1
|
Rybarczyk A, Sultan T, Hussain N, Azam HMH, Rafique S, Zdarta J, Jesionowski T. Fusion of enzymatic proteins: Enhancing biological activities and facilitating biological modifications. Adv Colloid Interface Sci 2025; 340:103473. [PMID: 40086016 DOI: 10.1016/j.cis.2025.103473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 02/28/2025] [Accepted: 03/07/2025] [Indexed: 03/16/2025]
Abstract
The fusion of enzymatic proteins represents a dynamic frontier in biotechnology and enzymatic engineering. This in-depth review looks at the many different ways that fusion proteins can be used, showing their importance in biosensing, gene therapy, targeted drug delivery, and biocatalysis. Fusion proteins have shown an astounding ability to improve and fine-tune biological functions by combining the most beneficial parts of different enzymes. Our first step is to explain how protein fusion increases biological functions. This will provide a broad picture of how this phenomenon has changed many fields. We dissect the intricate mechanisms through which fusion proteins orchestrate cellular processes, underscoring their potential to revolutionize the landscape of molecular biology. We also explore the complicated world of structural analysis and design strategies, stressing the importance of molecular insights for making the fusion protein approach work better. These insights broaden understanding of the underlying principles and illuminate the path toward unlocking untapped potential. The review also introduces cutting-edge techniques for constructing fusion protein libraries, such as DNA shuffling and phage display. These new methods allow scientists to build a molecular orchestra with an unprecedented level of accuracy, and thus use fusion proteins to their full potential in various situations. In conclusion, we provide a glimpse into the current challenges and prospects in fusion protein research, shedding light on recent advancements that promise to reshape the future of biotechnology. As we make this interesting journey through the field of enzymatic protein combination, it becomes clear that the fusion paradigm is about to start a new era of innovation that will push the limits of what is possible in biology and molecular engineering.
Collapse
Affiliation(s)
- Agnieszka Rybarczyk
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, PL-60965 Poznan, Poland
| | - Talha Sultan
- Center for Applied Molecular Biology (CAMB), University of the Punjab, Lahore, Pakistan
| | - Nazim Hussain
- Center for Applied Molecular Biology (CAMB), University of the Punjab, Lahore, Pakistan
| | - Hafiz Muhammad Husnain Azam
- Institute of Biotechnology, Faculty of Environment and Natural Sciences, Brandenburg University of Technology Cottbus-Senftenberg, Universitätsplatz 1, 01968 Senftenberg, Germany
| | - Safa Rafique
- School of Biochemistry and Biotechnology, University of the Punjab, Lahore, Pakistan
| | - Jakub Zdarta
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, PL-60965 Poznan, Poland.
| | - Teofil Jesionowski
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, PL-60965 Poznan, Poland.
| |
Collapse
|
2
|
Nielsen GH, Sachs JN, Hackel BJ. Engineering Affibody Binders to Death Receptor 5 and Tumor Necrosis Factor Receptor 1 With Improved Stability. Biotechnol Bioeng 2025; 122:1386-1396. [PMID: 40045532 PMCID: PMC12067037 DOI: 10.1002/bit.28954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 02/04/2025] [Accepted: 02/09/2025] [Indexed: 05/13/2025]
Abstract
Protein developability is an important, yet often overlooked, aspect of protein discovery campaigns that is a key driver of utility. Recent advances have improved developability screening capacity, making it an increasingly viable option in early-stage discovery. Here, we engineered one component of developability, stability, of two affibody proteins-one that targets death receptor 5 and another that targets tumor necrosis factor receptor 1-previously evolved to bind receptor and non-competitively inhibit signaling via conformational modulation. Starting from an error-prone PCR library of each affibody, variants were screened via yeast surface display binder selections, including depletion of non-specific binders, followed by developability assessment using the on-yeast protease and yeast display level assays. Multiplex deep sequencing identified variants for further evaluation. Purified variants exhibited elevated stability-8°C to 14°C increase in Tm,app-with maintained 1-2 nM affinity for the TNFR1 affibody and 30-fold improvement in the DR5 affibody affinity to 0.8 nM.
Collapse
Affiliation(s)
- Gregory H. Nielsen
- Department of Chemical Engineering and Materials ScienceUniversity of Minnesota Twin CitiesMinneapolisMinnesotaUSA
| | - Jonathan N. Sachs
- Department of Biomedical EngineeringUniversity of Minnesota Twin CitiesMinneapolisMinnesotaUSA
| | - Benjamin J. Hackel
- Department of Chemical Engineering and Materials ScienceUniversity of Minnesota Twin CitiesMinneapolisMinnesotaUSA
- Department of Biomedical EngineeringUniversity of Minnesota Twin CitiesMinneapolisMinnesotaUSA
| |
Collapse
|
3
|
Svendsen JE, Ford MR, Asnes CL, Oh SC, Dorogin J, Fear KM, O'Hara-Smith JR, Chisholm LO, Phillips SR, Harms MJ, Hosseinzadeh P, Hettiaratchi MH. Applying Computational Protein Design to Engineer Affibodies for Affinity-controlled Delivery of Vascular Endothelial Growth Factor and Platelet-Derived Growth Factor. Biomacromolecules 2025. [PMID: 40343812 DOI: 10.1021/acs.biomac.5c00097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2025]
Abstract
Vascular endothelial growth factor (VEGF) and platelet-derived growth factor (PDGF) play coordinated roles in angiogenesis. However, current biomaterial delivery vehicles for these proteins have a limited ability to precisely control the kinetics of protein release, preventing systematic exploration of their temporal effects. Here, we combined yeast surface display and computational protein design to engineer eight VEGF-specific and PDGF-specific protein binders called affibodies with a broad range of affinities for controlled protein release. Soluble affibodies modulated protein bioactivity as evidenced by changes in VEGF-induced endothelial cell proliferation and luminescent output of a PDGF-responsive cell line. Affibody-conjugated hydrogels enabled tunable protein release over 7 days. VEGF and PDGF released from affibody-conjugated hydrogels exhibited higher bioactivity than proteins released from hydrogels without affibodies, suggesting that these engineered affinity interactions could prolong protein bioactivity. This work underscores the power of computational protein design to enhance biomaterial functionality, creating a platform for tunable protein delivery.
Collapse
Affiliation(s)
- Justin E Svendsen
- Knight Campus for Accelerating Scientific Impact, University of Oregon, Eugene, Oregon 97403, United States
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon 97403, United States
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon 97403, United States
| | - Madeleine R Ford
- Knight Campus for Accelerating Scientific Impact, University of Oregon, Eugene, Oregon 97403, United States
- Department of Human Physiology, University of Oregon, Eugene, Oregon 97403, United States
| | - Chandler L Asnes
- Knight Campus for Accelerating Scientific Impact, University of Oregon, Eugene, Oregon 97403, United States
| | - Simon C Oh
- Knight Campus for Accelerating Scientific Impact, University of Oregon, Eugene, Oregon 97403, United States
- Department of Biology, University of Oregon, Eugene, Oregon 97403, United States
| | - Jonathan Dorogin
- Knight Campus for Accelerating Scientific Impact, University of Oregon, Eugene, Oregon 97403, United States
| | - Karly M Fear
- Knight Campus for Accelerating Scientific Impact, University of Oregon, Eugene, Oregon 97403, United States
| | - Johnathan R O'Hara-Smith
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon 97403, United States
- Department of Biology, University of Oregon, Eugene, Oregon 97403, United States
| | - Lauren O Chisholm
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon 97403, United States
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon 97403, United States
| | - Sophia R Phillips
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon 97403, United States
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon 97403, United States
| | - Michael J Harms
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon 97403, United States
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon 97403, United States
| | - Parisa Hosseinzadeh
- Knight Campus for Accelerating Scientific Impact, University of Oregon, Eugene, Oregon 97403, United States
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon 97403, United States
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon 97403, United States
| | - Marian H Hettiaratchi
- Knight Campus for Accelerating Scientific Impact, University of Oregon, Eugene, Oregon 97403, United States
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon 97403, United States
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon 97403, United States
| |
Collapse
|
4
|
Sadler C, Creamer A, Giang KA, Darmawan KK, Shamsabadi A, Richards DA, Nilvebrant J, Wojciechowski JP, Charchar P, Burdis R, Smith F, Yarovsky I, Nygren PÅ, Stevens MM. Adding a Twist to Lateral Flow Immunoassays: A Direct Replacement of Antibodies with Helical Affibodies, from Selection to Application. J Am Chem Soc 2025; 147:11925-11940. [PMID: 40135773 PMCID: PMC11987028 DOI: 10.1021/jacs.4c17452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 03/13/2025] [Accepted: 03/18/2025] [Indexed: 03/27/2025]
Abstract
Immunoreagents, most commonly antibodies, are integral components of lateral flow immunoassays. However, the use of antibodies comes with limitations, particularly relating to their reproducible production, and poor thermal and chemical stability. Here, we employ phage display to develop affibodies, a class of nonimmunoglobulin affinity proteins based on a small three-helix bundle scaffold, against SARS-CoV-2 Spike protein. Subsequently, we demonstrate the utility and viability of affibodies to directly replace antibodies in lateral flow immunoassays. In addition, we highlight several physiochemical advantages of affibodies, including their ability to withstand exposure to high temperature and humidity while maintaining superior performance compared to their antibody counterparts. Furthermore, we investigate the adsorption mechanism of affibodies to the surface of gold nanoparticle probes via a His6-tag, introduced to also facilitate recombinant purification. Through molecular dynamics simulations, we elucidate the structural and physical characteristics of affibody dimers which result in high-performing detection probes when immobilized on nanoparticle surfaces. This work demonstrates that affibodies can be used as direct replacements to antibodies in immunoassays and should be further considered as alternatives owing to their improved physiochemical properties and modular design.
Collapse
Affiliation(s)
- Christy
J. Sadler
- Department
of Materials, Department of Bioengineering, Institute of Biomedical Engineering Imperial College London, London SW7 2AZ, U.K.
- Department
of Physiology, Anatomy and Genetics, Department of Engineering Science,
Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford OX1 3QU, U.K.
| | - Adam Creamer
- Department
of Materials, Department of Bioengineering, Institute of Biomedical Engineering Imperial College London, London SW7 2AZ, U.K.
- Department
of Physiology, Anatomy and Genetics, Department of Engineering Science,
Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford OX1 3QU, U.K.
| | - Kim Anh Giang
- Department
of Protein Science, AlbaNova University Center, KTH Royal Institute of Technology, Stockholm SE-114 21, Sweden
| | | | - André Shamsabadi
- Department
of Materials, Department of Bioengineering, Institute of Biomedical Engineering Imperial College London, London SW7 2AZ, U.K.
- Department
of Physiology, Anatomy and Genetics, Department of Engineering Science,
Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford OX1 3QU, U.K.
| | - Daniel A. Richards
- Department
of Materials, Department of Bioengineering, Institute of Biomedical Engineering Imperial College London, London SW7 2AZ, U.K.
- Institute
for Chemical and Bioengineering, ETH Zurich, 8093 Zürich, Switzerland
| | - Johan Nilvebrant
- Department
of Protein Science, AlbaNova University Center, KTH Royal Institute of Technology, Stockholm SE-114 21, Sweden
| | - Jonathan P. Wojciechowski
- Department
of Materials, Department of Bioengineering, Institute of Biomedical Engineering Imperial College London, London SW7 2AZ, U.K.
- Department
of Physiology, Anatomy and Genetics, Department of Engineering Science,
Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford OX1 3QU, U.K.
| | - Patrick Charchar
- School
of Engineering, RMIT University, Melbourne, VIC 3001, Australia
| | - Ross Burdis
- Department
of Materials, Department of Bioengineering, Institute of Biomedical Engineering Imperial College London, London SW7 2AZ, U.K.
| | - Francesca Smith
- Department
of Materials, Department of Bioengineering, Institute of Biomedical Engineering Imperial College London, London SW7 2AZ, U.K.
| | - Irene Yarovsky
- School
of Engineering, RMIT University, Melbourne, VIC 3001, Australia
| | - Per-Åke Nygren
- Department
of Protein Science, AlbaNova University Center, KTH Royal Institute of Technology, Stockholm SE-114 21, Sweden
| | - Molly M. Stevens
- Department
of Materials, Department of Bioengineering, Institute of Biomedical Engineering Imperial College London, London SW7 2AZ, U.K.
- Department
of Physiology, Anatomy and Genetics, Department of Engineering Science,
Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford OX1 3QU, U.K.
| |
Collapse
|
5
|
Liu J, Liu Z, Hu J, Fan B, Zhang S, Chang K, Mao X, Huang G, Liu Z, Ma L. Anti-breast cancer activity of a novel genetically engineered fusion protein composed of HER2 affibody and proapoptotic peptide R8-KLA. Med Oncol 2025; 42:155. [PMID: 40205290 DOI: 10.1007/s12032-025-02707-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 03/29/2025] [Indexed: 04/11/2025]
Abstract
HER2-positive breast cancer is an aggressive subtype with unfavorable prognoses. Although HER2-targeted agents represented by monoclonal antibodies have achieved remarkable success in the clinic, there are still a substantial number of patients with disease relapse. Recently, multifunctional fusion proteins obtained via genetic engineering technology have received much attention in targeted tumor therapy, especially in breast cancer. In this study, we genetically engineered a novel recombinant fusion protein, named HMK, which was designed as a bifunctional construct including the HER2-specific affibody ZHER2:342 for targeted receptor recognition, and a proapoptotic module featuring a cell-penetrating octa-arginine (R8) motif conjugated to an antimicrobial peptide KLA. High-purity HMK proteins were successfully obtained using E. coli expression system and Ni-Nitrilotriacetic acid affinity purification method. HMK exhibited higher cytotoxicity in HER2-positive breast cancer cells SK-BR-3 (IC50 of 8.36 ± 0.62 μM) compared to normal breast epithelial cells MCF-10A (IC50 of 32.40 ± 2.93 μM), demonstrating favorable selectivity. HMK induced apoptosis in SK-BR-3 cells via activating both endogenous and exogenous apoptotic pathways, as evidenced by the cleavage of Caspase 8, Caspase 9, Caspase 3, and PARP. Caspase inhibitor Z-VAD significantly reversed the function of HMK in SK-BR-3 cells, suggesting that caspase-dependent apoptosis was crucial for the anti-breast cancer activity of HMK. Our results suggested that HMK protein may have the potential to become a candidate molecule for HER2-positive breast cancer treatment.
Collapse
Affiliation(s)
- Jian Liu
- Department of Chemical Biology and Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma'anshan, Anhui, 243002, China
| | - Zi Liu
- Department of Chemical Biology and Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma'anshan, Anhui, 243002, China.
| | - Junfeng Hu
- Department of Chemical Biology and Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma'anshan, Anhui, 243002, China
| | - Binru Fan
- Department of Chemical Biology and Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma'anshan, Anhui, 243002, China
| | - Shizhun Zhang
- Department of Chemical Biology and Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma'anshan, Anhui, 243002, China
| | - Kaili Chang
- Department of Chemical Biology and Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma'anshan, Anhui, 243002, China
| | - Xiuping Mao
- Department of Chemical Biology and Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma'anshan, Anhui, 243002, China
| | - Guozheng Huang
- Department of Chemical Biology and Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma'anshan, Anhui, 243002, China
| | - Zhi Liu
- Department of Pathology, Ma'anshan Municipal People's Hospital, Ma'anshan, Anhui, 243000, China
| | - Liang Ma
- Department of Chemical Biology and Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma'anshan, Anhui, 243002, China.
| |
Collapse
|
6
|
Sescil J, Havens SM, Wang W. Principles and Design of Molecular Tools for Sensing and Perturbing Cell Surface Receptor Activity. Chem Rev 2025; 125:2665-2702. [PMID: 39999110 PMCID: PMC11934152 DOI: 10.1021/acs.chemrev.4c00582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2025]
Abstract
Cell-surface receptors are vital for controlling numerous cellular processes with their dysregulation being linked to disease states. Therefore, it is necessary to develop tools to study receptors and the signaling pathways they control. This Review broadly describes molecular approaches that enable 1) the visualization of receptors to determine their localization and distribution; 2) sensing receptor activation with permanent readouts as well as readouts in real time; and 3) perturbing receptor activity and mimicking receptor-controlled processes to learn more about these processes. Together, these tools have provided valuable insight into fundamental receptor biology and helped to characterize therapeutics that target receptors.
Collapse
Affiliation(s)
- Jennifer Sescil
- Department of Chemistry, University of Michigan, Ann Arbor,
MI, 48109
- Life Sciences Institute, University of Michigan, Ann Arbor,
MI, 48109
| | - Steven M. Havens
- Department of Chemistry, University of Michigan, Ann Arbor,
MI, 48109
- Life Sciences Institute, University of Michigan, Ann Arbor,
MI, 48109
| | - Wenjing Wang
- Department of Chemistry, University of Michigan, Ann Arbor,
MI, 48109
- Life Sciences Institute, University of Michigan, Ann Arbor,
MI, 48109
- Neuroscience Graduate Program, University of Michigan, Ann
Arbor, MI, 48109
- Program in Chemical Biology, University of Michigan, Ann
Arbor, MI, 48109
| |
Collapse
|
7
|
Zhang H, Zheng M, Cai Y, Kamara S, Chen J, Zhu S, Zhang L. Novel affibody molecules targeting the AXL extracellular structural domain for molecular imaging and targeted therapy of gastric cancer. Gastric Cancer 2025; 28:174-186. [PMID: 39644434 PMCID: PMC11842530 DOI: 10.1007/s10120-024-01568-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 11/10/2024] [Indexed: 12/09/2024]
Abstract
Gastric cancer (GC) has a poor prognosis and high mortality because it is often diagnosed at an advanced stage. Targeted therapeutics are considered an important class for advanced GC treatment. However, the fewer effective therapeutic targets and the poor coverage of the GC population limit the use of GC targeted therapies. Recent research suggests that the AXL receptor tyrosine kinase (AXL) plays an vital role in the survival and proliferation of GC cells, and blocking AXL pathway may be an effective strategy for targeted therapies. On the other hand, the affibody molecule, with its small size and faster penetration of tissue, has great potential in tumor imaging and targeted therapy. In this study, we report the novel AXL-binding affibody molecules (ZAXL:239) screened by a phage-displayed peptide library. The ZAXL:239 could specifically bind and interact with AXL proteins in vitro and in vivo, as demonstrated by surface plasmon resonance, co-immunoprecipitation, immuno-fluorescence co-localization, and near infrared fluorescent imaging. In addition, ZAXL:239 affibody molecules could significantly inhibit the proliferative activity and induce apoptosis of AXL-positive GC cells by decreasing the phosphorylation levels of the PI3K/AKT1 and MEK/ERK pathway, leading to the suppression of the downstream nuclear protein c-myc. Moreover, ZAXL:239 was found to have significant anti-tumor effects in AXL-positive GC transplantation tumor nude mouse models. In brief, we provide strong evidence that the novel ZAXL:239 affibody molecules have great potential as a potent tumor-specific molecular imaging and targeted therapeutic agents for GC.
