regulation of BK channels mediated by the renin-angiotensin-aldosterone system and its potential as a target for clinical drugs.
Collapse
Affiliation(s)
- Zhen-Ye Zhang
- Department of Cardiology, Wuxi People's Hospital Affiliated to Nanjing Medical UniversityWuxi, China
| | - Ling-Ling Qian
- Department of Cardiology, Wuxi People's Hospital Affiliated to Nanjing Medical UniversityWuxi, China
| | - Ru-Xing Wang
- Department of Cardiology, Wuxi People's Hospital Affiliated to Nanjing Medical UniversityWuxi, China
| |
Collapse
|
11
|
Alfieri A, Sorokina O, Adrait A, Angelini C, Russo I, Morellato A, Matteoli M, Menna E, Boeri Erba E, McLean C, Armstrong JD, Ala U, Buxbaum JD, Brusco A, Couté Y, De Rubeis S, Turco E, Defilippi P. Synaptic Interactome Mining Reveals p140Cap as a New Hub for PSD Proteins Involved in Psychiatric and Neurological Disorders. Front Mol Neurosci 2017; 10:212. [PMID: 28713243 PMCID: PMC5492163 DOI: 10.3389/fnmol.2017.00212] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 06/15/2017] [Indexed: 01/21/2023] Open
Abstract
Altered synaptic function has been associated with neurological and psychiatric conditions including intellectual disability, schizophrenia and autism spectrum disorder (ASD). Amongst the recently discovered synaptic proteins is p140Cap, an adaptor that localizes at dendritic spines and regulates their maturation and physiology. We recently showed that p140Cap knockout mice have cognitive deficits, impaired long-term potentiation (LTP) and long-term depression (LTD), and immature, filopodia-like dendritic spines. Only a few p140Cap interacting proteins have been identified in the brain and the molecular complexes and pathways underlying p140Cap synaptic function are largely unknown. Here, we isolated and characterized the p140Cap synaptic interactome by co-immunoprecipitation from crude mouse synaptosomes, followed by mass spectrometry-based proteomics. We identified 351 p140Cap interactors and found that they cluster to sub complexes mostly located in the postsynaptic density (PSD). p140Cap interactors converge on key synaptic processes, including transmission across chemical synapses, actin cytoskeleton remodeling and cell-cell junction organization. Gene co-expression data further support convergent functions: the p140Cap interactors are tightly co-expressed with each other and with p140Cap. Importantly, the p140Cap interactome and its co-expression network show strong enrichment in genes associated with schizophrenia, autism, bipolar disorder, intellectual disability and epilepsy, supporting synaptic dysfunction as a shared biological feature in brain diseases. Overall, our data provide novel insights into the molecular organization of the synapse and indicate that p140Cap acts as a hub for postsynaptic complexes relevant to psychiatric and neurological disorders.
Collapse
Affiliation(s)
- Annalisa Alfieri
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, Università di TorinoTorino, Italy
| | - Oksana Sorokina
- The Institute for Adaptive and Neural Computation, School of Informatics, University of EdinburghEdinburgh, United Kingdom
| | - Annie Adrait
- Université Grenoble Alpes, iRTSV-BGEGrenoble, France.,CEA, iRTSV-BGEGrenoble, France.,Institut National de la Santé et de la Recherche Médicale, BGEGrenoble, France
| | - Costanza Angelini
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, Università di TorinoTorino, Italy
| | - Isabella Russo
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, Università di TorinoTorino, Italy
| | - Alessandro Morellato
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, Università di TorinoTorino, Italy
| | - Michela Matteoli
- Institute of Neuroscience, Consiglio Nazionale delle Ricerche (CNR)Milan, Italy.,Humanitas Clinical and Research Center, IRCCSRozzano, Italy
| | - Elisabetta Menna
- Institute of Neuroscience, Consiglio Nazionale delle Ricerche (CNR)Milan, Italy.,Humanitas Clinical and Research Center, IRCCSRozzano, Italy
| | - Elisabetta Boeri Erba
- Institut de Biologie Structurale, Université Grenoble AlpesGrenoble, France.,CEA, DSV, IBSGrenoble, France.,Centre National de la Recherche Scientifique, IBSGrenoble, France
| | - Colin McLean
- The Institute for Adaptive and Neural Computation, School of Informatics, University of EdinburghEdinburgh, United Kingdom
| | - J Douglas Armstrong
- The Institute for Adaptive and Neural Computation, School of Informatics, University of EdinburghEdinburgh, United Kingdom
| | - Ugo Ala
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, Università di TorinoTorino, Italy.,GenoBiToUS-Genomics and Bioinformatics, Università di TorinoTurin, Italy
| | - Joseph D Buxbaum
- Seaver Autism Center for Research and Treatment, Department of Psychiatry, Icahn School of Medicine at Mount SinaiNew York, NY, United States.,Department of Psychiatry, Icahn School of Medicine at Mount SinaiNew York, NY, United States.,Department of Neuroscience, Icahn School of Medicine at Mount SinaiNew York, NY, United States.,Friedman Brain Institute, Icahn School of Medicine at Mount SinaiNew York, NY, United States.,Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount SinaiNew York, NY, United States.,Mindich Child Health and Development Institute, Icahn School of Medicine at Mount SinaiNew York, NY, United States
| | - Alfredo Brusco
- Department of Medical Sciences, Università di TorinoTurin, Italy.,Medical Genetics Unit, Azienda Ospedaliera Città della Salute e della Scienza di TorinoTurin, Italy
| | - Yohann Couté
- Université Grenoble Alpes, iRTSV-BGEGrenoble, France.,CEA, iRTSV-BGEGrenoble, France.,Institut National de la Santé et de la Recherche Médicale, BGEGrenoble, France
| | - Silvia De Rubeis
- Seaver Autism Center for Research and Treatment, Department of Psychiatry, Icahn School of Medicine at Mount SinaiNew York, NY, United States.,Department of Psychiatry, Icahn School of Medicine at Mount SinaiNew York, NY, United States
| | - Emilia Turco
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, Università di TorinoTorino, Italy
| | - Paola Defilippi
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, Università di TorinoTorino, Italy
| |
Collapse
|
12
|
Maccarrone G, Bonfiglio JJ, Silberstein S, Turck CW, Martins-de-Souza D. Characterization of a Protein Interactome by Co-Immunoprecipitation and Shotgun Mass Spectrometry. Methods Mol Biol 2017; 1546:223-234. [PMID: 27896772 DOI: 10.1007/978-1-4939-6730-8_19] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Identifying the partners of a given protein (the interactome) may provide leads about the protein's function and the molecular mechanisms in which it is involved. One of the alternative strategies used to characterize protein interactomes consists of co-immunoprecipitation (co-IP) followed by shotgun mass spectrometry. This enables the isolation and identification of a protein target in its native state and its interactome from cells or tissue lysates under physiological conditions. In this chapter, we describe a co-IP protocol for interactome studies that uses an antibody against a protein of interest bound to protein A/G plus agarose beads to isolate a protein complex. The interacting proteins may be further fractionated by SDS-PAGE, followed by in-gel tryptic digestion and nano liquid chromatography high-resolution tandem mass spectrometry (nLC ESI-MS/MS) for identification purposes. The computational tools, strategy for protein identification, and use of interactome databases also will be described.
