1
|
Waltho A, Sommer T. Getting to the Root of Branched Ubiquitin Chains: A Review of Current Methods and Functions. Methods Mol Biol 2023; 2602:19-38. [PMID: 36446964 DOI: 10.1007/978-1-0716-2859-1_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Nearly 20 years since the first branched ubiquitin (Ub) chains were identified by mass spectrometry, our understanding of these chains and their function is still evolving. This is due to the limitations of classical Ub research techniques in identifying these chains and the vast complexity of potential branched chains. Considering only lysine or N-terminal methionine attachment sites, there are already 28 different possible branch points. Taking into account recently discovered ester-linked ubiquitination, branch points of more than two linkage types, and the higher-order chain structures within which branch points exist, the diversity of branched chains is nearly infinite. This review breaks down the complexity of these chains into their general functions, what we know so far about the different linkage combinations, branched chain-optimized methodologies, and the future perspectives of branched chain research.
Collapse
Affiliation(s)
- Anita Waltho
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin-Buch, Germany.
- Institute for Biology, Humboldt-Universität zu Berlin, Berlin, Germany.
| | - Thomas Sommer
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin-Buch, Germany.
- Institute for Biology, Humboldt-Universität zu Berlin, Berlin, Germany.
| |
Collapse
|
2
|
Orosa-Puente B, Spoel SH. Harnessing the ubiquitin code to respond to environmental cues. Essays Biochem 2022; 66:111-121. [PMID: 35880291 PMCID: PMC9400065 DOI: 10.1042/ebc20210094] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 06/13/2022] [Accepted: 06/27/2022] [Indexed: 12/15/2022]
Abstract
Ubiquitination is an essential post-translational signal that allows cells to adapt and respond to environmental stimuli. Substrate modifications range from a single ubiquitin molecule to complex polyubiquitin chains, where diverse chain topologies constitute a code that is utilized to modify the functions of proteins in numerous cellular signalling pathways. Diverse ubiquitin chain topologies are generated by linking the C-terminus of ubiquitin to one of seven lysine residues or the N-terminal methionine 1 residue of the preceding ubiquitin. Cooperative action between a large array of E2 conjugating and E3 ligase enzymes supports the formation of not only homotypic ubiquitin chains but also heterotypic mixed or branched chains. This complex array of chain topologies is recognized by proteins containing linkage-specific ubiquitin-binding domains and regulates numerous cellular pathways. Although many functions of the ubiquitin code in plants remain unknown, recent work suggests that specific chain topologies are associated with particular molecular processes. Deciphering the ubiquitin code and how plants utilize it to cope with the changing environment is essential to understand the regulatory mechanisms that underpin myriad stress responses and establishment of environmental tolerance.
Collapse
Affiliation(s)
- Beatriz Orosa-Puente
- Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh EH16 5JF, U.K
| | - Steven H Spoel
- Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh EH16 5JF, U.K
| |
Collapse
|
3
|
Foster B, Attwood M, Gibbs-Seymour I. Tools for Decoding Ubiquitin Signaling in DNA Repair. Front Cell Dev Biol 2021; 9:760226. [PMID: 34950659 PMCID: PMC8690248 DOI: 10.3389/fcell.2021.760226] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 11/09/2021] [Indexed: 12/21/2022] Open
Abstract
The maintenance of genome stability requires dedicated DNA repair processes and pathways that are essential for the faithful duplication and propagation of chromosomes. These DNA repair mechanisms counteract the potentially deleterious impact of the frequent genotoxic challenges faced by cells from both exogenous and endogenous agents. Intrinsic to these mechanisms, cells have an arsenal of protein factors that can be utilised to promote repair processes in response to DNA lesions. Orchestration of the protein factors within the various cellular DNA repair pathways is performed, in part, by post-translational modifications, such as phosphorylation, ubiquitin, SUMO and other ubiquitin-like modifiers (UBLs). In this review, we firstly explore recent advances in the tools for identifying factors involved in both DNA repair and ubiquitin signaling pathways. We then expand on this by evaluating the growing repertoire of proteomic, biochemical and structural techniques available to further understand the mechanistic basis by which these complex modifications regulate DNA repair. Together, we provide a snapshot of the range of methods now available to investigate and decode how ubiquitin signaling can promote DNA repair and maintain genome stability in mammalian cells.
Collapse
Affiliation(s)
| | | | - Ian Gibbs-Seymour
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
4
|
Mattioni A, Boldt K, Auciello G, Komada M, Rappoport JZ, Ueffing M, Castagnoli L, Cesareni G, Santonico E. Ring Finger Protein 11 acts on ligand-activated EGFR via the direct interaction with the UIM region of ANKRD13 protein family. FEBS J 2020; 287:3526-3550. [PMID: 31985874 DOI: 10.1111/febs.15226] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 11/13/2019] [Accepted: 01/22/2020] [Indexed: 01/07/2023]
Abstract
RING finger protein 11 (RNF11) is an evolutionary conserved Really Interesting New Gene E3 ligase that is overexpressed in several human tumours. Although several reports have highlighted its involvement in crucial cellular processes, the mechanistic details underlying its function are still poorly understood. Utilizing stable isotope labelling by amino acids in culture (SILAC)-based proteomics analysis, we identified 51 proteins that co-immunoprecipitate with wild-type RNF11 and/or with its catalytically inactive mutant. We focused our attention on the interaction of RNF11 with Ankyrin repeat domain-containing protein 13 (ANKRD13)s family. Members of the ANKRD13 family contain ubiquitin-interacting motifs (UIM) that recognize the Lys-63-linked ubiquitin (Ub) chains appended to Epidermal growth factor receptor (EGFR) soon after ligand binding. We show that ANKRD13A, ANKRD13B and ANKRD13D form a complex with RNF11 in vivo and that the UIMs are required for complex formation. However, at odds with the conventional UIM binding mode, Ub modification of RNF11 is not required for the interaction with ANKRD13 proteins. We also show that the interaction between ANKRD13A and RNF11 is modulated by the EGF stimulus and that a complex formed by ANKRD13A, RNF11 and activated EGFR is transiently assembled in the early phases of receptor endocytosis. Moreover, loss of function of the E3 ligases Itchy E3 ubiquitin-protein ligase (ITCH) or RNF11, respectively, abrogates or increases the ubiquitination of endogenous ANKRD13A, affecting its ability to bind activated EGFR. We propose a model whereby the ANKRD13 proteins act as molecular scaffolds that promote the transient formation of a complex between the activated EGFR and the E3 ligases ITCH and RNF11. By regulating the ubiquitination status of ANKRD13A and consequently its endocytic adaptor function, RNF11 promotes sorting of the activated EGFR for lysosomal degradation.