Collapse
Affiliation(s)
- HuiHui Zhang
- Institute of Molecular Virology and Immunology, Department of Microbiology and Immunology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, People's Republic of China
| | - Maolin Zheng
- Institute of Molecular Virology and Immunology, Department of Microbiology and Immunology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, People's Republic of China
| | - YiQi Cai
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, People's Republic of China
| | - Saidu Kamara
- Institute of Molecular Virology and Immunology, Department of Microbiology and Immunology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, People's Republic of China
| | - Jun Chen
- Institute of Molecular Virology and Immunology, Department of Microbiology and Immunology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, People's Republic of China
| | - Shanli Zhu
- Institute of Molecular Virology and Immunology, Department of Microbiology and Immunology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, People's Republic of China
| | - Lifang Zhang
- Institute of Molecular Virology and Immunology, Department of Microbiology and Immunology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, People's Republic of China.
| |
Collapse
|
8
|
Babaei Khorzoughi S, Tavakoli M, Mortazavi M, Jafarnejad Z, Malekpour A, Kopaiee Malek T, Kargar F. A review of recombinant HER3 affibodies with an effective diagnostic view of cancer cells. J Drug Target 2025; 33:316-327. [PMID: 39485069 DOI: 10.1080/1061186x.2024.2420202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 09/10/2024] [Accepted: 10/16/2024] [Indexed: 11/03/2024]
Abstract
Breast cancer is one of the leading causes of cancer-related deaths among women globally. Factors like increased expression of HER family members contribute to its development, with elevated HER3 levels-especially in conjunction with tyrosine kinase receptors like HER2-playing a critical role in activating cancer pathways essential for cell survival and proliferation. Detecting high HER3 levels is vital for effective treatment. Affibody proteins, a class that includes antibodies, are used to identify elevated HER3 expression due to their high binding affinity. These innovative non-immune probes show promise in therapy, diagnostics, and biotechnology because of their exceptional specificity and affinity for target proteins. The design of recombinant affibodies enhances HER3 detection accuracy and supports the development of targeted therapies. Advanced engineering techniques optimize these affibodies for stability and binding efficacy, making them suitable for clinical applications. Additionally, their versatility allows integration with imaging technologies for real-time monitoring of HER3 expression and therapeutic responses. This comprehensive approach could lead to more personalized treatment options for patients with HER3-positive breast cancers, improving patient management and outcomes. This study presents recombinant affibodies designed to bind HER3 for cancer cell identification and introduces novel methods for producing various affibody molecules.
Collapse
Affiliation(s)
- Sahar Babaei Khorzoughi
- Department of Biotechnology, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran
| | - Mehrnoosh Tavakoli
- Department of Biotechnology, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran
| | - Mojtaba Mortazavi
- Department of Biotechnology, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran
| | - Zahra Jafarnejad
- Department of Biotechnology, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran
| | | | - Tara Kopaiee Malek
- Department of Cell and Molecular Biology, Faculty of Science, Azad University of Damghan, Damghan, Iran
| | - Farzane Kargar
- Department of Medical Biotechnology, School of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
9
|
Ou L, Setegne MT, Elliot J, Shen F, Dassama LMK. Protein-Based Degraders: From Chemical Biology Tools to Neo-Therapeutics. Chem Rev 2025; 125:2120-2183. [PMID: 39818743 PMCID: PMC11870016 DOI: 10.1021/acs.chemrev.4c00595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 12/26/2024] [Accepted: 12/30/2024] [Indexed: 01/19/2025]
Abstract
The nascent field of targeted protein degradation (TPD) could revolutionize biomedicine due to the ability of degrader molecules to selectively modulate disease-relevant proteins. A key limitation to the broad application of TPD is its dependence on small-molecule ligands to target proteins of interest. This leaves unstructured proteins or those lacking defined cavities for small-molecule binding out of the scope of many TPD technologies. The use of proteins, peptides, and nucleic acids (otherwise known as "biologics") as the protein-targeting moieties in degraders addresses this limitation. In the following sections, we provide a comprehensive and critical review of studies that have used proteins and peptides to mediate the degradation and hence the functional control of otherwise challenging disease-relevant protein targets. We describe existing platforms for protein/peptide-based ligand identification and the drug delivery systems that might be exploited for the delivery of biologic-based degraders. Throughout the Review, we underscore the successes, challenges, and opportunities of using protein-based degraders as chemical biology tools to spur discoveries, elucidate mechanisms, and act as a new therapeutic modality.
Collapse
Affiliation(s)
- Lisha Ou
- Department
of Chemistry, Stanford University, Stanford, California 94305, United States
- Sarafan
ChEM-H Institute, Stanford University, Stanford, California 94305, United States
| | - Mekedlawit T. Setegne
- Department
of Chemistry, Stanford University, Stanford, California 94305, United States
- Sarafan
ChEM-H Institute, Stanford University, Stanford, California 94305, United States
| | - Jeandele Elliot
- Department
of Chemical Engineering, Stanford University, Stanford, California 94305, United States
| | - Fangfang Shen
- Department
of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Laura M. K. Dassama
- Department
of Chemistry, Stanford University, Stanford, California 94305, United States
- Sarafan
ChEM-H Institute, Stanford University, Stanford, California 94305, United States
- Department
of Microbiology & Immunology, Stanford
School of Medicine, Stanford, California 94305, United States
| |
Collapse
|
10
|
Kim D, Kim JS, Bai X, Zhang J, Park M, Lee U, Lee J, Bahn YS, Xu Y, Ha NC. Development of Miniprotein-Type Inhibitors of Biofilm Formation in Candida albicans and Candida auris. J Microbiol Biotechnol 2025; 35:e2411076. [PMID: 40016146 PMCID: PMC11896806 DOI: 10.4014/jmb.2411.11076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 12/26/2024] [Accepted: 12/31/2024] [Indexed: 03/01/2025]
Abstract
Candida auris is a pathogenic fungus associated with high-mortality infections and forms resilient biofilms on various surfaces. In this study, we introduced a novel antifungal strategy against C. auris by integrating an AI-powered protein design tool, ProteinMPNN, with classical molecular dynamics (MD) simulations to design artificial proteins from a miniprotein library. This combined approach accelerated and enhanced the design process, enabling the rapid development of effective miniprotein inhibitors specifically targeting C. auris biofilm formation. The miniproteins developed in this study exhibited potent inhibitory effects on C. auris biofilms, representing a significant advancement in antifungal therapy. Notably, the combined application of these miniproteins enhanced suppression of biofilm formation. These findings highlight not only the strong therapeutic potential of these designed miniproteins but also the power of combining AI-driven protein design with MD simulations to advance biomedical research.
Collapse
Affiliation(s)
- Doyeon Kim
- Research Institute of Agriculture and Life Sciences, Department of Agricultural Biotechnology, CALS, Seoul National University, Seoul 08826, Republic of Korea
| | - Ji-Seok Kim
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
| | - Xue Bai
- Department of Bioengineering, College of Life Science, Dalian Minzu University, Dalian 116600, China
| | - Jie Zhang
- Department of Bioengineering, College of Life Science, Dalian Minzu University, Dalian 116600, China
| | - Minho Park
- Research Institute of Agriculture and Life Sciences, Department of Agricultural Biotechnology, CALS, Seoul National University, Seoul 08826, Republic of Korea
| | - Ungyu Lee
- Research Institute of Agriculture and Life Sciences, Department of Agricultural Biotechnology, CALS, Seoul National University, Seoul 08826, Republic of Korea
| | - Jinwook Lee
- Hanmi Pharmaceutical Co., Ltd., Seoul, Republic of Korea
| | - Yong-Sun Bahn
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
| | - Yongbin Xu
- Department of Bioengineering, College of Life Science, Dalian Minzu University, Dalian 116600, China
| | - Nam-Chul Ha
- Research Institute of Agriculture and Life Sciences, Department of Agricultural Biotechnology, CALS, Seoul National University, Seoul 08826, Republic of Korea
- Center for Food and Bioconvergence, Department of Agricultural Biotechnology, Interdisciplinary Programs in Agricultural Genomics, CALS, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
11
|
John P, Sriram S, Palanichamy C, Subash PT, Sudandiradoss C. A multifarious bacterial surface display: potential platform for biotechnological applications. Crit Rev Microbiol 2025:1-26. [PMID: 39955766 DOI: 10.1080/1040841x.2025.2461054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 01/09/2025] [Accepted: 01/27/2025] [Indexed: 02/18/2025]
Abstract
Bacterial-cell surface display represents a novel field of protein engineering, which is grounds for presenting recombinant proteins or peptides on the surface of host cells. This technique is primarily used for endowing cellular activity on the host cells and enables several biotechnological applications. In this review, we comprehensively summarize the speciality of bacterial surface display, specifically in gram-positive and gram-negative organisms and then we depict the practical cases to show the importance of bacterial cell surface display in biomedicine and bioremediation domains. We manifest that among other display systems such as phages and ribosomes, the cell surface display using bacterial cells can be used to avoid the loss of combinatorial protein libraries and also open the possibility of isolating target-binding variants using high-throughput selection platforms. Thus, it is becoming a robust tool for functionalizing microbes to serve as a potential implement for various bioengineering purposes.
Collapse
Affiliation(s)
- Pearl John
- Department of Biotechnology, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Srineevas Sriram
- Department of Biotechnology, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Chandresh Palanichamy
- Department of Biotechnology, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - P T Subash
- Department of Biotechnology, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - C Sudandiradoss
- Department of Biotechnology, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| |
Collapse
|
12
|
Xia L, Wu Y, Ren Y, Wang Z, Zhou N, Zhou W, Zhou L, Jia L, He C, Meng X, Zhu H, Yang Z. A whole-body imaging technique for tumor-specific diagnostics and screening of B7H3-targeted therapies. J Clin Invest 2025; 135:e186388. [PMID: 39847434 PMCID: PMC11910224 DOI: 10.1172/jci186388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2025] Open
Abstract
BACKGROUNDB7H3, also known as CD276, is notably overexpressed in various malignant tumor cells in humans, with extremely high expression rates. The development of a radiotracer that targets B7H3 may provide a universal tumor-specific imaging agent and allow the noninvasive assessment of the whole-body distribution of B7H3-expressing lesions.METHODSWe enhanced and optimized the structure of an affibody (ABY) that targets B7H3 to create the radiolabeled radiotracer [68Ga]Ga-B7H3-BCH, and then, we conducted both foundational experiments and clinical translational studies.RESULTS[68Ga]Ga-B7H3-BCH exhibited high affinity (equilibrium dissociation constant [KD] = 4.5 nM), and it was taken up in large amounts by B7H3-transfected cells (A549CD276 and H1975CD276 cells); these phenomena were inhibited by unlabeled precursors. Moreover, PET imaging of multiple xenograft models revealed extensive [68Ga]Ga-B7H3-BCH uptake by tumors. In a clinical study including 20 patients with malignant tumors, the [68Ga]Ga-B7H3-BCH signal aggregated in both primary and metastatic lesions, surpassing fluorine-18 fluorodeoxyglucose (18F-FDG) in overall diagnostic efficacy for tumors (85.0% vs. 81.7%), including differentiated hepatocellular and metastatic gastric cancers. A strong correlation between B7H3 expression and [68Ga]Ga-B7H3-BCH uptake in tumors was observed, and B7H3 expression was detected with 84.38% sensitivity and 100% specificity when a maximum standardized uptake value (SUVmax) of 3.85 was set as the cutoff value. Additionally, B7H3-specific PET imaging is expected to predict B7H3 expression levels in tumor cells, intratumoral stroma, and peritumoral tissues.CONCLUSIONIn summary, [68Ga]Ga-B7H3-BCH has potential for the noninvasive identification of B7H3 expression in systemic lesions in patients with malignant tumors. This agent has prospects for improving pretreatment evaluation, predicting therapeutic responses, and monitoring resistance to therapy in patients with malignancies.TRIAL REGISTRATIONClinicalTrials.gov NCT06454955.FUNDINGThis research was financially supported by the Natural Science Foundation of Beijing Municipality (no. 7242266), the National Natural Science Foundation of China (no. 82202201), and the Young Elite Scientists Sponsorship Program by China Association for Science and Technology (CAST) (no. YESS20220230).
Collapse
Affiliation(s)
- Lei Xia
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education), Beijing Key Laboratory of Research, Investigation and Evaluation of Radiopharmaceuticals, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital and Institute, Beijing, China and
| | - Yan Wu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education, Beijing), Department of Pathology, Peking University Cancer Hospital and Institute, Beijing, China
| | - Yanan Ren
- Department of Nuclear Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Zhen Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education, Beijing), Department of Hepato-Pancreato-Biliary Surgery, Sarcoma Center, Peking University Cancer Hospital and Institute, Beijing, China
| | - Nina Zhou
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education), Beijing Key Laboratory of Research, Investigation and Evaluation of Radiopharmaceuticals, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital and Institute, Beijing, China and
| | - Wenyuan Zhou
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education), Beijing Key Laboratory of Research, Investigation and Evaluation of Radiopharmaceuticals, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital and Institute, Beijing, China and
| | - Lixin Zhou
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education, Beijing), Department of Pathology, Peking University Cancer Hospital and Institute, Beijing, China
| | - Ling Jia
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education, Beijing), Department of Pathology, Peking University Cancer Hospital and Institute, Beijing, China
| | - Chengxue He
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education), Beijing Key Laboratory of Research, Investigation and Evaluation of Radiopharmaceuticals, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital and Institute, Beijing, China and
| | - Xiangxi Meng
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education), Beijing Key Laboratory of Research, Investigation and Evaluation of Radiopharmaceuticals, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital and Institute, Beijing, China and
| | - Hua Zhu
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education), Beijing Key Laboratory of Research, Investigation and Evaluation of Radiopharmaceuticals, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital and Institute, Beijing, China and
| | - Zhi Yang
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education), Beijing Key Laboratory of Research, Investigation and Evaluation of Radiopharmaceuticals, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital and Institute, Beijing, China and
| |
Collapse
|
13
|
Gui X, Liang X, Guo X, Yang Z, Song G. Impact of HER2-targeted PET/CT imaging in patients with breast cancer and therapeutic response monitoring. Oncologist 2025; 30:oyae188. [PMID: 39083323 PMCID: PMC11783325 DOI: 10.1093/oncolo/oyae188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 05/14/2024] [Indexed: 02/01/2025] Open
Abstract
BACKGROUND Patients with breast cancer exhibit heterogeneity in the expression of the human epithelial growth factor receptor 2 (HER2). Clinically, re-biopsying recurrent or metastatic lesions presents substantial challenges. This study aimed to evaluate the efficacy of HER2-targeted PET/CT imaging in identifying HER2 expression in breast cancer lesions and monitoring therapeutic responses. PATIENTS AND METHODS This exploratory analysis used data from a prospective study that included adult patients with breast cancer who underwent both Al18F-NOTA-HER2-BCH and 18F-FDG PET/CT imaging at Beijing Cancer Hospital between June 2020 and July 2023 (NCT04547309). RESULTS Fifty-nine participants, with a median age of 55 years, were analyzed. Lesions imaged with HER2-targeted PET/CT before anti-HER2 therapy exhibited higher SUVmax values than after therapy in HER2 immunohistochemistry (IHC) 3 + lesions (19.9, 95% CI: 15.7-25.3 vs 9.8, 95% CI: 5.6-14.7; P = .006). A significant positive correlation was observed between SUVmax on HER2-targeted PET/CT and IHC before therapy (P = .034), with higher SUVmax values noted in lesions with positive HER2 pathology compared to those with negative HER2 status (17.9 ± 13.2 vs 1.1 ± 0.3; P = .007). HER2 expression heterogeneity was confirmed both between primary and metastatic lesions (22.9%) and among different metastatic sites (26.7%) as assessed by HER2-targeted PET/CT. A superior therapeutic response correlated with higher pretreatment SUVmax values. The HER2-targeted PET/CT procedure was well-tolerated by all patients. CONCLUSION HER2-targeted PET/CT imaging offers a practical, non-invasive, and quantitative approach for assessing HER2 status in breast cancer patients, facilitating the optimization and personalization of therapeutic strategies by oncologists.