Collapse
Affiliation(s)
- Giuseppina Maccarrone
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany
| | - Juan Jose Bonfiglio
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA), CONICET, Partner Institute of the Max Planck Society, Buenos Aires, Argentina
| | - Susana Silberstein
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA), CONICET, Partner Institute of the Max Planck Society, Buenos Aires, Argentina
| | - Christoph W Turck
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany
| | - Daniel Martins-de-Souza
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Rua Monteiro Lobato 255, 13083-862, Campinas, SP, Brazil. .,UNICAMP's Neurobiology Center, Campinas, Brazil.
| |
Collapse
|
13
|
Reduced plasma levels of microtubule-associated STOP/MAP6 protein in autistic patients. Psychiatry Res 2016; 245:116-118. [PMID: 27541346 DOI: 10.1016/j.psychres.2016.08.024] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 07/20/2016] [Accepted: 08/07/2016] [Indexed: 11/23/2022]
Abstract
Autism is a neurodevelopmental disorder characterized by abnormal reciprocal social interactions, communication deficits and repetitive behaviors with restricted interests. A previous quantitative proteomic profiling study demonstrated that microtubule-associated stable tubule only polypeptide (STOP; also known as MAP6) protein was significant reduced in the cerebral cortex from BTBR mouse model of autism compared to the C57BL/6J mice. In the present study, the result showed that the concentration of STOP/MAP6 protein was significantly reduced in the plasma of autistic subjects than that in healthy controls. Finally, a possible mechanism of STOP/MAP6 protein in the pathogenesis of autism was proposed.
Collapse
|
14
|
Zhang J, Li M, Zhang Z, Zhu R, Olcese R, Stefani E, Toro L. The mitochondrial BK Ca channel cardiac interactome reveals BK Ca association with the mitochondrial import receptor subunit Tom22, and the adenine nucleotide translocator. Mitochondrion 2016; 33:84-101. [PMID: 27592226 DOI: 10.1016/j.mito.2016.08.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 08/29/2016] [Accepted: 08/30/2016] [Indexed: 10/21/2022]
Abstract
Mitochondrial BKCa channel, mitoBKCa, regulates mitochondria function in the heart but information on its protein partnerships in cardiac mitochondria is missing. A directed proteomic approach discovered the novel interaction of BKCa with Tom22, a component of the mitochondrion outer membrane import system, and the adenine nucleotide translocator (ANT). The expressed protein partners co-immunoprecipitated and co-segregated into mitochondrial fractions in HEK293T cells. The BKCa 50 amino acid splice insert, DEC, facilitated BKCa interaction with ANT. Further, BKCa transmembrane domain was required for the association with both Tom22 and ANT. The results serve as a working framework to understand mitoBKCa import and functional relationships.
Collapse
Affiliation(s)
- Jin Zhang
- Department of Anesthesiology, Division of Molecular Medicine, University of California, Los Angeles, Los Angeles, CA, USA; Department of Molecular & Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Min Li
- Department of Anesthesiology, Division of Molecular Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Zhu Zhang
- Department of Anesthesiology, Division of Molecular Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Ronghui Zhu
- Department of Anesthesiology, Division of Molecular Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Riccardo Olcese
- Department of Anesthesiology, Division of Molecular Medicine, University of California, Los Angeles, Los Angeles, CA, USA; Department of Physiology, University of California, Los Angeles, Los Angeles, CA, USA; Brain Research Institute, University of California, Los Angeles, Los Angeles, CA, USA; Cardiovascular Research Laboratory, University of California, Los Angeles, Los Angeles, CA, USA
| | - Enrico Stefani
- Department of Anesthesiology, Division of Molecular Medicine, University of California, Los Angeles, Los Angeles, CA, USA; Department of Physiology, University of California, Los Angeles, Los Angeles, CA, USA; Brain Research Institute, University of California, Los Angeles, Los Angeles, CA, USA; Cardiovascular Research Laboratory, University of California, Los Angeles, Los Angeles, CA, USA
| | - Ligia Toro
- Department of Anesthesiology, Division of Molecular Medicine, University of California, Los Angeles, Los Angeles, CA, USA; Department of Molecular & Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA, USA; Brain Research Institute, University of California, Los Angeles, Los Angeles, CA, USA; Cardiovascular Research Laboratory, University of California, Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
15
|
Abstract
Large conductance Ca(2+)- and voltage-activated K(+) (BK) channels are widely distributed in the postnatal central nervous system (CNS). BK channels play a pleiotropic role in regulating the activity of brain and spinal cord neural circuits by providing a negative feedback mechanism for local increases in intracellular Ca(2+) concentrations. In neurons, they regulate the timing and duration of K(+) influx such that they can either increase or decrease firing depending on the cellular context, and they can suppress neurotransmitter release from presynaptic terminals. In addition, BK channels located in astrocytes and arterial myocytes modulate cerebral blood flow. Not surprisingly, both loss and gain of BK channel function have been associated with CNS disorders such as epilepsy, ataxia, mental retardation, and chronic pain. On the other hand, the neuroprotective role played by BK channels in a number of pathological situations could potentially be leveraged to correct neurological dysfunction.