Collapse
Affiliation(s)
- Anna Mattioni
- Department of Biology, University of Rome Tor Vergata, Italy
| | - Karsten Boldt
- Center for Ophthalmology, Institute for Ophthalmic Research, University of Tübingen, Germany
| | - Giulio Auciello
- Istituto di Ricerche di Biologia Molecolare (IRBM), Pomezia, Italy
| | - Masayuki Komada
- Department of Biological Sciences, Tokyo Institute of Technology, Yokohama, Japan
| | | | - Marius Ueffing
- Center for Ophthalmology, Institute for Ophthalmic Research, University of Tübingen, Germany
| | | | - Gianni Cesareni
- Department of Biology, University of Rome Tor Vergata, Italy
- Fondazione Santa Lucia Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Elena Santonico
- Department of Biology, University of Rome Tor Vergata, Italy
| |
Collapse
|
5
|
Santonico E. Old and New Concepts in Ubiquitin and NEDD8 Recognition. Biomolecules 2020; 10:biom10040566. [PMID: 32272761 PMCID: PMC7226360 DOI: 10.3390/biom10040566] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 03/26/2020] [Accepted: 03/27/2020] [Indexed: 12/16/2022] Open
Abstract
Post-translational modifications by ubiquitin and ubiquitin-like proteins (Ubls) have known roles in a myriad of cellular processes. Ubiquitin- and Ubl-binding domains transmit the information conferred by these post-translational modifications by recognizing functional surfaces and, when present, different chain structures. Numerous domains binding to ubiquitin have been characterized and their structures solved. Analogously, motifs selectively interacting with SUMO (small ubiquitin-like modifier) have been identified in several proteins and their role in SUMO-dependent processes investigated. On the other hand, proteins that specifically recognize other Ubl modifications are known only in a few cases. The high sequence identity between NEDD8 and ubiquitin has made the identification of specific NEDD8-binding domains further complicated due to the promiscuity in the recognition by several ubiquitin-binding domains. Two evolutionarily related domains, called CUBAN (cullin-binding domain associating with NEDD8) and CoCUN (cousin of CUBAN), have been recently described. The CUBAN binds monomeric NEDD8 and neddylated cullins, but it also interacts with di-ubiquitin chains. Conversely, the CoCUN domain only binds ubiquitin. CUBAN and CoCUN provide an intriguing example of how nature solved the issue of promiscuity versus selectivity in the recognition of these two highly related molecules. The structural information available to date suggests that the ancestor of CUBAN and CoCUN was a three-helix bundle domain that diversified in KHNYN (KH and NYN domain-containing) and N4BP1 (NEDD4-binding protein-1) by acquiring different features. Indeed, these domains diverged towards two recognition modes, that recall respectively the electrostatic interaction utilized by the E3-ligase RBX1/2 in the interaction with NEDD8, and the hydrophobic features described in the recognition of ubiquitin by CUE (coupling ubiquitin conjugation to ER degradation) domains. Intriguingly, CUBAN and CoCUN domains are only found in KHNYN and N4BP1, respectively, both proteins belonging to the PRORP family whose members are characterized by the combination of protein modules involved in RNA metabolism with domains mediating ubiquitin/NEDD8 recognition. This review recapitulates the current knowledge and recent findings of CUBAN and CoCUN domains and the proteins containing them.
Collapse
Affiliation(s)
- Elena Santonico
- Department of Biology, University of Rome Tor Vergata, Via della ricerca scientifica, 00133 Rome, Italy
| |
Collapse
|
6
|
Kliza K, Husnjak K. Resolving the Complexity of Ubiquitin Networks. Front Mol Biosci 2020; 7:21. [PMID: 32175328 PMCID: PMC7056813 DOI: 10.3389/fmolb.2020.00021] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 02/04/2020] [Indexed: 12/22/2022] Open
Abstract
Ubiquitination regulates nearly all cellular processes by coordinated activity of ubiquitin writers (E1, E2, and E3 enzymes), erasers (deubiquitinating enzymes) and readers (proteins that recognize ubiquitinated proteins by their ubiquitin-binding domains). By differentially modifying cellular proteome and by recognizing these ubiquitin modifications, ubiquitination machinery tightly regulates execution of specific cellular events in space and time. Dynamic and complex ubiquitin architecture, ranging from monoubiquitination, multiple monoubiquitination, eight different modes of homotypic and numerous types of heterogeneous polyubiquitin linkages, enables highly dynamic and complex regulation of cellular processes. We discuss available tools and approaches to study ubiquitin networks, including methods for the identification and quantification of ubiquitin-modified substrates, as well as approaches to quantify the length, abundance, linkage type and architecture of different ubiquitin chains. Furthermore, we also summarize the available approaches for the discovery of novel ubiquitin readers and ubiquitin-binding domains, as well as approaches to monitor and visualize activity of ubiquitin conjugation and deconjugation machineries. We also discuss benefits, drawbacks and limitations of available techniques, as well as what is still needed for detailed spatiotemporal dissection of cellular ubiquitination networks.