Collapse
Affiliation(s)
- Xinyu Gui
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Breast Oncology, Peking University Cancer Hospital and Institute, Beijing 100142, People’s Republic of China
| | - Xu Liang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Breast Oncology, Peking University Cancer Hospital and Institute, Beijing 100142, People’s Republic of China
| | - Xiaoyi Guo
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing 100142, People’s Republic of China
| | - Zhi Yang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing 100142, People’s Republic of China
| | - Guohong Song
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Breast Oncology, Peking University Cancer Hospital and Institute, Beijing 100142, People’s Republic of China
| |
Collapse
|
14
|
Xiang Y, Lao Z, Lin Z, Yang X. SpyFixer enables efficient site-specific immobilization for protein-protein interaction analysis and antibody purification. Int J Biol Macromol 2025; 287:138548. [PMID: 39653208 DOI: 10.1016/j.ijbiomac.2024.138548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 12/05/2024] [Accepted: 12/06/2024] [Indexed: 12/19/2024]
Abstract
Traditional methods of protein immobilization often result in activity loss due to random coupling. This study introduces SpyFixer, a variant of SpyCatcher that achieves over 99% efficient site-specific protein immobilization. We applied SpyFixer on two platforms: bio-layer interferometry (BLI) for protein-protein interaction analysis and epoxy agarose resin for antibody purification. Using human growth hormone (hGH) and the Z domain of Protein A as model proteins, we demonstrated that SpyFixer enables efficient, site-specific immobilization on BLI sensors, yielding reproducible kinetic data with lower variability than conventional methods. Additionally, we developed a cost-effective strategy for antibody purification utilizing SpyFixer-modified resin, which exhibited remarkable capture efficiencies exceeding 90%, elution efficiencies over 70%, and purities over 90% for human immunoglobulin G (hIgG) from complex samples, including bacterial lysates, human serum, and recombinant fermentation broth. The resin's loading capacity surpassed 200 mg/mL, and no significant activity loss was observed after 20 regeneration cycles. This study further advances the potential of Spy chemistry in biotechnological applications.
Collapse
Affiliation(s)
- Ya Xiang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, Guangdong 510006, China
| | - Zisha Lao
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, Guangdong 510006, China
| | - Zhanglin Lin
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, Guangdong 510006, China; School of Biomedicine, Guangdong University of Technology, Guangzhou, Guangdong 510006, China.
| | - Xiaofeng Yang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, Guangdong 510006, China.
| |
Collapse
|
15
|
Lee JU, Kim S, Munshi MU, Hwangbo S, Lee SY, Moon B, Lee HS, Oh HB. Elucidating Tertiary Structures of Affibody in Vacuo Using Genetic Code Expansion and FRIPS Mass Spectrometry. Anal Chem 2024; 96:20296-20303. [PMID: 39663559 DOI: 10.1021/acs.analchem.4c05148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2024]
Abstract
Radical-directed protein fragmentation techniques, particularly free radical-initiated peptide sequencing (FRIPS) mass spectrometry (MS), offer significant potential for elucidating protein structures in the gas phase. This study presents a novel approach to protein structural analysis in vacuo, combining FRIPS MS with genetic code expansion (GCE) technology. By incorporating unnatural amino acids (UAAs) at specific sites within an Affibody protein, we effectively introduced a radical precursor at six distinct positions. The study explores structural information derived from radical-directed fragmentations by analyzing the proximity and pathways of radical transfer within the protein's tertiary structure. Our findings reveal that in the lowest charge state (+5), the Affibody retains a folded conformation resembling its native structure, with significant radical-directed fragmentations occurring through both "through-sequence" and "through-space" mechanisms. These results demonstrate the potential of FRIPS MS to provide residue-specific insights into protein folding and structural information in the gas phase, paving the way for a more detailed protein structure analysis.
Collapse
Affiliation(s)
- Jae-Ung Lee
- Department of Chemistry, Sogang University, Seoul 04107, Republic of Korea
- Analytical Sciences Center, LG Chem, Seoul 07796, Republic of Korea
| | - Sanggil Kim
- Department of Chemistry, Sogang University, Seoul 04107, Republic of Korea
- New Drug Development Center, Osong Medical Innovation Foundation, Cheongju, Chungbuk 28160, Republic of Korea
| | | | - Song Hwangbo
- Department of Chemistry, Sogang University, Seoul 04107, Republic of Korea
| | - So Yeon Lee
- Department of Chemistry, Sogang University, Seoul 04107, Republic of Korea
| | - Bongjin Moon
- Department of Chemistry, Sogang University, Seoul 04107, Republic of Korea
| | - Hyun Soo Lee
- Department of Chemistry, Sogang University, Seoul 04107, Republic of Korea
| | - Han Bin Oh
- Department of Chemistry, Sogang University, Seoul 04107, Republic of Korea
| |
Collapse
|
16
|
Martins SA, Correia JDG. 99mTc(I)-Labeled His-Tagged Proteins: Impact in the Development of Novel Imaging Probes and in Drug Discovery. Chembiochem 2024; 25:e202400645. [PMID: 39158861 DOI: 10.1002/cbic.202400645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 08/07/2024] [Indexed: 08/20/2024]
Abstract
Technetium-99 m (99mTc) remains the cornerstone of nuclear medicine for single photon emission computed tomography (SPECT) due to its widespread availability and chemical and physical features. Its multiple oxidation states allow for the design and production of radiopharmaceuticals with versatile properties, namely in terms of pharmacokinetic profile. 99mTc(V) is the most common oxidation state, but 99mTc(I) gained traction after the pioneering work of Alberto and colleagues, which resulted in the introduction of the organometallic core fac-[99mTc(CO)3(H2O)3]+. This core is readily available from [99mTcO4]- and displays three labile water molecules that can be easily swapped for ligands with different denticity and/or donor atoms in aqueous environment. This makes it possible to radiolabel small molecules as well as high molecular weight molecules, such as antibodies or other proteins, while assuring biological activity. Direct radiolabelling of those proteins with fac-[99mTc(CO)3]+ under mild conditions is accomplished through incorporation of a polyhistidine tag (His-tag), a commonly used tag for purification of recombinant proteins. This review aims to address the direct radiolabelling of His-tagged macromolecules with fac-[99mTc(CO)3]+ for development of molecular imaging agents and the impact of this technology in the discovery and development of imaging and/or therapeutic agents towards clinical application.
Collapse
Affiliation(s)
- Sofia A Martins
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, CTN, Estrada Nacional 10 (km 139,7), 2695-066, Bobadela LRS, Portugal
| | - João D G Correia
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, CTN, Estrada Nacional 10 (km 139,7), 2695-066, Bobadela LRS, Portugal
- Departamento de Engenharia e Ciências Nucleares, Instituto Superior Técnico, Universidade de Lisboa, CTN, Estrada Nacional 10 (km 139,7), 2695-066, Bobadela LRS, Portugal
| |
Collapse
|
17
|
Soleja N, Mohsin M. Exploring the landscape of FRET-based molecular sensors: Design strategies and recent advances in emerging applications. Biotechnol Adv 2024; 77:108466. [PMID: 39419421 DOI: 10.1016/j.biotechadv.2024.108466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 10/09/2024] [Accepted: 10/09/2024] [Indexed: 10/19/2024]
Abstract
Probing biological processes in living organisms that could provide one-of-a-kind insights into real-time alterations of significant physiological parameters is a formidable task that calls for specialized analytic devices. Classical biochemical methods have significantly aided our understanding of the mechanisms that regulate essential biological processes. These methods, however, are typically insufficient for investigating transient molecular events since they focus primarily on the end outcome. Fluorescence resonance energy transfer (FRET) microscopy is a potent tool used for exploring non-invasively real-time dynamic interactions between proteins and a variety of biochemical signaling events using sensors that have been meticulously constructed. Due to their versatility, FRET-based sensors have enabled the rapid and standardized assessment of a large array of biological variables, facilitating both high-throughput research and precise subcellular measurements with exceptional temporal and spatial resolution. This review commences with a brief introduction to FRET theory and a discussion of the fluorescent molecules that can serve as tags in different sensing modalities for studies in chemical biology, followed by an outlining of the imaging techniques currently utilized to quantify FRET highlighting their strengths and shortcomings. The article also discusses the various donor-acceptor combinations that can be utilized to construct FRET scaffolds. Specifically, the review provides insights into the latest real-time bioimaging applications of FRET-based sensors and discusses the common architectures of such devices. There has also been discussion of FRET systems with multiplexing capabilities and multi-step FRET protocols for use in dual/multi-analyte detections. Future research directions in this exciting field are also mentioned, along with the obstacles and opportunities that lie ahead.
Collapse
Affiliation(s)
- Neha Soleja
- Department of Biosciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Mohd Mohsin
- Department of Biosciences, Jamia Millia Islamia, New Delhi 110025, India.
| |
Collapse
|
18
|
Swenson CS, Mandava G, Thomas DM, Moellering RE. Tackling Undruggable Targets with Designer Peptidomimetics and Synthetic Biologics. Chem Rev 2024; 124:13020-13093. [PMID: 39540650 PMCID: PMC12036645 DOI: 10.1021/acs.chemrev.4c00423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
The development of potent, specific, and pharmacologically viable chemical probes and therapeutics is a central focus of chemical biology and therapeutic development. However, a significant portion of predicted disease-causal proteins have proven resistant to targeting by traditional small molecule and biologic modalities. Many of these so-called "undruggable" targets feature extended, dynamic protein-protein and protein-nucleic acid interfaces that are central to their roles in normal and diseased signaling pathways. Here, we discuss the development of synthetically stabilized peptide and protein mimetics as an ever-expanding and powerful region of chemical space to tackle undruggable targets. These molecules aim to combine the synthetic tunability and pharmacologic properties typically associated with small molecules with the binding footprints, affinities and specificities of biologics. In this review, we discuss the historical and emerging platforms and approaches to design, screen, select and optimize synthetic "designer" peptidomimetics and synthetic biologics. We examine the inspiration and design of different classes of designer peptidomimetics: (i) macrocyclic peptides, (ii) side chain stabilized peptides, (iii) non-natural peptidomimetics, and (iv) synthetic proteomimetics, and notable examples of their application to challenging biomolecules. Finally, we summarize key learnings and remaining challenges for these molecules to become useful chemical probes and therapeutics for historically undruggable targets.
Collapse
Affiliation(s)
- Colin S Swenson
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - Gunasheil Mandava
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - Deborah M Thomas
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - Raymond E Moellering
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
19
|
Yang B, Gomes DEB, Liu Z, Santos MS, Li J, Bernardi RC, Nash MA. Engineering the Mechanical Stability of a Therapeutic Complex between Affibody and Programmed Death-Ligand 1 by Anchor Point Selection. ACS NANO 2024; 18:31912-31922. [PMID: 39514863 DOI: 10.1021/acsnano.4c09220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Protein-protein complexes can vary in mechanical stability depending on the direction from which force is applied. Here, we investigated the mechanical stability of a complex between a binding scaffold called Affibody and an immune checkpoint protein Programmed Death-Ligand 1 (PD-L1). We used AFM single-molecule force spectroscopy with bioorthogonal clickable peptide handles, shear stress bead adhesion assays, molecular modeling, and steered molecular dynamics (SMD) to understand the pulling point dependency of the mechanostability of the Affibody:(PD-L1) complex. We observed a wide range of rupture forces depending on the anchor point. Pulling from residue #22 on Affibody generated an intermediate state attributed to partially unfolded PD-L1, while pulling from Affibody's N-terminus generated a force-activated catch bond. Pulling from residue #22 or #47 on Affibody generated high rupture forces, with the complex breaking at up to ∼190 pN under loading rates of ∼104-105 pN/s, representing a ∼4-fold increase as compared with low-force N-terminal pulling. SMD simulations showed relative tendencies in rupture forces that were consistent with experiments and, through visualization of force propagation networks, provided mechanistic insights. These results demonstrate how the mechanical properties of protein-protein interfaces can be controlled by informed choice of site-specific bioconjugation points within molecules, with implications for optimal bioconjugation strategies in drug delivery vehicles.
Collapse
Affiliation(s)
- Byeongseon Yang
- Institute for Physical Chemistry, Department of Chemistry, University of Basel, 4058 Basel, Switzerland
- Department of Biosystems Science and Engineering, ETH Zurich, 4056 Basel, Switzerland
| | - Diego E B Gomes
- Department of Physics, Auburn University, Auburn, Alabama 36849, United States
| | - Zhaowei Liu
- Institute for Physical Chemistry, Department of Chemistry, University of Basel, 4058 Basel, Switzerland
- Department of Biosystems Science and Engineering, ETH Zurich, 4056 Basel, Switzerland
| | - Mariana Sá Santos
- Institute for Physical Chemistry, Department of Chemistry, University of Basel, 4058 Basel, Switzerland
- Department of Biosystems Science and Engineering, ETH Zurich, 4056 Basel, Switzerland
| | - Jiajun Li
- Institute for Physical Chemistry, Department of Chemistry, University of Basel, 4058 Basel, Switzerland
- Department of Biosystems Science and Engineering, ETH Zurich, 4056 Basel, Switzerland
| | - Rafael C Bernardi
- Department of Physics, Auburn University, Auburn, Alabama 36849, United States
| | - Michael A Nash
- Institute for Physical Chemistry, Department of Chemistry, University of Basel, 4058 Basel, Switzerland
- Department of Biosystems Science and Engineering, ETH Zurich, 4056 Basel, Switzerland
| |
Collapse
|
20
|
Zhu J, Yu H, Xie L, Shuai D, Huang Z, Chen Y, Ni C, Jia C, Rong X, Zhang L, Chu M. A novel format of TNF-α binding affibody molecule ameliorate coronary artery endothelial injury in a mouse model of Kawasaki disease. Int J Biol Macromol 2024; 281:136255. [PMID: 39366611 DOI: 10.1016/j.ijbiomac.2024.136255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 09/19/2024] [Accepted: 10/01/2024] [Indexed: 10/06/2024]
Abstract
Kawasaki disease (KD) is a disease characterized by systemic immune vasculitis that often involves coronary arteries and can result in long-term cardiovascular sequelae. Different strategies for treatment of KD-and KD-induced coronary artery lesions are currently under investigation, including passive immunization with anti-TNFα monoclonal antibodies (mAbs). Herein, we examine the potential therapeutic capabilities of a novel type of TNFα-targeting agent based on an affibody molecule possessing fundamentally different properties than mAbs. Using phage display technology, we successfully screened and obtained three TNF-α binding affibody molecules and confirmed their high binding affinity and specificity for recombinant and native TNF-α by surface plasmon resonance (SPR), confocal double immunofluorescence and coimmunoprecipitation assays. Moreover, by binding to TNF-α, the affibody molecules could effectively neutralize TNFα-induced L929 cytotoxicity. To increase the targeting properties and serum half-life, one preferred affibody molecule ZTNF-α263 was redesigned to assemble drugs with bivalent TNFα binding with added specificity for serum albumin (ZTNF-α263-ABD035-ZTNF-α263, hereinafter denoted ZTAT). We further determined its binding ability, TNF-α signal blocking and neutralizing capacity, serum half-life and immunogenicity. Most importantly, our study provides strong evidence that the engineered ZTAT protein was therapeutically effective against KD induced-endothelial injury, as judged by both in vitro and in vivo assessments. These data suggested that because of the flexibility inherent, low-molecular weight anti-TNFα affibody construct ZTAT, can be developed into a potent therapeutic agent that can be produced and purified cost-effectively.
Collapse
Affiliation(s)
- Jinshun Zhu
- Department of Oncology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Key Laboratory of Structural Malformations in Children of Zhejiang Province, 325027 Wenzhou, Zhejiang, China; Children's Heart Center, Institute of Cardiovascular Development and Translational Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Huan Yu
- Key Laboratory of Structural Malformations in Children of Zhejiang Province, 325027 Wenzhou, Zhejiang, China; Children's Heart Center, Institute of Cardiovascular Development and Translational Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Longzhi Xie
- Department of Oncology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Dujuan Shuai
- Key Laboratory of Structural Malformations in Children of Zhejiang Province, 325027 Wenzhou, Zhejiang, China; Children's Heart Center, Institute of Cardiovascular Development and Translational Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Zhixian Huang
- Department of Oncology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yufei Chen
- Key Laboratory of Structural Malformations in Children of Zhejiang Province, 325027 Wenzhou, Zhejiang, China; Children's Heart Center, Institute of Cardiovascular Development and Translational Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Chao Ni
- Key Laboratory of Structural Malformations in Children of Zhejiang Province, 325027 Wenzhou, Zhejiang, China; Children's Heart Center, Institute of Cardiovascular Development and Translational Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Chang Jia
- Key Laboratory of Structural Malformations in Children of Zhejiang Province, 325027 Wenzhou, Zhejiang, China; Children's Heart Center, Institute of Cardiovascular Development and Translational Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Xing Rong
- Key Laboratory of Structural Malformations in Children of Zhejiang Province, 325027 Wenzhou, Zhejiang, China; Children's Heart Center, Institute of Cardiovascular Development and Translational Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China.
| | - Lifang Zhang
- Institute of Molecular Virology and Immunology, Department of Microbiology and Immunology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China.
| | - Maoping Chu
- Department of Oncology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Key Laboratory of Structural Malformations in Children of Zhejiang Province, 325027 Wenzhou, Zhejiang, China; Children's Heart Center, Institute of Cardiovascular Development and Translational Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China.
| |
Collapse
|
21
|
Lechi F, Eriksson J, Odell LR, Wegrzyniak O, Löfblom J, Frejd FY, Zhang B, Eriksson O. Optimized method for fluorine-18 radiolabeling of Affibody molecules using RESCA. EJNMMI Radiopharm Chem 2024; 9:73. [PMID: 39460878 PMCID: PMC11512968 DOI: 10.1186/s41181-024-00304-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 10/11/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND In recent years, the interest in Al[18F]F as a labeling agent for Positron Emission Tomography (PET) radiotracers has risen, as it allows for fast and efficient fluorine-18 labeling by harnessing chelation chemistry. The introduction of Restrained Complexing Agent (RESCA) as a chelator has also shown that chelator-based radiolabeling reactions can be performed in mild conditions, making the radiolabeling process attractively more facile than most conventional radiofluorination methods. The aim of the study was to establish optimized conditions for Al[18F]F labeling of Affibody molecules using RESCA as a complexing agent, using Z09591 and Z0185, two Affibody proteins targeting PDGFRβ and TNFα, respectively, as model compounds. RESULTS The Al[18F]F labeling of RESCA-conjugated Z09591 was tested at different temperatures (rt to 60 °C) and with varying reaction times (12 to 60 min), and optimal conditions were then implemented on RESCA-Z0185. The optimized synthesis method was: 1.5-2.5 GBq of cyclotron produced fluorine-18 were trapped on a QMA cartridge and eluted with saline solution to react with 12 nmol of AlCl3 and form Al[18F]F. The respective RESCA-conjugated Affibody molecule (14 nmol) in NaOAc solution was added to the Al[18F]F solution and left to react at 60 °C for 12 min. The mixture was purified on a NAP5 size exclusion column and then analyzed by HPLC. The entire process took approximately 35 min, was highly reproducible, indicating the efficiency and reliability of the method. The labeled compounds demonstrated retained biological function for their respective targets after purification. CONCLUSIONS We present a general and optimized method for Al[18F]F labeling of RESCA-conjugated Affibody molecules, which can be widely applied to this class of peptide-based imaging agents. Moreover, radiochemical yields were improved when the labeling was conducted at 37 °C or above. In vitro and in vivo assessment of the respective tracers was promising, showing retained binding capacity as well as moderate defluorination, which is usually regarded as a potential downside for RESCA-conjugated tracers.