Collapse
|
16
|
Singh H, Li M, Hall L, Chen S, Sukur S, Lu R, Caputo A, Meredith AL, Stefani E, Toro L. MaxiK channel interactome reveals its interaction with GABA transporter 3 and heat shock protein 60 in the mammalian brain. Neuroscience 2016; 317:76-107. [PMID: 26772433 PMCID: PMC4737998 DOI: 10.1016/j.neuroscience.2015.12.058] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 12/29/2015] [Accepted: 12/30/2015] [Indexed: 10/22/2022]
Abstract
Large conductance voltage and calcium-activated potassium (MaxiK) channels are activated by membrane depolarization and elevated cytosolic Ca(2+). In the brain, they localize to neurons and astrocytes, where they play roles such as resetting the membrane potential during an action potential, neurotransmitter release, and neurovascular coupling. MaxiK channels are known to associate with several modulatory proteins and accessory subunits, and each of these interactions can have distinct physiological consequences. To uncover new players in MaxiK channel brain physiology, we applied a directed proteomic approach and obtained MaxiK channel pore-forming α subunit brain interactome using specific antibodies. Controls included immunoprecipitations with rabbit immunoglobulin G (IgG) and with anti-MaxiK antibodies in wild type and MaxiK channel knockout mice (Kcnma1(-/-)), respectively. We have found known and unreported interactive partners that localize to the plasma membrane, extracellular space, cytosol and intracellular organelles including mitochondria, nucleus, endoplasmic reticulum and Golgi apparatus. Localization of MaxiK channel to mitochondria was further confirmed using purified brain mitochondria colabeled with MitoTracker. Independent proof of MaxiK channel interaction with previously unidentified partners is given for GABA transporter 3 (GAT3) and heat shock protein 60 (HSP60). In human embryonic kidney 293 cells containing SV40 T-antigen (HEK293T) cells, both GAT3 and HSP60 coimmunoprecipitated and colocalized with MaxiK channel; colabeling was observed mainly at the cell periphery with GAT3 and intracellularly with HSP60 with protein proximity indices of ∼ 0.6 and ∼ 0.4, respectively. In rat primary hippocampal neurons, colocalization index was identical for GAT3 (∼ 0.6) and slightly higher for HSP60 (∼ 0.5) association with MaxiK channel. The results of this study provide a complete interactome of MaxiK channel the mouse brain, further establish the localization of MaxiK channel in the mouse brain mitochondria and demonstrate the interaction of MaxiK channel with GAT3 and HSP60 in neurons. The interaction of MaxiK channel with GAT3 opens the possibility of a role of MaxiK channel in GABA homeostasis and signaling.
Collapse
Affiliation(s)
- H Singh
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA 19102, USA; Department of Anesthesiology, University of California, Los Angeles, CA 90095, USA.
| | - M Li
- Department of Anesthesiology, University of California, Los Angeles, CA 90095, USA.
| | - L Hall
- Department of Anesthesiology, University of California, Los Angeles, CA 90095, USA.
| | - S Chen
- Department of Anesthesiology, University of California, Los Angeles, CA 90095, USA.
| | - S Sukur
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA 19102, USA.
| | - R Lu
- Department of Anesthesiology, University of California, Los Angeles, CA 90095, USA.
| | - A Caputo
- Department of Neurobiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA.
| | - A L Meredith
- Department of Physiology, University of Maryland, Baltimore, MD 21201, USA.
| | - E Stefani
- Department of Anesthesiology, University of California, Los Angeles, CA 90095, USA; Department of Physiology, University of California, Los Angeles, CA 90095, USA; Brain Research Institute, University of California, Los Angeles, CA 90095, USA.
| | - L Toro
- Department of Anesthesiology, University of California, Los Angeles, CA 90095, USA; Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA 90095, USA; Brain Research Institute, University of California, Los Angeles, CA 90095, USA; Cardiovascular Research Laboratory, University of California, Los Angeles, CA 90095, USA.
| |
Collapse
|
17
|
Protein Network Interacting with BK Channels. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2016; 128:127-61. [DOI: 10.1016/bs.irn.2016.03.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
18
|
Gory-Fauré S, Windscheid V, Brocard J, Montessuit S, Tsutsumi R, Denarier E, Fukata Y, Bosc C, Delaroche J, Collomb N, Fukata M, Martinou JC, Pernet-Gallay K, Andrieux A. Non-microtubular localizations of microtubule-associated protein 6 (MAP6). PLoS One 2014; 9:e114905. [PMID: 25526643 PMCID: PMC4272302 DOI: 10.1371/journal.pone.0114905] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Accepted: 11/11/2014] [Indexed: 01/29/2023] Open
Abstract
MAP6 proteins (MAP6s), which include MAP6-N (also called Stable Tubule Only Polypeptide, or STOP) and MAP6d1 (MAP6 domain-containing protein 1, also called STOP-Like protein 21 kD, or SL21), bind to and stabilize microtubules. MAP6 deletion in mice severely alters integrated brain functions and is associated with synaptic defects, suggesting that MAP6s may also have alternative cellular roles. MAP6s reportedly associate with the Golgi apparatus through palmitoylation of their N-terminal domain, and specific isoforms have been shown to bind actin. Here, we use heterologous systems to investigate several biochemical properties of MAP6 proteins. We demonstrate that the three N-terminal cysteines of MAP6d1 are palmitoylated by a subset of DHHC-type palmitoylating enzymes. Analysis of the subcellular localization of palmitoylated MAP6d1, including electron microscopic analysis, reveals possible localization to the Golgi and the plasma membrane but no association with the endoplasmic reticulum. Moreover, we observed localization of MAP6d1 to mitochondria, which requires the N-terminus of the protein but does not require palmitoylation. We show that endogenous MAP6d1 localized at mitochondria in mature mice neurons as well as at the outer membrane and in the intermembrane space of purified mouse mitochondria. Last, we found that MAP6d1 can multimerize via a microtubule-binding module. Interestingly, most of these properties of MAP6d1 are shared by MAP6-N. Together, these results describe several properties of MAP6 proteins, including their intercellular localization and multimerization activity, which may be relevant to neuronal differentiation and synaptic functions.