Collapse
Affiliation(s)
- Katarzyna Kliza
- Institute of Biochemistry II, Medical Faculty, Goethe University, Frankfurt, Germany
| | - Koraljka Husnjak
- Institute of Biochemistry II, Medical Faculty, Goethe University, Frankfurt, Germany
| |
Collapse
|
7
|
SPOP suppresses pancreatic cancer progression by promoting the degradation of NANOG. Cell Death Dis 2019; 10:794. [PMID: 31624231 PMCID: PMC6797744 DOI: 10.1038/s41419-019-2017-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 09/02/2019] [Accepted: 09/23/2019] [Indexed: 02/07/2023]
Abstract
Speckle-type POZ domain protein (SPOP), an adaptor in the E3 ubiquitin ligase complex, recognizes substrates and promotes protein degradation via the ubiquitin-proteasome system. It appears to help regulate progression of several cancers, and we show here that it acts as a tumor suppressor in pancreatic cancer. Our analysis of patient tissues showed decreased SPOP expression, which was associated with poor prognosis. SPOP knockdown in SW1990 (in vitro/vivo) and PANC-1 (in vitro) cells led to significantly greater proliferation, migration, and invasion. Co-immunoprecipitation experiments in SW1990 cells showed that SPOP interacted with the stem-cell marker NANOG, and this interaction has recently been shown to play a critical role in regulating progression of prostate cancer. We showed that, in one patient with pancreatic cancer, the expression of a truncated form of SPOP (p.Q360*) lacking the nuclear localization signal led to nuclear accumulation of NANOG, which promoted growth and metastasis of pancreatic cancer cells. Our results suggest that SPOP suppresses progression of pancreatic cancer by promoting the ubiquitination and subsequent degradation of NANOG. These results identify the SPOP-NANOG interaction as a potential therapeutic target against pancreatic cancer.
Collapse
|
8
|
Lim M, Newman JA, Williams HL, Masino L, Aitkenhead H, Gravard AE, Gileadi O, Svejstrup JQ. A Ubiquitin-Binding Domain that Binds a Structural Fold Distinct from that of Ubiquitin. Structure 2019; 27:1316-1325.e6. [PMID: 31204252 PMCID: PMC6688830 DOI: 10.1016/j.str.2019.05.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 04/23/2019] [Accepted: 05/13/2019] [Indexed: 01/21/2023]
Abstract
Ubiquitylation, the posttranslational linkage of ubiquitin moieties to lysines in target proteins, helps regulate a myriad of biological processes. Ubiquitin, and sometimes ubiquitin-homology domains, are recognized by ubiquitin-binding domains, including CUE domains. CUE domains are thus generally thought to function by mediating interactions with ubiquitylated proteins. The chromatin remodeler, SMARCAD1, interacts with KAP1, a transcriptional corepressor. The SMARCAD1-KAP1 interaction is direct and involves the first SMARCAD1 CUE domain (CUE1) and the RBCC domain of KAP1. Here, we present a structural model of the KAP1 RBCC-SMARCAD1 CUE1 complex based on X-ray crystallography. Remarkably, CUE1, a canonical CUE domain, recognizes a cluster of exposed hydrophobic and surrounding charged/amphipathic residues on KAP1, which are presented in the context of a coiled-coil domain, not in a structure resembling ubiquitin. Together, these data suggest that CUE domains may have a wider function than simply recognizing ubiquitin and the ubiquitin-fold.
Collapse
Affiliation(s)
- Michael Lim
- Mechanisms of Transcription Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Joseph A Newman
- Structural Genomics Consortium and Target Discovery Institute, Nuffield Department of Clinical Medicine, University of Oxford, Oxford OX3 7DQ, UK
| | - Hannah L Williams
- Mechanisms of Transcription Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Laura Masino
- Structural Biology Science Technology Platform, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Hazel Aitkenhead
- Structural Genomics Consortium and Target Discovery Institute, Nuffield Department of Clinical Medicine, University of Oxford, Oxford OX3 7DQ, UK
| | - Angeline E Gravard
- Structural Genomics Consortium and Target Discovery Institute, Nuffield Department of Clinical Medicine, University of Oxford, Oxford OX3 7DQ, UK
| | - Opher Gileadi
- Structural Genomics Consortium and Target Discovery Institute, Nuffield Department of Clinical Medicine, University of Oxford, Oxford OX3 7DQ, UK
| | - Jesper Q Svejstrup
- Mechanisms of Transcription Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK.
| |
Collapse
|
9
|
Herhaus L, van den Bedem H, Tang S, Maslennikov I, Wakatsuki S, Dikic I, Rahighi S. Molecular Recognition of M1-Linked Ubiquitin Chains by Native and Phosphorylated UBAN Domains. J Mol Biol 2019; 431:3146-3156. [DOI: 10.1016/j.jmb.2019.06.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 06/06/2019] [Accepted: 06/07/2019] [Indexed: 11/16/2022]
|
10
|
Griewahn L, Köser A, Maurer U. Keeping Cell Death in Check: Ubiquitylation-Dependent Control of TNFR1 and TLR Signaling. Front Cell Dev Biol 2019; 7:117. [PMID: 31316982 PMCID: PMC6609852 DOI: 10.3389/fcell.2019.00117] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 06/11/2019] [Indexed: 01/05/2023] Open
Abstract
Pro-inflammatory signaling pathways, induced by pathogens, tissue damage or cytokines, depend on the ubiquitylation of various subunits of receptor signaling complexes, controlled by ubiquitin ligases and deubiquitinases. Ubiquitylation sets the stage for the activation of kinases within these receptor complexes, which ultimately regulate pro-inflammatory gene expression. The receptors, which transduce pro-inflammatory signals, can often induce cell death, which is controlled by ubiquitylation as well. In this review, we discuss the key role of ubiquitylation in pro-inflammatory signaling by TNFR1 and TLRs and its role in setting the threshold for cell death induced by these pro-inflammatory triggers.