Collapse
Affiliation(s)
- Francesco Lechi
- Department of Medicinal Chemistry, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Jonas Eriksson
- Department of Medicinal Chemistry, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
- PET center, Uppsala University Hospital, Uppsala, Sweden
| | - Luke R Odell
- Department of Medicinal Chemistry, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Olivia Wegrzyniak
- Department of Medicinal Chemistry, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - John Löfblom
- Division of Protein Engineering, Department of Protein Science, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Fredrik Y Frejd
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
- Affibody AB, Solna, Sweden
| | - Bo Zhang
- Department of Medicinal Chemistry, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Olof Eriksson
- Department of Medicinal Chemistry, Science for Life Laboratory, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
22
|
Ek M, Nilvebrant J, Nygren PÅ, Ståhl S, Lindberg H, Löfblom J. An anti-sortilin affibody-peptide fusion inhibits sortilin-mediated progranulin degradation. Front Immunol 2024; 15:1437886. [PMID: 39185427 PMCID: PMC11342335 DOI: 10.3389/fimmu.2024.1437886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 07/23/2024] [Indexed: 08/27/2024] Open
Abstract
Heterozygous loss-of-function mutations in the GRN gene are a common cause of frontotemporal dementia. Such mutations lead to decreased plasma and cerebrospinal fluid levels of progranulin (PGRN), a neurotrophic factor with lysosomal functions. Sortilin is a negative regulator of extracellular PGRN levels and has shown promise as a therapeutic target for frontotemporal dementia, enabling increased extracellular PGRN levels through inhibition of sortilin-mediated PGRN degradation. Here we report the development of a high-affinity sortilin-binding affibody-peptide fusion construct capable of increasing extracellular PGRN levels in vitro. By genetic fusion of a sortilin-binding affibody generated through phage display and a peptide derived from the progranulin C-terminus, an affinity protein (A3-PGRNC15*) with 185-pM affinity for sortilin was obtained. Treating PGRN-secreting and sortilin-expressing human glioblastoma U-251 cells with the fusion protein increased extracellular PGRN levels up to 2.5-fold, with an EC50 value of 1.3 nM. Our results introduce A3-PGRNC15* as a promising new agent with therapeutic potential for the treatment of frontotemporal dementia. Furthermore, the work highlights means to increase binding affinity through synergistic contribution from two orthogonal polypeptide units.
Collapse
Affiliation(s)
| | | | | | | | | | - John Löfblom
- Department of Protein Science, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Stockholm, Sweden
| |
Collapse
|
23
|
Dorogin J, Benz MA, Moore CJ, Benoit DSW, Hettiaratchi MH. Recombinant and Synthetic Affibodies Function Comparably for Modulating Protein Release. Cell Mol Bioeng 2024; 17:305-312. [PMID: 39372554 PMCID: PMC11450113 DOI: 10.1007/s12195-024-00815-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 08/16/2024] [Indexed: 10/08/2024] Open
Abstract
Purpose Affibodies are a class of versatile affinity proteins with a wide variety of therapeutic applications, ranging from contrast agents for imaging to cell-targeting therapeutics. We have identified several affibodies specific to bone morphogenetic protein-2 (BMP-2) with a range of binding affinities and demonstrated the ability to tune release rate of BMP-2 from affibody-conjugated poly(ethylene glycol) maleimide (PEG-mal) hydrogels based on affibody affinity strength. In this work, we compare the purity, structure, and activity of recombinant, bacterially-expressed BMP-2-specific affibodies with affibodies synthesized via solid-phase peptide synthesis. Methods High- and low-affinity BMP-2-specific affibodies were recombinantly expressed using BL21(DE3) E. coli and chemically synthesized using microwave-assisted solid-phase peptide synthesis with Fmoc-Gly-Wang resin. The secondary structures of the affibodies and dissociation constants of affibody-BMP-2 binding were characterized by circular dichroism and biolayer interferometry, respectively. Endotoxin levels were measured using chromogenic limulus amebocyte lysate (LAL) assays. Affibody-conjugated PEG-mal hydrogels were fabricated and loaded with BMP-2 to evaluate hydrogel capacity for controlled release, quantified by enzyme-linked immunosorbent assays (ELISA). Results Synthetic and recombinant affibodies were determined to be α-helical by circular dichroism. The synthetic high- and low-affinity BMP-2-specific affibodies demonstrated comparable BMP-2 binding dissociation constants to their recombinant counterparts. Recombinant affibodies retained some endotoxins after purification, while endotoxins were not detected in the synthetic affibodies above FDA permissible limits. High-affinity affibody-conjugated hydrogels reduced cumulative BMP-2 release compared to the low-affinity affibody-conjugated hydrogels and hydrogels without affibodies. Conclusions Synthetic affibodies demonstrate comparable structure and function to recombinant affibodies while reducing endotoxin contamination and increasing product yield, indicating that solid-phase peptide synthesis is a viable method of producing affibodies for controlled protein release and other applications.
Collapse
Affiliation(s)
- Jonathan Dorogin
- Department of Bioengineering, University of Oregon, Knight Campus, Eugene, Oregon USA
| | - Morrhyssey A. Benz
- Department of Bioengineering, University of Oregon, Knight Campus, Eugene, Oregon USA
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon USA
| | - Cameron J. Moore
- Department of Bioengineering, University of Oregon, Knight Campus, Eugene, Oregon USA
| | - Danielle S. W. Benoit
- Department of Bioengineering, University of Oregon, Knight Campus, Eugene, Oregon USA
| | - Marian H. Hettiaratchi
- Department of Bioengineering, University of Oregon, Knight Campus, Eugene, Oregon USA
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon USA
| |
Collapse
|
24
|
Kolesnikova OA, Komedchikova EN, Zvereva SD, Obozina AS, Dorozh OV, Afanasev I, Nikitin PI, Mochalova EN, Nikitin MP, Shipunova VO. Albumin incorporation into recognising layer of HER2-specific magnetic nanoparticles as a tool for optimal targeting of the acidic tumor microenvironment. Heliyon 2024; 10:e34211. [PMID: 39100472 PMCID: PMC11296017 DOI: 10.1016/j.heliyon.2024.e34211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 07/05/2024] [Indexed: 08/06/2024] Open
Abstract
Cancer is unquestionably a global healthcare challenge, spurring the exporation of novel treatment approaches. In recent years, nanomaterials have garnered significant interest with the greatest hopes for targeted nanoformulations due to their cell-specific delivery, improved therapeutic efficacy, and reduced systemic toxicity for the organism. The problem of successful clinical translation of nanoparticles may be related to the fact that most in vitro tests are performed at pH values of normal cells and tissues, ranging from 7.2 to 7.4. The extracellular pH values of tumors are characterized by a shift to a more acidic region in the range of 5.6-7.0 and represent a crucial target for enhancing nanoparticle delivery to cancer cells. Here we show the method of non-active protein incorporation into the surface of HER2-targeted nanoparticles to achieve optimal cellular uptake within the pH range of the tumor microenvironment. The method efficacy was confirmed in vitro and in vivo showing the maximum binding of nanoparticles to cells at a pH value 6.4. Namely, fluorescent magnetic nanoparticles, modified with HER2-recognising affibody ZHER2:342, with proven specificity in terms of HER2 recognition (with 62-fold higher cellular uptake compared to control nanoparticles) were designed for targeting cancer cells at slightly acidic pH values. The stabilizing protein, namely, bovine serum albumin, one of the major blood components with widespread availability and biocompatibility, was used for the decoration of the nanoparticle surface to alter the pH response of the targeting magnetic conjugates. The optimally designed nanoparticles showed a bell-shaped dependency of interaction with cancer cells in the pH range of 5.6-8.0 with maximum cellular uptake at pH value 6.4 close to that of the tumor microenvironment. In vivo experiments revealed that after i.v. administration, BSA-decorated nanoparticles exhibited 2 times higher accumulation in tumors compared to magnetic nanoparticles modified with affibody only. Thus, we demonstrated a valid method for enhancing the specificity of targeted nanoparticle delivery to cancer cells without changing the functional components of nanoparticles.
Collapse
Affiliation(s)
- Olga A. Kolesnikova
- Moscow Center for Advanced Studies, Kulakova str. 20, 123592, Moscow, Russia
| | - Elena N. Komedchikova
- Moscow Center for Advanced Studies, Kulakova str. 20, 123592, Moscow, Russia
- Moscow Institute of Physics and Technology, 9 Institutskiy Per., 141701, Dolgoprudny, Russia
| | - Svetlana D. Zvereva
- Moscow Center for Advanced Studies, Kulakova str. 20, 123592, Moscow, Russia
- Moscow Institute of Physics and Technology, 9 Institutskiy Per., 141701, Dolgoprudny, Russia
| | | | - Olha V. Dorozh
- Moscow Center for Advanced Studies, Kulakova str. 20, 123592, Moscow, Russia
| | - Iurii Afanasev
- Moscow Center for Advanced Studies, Kulakova str. 20, 123592, Moscow, Russia
- Moscow Institute of Physics and Technology, 9 Institutskiy Per., 141701, Dolgoprudny, Russia
| | - Petr I. Nikitin
- Prokhorov General Physics Institute, Russian Academy of Sciences, 38 Vavilov Street, 119991, Moscow, Russia
| | - Elizaveta N. Mochalova
- Moscow Center for Advanced Studies, Kulakova str. 20, 123592, Moscow, Russia
- Department of Nanobiomedicine, Sirius University of Science and Technology, 1 Olympic Ave., 354340, Sochi, Russia
- Moscow Institute of Physics and Technology, 9 Institutskiy Per., 141701, Dolgoprudny, Russia
| | - Maxim P. Nikitin
- Moscow Center for Advanced Studies, Kulakova str. 20, 123592, Moscow, Russia
- Department of Nanobiomedicine, Sirius University of Science and Technology, 1 Olympic Ave., 354340, Sochi, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya St., 117997, Moscow, Russia
| | - Victoria O. Shipunova
- Moscow Center for Advanced Studies, Kulakova str. 20, 123592, Moscow, Russia
- Department of Nanobiomedicine, Sirius University of Science and Technology, 1 Olympic Ave., 354340, Sochi, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya St., 117997, Moscow, Russia
| |
Collapse
|
25
|
Katzschmann A, Haupts U, Reimann A, Settele F, Gloser-Bräunig M, Fiedler E, Parthier C. Ubiquitin-derived artificial binding proteins targeting oncofetal fibronectin reveal scaffold plasticity by β-strand slippage. Commun Biol 2024; 7:907. [PMID: 39068227 PMCID: PMC11283464 DOI: 10.1038/s42003-024-06569-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 07/08/2024] [Indexed: 07/30/2024] Open
Abstract
Affilin proteins, artificial binding proteins based on the ubiquitin scaffold, have been generated by directed protein evolution to yield de-novo variants that bind the extra-domain B (EDB) of oncofetal fibronectin, an established marker of tumor neovasculature. The crystal structures of two EDB-specific Affilin variants reveal a striking structural plasticity of the ubiquitin scaffold, characterised by β-strand slippage, leading to different negative register shifts of the β5 strands. This process recruits amino acid residues from β5 towards the N-terminus to an adjacent loop region and subsequent residues into β5, respectively, remodeling the binding interface and leading to target specificity and affinity. Protein backbone alterations resulting from β-strand register shifts, as seen in the ubiquitin fold, can pose additional challenges to protein engineering as structural evidence of these events is still limited and they are difficult to predict. However, they can surface under the selection pressure of directed evolution and suggest that backbone plasticity allowing β-strand slippages can increase structural diversity, enhancing the evolutionary potential of a protein scaffold.
Collapse
Affiliation(s)
- Anja Katzschmann
- Navigo Proteins GmbH, Heinrich-Damerow-Straße 1, 06120, Halle (Saale), Germany
| | - Ulrich Haupts
- Navigo Proteins GmbH, Heinrich-Damerow-Straße 1, 06120, Halle (Saale), Germany
| | - Anja Reimann
- Navigo Proteins GmbH, Heinrich-Damerow-Straße 1, 06120, Halle (Saale), Germany
| | - Florian Settele
- Navigo Proteins GmbH, Heinrich-Damerow-Straße 1, 06120, Halle (Saale), Germany
| | | | - Erik Fiedler
- Navigo Proteins GmbH, Heinrich-Damerow-Straße 1, 06120, Halle (Saale), Germany.
| | - Christoph Parthier
- Martin-Luther-University Halle-Wittenberg, Institute of Biochemistry and Biotechnology, Kurt-Mothes-Straße 3a, 06120, Halle (Saale), Germany.
| |
Collapse
|
26
|
Qi C, Li Y, Zeng H, Wei Q, Tan S, Zhang Y, Li W, Tian P. Current status and progress of PD-L1 detection: guiding immunotherapy for non-small cell lung cancer. Clin Exp Med 2024; 24:162. [PMID: 39026109 PMCID: PMC11258158 DOI: 10.1007/s10238-024-01404-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 06/14/2024] [Indexed: 07/20/2024]
Abstract
Non-small cell lung cancer (NSCLC) is the leading cause of cancer-related deaths and represents a substantial disease burden worldwide. Immune checkpoint inhibitors combined with chemotherapy are the standard first-line therapy for advanced NSCLC without driver mutations. Programmed death-ligand 1 (PD-L1) is currently the only approved immunotherapy marker. PD-L1 detection methods are diverse and have developed rapidly in recent years, such as improved immunohistochemical detection methods, the application of liquid biopsy in PD-L1 detection, genetic testing, radionuclide imaging, and the use of machine learning methods to construct PD-L1 prediction models. This review focuses on the detection methods and challenges of PD-L1 from different sources, and discusses the influencing factors of PD-L1 detection and the value of combined biomarkers. Provide support for clinical screening of immunotherapy-advantage groups and formulation of personalized treatment decisions.
Collapse
Affiliation(s)
- Chang Qi
- Department of Pulmonary and Critical Care Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, Institute of Respiratory Health and Multimorbidity, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, Precision Medicine Center/Precision Medicine Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Lung Cancer Center/Lung Cancer Institute, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yalun Li
- Department of Pulmonary and Critical Care Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, Institute of Respiratory Health and Multimorbidity, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, Precision Medicine Center/Precision Medicine Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Lung Cancer Center/Lung Cancer Institute, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Hao Zeng
- Department of Pulmonary and Critical Care Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, Institute of Respiratory Health and Multimorbidity, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, Precision Medicine Center/Precision Medicine Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Lung Cancer Center/Lung Cancer Institute, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Qi Wei
- Department of Pulmonary and Critical Care Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, Institute of Respiratory Health and Multimorbidity, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, Precision Medicine Center/Precision Medicine Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Lung Cancer Center/Lung Cancer Institute, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Sihan Tan
- Department of Pulmonary and Critical Care Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, Institute of Respiratory Health and Multimorbidity, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, Precision Medicine Center/Precision Medicine Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Lung Cancer Center/Lung Cancer Institute, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yuanyuan Zhang
- Department of Pulmonary and Critical Care Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, Institute of Respiratory Health and Multimorbidity, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, Precision Medicine Center/Precision Medicine Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Lung Cancer Center/Lung Cancer Institute, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Weimin Li
- Department of Pulmonary and Critical Care Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, Institute of Respiratory Health and Multimorbidity, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, Precision Medicine Center/Precision Medicine Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Panwen Tian
- Department of Pulmonary and Critical Care Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, Institute of Respiratory Health and Multimorbidity, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, Precision Medicine Center/Precision Medicine Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
- Lung Cancer Center/Lung Cancer Institute, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
27
|
Mao M, Ahrens L, Luka J, Contreras F, Kurkina T, Bienstein M, Sárria Pereira de Passos M, Schirinzi G, Mehn D, Valsesia A, Desmet C, Serra MÁ, Gilliland D, Schwaneberg U. Material-specific binding peptides empower sustainable innovations in plant health, biocatalysis, medicine and microplastic quantification. Chem Soc Rev 2024; 53:6445-6510. [PMID: 38747901 DOI: 10.1039/d2cs00991a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
Material-binding peptides (MBPs) have emerged as a diverse and innovation-enabling class of peptides in applications such as plant-/human health, immobilization of catalysts, bioactive coatings, accelerated polymer degradation and analytics for micro-/nanoplastics quantification. Progress has been fuelled by recent advancements in protein engineering methodologies and advances in computational and analytical methodologies, which allow the design of, for instance, material-specific MBPs with fine-tuned binding strength for numerous demands in material science applications. A genetic or chemical conjugation of second (biological, chemical or physical property-changing) functionality to MBPs empowers the design of advanced (hybrid) materials, bioactive coatings and analytical tools. In this review, we provide a comprehensive overview comprising naturally occurring MBPs and their function in nature, binding properties of short man-made MBPs (<20 amino acids) mainly obtained from phage-display libraries, and medium-sized binding peptides (20-100 amino acids) that have been reported to bind to metals, polymers or other industrially produced materials. The goal of this review is to provide an in-depth understanding of molecular interactions between materials and material-specific binding peptides, and thereby empower the use of MBPs in material science applications. Protein engineering methodologies and selected examples to tailor MBPs toward applications in agriculture with a focus on plant health, biocatalysis, medicine and environmental monitoring serve as examples of the transformative power of MBPs for various industrial applications. An emphasis will be given to MBPs' role in detecting and quantifying microplastics in high throughput, distinguishing microplastics from other environmental particles, and thereby assisting to close an analytical gap in food safety and monitoring of environmental plastic pollution. In essence, this review aims to provide an overview among researchers from diverse disciplines in respect to material-(specific) binding of MBPs, protein engineering methodologies to tailor their properties to application demands, re-engineering for material science applications using MBPs, and thereby inspire researchers to employ MBPs in their research.