Collapse
Affiliation(s)
- Sylvie Gory-Fauré
- Inserm, U836, Physiopathologie du cytosquelette, BP170, Grenoble, France
- University Grenoble Alpes, Grenoble Institut des Neurosciences, BP170, Grenoble, France
- * E-mail: (SGF); (AA)
| | - Vanessa Windscheid
- Inserm, U836, Physiopathologie du cytosquelette, BP170, Grenoble, France
- University Grenoble Alpes, Grenoble Institut des Neurosciences, BP170, Grenoble, France
| | - Jacques Brocard
- Inserm, U836, Physiopathologie du cytosquelette, BP170, Grenoble, France
- University Grenoble Alpes, Grenoble Institut des Neurosciences, BP170, Grenoble, France
| | - Sylvie Montessuit
- Department of Cell Biology, University of Geneva, Sciences III, Geneva, Switzerland
| | - Ryouhei Tsutsumi
- Division of Membrane Physiology, Department of Cell Physiology, National Institute for Physiological Sciences, Aichi, Japan
| | - Eric Denarier
- Inserm, U836, Physiopathologie du cytosquelette, BP170, Grenoble, France
- University Grenoble Alpes, Grenoble Institut des Neurosciences, BP170, Grenoble, France
- Commissariat à l'énergie atomique, Institut de Recherches en Technologies et Sciences pour le Vivant, Groupe Physiopathologie du Cytosquelette, Grenoble, France
| | - Yuko Fukata
- Division of Membrane Physiology, Department of Cell Physiology, National Institute for Physiological Sciences, Aichi, Japan
| | - Christophe Bosc
- Inserm, U836, Physiopathologie du cytosquelette, BP170, Grenoble, France
- University Grenoble Alpes, Grenoble Institut des Neurosciences, BP170, Grenoble, France
| | - Julie Delaroche
- Inserm, U836, Physiopathologie du cytosquelette, BP170, Grenoble, France
- University Grenoble Alpes, Grenoble Institut des Neurosciences, BP170, Grenoble, France
| | - Nora Collomb
- Inserm, U836, Physiopathologie du cytosquelette, BP170, Grenoble, France
- University Grenoble Alpes, Grenoble Institut des Neurosciences, BP170, Grenoble, France
| | - Masaki Fukata
- Division of Membrane Physiology, Department of Cell Physiology, National Institute for Physiological Sciences, Aichi, Japan
| | - Jean-Claude Martinou
- Department of Cell Biology, University of Geneva, Sciences III, Geneva, Switzerland
| | - Karin Pernet-Gallay
- Inserm, U836, Physiopathologie du cytosquelette, BP170, Grenoble, France
- University Grenoble Alpes, Grenoble Institut des Neurosciences, BP170, Grenoble, France
| | - Annie Andrieux
- Inserm, U836, Physiopathologie du cytosquelette, BP170, Grenoble, France
- University Grenoble Alpes, Grenoble Institut des Neurosciences, BP170, Grenoble, France
- Commissariat à l'énergie atomique, Institut de Recherches en Technologies et Sciences pour le Vivant, Groupe Physiopathologie du Cytosquelette, Grenoble, France
- * E-mail: (SGF); (AA)
| |
Collapse
|
19
|
Liu B, Badeaux MD, Choy G, Chandra D, Shen I, Jeter CR, Rycaj K, Lee CF, Person MD, Liu C, Chen Y, Shen J, Jung SY, Qin J, Tang DG. Nanog1 in NTERA-2 and recombinant NanogP8 from somatic cancer cells adopt multiple protein conformations and migrate at multiple M.W species. PLoS One 2014; 9:e90615. [PMID: 24598770 PMCID: PMC3944193 DOI: 10.1371/journal.pone.0090615] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2014] [Accepted: 01/29/2014] [Indexed: 12/12/2022] Open
Abstract
Human Nanog1 is a 305-amino acid (aa) homeodomain-containing transcription factor critical for the pluripotency of embryonic stem (ES) and embryonal carcinoma (EC) cells. Somatic cancer cells predominantly express a retrogene homolog of Nanog1 called NanogP8, which is ∼99% similar to Nanog at the aa level. Although the predicted M.W of Nanog1/NanogP8 is ∼35 kD, both have been reported to migrate, on Western blotting (WB), at apparent molecular masses of 29–80 kD. Whether all these reported protein bands represent authentic Nanog proteins is unclear. Furthermore, detailed biochemical studies on Nanog1/NanogpP8 have been lacking. By combining WB using 8 anti-Nanog1 antibodies, immunoprecipitation, mass spectrometry, and studies using recombinant proteins, here we provide direct evidence that the Nanog1 protein in NTERA-2 EC cells exists as multiple M.W species from ∼22 kD to 100 kD with a major 42 kD band detectable on WB. We then demonstrate that recombinant NanogP8 (rNanogP8) proteins made in bacteria using cDNAs from multiple cancer cells also migrate, on denaturing SDS-PAGE, at ∼28 kD to 180 kD. Interestingly, different anti-Nanog1 antibodies exhibit differential reactivity towards rNanogP8 proteins, which can spontaneously form high M.W protein species. Finally, we show that most long-term cultured cancer cell lines seem to express very low levels of or different endogenous NanogP8 protein that cannot be readily detected by immunoprecipitation. Altogether, the current study reveals unique biochemical properties of Nanog1 in EC cells and NanogP8 in somatic cancer cells.