Collapse
Affiliation(s)
- Laura Griewahn
- Institute of Molecular Medicine and Cell Research, University of Freiburg, Freiburg im Breisgau, Germany.,Spemann Graduate School of Biology and Medicine, University of Freiburg, Freiburg im Breisgau, Germany.,Faculty of Biology, University of Freiburg, Freiburg im Breisgau, Germany
| | - Aaron Köser
- Institute of Molecular Medicine and Cell Research, University of Freiburg, Freiburg im Breisgau, Germany
| | - Ulrich Maurer
- Institute of Molecular Medicine and Cell Research, University of Freiburg, Freiburg im Breisgau, Germany.,Spemann Graduate School of Biology and Medicine, University of Freiburg, Freiburg im Breisgau, Germany.,BIOSS Centre for Biological Signalling Studies, Freiburg im Breisgau, Germany
| |
Collapse
|
11
|
USP32 regulates late endosomal transport and recycling through deubiquitylation of Rab7. Nat Commun 2019; 10:1454. [PMID: 30926795 PMCID: PMC6440979 DOI: 10.1038/s41467-019-09437-x] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Accepted: 03/06/2019] [Indexed: 12/26/2022] Open
Abstract
The endosomal system is a highly dynamic multifunctional organelle, whose complexity is regulated in part by reversible ubiquitylation. Despite the wide-ranging influence of ubiquitin in endosomal processes, relatively few enzymes utilizing ubiquitin have been described to control endosome integrity and function. Here we reveal the deubiquitylating enzyme (DUB) ubiquitin-specific protease 32 (USP32) as a powerful player in this context. Loss of USP32 inhibits late endosome (LE) transport and recycling of LE cargos, resulting in dispersion and swelling of the late compartment. Using SILAC-based ubiquitome profiling we identify the small GTPase Rab7—the logistical centerpiece of LE biology—as a substrate of USP32. Mechanistic studies reveal that LE transport effector RILP prefers ubiquitylation-deficient Rab7, while retromer-mediated LE recycling benefits from an intact cycle of Rab7 ubiquitylation. Collectively, our observations suggest that reversible ubiquitylation helps switch Rab7 between its various functions, thereby maintaining global spatiotemporal order in the endosomal system. Though ubiquitin is known to broadly influence endosomal trafficking, few ubiquitin-utilizing enzymes targeting endosomal regulators are known. Here, the authors find that the deubiquitylating enzyme (DUB) USP32 influences endosomal membrane dynamics by deubiquitinating Rab7.
Collapse
|
12
|
Kao SH, Cheng WC, Wang YT, Wu HT, Yeh HY, Chen YJ, Tsai MH, Wu KJ. Regulation of miRNA Biogenesis and Histone Modification by K63-Polyubiquitinated DDX17 Controls Cancer Stem-like Features. Cancer Res 2019; 79:2549-2563. [PMID: 30877109 DOI: 10.1158/0008-5472.can-18-2376] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 01/17/2019] [Accepted: 03/12/2019] [Indexed: 11/16/2022]
Abstract
Markers of cancer stemness predispose patients to tumor aggressiveness, drug and immunotherapy resistance, relapse, and metastasis. DDX17 is a cofactor of the Drosha-DGCR8 complex in miRNA biogenesis and transcriptional coactivator and has been associated with cancer stem-like properties. However, the precise mechanism by which DDX17 controls cancer stem-like features remains elusive. Here, we show that the E3 ligase HectH9 mediated K63-polyubiquitination of DDX17 under hypoxia to control stem-like properties and tumor-initiating capabilities. Polyubiquitinated DDX17 disassociated from the Drosha-DGCR8 complex, leading to decreased biogenesis of anti-stemness miRNAs. Increased association of polyubiquitinated DDX17 with p300-YAP resulted in histone 3 lysine 56 (H3K56) acetylation proximal to stemness-related genes and their subsequent transcriptional activation. High expression of HectH9 and six stemness-related genes (BMI1, SOX2, OCT4, NANOG, NOTCH1, and NOTCH2) predicted poor survival in patients with head and neck squamous cell carcinoma and lung adenocarcinoma. Our findings demonstrate that concerted regulation of miRNA biogenesis and histone modifications through posttranslational modification of DDX17 underlies many cancer stem-like features. Inhibition of DDX17 ubiquitination may serve as a new therapeutic venue for cancer treatment. SIGNIFICANCE: Hypoxia-induced polyubiquitination of DDX17 controls its dissociation from the pri-miRNA-Drosha-DCGR8 complex to reduce anti-stemness miRNA biogenesis and association with YAP and p300 to enhance transcription of stemness-related genes.
Collapse
Affiliation(s)
- Shih-Han Kao
- Research Center for Tumor Medical Science, China Medical University, Taichung, Taiwan.,Drug Development Center, China Medical University, Taichung, Taiwan
| | - Wei-Chung Cheng
- Research Center for Tumor Medical Science, China Medical University, Taichung, Taiwan.,Drug Development Center, China Medical University, Taichung, Taiwan.,Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
| | - Yi-Ting Wang
- Institute of Chemistry, Academia Sinica, Taipei, Taiwan
| | - Han-Tsang Wu
- Department of Cell and Tissue Engineering, Changhua Christian Hospital, Changhua City, Taiwan
| | - Han-Yu Yeh
- Research Center for Tumor Medical Science, China Medical University, Taichung, Taiwan
| | - Yu-Ju Chen
- Institute of Chemistry, Academia Sinica, Taipei, Taiwan
| | - Ming-Hsui Tsai
- Department of Otolaryngology, China Medical University Hospital, Taichung, Taiwan
| | - Kou-Juey Wu
- Research Center for Tumor Medical Science, China Medical University, Taichung, Taiwan. .,Drug Development Center, China Medical University, Taichung, Taiwan.,Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan.,Institute of New Drug Development, China Medical University, Taichung, Taiwan.,Department of Medical Research, China Medical University Hospital, Taichung, Taiwan.,Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan.,Cancer Genome Research Center, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| |
Collapse
|
13
|
Clague MJ, Urbé S, Komander D. Breaking the chains: deubiquitylating enzyme specificity begets function. Nat Rev Mol Cell Biol 2019; 20:338-352. [DOI: 10.1038/s41580-019-0099-1] [Citation(s) in RCA: 315] [Impact Index Per Article: 52.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
14
|
van Wijk SJ, Fulda S, Dikic I, Heilemann M. Visualizing ubiquitination in mammalian cells. EMBO Rep 2019; 20:embr.201846520. [PMID: 30665942 DOI: 10.15252/embr.201846520] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 12/17/2018] [Accepted: 12/21/2018] [Indexed: 12/19/2022] Open
Abstract
Covalent modification of proteins with ubiquitin is essential for the majority of biological processes in mammalian cells. Numerous proteins are conjugated with single or multiple ubiquitin molecules or chains in a dynamic fashion, often determining protein half-lives, localization or function. Experimental approaches to study ubiquitination have been dominated by genetic and biochemical analysis of enzyme structure-function relationships, reaction mechanisms and physiological relevance. Here, we provide an overview of recent developments in microscopy-based imaging of ubiquitination, available reagents and technologies. We discuss the progress in direct and indirect imaging of differentially linked ubiquitin chains in fixed and living cells using confocal fluorescence microscopy and super-resolution microscopy, illustrated by the role of ubiquitin in antibacterial autophagy and pro-inflammatory signalling. Finally, we speculate on future developments and forecast a transition from qualitative to quantitative super-resolution approaches to understand fundamental aspects of ubiquitination and the formation and distribution of functional E3 ligase protein complexes in their native environment.