Collapse
Affiliation(s)
- Maochao Mao
- Lehrstuhl für Biotechnologie, RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany.
| | - Leon Ahrens
- Lehrstuhl für Biotechnologie, RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany.
| | - Julian Luka
- Lehrstuhl für Biotechnologie, RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany.
| | - Francisca Contreras
- Lehrstuhl für Biotechnologie, RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany.
| | - Tetiana Kurkina
- Lehrstuhl für Biotechnologie, RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany.
| | - Marian Bienstein
- Lehrstuhl für Biotechnologie, RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany.
| | | | | | - Dora Mehn
- European Commission, Joint Research Centre (JRC), Ispra, Italy
| | - Andrea Valsesia
- European Commission, Joint Research Centre (JRC), Ispra, Italy
| | - Cloé Desmet
- European Commission, Joint Research Centre (JRC), Ispra, Italy
| | | | | | - Ulrich Schwaneberg
- Lehrstuhl für Biotechnologie, RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany.
| |
Collapse
|
28
|
Jia D, Zhao S, Liu H, Zhan X, Zhou Z, Lv M, Tang X, Guo W, Li H, Sun L, Zhong Y, Tian B, Yuan D, Tang X, Fan Q. ICG-labeled PD-L1-antagonistic affibody dimer for tumor imaging and enhancement of tumor photothermal-immunotherapy. Int J Biol Macromol 2024; 269:132058. [PMID: 38704065 DOI: 10.1016/j.ijbiomac.2024.132058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/25/2024] [Accepted: 05/01/2024] [Indexed: 05/06/2024]
Abstract
In clinical practice, tumor-targeting diagnosis and immunotherapy against programmed death ligand 1 (PD-L1) have a significant impact. In this research, a PD-L1-antagonistic affibody dimer (ZPD-L1) was successfully prepared through Escherichia coli expression system, and conjugated with the photosensitizer of ICG via N-hydroxysuccinimide (NHS) ester to develop a novel tumor-targeting agent (ICG-ZPD-L1) for both tumor imaging diagnosis and photothermal-immunotherapy simultaneously. In vitro, ZPD-L1 could specifically bind to PD-L1-positive LLC and MC38 tumor cells, and ICG-ZPD-L1-mediated photothermal therapy (PTT) also showed excellent phototoxicity to these tumor cells. In vivo, ICG-ZPD-L1 selectively enriched into the PD-L1-positive MC38 tumor tissues, and the high-contrast optical imaging of tumors was obtained. ICG-ZPD-L1-mediated PTT exhibited a potent anti-tumor effect in vivo due to its remarkable photothermal properties. Furthermore, ICG-ZPD-L1-mediated PTT significantly induced the immunogenic cell death (ICD) of primary tumors, promoted maturation of dendritic cells (DCs), up-regulated anti-tumor immune response, enhanced immunotherapy, and superiorly inhibited the growth of metastatic tumors. In addition, ICG-ZPD-L1 showed favorable biosafety throughout the brief duration of treatment. In summary, these results suggest that ICG-ZPD-L1 is a multifunctional tumor-targeting drug integrating tumor imaging diagnosis and photothermal-immunotherapy, and has great guiding significance for the diagnosis and treatment of clinical PD-L1-positive tumor patients.
Collapse
Affiliation(s)
- Dianlong Jia
- Laboratory of Drug Discovery and Design, School of Pharmaceutical Sciences, Liaocheng University, Liaocheng 252000, PR China
| | - Shiqi Zhao
- Department of Pharmacy (Shandong Provincinal Key Traditional Chinese Medical Discipline of Clinical Chinese Pharmacy), Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250117, PR China
| | - Huimin Liu
- The Second Hospital of Coal Mining Group, Xuzhou 221011, PR China
| | - Xinyu Zhan
- Laboratory of Drug Discovery and Design, School of Pharmaceutical Sciences, Liaocheng University, Liaocheng 252000, PR China
| | - Zhongxia Zhou
- Department of Pharmacy (Shandong Provincinal Key Traditional Chinese Medical Discipline of Clinical Chinese Pharmacy), Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250117, PR China
| | - Mingjia Lv
- Laboratory of Drug Discovery and Design, School of Pharmaceutical Sciences, Liaocheng University, Liaocheng 252000, PR China
| | - Xiufeng Tang
- Department of Pharmacy (Shandong Provincinal Key Traditional Chinese Medical Discipline of Clinical Chinese Pharmacy), Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250117, PR China
| | - Wen Guo
- Laboratory of Drug Discovery and Design, School of Pharmaceutical Sciences, Liaocheng University, Liaocheng 252000, PR China
| | - Hui Li
- Department of Pharmacy (Shandong Provincinal Key Traditional Chinese Medical Discipline of Clinical Chinese Pharmacy), Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250117, PR China
| | - Lilan Sun
- Department of Pharmacy (Shandong Provincinal Key Traditional Chinese Medical Discipline of Clinical Chinese Pharmacy), Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250117, PR China
| | - Yidong Zhong
- Department of Pharmacy (Shandong Provincinal Key Traditional Chinese Medical Discipline of Clinical Chinese Pharmacy), Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250117, PR China
| | - Baoqing Tian
- Department of Pharmacy (Shandong Provincinal Key Traditional Chinese Medical Discipline of Clinical Chinese Pharmacy), Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250117, PR China
| | - Dandan Yuan
- Department of Pharmacy (Shandong Provincinal Key Traditional Chinese Medical Discipline of Clinical Chinese Pharmacy), Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250117, PR China
| | - Xiaohui Tang
- Department of Pharmacy (Shandong Provincinal Key Traditional Chinese Medical Discipline of Clinical Chinese Pharmacy), Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250117, PR China.
| | - Qing Fan
- Department of Pharmacy (Shandong Provincinal Key Traditional Chinese Medical Discipline of Clinical Chinese Pharmacy), Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250117, PR China.
| |
Collapse
|
29
|
Yang B, Gomes DEB, Liu Z, Santos MS, Li J, Bernardi RC, Nash MA. Engineering the Mechanical Stability of a Therapeutic Affibody/PD-L1 Complex by Anchor Point Selection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.21.595133. [PMID: 38826272 PMCID: PMC11142103 DOI: 10.1101/2024.05.21.595133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Protein-protein complexes can vary in mechanical stability depending on the direction from which force is applied. Here we investigated the anisotropic mechanical stability of a molecular complex between a therapeutic non-immunoglobulin scaffold called Affibody and the extracellular domain of the immune checkpoint protein PD-L1. We used a combination of single-molecule AFM force spectroscopy (AFM-SMFS) with bioorthogonal clickable peptide handles, shear stress bead adhesion assays, molecular modeling, and steered molecular dynamics (SMD) simulations to understand the pulling point dependency of mechanostability of the Affibody:(PD-L1) complex. We observed diverse mechanical responses depending on the anchor point. For example, pulling from residue #22 on Affibody generated an intermediate unfolding event attributed to partial unfolding of PD-L1, while pulling from Affibody's N-terminus generated force-activated catch bond behavior. We found that pulling from residue #22 or #47 on Affibody generated the highest rupture forces, with the complex breaking at up to ~ 190 pN under loading rates of ~104-105 pN/sec, representing a ~4-fold increase in mechanostability as compared with low force N-terminal pulling. SMD simulations provided consistent tendencies in rupture forces, and through visualization of force propagation networks provided mechanistic insights. These results demonstrate how mechanostability of therapeutic protein-protein interfaces can be controlled by informed selection of anchor points within molecules, with implications for optimal bioconjugation strategies in drug delivery vehicles.
Collapse
Affiliation(s)
- Byeongseon Yang
- Institute for Physical Chemistry, Department of Chemistry, University of Basel, 4058 Basel, Switzerland
- Department of Biosystems Science and Engineering, ETH Zurich, 4056 Basel, Switzerland
| | - Diego E. B. Gomes
- Department of Physics, Auburn University, Auburn, Alabama 36849, United States
| | - Zhaowei Liu
- Institute for Physical Chemistry, Department of Chemistry, University of Basel, 4058 Basel, Switzerland
- Department of Biosystems Science and Engineering, ETH Zurich, 4056 Basel, Switzerland
- Present address: Department of Bionanoscience, Delft University of Technology, 2629HZ Delft, the Netherlands
| | - Mariana Sá Santos
- Institute for Physical Chemistry, Department of Chemistry, University of Basel, 4058 Basel, Switzerland
- Department of Biosystems Science and Engineering, ETH Zurich, 4056 Basel, Switzerland
| | - Jiajun Li
- Institute for Physical Chemistry, Department of Chemistry, University of Basel, 4058 Basel, Switzerland
- Department of Biosystems Science and Engineering, ETH Zurich, 4056 Basel, Switzerland
| | - Rafael C. Bernardi
- Department of Physics, Auburn University, Auburn, Alabama 36849, United States
| | - Michael A. Nash
- Institute for Physical Chemistry, Department of Chemistry, University of Basel, 4058 Basel, Switzerland
- Department of Biosystems Science and Engineering, ETH Zurich, 4056 Basel, Switzerland
| |
Collapse
|
30
|
Wegrzyniak O, Lechi F, Mitran B, Cheung P, Bitzios A, Persson J, Löfblom J, Nordström H, Eriksson J, Frejd FY, Korsgren O, Zhang B, Eriksson O. Non-invasive PET imaging of liver fibrogenesis using a RESCA-conjugated Affibody molecule. iScience 2024; 27:109688. [PMID: 38660405 PMCID: PMC11039342 DOI: 10.1016/j.isci.2024.109688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 02/02/2024] [Accepted: 04/05/2024] [Indexed: 04/26/2024] Open
Abstract
Non-invasive assessment of fibrogenic activity, rather than fibrotic scars, could significantly improve the management of fibrotic diseases and the development of anti-fibrotic drugs. This study explores the potential of an Affibody molecule (Z09591) labeled with the Al(18)F-restrained complexing agent (RESCA) method as a tracer for the non-invasive detection of fibrogenic cells. Z09591 was functionalized with the RESCA chelator for direct labeling with [18F]AlF. In vivo positron emission tomography/magnetic resonance imaging scans on U-87 tumor-bearing mice exhibited high selectivity of the resulting radiotracer, [18F]AlF-RESCA-Z09591, for platelet-derived growth factor receptor β (PDGFRβ), with minimal non-specific background uptake. Evaluation in a mouse model with carbon tetrachloride-induced fibrotic liver followed by a disease regression phase, revealed the radiotracer's high affinity and specificity for fibrogenic cells in fibrotic livers (standardized uptake value [SUV] 0.43 ± 0.05), with uptake decreasing during recovery (SUV 0.29 ± 0.03) (p < 0.0001). [18F]AlF-RESCA-Z09591 accurately detects PDGFRβ, offering non-invasive assessment of fibrogenic cells and promising applications in precise liver fibrogenesis diagnosis, potentially contributing significantly to anti-fibrotic drug development.
Collapse
Affiliation(s)
- Olivia Wegrzyniak
- Science for Life Laboratory, Department of Medicinal Chemistry, Uppsala University, Uppsala, Sweden
| | - Francesco Lechi
- Science for Life Laboratory, Department of Medicinal Chemistry, Uppsala University, Uppsala, Sweden
| | - Bogdan Mitran
- Science for Life Laboratory, Department of Medicinal Chemistry, Uppsala University, Uppsala, Sweden
- Antaros Medical AB, Mölndal, Sweden
| | - Pierre Cheung
- Science for Life Laboratory, Department of Medicinal Chemistry, Uppsala University, Uppsala, Sweden
| | - Athanasios Bitzios
- Science for Life Laboratory, Department of Medicinal Chemistry, Uppsala University, Uppsala, Sweden
| | - Jonas Persson
- Science for Life Laboratory, Department of Medicinal Chemistry, Uppsala University, Uppsala, Sweden
- Department of Protein Science, Division of Protein Engineering, KTH Royal Institute of Technology, Stockholm, Sweden
| | - John Löfblom
- Department of Protein Science, Division of Protein Engineering, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Helena Nordström
- Science for Life Laboratory, Drug Discovery & Development Platform, Department of Chemistry-BMC, Uppsala University, Uppsala, Sweden
| | - Jonas Eriksson
- Science for Life Laboratory, Department of Medicinal Chemistry, Uppsala University, Uppsala, Sweden
- PET Center, Uppsala University Hospital, Uppsala, Sweden
| | - Fredrik Y. Frejd
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
- Affibody AB, Solna, Sweden
| | - Olle Korsgren
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Bo Zhang
- Science for Life Laboratory, Department of Medicinal Chemistry, Uppsala University, Uppsala, Sweden
| | - Olof Eriksson
- Science for Life Laboratory, Department of Medicinal Chemistry, Uppsala University, Uppsala, Sweden
- Antaros Medical AB, Mölndal, Sweden
| |
Collapse
|
31
|
Pandey RK, Mehrotra S. Engineering high affinity antigen-binders: Beyond conventional antibodies. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2024; 140:37-57. [PMID: 38762275 DOI: 10.1016/bs.apcsb.2023.12.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2024]
Abstract
For decades, antibodies have remained the archetypal binding proteins that can be rapidly produced with high affinity and specificity against virtually any target. A conventional antibody is still considered the prototype of a binding molecule. It is therefore not surprising that antibodies are routinely used in basic scientific and biomedical research, analytical workflows, molecular diagnostics etc. and represent the fastest growing sector in the field of biotechnology. However, several limitations associated with conventional antibodies, including stringent requirement of animal immunizations, mammalian cells for expression, issues on stability and aggregation, bulkier size and the overall time and cost of production has propelled evolution of concepts along alternative antigen binders. Rapidly evolving protein engineering approaches and high throughput screening platforms have further complemented the development of myriads of classes of non-conventional protein binders including antibody derived as well as non-antibody based molecular scaffolds. These non-canonical binders are finding use across disciplines of which diagnostics and therapeutics are the most noteworthy.
Collapse
Affiliation(s)
- Rajeev Kumar Pandey
- Research and Development-Protein Biology, Thermo Fisher Scientific, Bangalore, India
| | - Sanjana Mehrotra
- Department of Human Genetics, Guru Nanak Dev University, Amritsar, Punjab, India.
| |
Collapse
|
32
|
Buzas D, Sun H, Toelzer C, Yadav SKN, Borucu U, Gautam G, Gupta K, Bufton JC, Capin J, Sessions RB, Garzoni F, Berger I, Schaffitzel C. Engineering the ADDobody protein scaffold for generation of high-avidity ADDomer super-binders. Structure 2024; 32:342-351.e6. [PMID: 38198950 PMCID: PMC7616808 DOI: 10.1016/j.str.2023.12.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/17/2023] [Accepted: 12/14/2023] [Indexed: 01/12/2024]
Abstract
Adenovirus-derived nanoparticles (ADDomer) comprise 60 copies of adenovirus penton base protein (PBP). ADDomer is thermostable, rendering the storage, transport, and deployment of ADDomer-based therapeutics independent of a cold chain. To expand the scope of ADDomers for new applications, we engineered ADDobodies, representing PBP crown domain, genetically separated from PBP multimerization domain. We inserted heterologous sequences into hyper-variable loops, resulting in monomeric, thermostable ADDobodies expressed at high yields in Escherichia coli. The X-ray structure of an ADDobody prototype validated our design. ADDobodies can be used in ribosome display experiments to select a specific binder against a target, with an enrichment factor of ∼104-fold per round. ADDobodies can be re-converted into ADDomers by genetically reconnecting the selected ADDobody with the PBP multimerization domain from a different species, giving rise to a multivalent nanoparticle, called Chimera, confirmed by a 2.2 Å electron cryo-microscopy structure. Chimera comprises 60 binding sites, resulting in ultra-high, picomolar avidity to the target.