Collapse
Affiliation(s)
- Bigang Liu
- Department of Molecular Carcinogenesis, University of Texas M.D Anderson Cancer Center, Science Park, Smithville, Texas, United States of America
| | - Mark D. Badeaux
- Department of Molecular Carcinogenesis, University of Texas M.D Anderson Cancer Center, Science Park, Smithville, Texas, United States of America
| | - Grace Choy
- Department of Molecular Carcinogenesis, University of Texas M.D Anderson Cancer Center, Science Park, Smithville, Texas, United States of America
| | - Dhyan Chandra
- Department of Molecular Carcinogenesis, University of Texas M.D Anderson Cancer Center, Science Park, Smithville, Texas, United States of America
| | - Irvin Shen
- Department of Molecular Carcinogenesis, University of Texas M.D Anderson Cancer Center, Science Park, Smithville, Texas, United States of America
| | - Collene R. Jeter
- Department of Molecular Carcinogenesis, University of Texas M.D Anderson Cancer Center, Science Park, Smithville, Texas, United States of America
| | - Kiera Rycaj
- Department of Molecular Carcinogenesis, University of Texas M.D Anderson Cancer Center, Science Park, Smithville, Texas, United States of America
| | - Chia-Fang Lee
- College of Pharmacy, University of Texas, Austin, Texas, United States of America
| | - Maria D. Person
- College of Pharmacy, University of Texas, Austin, Texas, United States of America
| | - Can Liu
- Department of Molecular Carcinogenesis, University of Texas M.D Anderson Cancer Center, Science Park, Smithville, Texas, United States of America
| | - Yueping Chen
- Department of Molecular Carcinogenesis, University of Texas M.D Anderson Cancer Center, Science Park, Smithville, Texas, United States of America
| | - Jianjun Shen
- Department of Molecular Carcinogenesis, University of Texas M.D Anderson Cancer Center, Science Park, Smithville, Texas, United States of America
| | - Sung Yun Jung
- Department of Biochemistry, Baylor College of Medicine, Houston, Texas, United States of America
| | - Jun Qin
- Department of Biochemistry, Baylor College of Medicine, Houston, Texas, United States of America
| | - Dean G. Tang
- Department of Molecular Carcinogenesis, University of Texas M.D Anderson Cancer Center, Science Park, Smithville, Texas, United States of America
- Cancer Stem Cell Institute, Research Center for Translational Medicine, East Hospital, Tongji University School of Medicine, Shanghai, China
- * E-mail:
| |
Collapse
|
20
|
Gorini G, Adron Harris R, Dayne Mayfield R. Proteomic approaches and identification of novel therapeutic targets for alcoholism. Neuropsychopharmacology 2014; 39:104-30. [PMID: 23900301 PMCID: PMC3857647 DOI: 10.1038/npp.2013.182] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Revised: 07/02/2013] [Accepted: 07/04/2013] [Indexed: 01/01/2023]
Abstract
Recent studies have shown that gene regulation is far more complex than previously believed and does not completely explain changes at the protein level. Therefore, the direct study of the proteome, considerably different in both complexity and dynamicity to the genome/transcriptome, has provided unique insights to an increasing number of researchers. During the past decade, extraordinary advances in proteomic techniques have changed the way we can analyze the composition, regulation, and function of protein complexes and pathways underlying altered neurobiological conditions. When combined with complementary approaches, these advances provide the contextual information for decoding large data sets into meaningful biologically adaptive processes. Neuroproteomics offers potential breakthroughs in the field of alcohol research by leading to a deeper understanding of how alcohol globally affects protein structure, function, interactions, and networks. The wealth of information gained from these advances can help pinpoint relevant biomarkers for early diagnosis and improved prognosis of alcoholism and identify future pharmacological targets for the treatment of this addiction.
Collapse
Affiliation(s)
- Giorgio Gorini
- Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, TX, USA
| | - R Adron Harris
- Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, TX, USA
| | - R Dayne Mayfield
- Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, TX, USA
| |
Collapse
|
21
|
Gorini G, Roberts AJ, Mayfield RD. Neurobiological signatures of alcohol dependence revealed by protein profiling. PLoS One 2013; 8:e82656. [PMID: 24358215 PMCID: PMC3865151 DOI: 10.1371/journal.pone.0082656] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Accepted: 10/24/2013] [Indexed: 01/09/2023] Open
Abstract
Alcohol abuse causes dramatic neuroadaptations in the brain, which contribute to tolerance, dependence, and behavioral modifications. Previous proteomic studies in human alcoholics and animal models have identified candidate alcoholism-related proteins. However, recent evidences suggest that alcohol dependence is caused by changes in co-regulation that are invisible to single protein-based analysis. Here, we analyze global proteomics data to integrate differential expression, co-expression networks, and gene annotations to unveil key neurobiological rearrangements associated with the transition to alcohol dependence modeled by a Chronic Intermittent Ethanol (CIE), two-bottle choice (2BC) paradigm. We analyzed cerebral cortices (CTX) and midbrains (MB) from male C57BL/6J mice subjected to a CIE, 2BC paradigm, which induces heavy drinking and represents one of the best available animal models for alcohol dependence and relapse drinking. CIE induced significant changes in protein levels in dependent mice compared with their non-dependent controls. Multiple protein isoforms showed region-specific differential regulation as a result of post-translational modifications. Our integrative analysis identified modules of co-expressed proteins that were highly correlated with CIE treatment. We found that modules most related to the effects of CIE treatment coordinate molecular imbalances in endocytic- and energy-related pathways, with specific proteins involved, such as dynamin-1. The qRT-PCR experiments validated both differential and co-expression analyses, and the correspondence among our data and previous genomic and proteomic studies in humans and rodents substantiates our findings. The changes identified above may play a key role in the escalation of ethanol consumption associated with dependence. Our approach to alcohol addiction will advance knowledge of brain remodeling mechanisms and adaptive changes in response to drug abuse, contribute to understanding of organizational principles of CTX and MB proteomes, and define potential new molecular targets for treating alcohol addiction. The integrative analysis employed here highlight the advantages of systems approaches in studying the neurobiology of alcohol addiction.