Collapse
Affiliation(s)
- Sjoerd Jl van Wijk
- Institute for Experimental Cancer Research in Paediatrics, Goethe University, Frankfurt am Main, Germany
| | - Simone Fulda
- Institute for Experimental Cancer Research in Paediatrics, Goethe University, Frankfurt am Main, Germany.,German Cancer Consortium (DKTK), Heidelberg, Germany.,German Cancer Research Centre (DKFZ), Heidelberg, Germany
| | - Ivan Dikic
- Institute of Biochemistry II, Goethe University - Medical Faculty, University Hospital Frankfurt, Frankfurt am Main, Germany.,Buchmann Institute for Molecular Life Sciences (BMLS), Goethe University, Frankfurt am Main, Germany
| | - Mike Heilemann
- Institute of Physical and Theoretical Chemistry, Goethe University, Frankfurt am Main, Germany
| |
Collapse
|
15
|
Kwon DH, Song HK. A Structural View of Xenophagy, a Battle between Host and Microbes. Mol Cells 2018; 41:27-34. [PMID: 29370690 PMCID: PMC5792709 DOI: 10.14348/molcells.2018.2274] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 11/09/2017] [Accepted: 11/10/2017] [Indexed: 02/06/2023] Open
Abstract
The cytoplasm in mammalian cells is a battlefield between the host and invading microbes. Both the living organisms have evolved unique strategies for their survival. The host utilizes a specialized autophagy system, xenophagy, for the clearance of invading pathogens, whereas bacteria secrete proteins to defend and escape from the host xenophagy. Several molecules have been identified and their structural investigation has enabled the comprehension of these mechanisms at the molecular level. In this review, we focus on one example of host autophagy and the other of bacterial defense: the autophagy receptor, NDP52, in conjunction with the sugar receptor, galectin-8, plays a critical role in targeting the autophagy machinery against Salmonella; and the cysteine protease, RavZ secreted by Legionella pneumophila cleaves the LC3-PE on the phagophore membrane. The structure-function relationships of these two examples and the directions of future research will be discussed.
Collapse
Affiliation(s)
- Do Hoon Kwon
- Department of Life Sciences, Korea University, Seoul 02841,
Korea
| | - Hyun Kyu Song
- Department of Life Sciences, Korea University, Seoul 02841,
Korea
| |
Collapse
|
16
|
Structure of the Dnmt1 Reader Module Complexed with a Unique Two-Mono-Ubiquitin Mark on Histone H3 Reveals the Basis for DNA Methylation Maintenance. Mol Cell 2017; 68:350-360.e7. [DOI: 10.1016/j.molcel.2017.09.037] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 08/03/2017] [Accepted: 09/27/2017] [Indexed: 11/18/2022]
|
17
|
Glorian V, Allègre J, Berthelet J, Dumetier B, Boutanquoi PM, Droin N, Kayaci C, Cartier J, Gemble S, Marcion G, Gonzalez D, Boidot R, Garrido C, Michaud O, Solary E, Dubrez L. DNA damage and S phase-dependent E2F1 stabilization requires the cIAP1 E3-ubiquitin ligase and is associated with K63-poly-ubiquitination on lysine 161/164 residues. Cell Death Dis 2017; 8:e2816. [PMID: 28542143 PMCID: PMC5520736 DOI: 10.1038/cddis.2017.222] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 04/06/2017] [Accepted: 04/13/2017] [Indexed: 12/14/2022]
Abstract
The E2F transcription factor 1 is subtly regulated along the cell cycle progression and in response to DNA damage by post-translational modifications. Here, we demonstrated that the E3-ubiquitin ligase cellular inhibitor of apoptosis 1 (cIAP1) increases E2F1 K63-poly-ubiquitination on the lysine residue 161/164 cluster, which is associated with the transcriptional factor stability and activity. Mutation of these lysine residues completely abrogates the binding of E2F1 to CCNE, TP73 and APAF1 promoters, thus inhibiting transcriptional activation of these genes and E2F1-mediated cell proliferation control. Importantly, E2F1 stabilization in response to etoposide-induced DNA damage or during the S phase of cell cycle, as revealed by cyclin A silencing, is associated with K63-poly-ubiquitinylation of E2F1 on lysine 161/164 residues and involves cIAP1. Our results reveal an additional level of regulation of the stability and the activity of E2F1 by a non-degradative K63-poly-ubiquitination and uncover a novel function for the E3-ubiquitin ligase cIAP1.