Collapse
Affiliation(s)
- Dora Buzas
- School of Biochemistry, University of Bristol, University Walk, Bristol BS8 1TD, UK; Max Planck Bristol Centre for Minimal Biology, Cantock's Close, Bristol BS8 1TS, UK
| | - Huan Sun
- School of Biochemistry, University of Bristol, University Walk, Bristol BS8 1TD, UK; Max Planck Bristol Centre for Minimal Biology, Cantock's Close, Bristol BS8 1TS, UK
| | - Christine Toelzer
- School of Biochemistry, University of Bristol, University Walk, Bristol BS8 1TD, UK
| | - Sathish K N Yadav
- School of Biochemistry, University of Bristol, University Walk, Bristol BS8 1TD, UK
| | - Ufuk Borucu
- School of Biochemistry, University of Bristol, University Walk, Bristol BS8 1TD, UK
| | - Gunjan Gautam
- School of Biochemistry, University of Bristol, University Walk, Bristol BS8 1TD, UK
| | - Kapil Gupta
- School of Biochemistry, University of Bristol, University Walk, Bristol BS8 1TD, UK; Imophoron Ltd, Science Creates Old Market, Midland Road, Bristol BS2 0JZ, UK
| | - Joshua C Bufton
- School of Biochemistry, University of Bristol, University Walk, Bristol BS8 1TD, UK
| | - Julien Capin
- School of Biochemistry, University of Bristol, University Walk, Bristol BS8 1TD, UK
| | - Richard B Sessions
- School of Biochemistry, University of Bristol, University Walk, Bristol BS8 1TD, UK
| | - Frederic Garzoni
- Imophoron Ltd, Science Creates Old Market, Midland Road, Bristol BS2 0JZ, UK
| | - Imre Berger
- School of Biochemistry, University of Bristol, University Walk, Bristol BS8 1TD, UK; Max Planck Bristol Centre for Minimal Biology, Cantock's Close, Bristol BS8 1TS, UK; School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, UK.
| | | |
Collapse
|
33
|
Mozipo EA, Galindo AN, Khachatourian JD, Harris CG, Dorogin J, Spaulding VR, Ford MR, Singhal M, Fogg KC, Hettiaratchi MH. Statistical optimization of hydrazone-crosslinked hyaluronic acid hydrogels for protein delivery. J Mater Chem B 2024; 12:2523-2536. [PMID: 38344905 PMCID: PMC10916537 DOI: 10.1039/d3tb01588b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 02/01/2024] [Indexed: 02/27/2024]
Abstract
Hydrazone-crosslinked hydrogels are attractive protein delivery vehicles for regenerative medicine. However, each regenerative medicine application requires unique hydrogel properties to achieve an ideal outcome. The properties of a hydrogel can be impacted by numerous factors involved in its fabrication. We used design of experiments (DoE) statistical modeling to efficiently optimize the physicochemical properties of a hyaluronic acid (HA) hydrazone-crosslinked hydrogel for protein delivery for bone regeneration. We modified HA with either adipic acid dihydrazide (HA-ADH) or aldehyde (HA-Ox) functional groups and used DoE to evaluate the interactions of three input variables, the molecular weight of HA (40 or 100 kDa), the concentration of HA-ADH (1-3% w/v), and the concentration of HA-Ox (1-3% w/v), on three output responses, gelation time, compressive modulus, and hydrogel stability over time. We identified 100 kDa HA-ADH3.00HA-Ox2.33 as an optimal hydrogel that met all of our design criteria, including displaying a gelation time of 3.7 minutes, compressive modulus of 62.1 Pa, and minimal mass change over 28 days. For protein delivery, we conjugated affinity proteins called affibodies that were specific to the osteogenic protein bone morphogenetic protein-2 (BMP-2) to HA hydrogels and demonstrated that our platform could control the release of BMP-2 over 28 days. Ultimately, our approach demonstrates the utility of DoE for optimizing hydrazone-crosslinked HA hydrogels for protein delivery.
Collapse
Affiliation(s)
- Esther A Mozipo
- Phil and Penny Knight Campus for Accelerating Scientific Impact, University of Oregon, Eugene, OR, USA
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, OR, USA
| | - Alycia N Galindo
- Phil and Penny Knight Campus for Accelerating Scientific Impact, University of Oregon, Eugene, OR, USA
| | - Jenna D Khachatourian
- Phil and Penny Knight Campus for Accelerating Scientific Impact, University of Oregon, Eugene, OR, USA
- Department of Human Physiology, University of Oregon, Eugene, OR, USA
| | - Conor G Harris
- School of Chemical, Biological, and Environmental Engineering, Oregon State University, Corvallis, OR, USA
| | - Jonathan Dorogin
- Phil and Penny Knight Campus for Accelerating Scientific Impact, University of Oregon, Eugene, OR, USA
| | | | - Madeleine R Ford
- Phil and Penny Knight Campus for Accelerating Scientific Impact, University of Oregon, Eugene, OR, USA
- Department of Human Physiology, University of Oregon, Eugene, OR, USA
| | - Malvika Singhal
- Phil and Penny Knight Campus for Accelerating Scientific Impact, University of Oregon, Eugene, OR, USA
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, OR, USA
- Institute of Molecular Biology, University of Oregon, Eugene, OR, USA.
| | - Kaitlin C Fogg
- School of Chemical, Biological, and Environmental Engineering, Oregon State University, Corvallis, OR, USA
| | - Marian H Hettiaratchi
- Phil and Penny Knight Campus for Accelerating Scientific Impact, University of Oregon, Eugene, OR, USA
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, OR, USA
- Institute of Molecular Biology, University of Oregon, Eugene, OR, USA.
| |
Collapse
|
34
|
Ahmadipour M, Bhattacharya A, Sarafbidabad M, Syuhada Sazali E, Krishna Ghoshal S, Satgunam M, Singh R, Rezaei Ardani M, Missaoui N, Kahri H, Pal U, Ling Pang A. CA19-9 and CEA biosensors in pancreatic cancer. Clin Chim Acta 2024; 554:117788. [PMID: 38246211 DOI: 10.1016/j.cca.2024.117788] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 01/15/2024] [Accepted: 01/15/2024] [Indexed: 01/23/2024]
Abstract
Cancer is a complex pathophysiological condition causing millions of deaths each year. Early diagnosis is essential especially for pancreatic cancer. Existing diagnostic tools rely on circulating biomarkers such as Carbohydrate Antigen 19-9 (CA19-9) and Carcinoembryonic Antigen (CEA). Unfortunately, these markers are nonspecific and may be increased in a variety of disorders. Accordingly, diagnosis of pancreatic cancer generally involves more invasive approaches such as biopsy as well as imaging studies. Recent advances in biosensor technology have allowed the development of precise diagnostic tools having enhanced analytical sensitivity and specificity. Herein we examine these advances in the detection of cancer in general and in pancreatic cancer specifically. Furthermore, we highlight novel technologies in the measurement of CA19-9 and CEA and explore their future application in the early detection of pancreatic cancer.
Collapse
Affiliation(s)
- Mohsen Ahmadipour
- Institute of Power Engineering, Universiti Tenaga Nasional, 43650 Serdang, Selangor, Malaysia.
| | - Anish Bhattacharya
- Advanced Optical Materials Research Group, Department of Physics, Faculty of Science, Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia; Ibnu Sina Institute of Laser Centre, Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia
| | - Mohsen Sarafbidabad
- Biomedical Engineering Department, Faculty of Engineering, University of Isfahan, Isfahan, Iran
| | - Ezza Syuhada Sazali
- Advanced Optical Materials Research Group, Department of Physics, Faculty of Science, Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia; Ibnu Sina Institute of Laser Centre, Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia
| | - Sib Krishna Ghoshal
- Advanced Optical Materials Research Group, Department of Physics, Faculty of Science, Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia; Ibnu Sina Institute of Laser Centre, Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia
| | - Meenaloshini Satgunam
- Institute of Power Engineering, Universiti Tenaga Nasional, 43650 Serdang, Selangor, Malaysia; Department of Mechanical Engineering, Universiti Tenaga Nasional, 43650 Serdang, Selangor, Malaysia
| | - Ramesh Singh
- Institute of Power Engineering, Universiti Tenaga Nasional, 43650 Serdang, Selangor, Malaysia; Center of Advanced Manufacturing and Materials Processing (AMMP), Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Mohammad Rezaei Ardani
- School of Materials and Mineral Resources Engineering, Universiti Sains Malaysia, Engineering Campus, 14300 Nibong Tebal, Pulau Pinang, Malaysia
| | - Nadhem Missaoui
- Laboratory of Interfaces and Advanced Materials, Faculty of Sciences, University of Monastir, Monastir, Tunisia
| | - Hamza Kahri
- Laboratory of Interfaces and Advanced Materials, Faculty of Sciences, University of Monastir, Monastir, Tunisia
| | - Ujjwal Pal
- Department of Analytical and Structural Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad, India
| | - Ai Ling Pang
- Department of Chemical Science, Faculty of Science, Universiti Tunku Abdul Rahman, 31900 Kampar, Perak, Malaysia
| |
Collapse
|
35
|
Sakata J, Tatsumi T, Sugiyama A, Shimizu A, Inagaki Y, Katoh H, Yamashita T, Takahashi K, Aki S, Kaneko Y, Kawamura T, Miura M, Ishii M, Osawa T, Tanaka T, Ishikawa S, Tsukagoshi M, Chansler M, Kodama T, Kanai M, Tokuyama H, Yamatsugu K. Antibody-mimetic drug conjugate with efficient internalization activity using anti-HER2 VHH and duocarmycin. Protein Expr Purif 2024; 214:106375. [PMID: 37797818 DOI: 10.1016/j.pep.2023.106375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 09/24/2023] [Indexed: 10/07/2023]
Abstract
Antibody-mimetic drug conjugate (AMDC) is a cancer cell-targeted drug delivery system based on the non-covalent binding of mutated streptavidin and modified biotin, namely Cupid and Psyche. However, the development of AMDCs is hampered by difficulties in post-translational modification or poor internalization activity. Here, we report an expression, refolding, and purification method for AMDC using a variable heavy chain of heavy chain-only antibodies (VHHs). Monomeric anti-HER2 VHH fused to Cupid was expressed in Escherichia coli inclusion bodies. Solubilization and refolding at optimized reducing conditions and pH levels were selected to form a functional, tetrameric protein (anti-HER2 VHH-Cupid) that can be easily purified based on molecular weight. Anti-HER2 VHH-Cupid non-covalently creates a tight complex with Psyche linked to a potent DNA-alkylating agent, duocarmycin. This complex can be absorbed by the HER2-expressing human breast cancer cell line, KPL-4, and kills KPL-4 cells in vitro and in vivo. The production of a targeting protein with internalizing activity, combined with the non-covalent conjugation of a highly potent payload, renders AMDC a promising platform for developing cancer-targeted therapy.
Collapse
Affiliation(s)
- Juri Sakata
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai, 980-8578, Japan
| | - Toshifumi Tatsumi
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Akira Sugiyama
- Isotope Science Center, The University of Tokyo, 2-11-16 Yayoi, Bunyo-ku, Tokyo, 113-0032, Japan; Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8904, Japan.
| | - Akihiro Shimizu
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai, 980-8578, Japan
| | - Yuya Inagaki
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai, 980-8578, Japan
| | - Hiroto Katoh
- Department of Preventive Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Takefumi Yamashita
- Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8904, Japan; Department of Physical Chemistry, School of Pharmacy and Pharmaceutical Sciences, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo, 142-8501, Japan
| | - Kazuki Takahashi
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Sho Aki
- Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8904, Japan
| | - Yudai Kaneko
- Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8904, Japan; Medical & Biological Laboratories Co., Ltd, 2-11-8 Shibadaimon, Minato-ku, Tokyo, 105-0012, Japan
| | - Takeshi Kawamura
- Isotope Science Center, The University of Tokyo, 2-11-16 Yayoi, Bunyo-ku, Tokyo, 113-0032, Japan; Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8904, Japan
| | - Mai Miura
- Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8904, Japan
| | - Masazumi Ishii
- Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8904, Japan
| | - Tsuyoshi Osawa
- Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8904, Japan
| | - Toshiya Tanaka
- Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8904, Japan
| | - Shumpei Ishikawa
- Department of Preventive Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | | | - Michael Chansler
- Savid Therapeutics Inc., Eifuku 3-9-10, Suginami-ku, Tokyo, 168-0064, Japan
| | - Tatsuhiko Kodama
- Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8904, Japan
| | - Motomu Kanai
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Hidetoshi Tokuyama
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai, 980-8578, Japan.
| | - Kenzo Yamatsugu
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba-shi, Chiba, 260-8675, Japan.
| |
Collapse
|
36
|
Nielsen GH, Schmitz ZD, Hackel BJ. Sequence-developability mapping of affibody and fibronectin paratopes via library-scale variant characterization. Protein Eng Des Sel 2024; 37:gzae010. [PMID: 38836499 PMCID: PMC11170491 DOI: 10.1093/protein/gzae010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/29/2024] [Accepted: 06/04/2024] [Indexed: 06/06/2024] Open
Abstract
Protein developability is requisite for use in therapeutic, diagnostic, or industrial applications. Many developability assays are low throughput, which limits their utility to the later stages of protein discovery and evolution. Recent approaches enable experimental or computational assessment of many more variants, yet the breadth of applicability across protein families and developability metrics is uncertain. Here, three library-scale assays-on-yeast protease, split green fluorescent protein (GFP), and non-specific binding-were evaluated for their ability to predict two key developability outcomes (thermal stability and recombinant expression) for the small protein scaffolds affibody and fibronectin. The assays' predictive capabilities were assessed via both linear correlation and machine learning models trained on the library-scale assay data. The on-yeast protease assay is highly predictive of thermal stability for both scaffolds, and the split-GFP assay is informative of affibody thermal stability and expression. The library-scale data was used to map sequence-developability landscapes for affibody and fibronectin binding paratopes, which guides future design of variants and libraries.
Collapse
Affiliation(s)
- Gregory H Nielsen
- Department of Chemical Engineering and Materials Science, University of Minnesota, Twin Cities, Minneapolis, MN 55455, United States
| | - Zachary D Schmitz
- Department of Chemical Engineering and Materials Science, University of Minnesota, Twin Cities, Minneapolis, MN 55455, United States
| | - Benjamin J Hackel
- Department of Chemical Engineering and Materials Science, University of Minnesota, Twin Cities, Minneapolis, MN 55455, United States
| |
Collapse
|
37
|
Kim E, Bang J, Sung JH, Lee J, Shin DH, Kim S, Lee BC. Generation of human TMEM16F-specific affibodies using purified TMEM16F. Front Mol Biosci 2024; 10:1319251. [PMID: 38274091 PMCID: PMC10808743 DOI: 10.3389/fmolb.2023.1319251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 12/27/2023] [Indexed: 01/27/2024] Open
Abstract
Introduction: TMEM16 family proteins are involved in a variety of functions, including ion transport, phospholipid scrambling, and the regulation of membrane proteins. Among them, TMEM16F has dual functions as a phospholipid scramblase and a nonselective ion channel. TMEM16F is widely expressed and functions in platelet activation during blood clotting, bone formation, and T cell activation. Despite the functional importance of TMEM16F, the modulators of TMEM16F function have not been sufficiently studied. Method: In this study, we generated TMEM16F-specific affibodies by performing phage display with brain-specific TMEM16F (hTMEM16F) variant 1 purified from GnTi- cells expressing this variant in the presence of digitonin as a detergent. Purified human TMEM16F protein, which was proficient in transporting phospholipids in a Ca2+-dependent manner in proteoliposomes, was coated onto plates and then the phage library was added to fish out TMEM16F-binding affibodies. For the validation of interaction between affibodies and TMEM16F proteins, ELISA, bio-layer interferometry, and size exclusion chromatography were conducted. Results and Discussion: As a result, the full sequences of 38 candidates were acquired from 98 binding candidates. Then, we selected 10 candidates and purified seven of them from E. coli expressing these candidates. Using various assays, we confirmed that two affibodies bound to human TMEM16F with high affinity. These affibodies can be useful for therapeutical and diagnostic applications of TMEM16F-related cancer and neurodegenerative diseases. Future studies will be required to investigate the effects of these affibodies on TMEM16F function.
Collapse
Affiliation(s)
- Eunyoung Kim
- Korea Brain Research Institute, Neurovascular Unit Research Group, Daegu, Republic of Korea
| | - Jinho Bang
- Korea Institute of Ceramic Engineering and Technology, Bio-Healthcare Materials Center, Cheongju, Republic of Korea
- College of Pharmacy, Chungbuk National University, Cheongju, Republic of Korea
| | - Ji Hye Sung
- Korea Brain Research Institute, Neurovascular Unit Research Group, Daegu, Republic of Korea
| | - Jonghwan Lee
- Korea Institute of Ceramic Engineering and Technology, Bio-Healthcare Materials Center, Cheongju, Republic of Korea
| | - Dae Hwan Shin
- College of Pharmacy, Chungbuk National University, Cheongju, Republic of Korea
| | - Sunghyun Kim
- Korea Institute of Ceramic Engineering and Technology, Bio-Healthcare Materials Center, Cheongju, Republic of Korea
| | - Byoung-Cheol Lee
- Korea Brain Research Institute, Neurovascular Unit Research Group, Daegu, Republic of Korea
| |
Collapse
|
38
|
Kim S, Kim S, Kim S, Kim N, Lee SW, Yi H, Lee S, Sim T, Kwon Y, Lee HS. Affinity-Directed Site-Specific Protein Labeling and Its Application to Antibody-Drug Conjugates. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306401. [PMID: 38032124 PMCID: PMC10811483 DOI: 10.1002/advs.202306401] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/05/2023] [Indexed: 12/01/2023]
Abstract
Chemically modified proteins have diverse applications; however, conventional chemo-selective methods often yield heterogeneously labeled products. To address this limitation, site-specific protein labeling holds significant potential, driving extensive research in this area. Nevertheless, site-specific modification of native proteins remains challenging owing to the complexity of their functional groups. Therefore, a method for site-selective labeling of intact proteins is aimed to design. In this study, a novel approach to traceless affinity-directed intact protein labeling is established, which leverages small binding proteins and genetic code expansion technology. By applying this method, a site-specific antibody labeling with a drug, which leads to the production of highly effective antibody-drug conjugates specifically targeting breast cancer cell lines is achieved. This approach enables traceless conjugation of intact target proteins, which is a critical advantage in pharmaceutical applications. Furthermore, small helical binding proteins can be easily engineered for various target proteins, thereby expanding their potential applications in diverse fields. This innovative approach represents a significant advancement in site-specific modification of native proteins, including antibodies. It also bears immense potential for facilitating the development of therapeutic agents for various diseases.