Collapse
Affiliation(s)
- Giorgio Gorini
- Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, Texas, United States of America
- * E-mail:
| | - Amanda J. Roberts
- Molecular & Cellular Neuroscience Department, The Scripps Research Institute, La Jolla, California, United States of America
| | - R. Dayne Mayfield
- Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, Texas, United States of America
| |
Collapse
|
22
|
Positively correlated miRNA-mRNA regulatory networks in mouse frontal cortex during early stages of alcohol dependence. BMC Genomics 2013; 14:725. [PMID: 24148570 PMCID: PMC3924350 DOI: 10.1186/1471-2164-14-725] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Accepted: 10/04/2013] [Indexed: 01/06/2023] Open
Abstract
Background Although the study of gene regulation via the action of specific microRNAs (miRNAs) has experienced a boom in recent years, the analysis of genome-wide interaction networks among miRNAs and respective targeted mRNAs has lagged behind. MicroRNAs simultaneously target many transcripts and fine-tune the expression of genes through cooperative/combinatorial targeting. Therefore, they have a large regulatory potential that could widely impact development and progression of diseases, as well as contribute unpredicted collateral effects due to their natural, pathophysiological, or treatment-induced modulation. We support the viewpoint that whole mirnome-transcriptome interaction analysis is required to better understand the mechanisms and potential consequences of miRNA regulation and/or deregulation in relevant biological models. In this study, we tested the hypotheses that ethanol consumption induces changes in miRNA-mRNA interaction networks in the mouse frontal cortex and that some of the changes observed in the mouse are equivalent to changes in similar brain regions from human alcoholics. Results miRNA-mRNA interaction networks responding to ethanol insult were identified by differential expression analysis and weighted gene coexpression network analysis (WGCNA). Important pathways (coexpressed modular networks detected by WGCNA) and hub genes central to the neuronal response to ethanol are highlighted, as well as key miRNAs that regulate these processes and therefore represent potential therapeutic targets for treating alcohol addiction. Importantly, we discovered a conserved signature of changing miRNAs between ethanol-treated mice and human alcoholics, which provides a valuable tool for future biomarker/diagnostic studies in humans. We report positively correlated miRNA-mRNA expression networks that suggest an adaptive, targeted miRNA response due to binge ethanol drinking. Conclusions This study provides new evidence for the role of miRNA regulation in brain homeostasis and sheds new light on current understanding of the development of alcohol dependence. To our knowledge this is the first report that activated expression of miRNAs correlates with activated expression of mRNAs rather than with mRNA downregulation in an in vivo model. We speculate that early activation of miRNAs designed to limit the effects of alcohol-induced genes may be an essential adaptive response during disease progression.
Collapse
|
23
|
Rehak R, Bartoletti TM, Engbers JDT, Berecki G, Turner RW, Zamponi GW. Low voltage activation of KCa1.1 current by Cav3-KCa1.1 complexes. PLoS One 2013; 8:e61844. [PMID: 23626738 PMCID: PMC3633930 DOI: 10.1371/journal.pone.0061844] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Accepted: 03/14/2013] [Indexed: 02/03/2023] Open
Abstract
Calcium-activated potassium channels of the KCa1.1 class are known to regulate repolarization of action potential discharge through a molecular association with high voltage-activated calcium channels. The current study examined the potential for low voltage-activated Cav3 (T-type) calcium channels to interact with KCa1.1 when expressed in tsA-201 cells and in rat medial vestibular neurons (MVN) in vitro. Expression of the channel α-subunits alone in tsA-201 cells was sufficient to enable Cav3 activation of KCa1.1 current. Cav3 calcium influx induced a 50 mV negative shift in KCa1.1 voltage for activation, an interaction that was blocked by Cav3 or KCa1.1 channel blockers, or high internal EGTA. Cav3 and KCa1.1 channels coimmunoprecipitated from lysates of either tsA-201 cells or rat brain, with Cav3 channels associating with the transmembrane S0 segment of the KCa1.1 N-terminus. KCa1.1 channel activation was closely aligned with Cav3 calcium conductance in that KCa1.1 current shared the same low voltage dependence of Cav3 activation, and was blocked by voltage-dependent inactivation of Cav3 channels or by coexpressing a non calcium-conducting Cav3 channel pore mutant. The Cav3-KCa1.1 interaction was found to function highly effectively in a subset of MVN neurons by activating near –50 mV to contribute to spike repolarization and gain of firing. Modelling data indicate that multiple neighboring Cav3-KCa1.1 complexes must act cooperatively to raise calcium to sufficiently high levels to permit KCa1.1 activation. Together the results identify a novel Cav3-KCa1.1 signaling complex where Cav3-mediated calcium entry enables KCa1.1 activation over a wide range of membrane potentials according to the unique voltage profile of Cav3 calcium channels, greatly extending the roles for KCa1.1 potassium channels in controlling membrane excitability.
Collapse
Affiliation(s)
- Renata Rehak
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
| | - Theodore M. Bartoletti
- Department of Cell Biology and Anatomy, Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
| | - Jordan D. T. Engbers
- Department of Cell Biology and Anatomy, Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
| | - Geza Berecki
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
| | - Ray W. Turner
- Department of Cell Biology and Anatomy, Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
| | - Gerald W. Zamponi
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
- * E-mail:
| |
Collapse
|
24
|
Bell RL, Sable HJ, Colombo G, Hyytia P, Rodd ZA, Lumeng L. Animal models for medications development targeting alcohol abuse using selectively bred rat lines: neurobiological and pharmacological validity. Pharmacol Biochem Behav 2012; 103:119-55. [PMID: 22841890 PMCID: PMC3595005 DOI: 10.1016/j.pbb.2012.07.007] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2011] [Revised: 07/07/2012] [Accepted: 07/18/2012] [Indexed: 02/04/2023]
Abstract
The purpose of this review paper is to present evidence that rat animal models of alcoholism provide an ideal platform for developing and screening medications that target alcohol abuse and dependence. The focus is on the 5 oldest international rat lines that have been selectively bred for a high alcohol-consumption phenotype. The behavioral and neurochemical phenotypes of these rat lines are reviewed and placed in the context of the clinical literature. The paper presents behavioral models for assessing the efficacy of pharmaceuticals for the treatment of alcohol abuse and dependence in rodents, with particular emphasis on rats. Drugs that have been tested for their effectiveness in reducing alcohol/ethanol consumption and/or self-administration by these rat lines and their putative site of action are summarized. The paper also presents some current and future directions for developing pharmacological treatments targeting alcohol abuse and dependence.