Collapse
Affiliation(s)
- Valérie Glorian
- Université de Bourgogne Franche-Comté, LNC UMR1231, Dijon, France.,Institut National de la Santé et de la Recherche Médicale (Inserm), LNC UMR1231, Dijon, France
| | - Jennifer Allègre
- Université de Bourgogne Franche-Comté, LNC UMR1231, Dijon, France.,Institut National de la Santé et de la Recherche Médicale (Inserm), LNC UMR1231, Dijon, France
| | - Jean Berthelet
- Université de Bourgogne Franche-Comté, LNC UMR1231, Dijon, France.,Institut National de la Santé et de la Recherche Médicale (Inserm), LNC UMR1231, Dijon, France
| | - Baptiste Dumetier
- Université de Bourgogne Franche-Comté, LNC UMR1231, Dijon, France.,Institut National de la Santé et de la Recherche Médicale (Inserm), LNC UMR1231, Dijon, France
| | - Pierre-Marie Boutanquoi
- Université de Bourgogne Franche-Comté, LNC UMR1231, Dijon, France.,Institut National de la Santé et de la Recherche Médicale (Inserm), LNC UMR1231, Dijon, France
| | | | - Cémile Kayaci
- Université de Bourgogne Franche-Comté, LNC UMR1231, Dijon, France.,Institut National de la Santé et de la Recherche Médicale (Inserm), LNC UMR1231, Dijon, France
| | - Jessy Cartier
- Université de Bourgogne Franche-Comté, LNC UMR1231, Dijon, France.,Institut National de la Santé et de la Recherche Médicale (Inserm), LNC UMR1231, Dijon, France
| | - Simon Gemble
- Université de Bourgogne Franche-Comté, LNC UMR1231, Dijon, France.,Institut National de la Santé et de la Recherche Médicale (Inserm), LNC UMR1231, Dijon, France
| | - Guillaume Marcion
- Université de Bourgogne Franche-Comté, LNC UMR1231, Dijon, France.,Institut National de la Santé et de la Recherche Médicale (Inserm), LNC UMR1231, Dijon, France
| | - Daniel Gonzalez
- Université de Bourgogne Franche-Comté, LNC UMR1231, Dijon, France.,Institut National de la Santé et de la Recherche Médicale (Inserm), LNC UMR1231, Dijon, France.,Centre Georges-François Leclerc, Dijon, France
| | - Romain Boidot
- Université de Bourgogne Franche-Comté, LNC UMR1231, Dijon, France.,Institut National de la Santé et de la Recherche Médicale (Inserm), LNC UMR1231, Dijon, France.,Centre Georges-François Leclerc, Dijon, France
| | - Carmen Garrido
- Université de Bourgogne Franche-Comté, LNC UMR1231, Dijon, France.,Institut National de la Santé et de la Recherche Médicale (Inserm), LNC UMR1231, Dijon, France
| | - Olivier Michaud
- Université de Bourgogne Franche-Comté, LNC UMR1231, Dijon, France.,Institut National de la Santé et de la Recherche Médicale (Inserm), LNC UMR1231, Dijon, France
| | - Eric Solary
- Inserm U1170, Gustave Roussy, Villejuif, France.,Université Paris-Sud, Faculté de Médecine, Le Kremlin Bicêtre, France
| | - Laurence Dubrez
- Université de Bourgogne Franche-Comté, LNC UMR1231, Dijon, France.,Institut National de la Santé et de la Recherche Médicale (Inserm), LNC UMR1231, Dijon, France
| |
Collapse
|
18
|
Ubiquitin and Parkinson's disease through the looking glass of genetics. Biochem J 2017; 474:1439-1451. [PMID: 28408429 PMCID: PMC5390927 DOI: 10.1042/bcj20160498] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2016] [Revised: 02/20/2017] [Accepted: 02/20/2017] [Indexed: 12/12/2022]
Abstract
Biochemical alterations found in the brains of Parkinson's disease (PD) patients indicate that cellular stress is a major driver of dopaminergic neuronal loss. Oxidative stress, mitochondrial dysfunction, and ER stress lead to impairment of the homeostatic regulation of protein quality control pathways with a consequent increase in protein misfolding and aggregation and failure of the protein degradation machinery. Ubiquitin signalling plays a central role in protein quality control; however, prior to genetic advances, the detailed mechanisms of how impairment in the ubiquitin system was linked to PD remained mysterious. The discovery of mutations in the α-synuclein gene, which encodes the main protein misfolded in PD aggregates, together with mutations in genes encoding ubiquitin regulatory molecules, including PTEN-induced kinase 1 (PINK1), Parkin, and FBX07, has provided an opportunity to dissect out the molecular basis of ubiquitin signalling disruption in PD, and this knowledge will be critical for developing novel therapeutic strategies in PD that target the ubiquitin system.
Collapse
|
19
|
Chojnacki M, Mansour W, Hameed DS, Singh RK, El Oualid F, Rosenzweig R, Nakasone MA, Yu Z, Glaser F, Kay LE, Fushman D, Ovaa H, Glickman MH. Polyubiquitin-Photoactivatable Crosslinking Reagents for Mapping Ubiquitin Interactome Identify Rpn1 as a Proteasome Ubiquitin-Associating Subunit. Cell Chem Biol 2017; 24:443-457.e6. [PMID: 28330605 DOI: 10.1016/j.chembiol.2017.02.013] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 12/29/2016] [Accepted: 02/23/2017] [Indexed: 01/05/2023]
Abstract
Ubiquitin (Ub) signaling is a diverse group of processes controlled by covalent attachment of small protein Ub and polyUb chains to a range of cellular protein targets. The best documented Ub signaling pathway is the one that delivers polyUb proteins to the 26S proteasome for degradation. However, studies of molecular interactions involved in this process have been hampered by the transient and hydrophobic nature of these interactions and the lack of tools to study them. Here, we develop Ub-phototrap (UbPT), a synthetic Ub variant containing a photoactivatable crosslinking side chain. Enzymatic polymerization into chains of defined lengths and linkage types provided a set of reagents that led to identification of Rpn1 as a third proteasome ubiquitin-associating subunit that coordinates docking of substrate shuttles, unloading of substrates, and anchoring of polyUb conjugates. Our work demonstrates the value of UbPT, and we expect that its future uses will help define and investigate the ubiquitin interactome.