Collapse
Affiliation(s)
- Sooin Kim
- Department of ChemistrySogang University35 Baekbeom‐ro, Mapo‐guSeoul04107Republic of Korea
| | - Sanggil Kim
- New Drug Development CenterOsong Medical Innovation Foundation123 Osongsaengmyeong‐ro, Heungdeok‐guCheongjuChungbuk28160Republic of Korea
| | - Sangji Kim
- School of PharmacySungkyunkwan University2066 Seobu‐ro, Jangan‐guSuwon16419Republic of Korea
| | - Namkyoung Kim
- Department of Biomedical SciencesGraduate School of Medical ScienceBrain Korea 21 ProjectYonsei University College of Medicine50 Yonsei‐ro, Seodaemun‐guSeoul03722Republic of Korea
| | - Sang Won Lee
- Department of ChemistrySogang University35 Baekbeom‐ro, Mapo‐guSeoul04107Republic of Korea
| | - Hanbin Yi
- Department of ChemistrySogang University35 Baekbeom‐ro, Mapo‐guSeoul04107Republic of Korea
| | - Seungeun Lee
- Department of ChemistrySogang University35 Baekbeom‐ro, Mapo‐guSeoul04107Republic of Korea
| | - Taebo Sim
- Department of Biomedical SciencesGraduate School of Medical ScienceBrain Korea 21 ProjectYonsei University College of Medicine50 Yonsei‐ro, Seodaemun‐guSeoul03722Republic of Korea
| | - Yongseok Kwon
- School of PharmacySungkyunkwan University2066 Seobu‐ro, Jangan‐guSuwon16419Republic of Korea
| | - Hyun Soo Lee
- Department of ChemistrySogang University35 Baekbeom‐ro, Mapo‐guSeoul04107Republic of Korea
| |
Collapse
|
39
|
Da Pieve C, Kramer-Marek G. Radiolabeled Affibody Molecules for PET Imaging. Methods Mol Biol 2024; 2729:159-182. [PMID: 38006496 DOI: 10.1007/978-1-0716-3499-8_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2023]
Abstract
Owing to their ease of engineering and production, chemical stability, size, and high target affinity and specificity, radiolabeled affibody molecules have been recognized as very promising molecular imaging probes in both preclinical and clinical settings. Herein we describe the methods for the preparation of affibody-chelator conjugates and their subsequent radiolabeling with 18F-AlF, 68Ga, 89Zr.
Collapse
Affiliation(s)
- Chiara Da Pieve
- Preclinical Molecular Imaging, Division of Radiotherapy and Imaging, The Institute of Cancer Research, London, UK
| | - Gabriela Kramer-Marek
- Preclinical Molecular Imaging, Division of Radiotherapy and Imaging, The Institute of Cancer Research, London, UK.
| |
Collapse
|
40
|
Blanchard PL, Knick BJ, Whelan SA, Hackel BJ. Hyperstable Synthetic Mini-Proteins as Effective Ligand Scaffolds. ACS Synth Biol 2023; 12:3608-3622. [PMID: 38010428 PMCID: PMC10822706 DOI: 10.1021/acssynbio.3c00409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Small, single-domain protein scaffolds are compelling sources of molecular binding ligands with the potential for efficient physiological transport, modularity, and manufacturing. Yet, mini-proteins require a balance between biophysical robustness and diversity to enable new functions. We tested the developability and evolvability of millions of variants of 43 designed libraries of synthetic 40-amino acid βαββ proteins with diversified sheet, loop, or helix paratopes. We discovered a scaffold library that yielded hundreds of binders to seven targets while exhibiting high stability and soluble expression. Binder discovery yielded 6-122 nM affinities without affinity maturation and Tms averaging ≥78 °C. Broader βαββ libraries exhibited varied developability and evolvability. Sheet paratopes were the most consistently developable, and framework 1 was the most evolvable. Paratope evolvability was dependent on target, though several libraries were evolvable across many targets while exhibiting high stability and soluble expression. Select βαββ proteins are strong starting points for engineering performant binders.
Collapse
Affiliation(s)
- Paul L. Blanchard
- Department of Chemical Engineering and Materials Science, University of Minnesota – Twin Cities, 421 Washington Avenue SE, Minneapolis, MN 55455
| | - Brandon J. Knick
- Department of Chemical Engineering and Materials Science, University of Minnesota – Twin Cities, 421 Washington Avenue SE, Minneapolis, MN 55455
| | - Sarah A. Whelan
- Department of Chemical Engineering and Materials Science, University of Minnesota – Twin Cities, 421 Washington Avenue SE, Minneapolis, MN 55455
| | - Benjamin J. Hackel
- Department of Chemical Engineering and Materials Science, University of Minnesota – Twin Cities, 421 Washington Avenue SE, Minneapolis, MN 55455
| |
Collapse
|
41
|
McConnell A, Batten SL, Hackel BJ. Determinants of Developability and Evolvability of Synthetic Miniproteins as Ligand Scaffolds. J Mol Biol 2023; 435:168339. [PMID: 37923119 PMCID: PMC10872777 DOI: 10.1016/j.jmb.2023.168339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/23/2023] [Accepted: 10/28/2023] [Indexed: 11/07/2023]
Abstract
Binding ligands empower molecular therapeutics and diagnostics. Despite an array of protein scaffolds engineered for binding, the biophysical elements that drive developability and evolvability are not fully understood. In particular, engineering novel function while maintaining biophysical integrity within the context of small, single-domain proteins is challenged by integration of the structural framework and the evolved binding site. Miniproteins present a challenge to our limits of protein engineering capability and provide advantages in physiological targeting, modularity for multi-functional constructs, and unique binding modes. Herein, we evaluate the ability of hyperstable synthetic miniproteins, originally designed for foldedness, to function as binding scaffolds. We synthesized 45 combinatorial libraries, with 109 variants, systematically varied across two topologies, each with five starting frameworks and four or five diverse, structurally distinct paratopes, to elucidate their impact on evolvability and developability. We evaluated evolvability with yeast display binding selections against four targets. High-throughput assays -stability via yeast display and soluble expression via split-GFP in E. coli - measured developability. The comprehensive, robust dataset demonstrates how protein topology, parental framework, and paratope structure and location all impact scaffold performance. A hyperstable framework and localized diversity are not sufficient for an effective scaffold, but several designs of these elements within synthetic miniproteins designed solely for stability result in scaffold libraries with effective evolvability and developability. Engineered variants were well-folded, thermally stable, and bound target with single-digit nanomolar affinity. Thus, hyperstable synthetic miniproteins can serve as precursors to developable, evolvable mini-scaffolds with unique potential for physiological transport, modularity, and binding modes.
Collapse
Affiliation(s)
- Adam McConnell
- Department of Biomedical Engineering, University of Minnesota - Twin Cities, Minneapolis, MN 55455, United States
| | - Sun Li Batten
- Department of Chemical Engineering and Materials Science, University of Minnesota - Twin Cities, Minneapolis, MN 55455, United States
| | - Benjamin J Hackel
- Department of Biomedical Engineering, University of Minnesota - Twin Cities, Minneapolis, MN 55455, United States; Department of Chemical Engineering and Materials Science, University of Minnesota - Twin Cities, Minneapolis, MN 55455, United States.
| |
Collapse
|
42
|
Novak A, Kersaudy F, Berger S, Morisset-Lopez S, Lefoulon F, Pifferi C, Aucagne V. An efficient site-selective, dual bioconjugation approach exploiting N-terminal cysteines as minimalistic handles to engineer tailored anti-HER2 affibody conjugates. Eur J Med Chem 2023; 260:115747. [PMID: 37657270 DOI: 10.1016/j.ejmech.2023.115747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/07/2023] [Accepted: 08/17/2023] [Indexed: 09/03/2023]
Abstract
Site-selective, dual-conjugation approaches for the incorporation of distinct payloads are key for the development of molecularly targeted biomolecules, such as antibody conjugates, endowed with better properties. Combinations of cytotoxic drugs, imaging probes, or pharmacokinetics modulators enabled for improved outcomes in both molecular imaging, and therapeutic settings. We have developed an efficacious dual-bioconjugation strategy to target the N-terminal cysteine of a chemically-synthesized, third-generation anti-HER2 affibody. Such two-step, one-purification approach can be carried out under mild conditions (without chaotropic agents, neutral pH) by means of a slight excess of commercially available N-hydroxysuccinimidyl esters and maleimido-functionalized payloads, to generate dual conjugates displaying drugs (DM1/MMAE) or probes (sulfo-Cy5/biotin) in high yields and purity. Remarkably, the double drug conjugate exhibited an exacerbated cytoxicity against HER2-expressing cell lines as compared to a combination of two monoconjugates, demonstrating a potent synergistic effect. Consistently, affibody-drug conjugates did not decrease the viability of HER2-negative cells, confirming their specificity for the target.
Collapse
Affiliation(s)
- Ana Novak
- Centre de Biophysique Moléculaire, CNRS UPR 4301, Rue Charles Sadron, 45071, Orléans, France
| | - Florian Kersaudy
- Centre de Biophysique Moléculaire, CNRS UPR 4301, Rue Charles Sadron, 45071, Orléans, France
| | - Sylvie Berger
- Institut de Recherche Servier, 78290, Croissy sur Seine, France
| | - Séverine Morisset-Lopez
- Centre de Biophysique Moléculaire, CNRS UPR 4301, Rue Charles Sadron, 45071, Orléans, France.
| | | | - Carlo Pifferi
- Centre de Biophysique Moléculaire, CNRS UPR 4301, Rue Charles Sadron, 45071, Orléans, France.
| | - Vincent Aucagne
- Centre de Biophysique Moléculaire, CNRS UPR 4301, Rue Charles Sadron, 45071, Orléans, France.
| |
Collapse
|
43
|
Cai Y, Ren J, Jin J, Shao H, Wang P, Cheng K, Jiang P, Jiang P, Zhu S, Zhu G, Zhang L. Novel affibody molecules as potential agents in molecular imaging for MAGE-A3-positive tumor diagnosis. ENVIRONMENTAL RESEARCH 2023; 237:116895. [PMID: 37586454 DOI: 10.1016/j.envres.2023.116895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/07/2023] [Accepted: 08/13/2023] [Indexed: 08/18/2023]
Abstract
BACKGROUND The cancer-testis protein melanoma antigen A3 (MAGE-A3) is highly expressed in a broad range of malignant tumor forms. It has been confirmed that affibody molecules, a novel family of small (∼6.5 kDa) targeting proteins, are useful agents for molecular imaging and targeted tumor treatment. As a novel agent for in vivo molecular imaging detection of MAGE-A3-positive tumors, the efficacy of affibody molecules was assessed in this research. METHODS In this study, three cycles of phage display library screening resulted in the isolation of two new affibody molecules (ZMAGE-A3:172 and ZMAGE-A3:770) that attach to MAGE-A3. These molecules were then expressed in bacteria and purified. The affibody molecules with high affinity and specificity were evaluated using western blotting, immunohistochemistry, indirect immunofluorescence, surface plasmon resonance, and near-infrared optical imaging of tumor-bearing nude mice. RESULTS The selected ZMAGE-A3 affibodies can precisely bind to the MAGE-A3 protein in living cells and display high-affinity binding to the MAGE-A3 protein at the molecular level. Furthermore, the accumulation of DyLight755-labeled ZMAGE-A3:172 or ZMAGE-A3:770 in MAGE-A3-positive tumors was achieved as early as 30 min and disappeared at 48 h post-injection. CONCLUSION Our findings support the potential of the two MAGE-A3 protein-binding affibody molecules for their use as molecular imaging agents.
Collapse
Affiliation(s)
- Yiqi Cai
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, PR China
| | - Jiahuan Ren
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, PR China
| | - Jinji Jin
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, PR China
| | - Huanyi Shao
- Department of Pediatric Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, PR China
| | - Pengfei Wang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, PR China
| | - Kai Cheng
- Department of Dermatology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, PR China
| | - Peipei Jiang
- Department of Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, PR China
| | - Pengfei Jiang
- Institute of Molecular Virology and Immunology, Department of Medical Microbiology and Immunology, Wenzhou Medical University, Wenzhou, Zhejiang, 325000, PR China
| | - Shanli Zhu
- Institute of Molecular Virology and Immunology, Department of Medical Microbiology and Immunology, Wenzhou Medical University, Wenzhou, Zhejiang, 325000, PR China
| | - Guanbao Zhu
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, PR China.
| | - Lifang Zhang
- Institute of Molecular Virology and Immunology, Department of Medical Microbiology and Immunology, Wenzhou Medical University, Wenzhou, Zhejiang, 325000, PR China.
| |
Collapse
|
44
|
Buonocore M, Grimaldi M, Santoro A, Covelli V, Marino C, Napolitano E, Novi S, Tecce MF, Ciaglia E, Montella F, Lopardo V, Perugini V, Santin M, D’Ursi AM. Exploiting the Features of Short Peptides to Recognize Specific Cell Surface Markers. Int J Mol Sci 2023; 24:15610. [PMID: 37958593 PMCID: PMC10650159 DOI: 10.3390/ijms242115610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/21/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023] Open
Abstract
Antibodies are the macromolecules of choice to ensure specific recognition of biomarkers in biological assays. However, they present a range of shortfalls including a relatively high production cost and limited tissue penetration. Peptides are relatively small molecules able to reproduce sequences of highly specific paratopes and, although they have less biospecificity than antibodies, they offer advantages like ease of synthesis, modifications of their amino acid sequences and tagging with fluorophores and other molecules required for detection. This work presents a strategy to design peptide sequences able to recognize the CD44 hyaluronic acid receptor present in the plasmalemma of a range of cells including human bone marrow stromal mesenchymal cells. The protocol of identification of the optimal amino acid sequence was based on the combination of rational design and in silico methodologies. This protocol led to the identification of two peptide sequences which were synthesized and tested on human bone marrow mesenchymal stromal cells (hBM-MSCs) for their ability to ensure specific binding to the CD44 receptor. Of the two peptides, one binds CD44 with sensitivity and selectivity, thus proving its potential to be used as a suitable alternative to this antibody in conventional immunostaining. In the context of regenerative medicine, the availability of this peptide could be harnessed to functionalize tissue engineering scaffolds to anchor stem cells as well as to be integrated into systems such as cell sorters to efficiently isolate MSCs from biological samples including various cell subpopulations. The data here reported can represent a model for developing peptide sequences able to recognize hBM-MSCs and other types of cells and for their integration in a range of biomedical applications.
Collapse
Affiliation(s)
- Michela Buonocore
- Department of Pharmacy, University of Salerno, 84084 Fisciano, Italy or (M.B.); (M.G.); (A.S.); or (V.C.); (C.M.); (E.N.); (S.N.); (M.F.T.)
- Department of Chemical Sciences, University of Naples Federico II, 80138 Naples, Italy
| | - Manuela Grimaldi
- Department of Pharmacy, University of Salerno, 84084 Fisciano, Italy or (M.B.); (M.G.); (A.S.); or (V.C.); (C.M.); (E.N.); (S.N.); (M.F.T.)
| | - Angelo Santoro
- Department of Pharmacy, University of Salerno, 84084 Fisciano, Italy or (M.B.); (M.G.); (A.S.); or (V.C.); (C.M.); (E.N.); (S.N.); (M.F.T.)
- Scuola di Specializzazione in Farmacia Ospedaliera, University of Salerno, 84084 Fisciano, Italy
| | - Verdiana Covelli
- Department of Pharmacy, University of Salerno, 84084 Fisciano, Italy or (M.B.); (M.G.); (A.S.); or (V.C.); (C.M.); (E.N.); (S.N.); (M.F.T.)
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, 80138 Naples, Italy
| | - Carmen Marino
- Department of Pharmacy, University of Salerno, 84084 Fisciano, Italy or (M.B.); (M.G.); (A.S.); or (V.C.); (C.M.); (E.N.); (S.N.); (M.F.T.)
- PhD Program in Drug Discovery and Development, Department of Pharmacy, University of Salerno, 84084 Fisciano, Italy
| | - Enza Napolitano
- Department of Pharmacy, University of Salerno, 84084 Fisciano, Italy or (M.B.); (M.G.); (A.S.); or (V.C.); (C.M.); (E.N.); (S.N.); (M.F.T.)
- PhD Program in Drug Discovery and Development, Department of Pharmacy, University of Salerno, 84084 Fisciano, Italy
| | - Sara Novi
- Department of Pharmacy, University of Salerno, 84084 Fisciano, Italy or (M.B.); (M.G.); (A.S.); or (V.C.); (C.M.); (E.N.); (S.N.); (M.F.T.)
- PhD Program in Drug Discovery and Development, Department of Pharmacy, University of Salerno, 84084 Fisciano, Italy
| | - Mario Felice Tecce
- Department of Pharmacy, University of Salerno, 84084 Fisciano, Italy or (M.B.); (M.G.); (A.S.); or (V.C.); (C.M.); (E.N.); (S.N.); (M.F.T.)
| | - Elena Ciaglia
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, Italy; (E.C.); (F.M.); (V.L.)
| | - Francesco Montella
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, Italy; (E.C.); (F.M.); (V.L.)
| | - Valentina Lopardo
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, Italy; (E.C.); (F.M.); (V.L.)
| | - Valeria Perugini
- Centre for Regenerative Medicine and Devices, School of Applied Sciences, University of Brighton, Brighton BN2 4AT, UK; (V.P.); (M.S.)
| | - Matteo Santin
- Centre for Regenerative Medicine and Devices, School of Applied Sciences, University of Brighton, Brighton BN2 4AT, UK; (V.P.); (M.S.)
| | - Anna Maria D’Ursi
- Department of Pharmacy, University of Salerno, 84084 Fisciano, Italy or (M.B.); (M.G.); (A.S.); or (V.C.); (C.M.); (E.N.); (S.N.); (M.F.T.)
| |
Collapse
|
45
|
Dorogin J, Hochstatter HB, Shepherd SO, Svendsen JE, Benz MA, Powers AC, Fear KM, Townsend JM, Prell JS, Hosseinzadeh P, Hettiaratchi MH. Moderate-Affinity Affibodies Modulate the Delivery and Bioactivity of Bone Morphogenetic Protein-2. Adv Healthc Mater 2023; 12:e2300793. [PMID: 37379021 PMCID: PMC10592408 DOI: 10.1002/adhm.202300793] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/16/2023] [Indexed: 06/29/2023]
Abstract
Uncontrolled bone morphogenetic protein-2 (BMP-2) release can lead to off-target bone growth and other adverse events. To tackle this challenge, yeast surface display is used to identify unique BMP-2-specific protein binders known as affibodies that bind to BMP-2 with different affinities. Biolayer interferometry reveals an equilibrium dissociation constant of 10.7 nm for the interaction between BMP-2 and high-affinity affibody and 34.8 nm for the interaction between BMP-2 and the low-affinity affibody. The low-affinity affibody-BMP-2 interaction also exhibits an off-rate constant that is an order of magnitude higher. Computational modeling of affibody-BMP-2 binding predicts that the high- and low-affinity affibodies bind to two distinct sites on BMP-2 that function as different cell-receptor binding sites. BMP-2 binding to affibodies reduces expression of the osteogenic marker alkaline phosphatase (ALP) in C2C12 myoblasts. Affibody-conjugated polyethylene glycol-maleimide hydrogels increase uptake of BMP-2 compared to affibody-free hydrogels, and high-affinity hydrogels exhibit lower BMP-2 release into serum compared to low-affinity hydrogels and affibody-free hydrogels over four weeks. Loading BMP-2 into affibody-conjugated hydrogels prolongs ALP activity of C2C12 myoblasts compared to soluble BMP-2. This work demonstrates that affibodies with different affinities can modulate BMP-2 delivery and activity, creating a promising approach for controlling BMP-2 delivery in clinical applications.