Collapse
Affiliation(s)
- Richard L. Bell
- Department of Psychiatry, Institute of Psychiatric Research, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Helen J.K. Sable
- Department of Psychology, University of Memphis, Memphis, Tennessee, USA
| | - Giancarlo Colombo
- Neuroscience Institute, National Research Council of Italy, Section of Cagliari, Monserrato, Italy
| | - Petri Hyytia
- Institute of Biomedicine, University of Helsinki, Finland
| | - Zachary A. Rodd
- Department of Psychiatry, Institute of Psychiatric Research, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Lawrence Lumeng
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| |
Collapse
|
25
|
Reid AT, Lord T, Stanger SJ, Roman SD, McCluskey A, Robinson PJ, Aitken RJ, Nixon B. Dynamin regulates specific membrane fusion events necessary for acrosomal exocytosis in mouse spermatozoa. J Biol Chem 2012; 287:37659-72. [PMID: 22977254 DOI: 10.1074/jbc.m112.392803] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Mammalian spermatozoa must complete an acrosome reaction prior to fertilizing an oocyte. The acrosome reaction is a unique exocytotic event involving a series of prolonged membrane fusions that ultimately result in the production of membrane vesicles and release of the acrosomal contents. This event requires the concerted action of a large number of fusion-competent signaling and scaffolding proteins. Here we show that two different members of the dynamin GTPase family localize to the developing acrosome of maturing mouse germ cells. Both dynamin 1 and 2 also remain within the periacrosomal region of mature mouse spermatozoa and are thus well positioned to regulate the acrosome reaction. Two pharmacological inhibitors of dynamin, dynasore and Dyngo-4a, blocked the in vitro induction of acrosomal exocytosis by progesterone, but not by the calcium ionophore A23187, and elicited a concomitant reduction of in vitro fertilization. In vivo treatment with these inhibitors also resulted in spermatozoa displaying reduced acrosome reaction potential. Dynamin 1 and 2 phosphorylation increased on progesterone treatment, and this was also selectively blocked by dynasore. On the basis of our collective data, we propose that dynamin could regulate specific membrane fusion events necessary for acrosomal exocytosis in mouse spermatozoa.
Collapse
Affiliation(s)
- Andrew T Reid
- School of Environmental and Life Sciences, Discipline of Biological Sciences, The University of Newcastle, University Drive, Callaghan, New South Wales 2308, Australia
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Nunez YO, Mayfield RD. Understanding Alcoholism Through microRNA Signatures in Brains of Human Alcoholics. Front Genet 2012; 3:43. [PMID: 22514554 PMCID: PMC3322338 DOI: 10.3389/fgene.2012.00043] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Accepted: 03/09/2012] [Indexed: 01/05/2023] Open
Abstract
Advances in the fields of genomics and genetics in the last decade have identified a large number of genes that can potentially influence alcohol-drinking behavior in humans as well as animal models. Consequently, the task of identifying efficient molecular targets that could be used to develop effective therapeutics against the disease has become increasingly daunting. One of the reasons for this is the fact that each of the many alcohol-responsive genes only contributes a small effect to the overall mechanism and disease phenotype, as is characteristic of complex traits. Current research trends are hence shifting toward the analysis of gene networks rather than emphasizing individual genes. The discovery of microRNAs and their mechanisms of action on regulation of transcript level and protein translation have made evident the utility of these small non-coding RNA molecules that act as central coordinators of multiple cross-communicating cellular pathways. Cells exploit the fact that a single microRNA can target hundreds of mRNA transcripts and that a single mRNA transcript can be simultaneously targeted by distinct microRNAs, to ensure fine-tuned and/or redundant control over a large number of cellular functions. By the same token, we can use these properties of microRNAs to develop novel, targeted strategies to combat complex disorders. In this review, we will focus on recent discoveries of microRNA signatures in brain of human alcoholics supporting the hypothesis that changes in gene expression and regulation by microRNAs are responsible for long-term neuroadaptations occurring during development of alcoholism. We also discuss insights into the potential modulation of epigenetic regulators by a subset of microRNAs. Taken together, microRNA activity may be controlling many of the cellular mechanisms already known to be involved in the development of alcoholism, and suggests potential targets for the development of novel therapeutic interventions.
Collapse
Affiliation(s)
- Yury O Nunez
- Waggoner Center for Alcohol and Addiction Research, University of Texas at Austin Austin, TX, USA
| | | |
Collapse
|
27
|
Krishnan HR, Al-Hasan YM, Pohl JB, Ghezzi A, Atkinson NS. A role for dynamin in triggering ethanol tolerance. Alcohol Clin Exp Res 2012; 36:24-34. [PMID: 21797886 PMCID: PMC3208067 DOI: 10.1111/j.1530-0277.2011.01587.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND A prevailing hypothesis is that the set of genes that underlie the endophenotypes of alcoholism overlap with those responsible for the addicted state. Functional ethanol tolerance, an endophenotype of alcoholism, is defined as a reduced response to ethanol caused by prior ethanol exposure. The neuronal origins of functional rapid tolerance are thought to be a homeostatic response of the nervous system that counters the effects of the drug. Synaptic proteins that regulate neuronal activity are an important evolutionarily conserved target of ethanol. METHODS We used mutant analysis in Drosophila to identify synaptic proteins that are important for the acquisition of rapid tolerance to sedation with ethanol. Tolerance was assayed by sedating flies with ethanol vapor and comparing the recovery time of flies after their first sedation and their second sedation. Temperature-sensitive paralytic mutants that alter key facets of synaptic neurotransmission, such as the propagation of action potentials, synaptic vesicle fusion, exocytosis, and endocytosis, were tested for the ability to acquire functional tolerance at both the permissive and restrictive temperatures. RESULTS The shibire gene encodes Drosophila Dynamin. We tested 2 temperature-sensitive alleles of the gene. The shi(ts1) allele blocked tolerance at both the permissive and restrictive temperatures, while shi(ts2) blocked only at the restrictive temperature. Using the temperature-sensitive property of shi(ts2) , we showed that Dynamin function is required concomitant with exposure to ethanol. A temperature-sensitive allele of the Syntaxin 1A gene, Syx1A(3-69), also blocked the acquisition of ethanol tolerance. CONCLUSIONS We have shown that shibire and Syntaxin 1A are required for the acquisition of rapid functional tolerance to ethanol. Furthermore, the shibire gene product, Dynamin, appears to be required for an immediate early response to ethanol that triggers a cellular response leading to rapid functional tolerance.