Collapse
Affiliation(s)
- Michal Chojnacki
- Department of Biology, Technion-Israel Institute of Technology, 32000 Haifa, Israel; Department of Medical Biochemistry, Medical University of Łódź, Łódź, Poland
| | - Wissam Mansour
- Department of Biology, Technion-Israel Institute of Technology, 32000 Haifa, Israel
| | - Dharjath S Hameed
- Division of Cell Biology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands; Department of Chemical Immunology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, the Netherlands
| | - Rajesh K Singh
- Department of Chemistry and Biochemistry, Center for Biomolecular Structure and Organization, University of Maryland, College Park, MD 20742, USA
| | - Farid El Oualid
- Division of Cell Biology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Rina Rosenzweig
- Departments of Molecular Genetics, Biochemistry and Chemistry, The University of Toronto, Toronto, ON M5S 1A8, Canada; Department of Structural Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Mark A Nakasone
- Department of Biology, Technion-Israel Institute of Technology, 32000 Haifa, Israel
| | - Zanlin Yu
- Department of Biology, Technion-Israel Institute of Technology, 32000 Haifa, Israel
| | - Fabian Glaser
- The Technion Bioinformatics Knowledge Unit (BKU) of the Lorry Lokey Interdisciplinary Center for Life Sciences and Engineering, Technion-Israel Institute of Technology, 32000 Haifa, Israel
| | - Lewis E Kay
- Departments of Molecular Genetics, Biochemistry and Chemistry, The University of Toronto, Toronto, ON M5S 1A8, Canada
| | - David Fushman
- Department of Chemistry and Biochemistry, Center for Biomolecular Structure and Organization, University of Maryland, College Park, MD 20742, USA.
| | - Huib Ovaa
- Division of Cell Biology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands; Department of Chemical Immunology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, the Netherlands.
| | - Michael H Glickman
- Department of Biology, Technion-Israel Institute of Technology, 32000 Haifa, Israel.
| |
Collapse
|
20
|
Liver ubiquitome uncovers nutrient-stress-mediated trafficking and secretion of complement C3. Cell Death Dis 2016; 7:e2411. [PMID: 27735945 PMCID: PMC5133979 DOI: 10.1038/cddis.2016.312] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 08/28/2016] [Accepted: 09/02/2016] [Indexed: 12/25/2022]
Abstract
Adaptation to changes in nutrient availability is crucial for cells and organisms. Posttranslational modifications of signaling proteins are very dynamic and are therefore key to promptly respond to nutrient deprivation or overload. Herein we screened for ubiquitylation of proteins in the livers of fasted and refed mice using a comprehensive systemic proteomic approach. Among 1641 identified proteins, 117 were differentially ubiquitylated upon fasting or refeeding. Endoplasmic reticulum (ER) and secretory proteins were enriched in the livers of refed mice in part owing to an ER-stress-mediated response engaging retro-translocation and ubiquitylation of proteins from the ER. Complement C3, an innate immune factor, emerged as the most prominent ER-related hit of our screen. Accordingly, we found that secretion of C3 from the liver and primary hepatocytes as well as its dynamic trafficking are nutrient dependent. Finally, obese mice with a chronic nutrient overload show constitutive trafficking of C3 in the livers despite acute changes in nutrition, which goes in line with increased C3 levels and low-grade inflammation reported for obese patients. Our study thus suggests that nutrient sensing in the liver is coupled to release of C3 and potentially its metabolic and inflammatory functions.
Collapse
|
21
|
A bacterial genetic selection system for ubiquitylation cascade discovery. Nat Methods 2016; 13:945-952. [DOI: 10.1038/nmeth.4003] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 08/01/2016] [Indexed: 12/11/2022]
|
22
|
Abstract
Autophagy, a pathway for lysosomal-mediated cellular degradation, has recently been described as a regulator of cell migration. Although the molecular mechanisms underlying autophagy-dependent motility are only beginning to emerge, new work demonstrates that selective autophagy mediated by the autophagy cargo receptor, NBR1, specifically promotes the dynamic turnover of integrin-based focal adhesion sites during motility. Here, we discuss the detailed mechanisms through which NBR1-dependent selective autophagy supports focal adhesion remodeling, and we describe the interconnections between this pathway and other established regulators of focal adhesion turnover, such as microtubules. We also highlight studies that examine the contribution of autophagy to selective degradation of proteins that mediate cellular tension and to integrin trafficking; these findings hint at further roles for autophagy in supporting adhesion and migration. Given the recently appreciated importance of selective autophagy in diverse cellular processes, we propose that further investigation into autophagy-mediated focal adhesion turnover will not only shed light onto how focal adhesions are regulated but will also unveil new mechanisms regulating selective autophagy.
Collapse
Affiliation(s)
- Candia M Kenific
- Department of Pathology and Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA 94143, USA Biomedical Sciences Graduate Program, University of California San Francisco, San Francisco, CA 94143, USA
| | - Torsten Wittmann
- Department of Cell and Tissue Biology, University of California San Francisco, San Francisco, CA 94143, USA
| | - Jayanta Debnath
- Department of Pathology and Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA 94143, USA
| |
Collapse
|
23
|
Rahighi S, Braunstein I, Ternette N, Kessler B, Kawasaki M, Kato R, Matsui T, Weiss TM, Stanhill A, Wakatsuki S. Selective Binding of AIRAPL Tandem UIMs to Lys48-Linked Tri-Ubiquitin Chains. Structure 2016; 24:412-22. [PMID: 26876100 DOI: 10.1016/j.str.2015.12.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Revised: 12/20/2015] [Accepted: 12/21/2015] [Indexed: 11/16/2022]
Abstract
Lys48-linked ubiquitin chains act as the main targeting signals for protein degradation by the proteasome. Here we report selective binding of AIRAPL, a protein that associates with the proteasome upon exposure to arsenite, to Lys48-linked tri-ubiquitin chains. AIRAPL comprises two ubiquitin-interacting motifs in tandem (tUIMs) that are linked through a flexible inter-UIM region. In the complex crystal structure UIM1 binds the proximal ubiquitin, whereas UIM2 (the double-sided UIM) binds non-symmetrically to the middle and distal ubiquitin moieties on either side of the helix. Specificity of AIRAPL for Lys48-linked ubiquitin chains is determined by UIM2, and the flexible inter-UIM linker increases avidity by placing the two UIMs in an orientation that facilitates binding of the third ubiquitin to UIM1. Unlike middle and proximal ubiquitins, distal ubiquitin binds UIM2 through a novel surface, which leaves the Ile44 hydrophobic patch accessible for binding to the proteasomal ubiquitin receptors.