Collapse
Affiliation(s)
- Jonathan Dorogin
- Department of BioengineeringKnight Campus for Accelerating Scientific ImpactUniversity of Oregon6231 University of OregonEugeneOR97403USA
| | - Henry B. Hochstatter
- Department of BioengineeringKnight Campus for Accelerating Scientific ImpactUniversity of Oregon6231 University of OregonEugeneOR97403USA
- Department of Human PhysiologyUniversity of Oregon1320 E 15th Ave.EugeneOR97403USA
| | - Samantha O. Shepherd
- Department of Chemistry and BiochemistryUniversity of Oregon1253 University of OregonEugeneOR97403USA
| | - Justin E. Svendsen
- Department of BioengineeringKnight Campus for Accelerating Scientific ImpactUniversity of Oregon6231 University of OregonEugeneOR97403USA
- Department of Chemistry and BiochemistryUniversity of Oregon1253 University of OregonEugeneOR97403USA
| | - Morrhyssey A. Benz
- Department of BioengineeringKnight Campus for Accelerating Scientific ImpactUniversity of Oregon6231 University of OregonEugeneOR97403USA
- Department of Chemistry and BiochemistryUniversity of Oregon1253 University of OregonEugeneOR97403USA
| | - Andrew C. Powers
- Department of BioengineeringKnight Campus for Accelerating Scientific ImpactUniversity of Oregon6231 University of OregonEugeneOR97403USA
| | - Karly M. Fear
- Department of BioengineeringKnight Campus for Accelerating Scientific ImpactUniversity of Oregon6231 University of OregonEugeneOR97403USA
| | - Jakob M. Townsend
- Department of BioengineeringKnight Campus for Accelerating Scientific ImpactUniversity of Oregon6231 University of OregonEugeneOR97403USA
| | - James S. Prell
- Department of Chemistry and BiochemistryUniversity of Oregon1253 University of OregonEugeneOR97403USA
| | - Parisa Hosseinzadeh
- Department of BioengineeringKnight Campus for Accelerating Scientific ImpactUniversity of Oregon6231 University of OregonEugeneOR97403USA
- Department of Chemistry and BiochemistryUniversity of Oregon1253 University of OregonEugeneOR97403USA
| | - Marian H. Hettiaratchi
- Department of BioengineeringKnight Campus for Accelerating Scientific ImpactUniversity of Oregon6231 University of OregonEugeneOR97403USA
- Department of Chemistry and BiochemistryUniversity of Oregon1253 University of OregonEugeneOR97403USA
| |
Collapse
|
46
|
Jolugbo P, Willott T, Lin WH, Maisey T, O'Callaghan D, Green MA, Jayne DG, Khot MI. Fluorescent imaging using novel conjugated polymeric nanoparticles-affimer probes in complex in vitro models of colorectal cancer. NANOSCALE 2023. [PMID: 37466243 DOI: 10.1039/d3nr02160b] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
We developed a carcinoembryonic antigen (CEA) conjugated polymer nanoparticle (CPN510-CEA-Af) probe to target CEA-expressing CRC cells in vitro. Its efficacy was evaluated in 2D and 3D cultures of LS174T, LoVo, and HT29 CRC cell lines. CPN510-CEA-Af produced greater fluorescent signal intensity than unconjugated particles in both 2D cells and 3D spheriods, indicating its potential as a probe for image-guided colorectal cancer surgery.
Collapse
Affiliation(s)
- Precious Jolugbo
- Leeds Institute of Medical Research at St James', School of Medicine, St James University Hospital, University of Leeds, Leeds, LS9 7TF, UK.
| | - Thomas Willott
- Leeds Institute of Medical Research at St James', School of Medicine, St James University Hospital, University of Leeds, Leeds, LS9 7TF, UK.
| | - Wei-Hsiang Lin
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, M13 9PL, UK
| | - Thomas Maisey
- Leeds Institute of Medical Research at St James', School of Medicine, St James University Hospital, University of Leeds, Leeds, LS9 7TF, UK.
| | | | - Mark A Green
- Stream Bio Ltd, Alderley Park, Nether Alderley, Cheshire, SK10 4TG, UK
- Department of Physics, Faculty of Natural, Mathematical & Engineering Sciences, King's College London, Strand, London, WC2R 2LS, UK
| | - David G Jayne
- Leeds Institute of Medical Research at St James', School of Medicine, St James University Hospital, University of Leeds, Leeds, LS9 7TF, UK.
| | - M Ibrahim Khot
- Leeds Institute of Medical Research at St James', School of Medicine, St James University Hospital, University of Leeds, Leeds, LS9 7TF, UK.
| |
Collapse
|
47
|
Mozipo EA, Galindo AN, Khachatourian JD, Harris CG, Dorogin J, Spaulding VR, Ford MR, Singhal M, Fogg KC, Hettiaratchi MH. Statistical Optimization of Hydrazone-Crosslinked Hyaluronic Acid Hydrogels for Protein Delivery. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.14.549125. [PMID: 37503070 PMCID: PMC10370027 DOI: 10.1101/2023.07.14.549125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Hydrazone-crosslinked hydrogels are attractive protein delivery vehicles for regenerative medicine. However, each regenerative medicine application requires unique hydrogel properties to achieve an ideal outcome. The properties of a hydrogel can be impacted by numerous factors involved in its fabrication. We used design of experiments (DoE) statistical modeling to efficiently optimize the physicochemical properties of a hyaluronic acid (HA) hydrazone-crosslinked hydrogel for protein delivery for bone regeneration. We modified HA with either adipic acid dihydrazide (HA-ADH) or aldehyde (HA-Ox) functional groups and used DoE to evaluate the interactions of three input variables, the molecular weight of HA (40 or 100 kDa), the concentration of HA-ADH (1-3% w/v), and the concentration of HA-Ox (1-3% w/v), on three output responses, gelation time, compressive modulus, and hydrogel stability over time. We identified 100 kDa HA-ADH3.0HA-Ox2.33 as an optimal hydrogel that met all of our design criteria, including displaying a gelation time of 3.7 minutes, compressive modulus of 62.1 Pa, and minimal mass change over 28 days. For protein delivery, we conjugated affinity proteins called affibodies that were specific to the osteogenic protein bone morphogenetic protein-2 (BMP-2) to HA hydrogels and demonstrated that our platform could control the release of BMP-2 over 28 days. Ultimately, our approach demonstrates the utility of DoE for optimizing hydrazone-crosslinked HA hydrogels for protein delivery.
Collapse
Affiliation(s)
- Esther A. Mozipo
- Phil and Penny Knight Campus for Accelerating Scientific Impact, University of Oregon, Eugene, OR
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, OR
| | - Alycia, N. Galindo
- Phil and Penny Knight Campus for Accelerating Scientific Impact, University of Oregon, Eugene, OR
| | - Jenna D. Khachatourian
- Phil and Penny Knight Campus for Accelerating Scientific Impact, University of Oregon, Eugene, OR
- Department of Human Physiology, University of Oregon, Eugene, OR
| | - Conor G. Harris
- School of Chemical, Biological, and Environmental Engineering, Oregon State University, Corvallis, OR
| | - Jonathan Dorogin
- Phil and Penny Knight Campus for Accelerating Scientific Impact, University of Oregon, Eugene, OR
| | | | - Madeleine R. Ford
- Phil and Penny Knight Campus for Accelerating Scientific Impact, University of Oregon, Eugene, OR
- Department of Human Physiology, University of Oregon, Eugene, OR
| | - Malvika Singhal
- Phil and Penny Knight Campus for Accelerating Scientific Impact, University of Oregon, Eugene, OR
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, OR
- Institute of Molecular Biology, University of Oregon, Eugene, OR
| | - Kaitlin C. Fogg
- School of Chemical, Biological, and Environmental Engineering, Oregon State University, Corvallis, OR
| | - Marian H. Hettiaratchi
- Phil and Penny Knight Campus for Accelerating Scientific Impact, University of Oregon, Eugene, OR
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, OR
- Institute of Molecular Biology, University of Oregon, Eugene, OR
| |
Collapse
|
48
|
Liu J, Guo X, Wen L, Wang L, Liu F, Song G, Zhu H, Zhou N, Yang Z. Comparison of renal clearance of [ 18F]AlF-RESCA-HER2-BCH and [ 18F]AlF-NOTA-HER2-BCH in mice and breast cancer patients. Eur J Nucl Med Mol Imaging 2023; 50:2775-2786. [PMID: 37093312 DOI: 10.1007/s00259-023-06232-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 04/11/2023] [Indexed: 04/25/2023]
Abstract
PURPOSE A novel HER2 affibody-based molecular probe, [18F]AlF-RESCA-HER2-BCH, was developed for reducing renal uptake, evaluated, and compared with [18F]AlF-NOTA-HER2-BCH. METHODS In preclinical studies, micro-PET/CT was performed using HER2-positive gastric cancer patient-derived xenografts (PDX) model at 0.5-1 (dynamic), 2, 4, and 6 h post-injection. For blocking experiment, 0.5 mg cold affibody was co-injected with probes. Biodistribution were performed on HER2-positive PDX models at 2 h post-injection. For clinical study, PET/CT images were acquired at 2 h and 4 h after injection of 231.29 ± 17.77 MBq [18F]AlF-NOTA-HER2-BCH or [18F]AlF-RESCA-HER2-BCH in five breast cancer patients (4 HER2-positive and 1 HER2-low). Standardized uptake values (SUVs) were measured in tumors and source-organs for semi-quantitative analysis. The OLINDA/EXM software (version 1.2) was used to calculate the radiation doses. RESULTS [18F]AlF-NOTA-HER2-BCH and [18F]AlF-RESCA-HER2-BCH were stably labeled with [18F]F, with high binding specificity and affinity to HER2. Micro-PET/CT of both tracers could clearly visualize HER2-positive PDX tumors with high uptake of 16.24 ± 1.74% ID/g and 14.39 ± 2.45% ID/g at 2 h post-injection. The renal accumulation of [18F]AlF-RESCA-HER2-BCH was significantly lower than that of [18F]AlF-NOTA-HER2-BCH (5.16 ± 0.22% ID/g vs. 158.73 ± 5.44% ID/g at 2 h, p < 0.0001). In the clinical study, both [18F]AlF-NOTA-HER2-BCH and [18F]AlF-RESCA-HER2-BCH demonstrated favorable tumor targeting and image contrast. [18F]AlF-RESCA-HER2-BCH showed a higher SUVmax in both primary tumor and metastases, and a significantly higher target-to-nontarget ratio in metastases than [18F]AlF-NOTA-HER2-BCH. Moreover, [18F]AlF-RESCA-HER2-BCH had lower renal accumulation (43.56 ± 7.88 vs. 79.81 ± 3.81 at 2 h, p < 0.0001; 33.23 ± 6.89 vs. 78.63 ± 4.00 at 4 h, p < 0.0001) as well as a significantly lower renal absorbed dose than [18F]AlF-NOTA-HER2-BCH (0.4450 ± 0.1117 mGy/MBq vs. 0.8030 ± 0.1604 mGy/MBq, p < 0.01). CONCLUSIONS [18F]AlF-RESCA-HER2-BCH tended to provide better image contrast than [18F]AlF-NOTA-HER2-BCH with a higher target-to-nontarget ratio in detection of metastases. Notably, [18F]AlF-RESCA-HER2-BCH had lower renal accumulation than [18F]AlF-NOTA-HER2-BCH.
Collapse
Affiliation(s)
- Jiayue Liu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing, China
| | - Xiaoyi Guo
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing, China
| | - Li Wen
- Guizhou University School of Medicine, Guizhou University, Guiyang, China
| | - Lixin Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Biochemistry and Molecular Biology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Futao Liu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing, China
| | - Guohong Song
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Breast Oncology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Hua Zhu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing, China.
| | - Nina Zhou
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing, China.
| | - Zhi Yang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing, China.
| |
Collapse
|
49
|
Kamara S, Guo Y, Wen H, Liu Y, Liu L, Zheng M, Zhang J, Zhou L, Chen J, Zhu S, Zhang L. Novel Bifunctional Affibody Molecules with Specific Binding to Both EBV LMP1 and LMP2 for Targeted Therapy of Nasopharyngeal Carcinoma. Int J Mol Sci 2023; 24:10126. [PMID: 37373272 DOI: 10.3390/ijms241210126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/30/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023] Open
Abstract
Antibodies are considered highly specific therapeutic agents in cancer medicines, and numerous formats have been developed. Among them, bispecific antibodies (BsAbs) have gained a lot of attention as a next-generation strategy for cancer therapy. However, poor tumor penetration is a major challenge because of their large size and thus contributes to suboptimal responses within cancer cells. On the other hand, affibody molecules are a new class of engineered affinity proteins and have achieved several promising results with their applications in molecular imaging diagnostics and targeted tumor therapy. In this study, an alternative format for bispecific molecules was constructed and investigated, named ZLMP110-277 and ZLMP277-110, that targets Epstein-Barr virus latent membrane protein 1 (LMP1) and latent membrane protein 2 (LMP2). Surface plasmon resonance (SPR), indirect immunofluorescence assay, co-immunoprecipitation, and near-infrared (NIR) imaging clearly demonstrated that ZLMP110-277 and ZLMP277-110 have good binding affinity and specificity for both LMP1 and LMP2 in vitro and in vivo. Moreover, ZLMP110-277 and ZLMP277-110, especially ZLMP277-110, significantly reduced the cell viability of C666-1 and CNE-2Z as compared to their monospecific counterparts. ZLMP110-277 and ZLMP277-110 could inhibit phosphorylation of proteins modulated by the MEK/ERK/p90RSK signaling pathway, ultimately leading to suppression of oncogene nuclear translocations. Furthermore, ZLMP110-277 and ZLMP277-110 showed significant antitumor efficacy in nasopharyngeal carcinoma-bearing nude mice. Overall, our results demonstrated that ZLMP110-277 and ZLMP277-110, especially ZLMP277-110, are promising novel prognostic indicators for molecular imaging and targeted tumor therapy of EBV-associated nasopharyngeal carcinoma.
Collapse
Affiliation(s)
- Saidu Kamara
- Institute of Molecular Virology and Immunology, Department of Microbiology and Immunology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Yanru Guo
- Institute of Molecular Virology and Immunology, Department of Microbiology and Immunology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - He Wen
- Institute of Molecular Virology and Immunology, Department of Microbiology and Immunology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Ying Liu
- Institute of Molecular Virology and Immunology, Department of Microbiology and Immunology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Lei Liu
- Institute of Molecular Virology and Immunology, Department of Microbiology and Immunology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Maolin Zheng
- Institute of Molecular Virology and Immunology, Department of Microbiology and Immunology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Jing Zhang
- Institute of Molecular Virology and Immunology, Department of Microbiology and Immunology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Luqi Zhou
- Institute of Molecular Virology and Immunology, Department of Microbiology and Immunology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Jun Chen
- Institute of Molecular Virology and Immunology, Department of Microbiology and Immunology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Shanli Zhu
- Institute of Molecular Virology and Immunology, Department of Microbiology and Immunology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Lifang Zhang
- Institute of Molecular Virology and Immunology, Department of Microbiology and Immunology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| |
Collapse
|
50
|
Qian L, Lin X, Gao X, Khan RU, Liao JY, Du S, Ge J, Zeng S, Yao SQ. The Dawn of a New Era: Targeting the "Undruggables" with Antibody-Based Therapeutics. Chem Rev 2023. [PMID: 37186942 DOI: 10.1021/acs.chemrev.2c00915] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
The high selectivity and affinity of antibodies toward their antigens have made them a highly valuable tool in disease therapy, diagnosis, and basic research. A plethora of chemical and genetic approaches have been devised to make antibodies accessible to more "undruggable" targets and equipped with new functions of illustrating or regulating biological processes more precisely. In this Review, in addition to introducing how naked antibodies and various antibody conjugates (such as antibody-drug conjugates, antibody-oligonucleotide conjugates, antibody-enzyme conjugates, etc.) work in therapeutic applications, special attention has been paid to how chemistry tools have helped to optimize the therapeutic outcome (i.e., with enhanced efficacy and reduced side effects) or facilitate the multifunctionalization of antibodies, with a focus on emerging fields such as targeted protein degradation, real-time live-cell imaging, catalytic labeling or decaging with spatiotemporal control as well as the engagement of antibodies inside cells. With advances in modern chemistry and biotechnology, well-designed antibodies and their derivatives via size miniaturization or multifunctionalization together with efficient delivery systems have emerged, which have gradually improved our understanding of important biological processes and paved the way to pursue novel targets for potential treatments of various diseases.
Collapse
Affiliation(s)
- Linghui Qian
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Cancer Center, & Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou 310058, China
| | - Xuefen Lin
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Cancer Center, & Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou 310058, China
| | - Xue Gao
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Cancer Center, & Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou 310058, China
| | - Rizwan Ullah Khan
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Cancer Center, & Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou 310058, China
| | - Jia-Yu Liao
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Cancer Center, & Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou 310058, China
| | - Shubo Du
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China
| | - Jingyan Ge
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Su Zeng
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Cancer Center, & Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou 310058, China
| | - Shao Q Yao
- Department of Chemistry, National University of Singapore, 4 Science Drive 2, Singapore, 117544
| |
Collapse
|