Collapse
Affiliation(s)
- Harish R Krishnan
- Waggoner Center for Alcohol and Addiction Research, Section of Neurobiology, The University of Texas at Austin, USA
| | | | | | | | | |
Collapse
|
28
|
Al-Hasan YM, Krishnan HR, Ghezzi A, Prado FJ, Robles RB, Atkinson NS. Tolerance to anesthesia depends on synaptic proteins. Behav Genet 2011; 41:734-45. [PMID: 21318409 PMCID: PMC3163005 DOI: 10.1007/s10519-011-9451-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2010] [Accepted: 01/28/2011] [Indexed: 12/17/2022]
Abstract
The hypnotic effects of anesthetics are caused by their interactions with neuronal components vital for proper signaling. An understanding of the adaptive mechanisms that lead to the development of anesthetic tolerance can offer insight into the regulation of neuroexcitability and plasticity that alter behavioral output. Here we use genetic and pharmacological manipulation of Drosophila to investigate the mechanisms of tolerance to benzyl alcohol. The mutants tested were temperature-sensitive paralytics that interfere with neuronal signaling: two mutations in dynamin that affect vesicle recycling, shi (ts1) and shi (ts2), and one that affects the voltage-activated Na(+) channel, para (ts1). We also used N-ethylmaleimide (NEM) to pharmacologically interfere with synaptic function. We found that blocking the generation of action potentials using a temperature-sensitive paralytic mutation does not induce nor prevent the development of functional tolerance to benzyl alcohol, but that disruption of synaptic signaling using mutations in the dynamin gene or by NEM treatment inhibits the induction of tolerance.
Collapse
Affiliation(s)
- Yazan M Al-Hasan
- The Waggoner Center for Alcohol and Addiction Research, Section of Neurobiology, The University of Texas at Austin, 1 University Station C0920, Austin, TX 78712-0248, USA
| | | | | | | | | | | |
Collapse
|
29
|
Schulte U, Müller CS, Fakler B. Ion channels and their molecular environments – Glimpses and insights from functional proteomics. Semin Cell Dev Biol 2011; 22:132-44. [DOI: 10.1016/j.semcdb.2010.09.015] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2010] [Revised: 09/29/2010] [Accepted: 09/30/2010] [Indexed: 01/09/2023]
|
30
|
Molecular targets of alcohol action: Translational research for pharmacotherapy development and screening. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2011; 98:293-347. [PMID: 21199775 DOI: 10.1016/b978-0-12-385506-0.00007-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Alcohol abuse and dependence are multifaceted disorders with neurobiological, psychological, and environmental components. Research on other complex neuropsychiatric diseases suggests that genetically influenced intermediate characteristics affect the risk for heavy alcohol consumption and its consequences. Diverse therapeutic interventions can be developed through identification of reliable biomarkers for this disorder and new pharmacological targets for its treatment. Advances in the fields of genomics and proteomics offer a number of possible targets for the development of new therapeutic approaches. This brain-focused review highlights studies identifying neurobiological systems associated with these targets and possible pharmacotherapies, summarizing evidence from clinically relevant animal and human studies, as well as sketching improvements and challenges facing the fields of proteomics and genomics. Concluding thoughts on using results from these profiling technologies for medication development are also presented.
Collapse
|
31
|
Ghezzi A, Atkinson NS. Homeostatic control of neural activity: a Drosophila model for drug tolerance and dependence. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2011; 99:23-50. [PMID: 21906535 PMCID: PMC4862361 DOI: 10.1016/b978-0-12-387003-2.00002-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Drug addiction is a complex condition of compulsive drug use that results in devastating physical and social consequences. Drosophila melanogaster has recently emerged as a valuable genetic model for investigating the mechanisms of addiction. Drug tolerance is a measurable endophenotype of addiction that can be easily generated and detected in animal models. The counteradaptive theory for drug dependence postulates that the homeostatic adaptations that produce drug tolerance become counteradaptive after drug clearance, resulting in symptoms of dependence. In flies, a single sedation with ethanol or with an organic solvent anesthetic (benzyl alcohol) induces functional tolerance, an adaptation of the nervous system that reduces the effect of these neural depressants. Here we review the role of the BK channel gene (slo) and genes that encode other synaptic proteins in the process of producing functional tolerance. These proteins are predicted to be part of an orchestrated response that involves specific interactions across a highly complex synaptic protein network. The response of the slo gene to drug exposure and the consequence of induced slo expression fit nicely the tenets of the counteradaptive theory for drug tolerance and dependence. Induction of slo expression represents an adaptive process that generates tolerance because it enhances neuronal excitability, which counters the sedative effects of the drugs. After drug clearance, however, the increase in slo expression leads to an allostatic withdrawal state that is characterized by an increase in the susceptibility for seizure. Together, these results demonstrate a common origin for development of drug tolerance and withdrawal hyperexcitability in Drosophila.
Collapse
Affiliation(s)
- Alfredo Ghezzi
- Waggoner Center for Alcohol and Addiction Research, Section of Neurobiology, The University of Texas at Austin, 1 University Station C0920, Austin Texas 78712-0248, USA
| | | |
Collapse
|