Collapse
Affiliation(s)
- Simin Rahighi
- Structural Biology Research Center, Photon Factory, Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki 305-0801, Japan; Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Ilana Braunstein
- Department of Biochemistry, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Bat Galim, Haifa 31096, Israel
| | - Nicola Ternette
- TDI MS Laboratory, Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford OX3 7FZ, UK
| | - Benedikt Kessler
- TDI MS Laboratory, Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford OX3 7FZ, UK
| | - Masato Kawasaki
- Structural Biology Research Center, Photon Factory, Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki 305-0801, Japan
| | - Ryuichi Kato
- Structural Biology Research Center, Photon Factory, Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki 305-0801, Japan
| | - Tsutomu Matsui
- Structural Molecular Biology, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Thomas M Weiss
- Structural Molecular Biology, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Ariel Stanhill
- Department of Biochemistry, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Bat Galim, Haifa 31096, Israel.
| | - Soichi Wakatsuki
- Structural Biology Research Center, Photon Factory, Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki 305-0801, Japan; Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA; Structural Molecular Biology, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA; Photon Science, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA.
| |
Collapse
|
24
|
Harrigan J, Jacq X. Monitoring Target Engagement of Deubiquitylating Enzymes Using Activity Probes: Past, Present, and Future. Methods Mol Biol 2016; 1449:395-410. [PMID: 27613052 PMCID: PMC7120244 DOI: 10.1007/978-1-4939-3756-1_26] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2023]
Abstract
Deubiquitylating enzymes or DUBs are a class of enzymes that selectively remove the polypeptide posttranslational modification ubiquitin from a number of substrates. Approximately 100 DUBs exist in human cells and are involved in key regulatory cellular processes, which drive many disease states, making them attractive therapeutic targets. Several aspects of DUB biology have been studied through genetic knock-out or knock-down, genomic, or proteomic studies. However, investigation of enzyme activation and regulation requires additional tools to monitor cellular and physiological dynamics. A comparison between genetic ablation and dominant-negative target validation with pharmacological inhibition often leads to striking discrepancies. Activity probes have been used to profile classes of enzymes, including DUBs, and allow functional and dynamic properties to be assigned to individual proteins. The ability to directly monitor DUB activity within a native biological system is essential for understanding the physiological and pathological role of individual DUBs. We will discuss the evolution of DUB activity probes, from in vitro assay development to their use in monitoring DUB activity in cells and in animal tissues, as well as recent progress and prospects for assessing DUB inhibition in vivo.
Collapse
Affiliation(s)
- Jeanine Harrigan
- MISSION Therapeutics Limited, Moneta, Babraham Research Campus, Cambridge, CB22 3AT, UK
| | - Xavier Jacq
- MISSION Therapeutics Limited, Moneta, Babraham Research Campus, Cambridge, CB22 3AT, UK.
| |
Collapse
|
25
|
Greenfeld H, Takasaki K, Walsh MJ, Ersing I, Bernhardt K, Ma Y, Fu B, Ashbaugh CW, Cabo J, Mollo SB, Zhou H, Li S, Gewurz BE. TRAF1 Coordinates Polyubiquitin Signaling to Enhance Epstein-Barr Virus LMP1-Mediated Growth and Survival Pathway Activation. PLoS Pathog 2015; 11:e1004890. [PMID: 25996949 PMCID: PMC4440769 DOI: 10.1371/journal.ppat.1004890] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Accepted: 04/17/2015] [Indexed: 11/25/2022] Open
Abstract
The Epstein-Barr virus (EBV) encoded oncoprotein Latent Membrane Protein 1 (LMP1) signals through two C-terminal tail domains to drive cell growth, survival and transformation. The LMP1 membrane-proximal TES1/CTAR1 domain recruits TRAFs to activate MAP kinase, non-canonical and canonical NF-kB pathways, and is critical for EBV-mediated B-cell transformation. TRAF1 is amongst the most highly TES1-induced target genes and is abundantly expressed in EBV-associated lymphoproliferative disorders. We found that TRAF1 expression enhanced LMP1 TES1 domain-mediated activation of the p38, JNK, ERK and canonical NF-kB pathways, but not non-canonical NF-kB pathway activity. To gain insights into how TRAF1 amplifies LMP1 TES1 MAP kinase and canonical NF-kB pathways, we performed proteomic analysis of TRAF1 complexes immuno-purified from cells uninduced or induced for LMP1 TES1 signaling. Unexpectedly, we found that LMP1 TES1 domain signaling induced an association between TRAF1 and the linear ubiquitin chain assembly complex (LUBAC), and stimulated linear (M1)-linked polyubiquitin chain attachment to TRAF1 complexes. LMP1 or TRAF1 complexes isolated from EBV-transformed lymphoblastoid B cell lines (LCLs) were highly modified by M1-linked polyubiqutin chains. The M1-ubiquitin binding proteins IKK-gamma/NEMO, A20 and ABIN1 each associate with TRAF1 in cells that express LMP1. TRAF2, but not the cIAP1 or cIAP2 ubiquitin ligases, plays a key role in LUBAC recruitment and M1-chain attachment to TRAF1 complexes, implicating the TRAF1:TRAF2 heterotrimer in LMP1 TES1-dependent LUBAC activation. Depletion of either TRAF1, or the LUBAC ubiquitin E3 ligase subunit HOIP, markedly impaired LCL growth. Likewise, LMP1 or TRAF1 complexes purified from LCLs were decorated by lysine 63 (K63)-linked polyubiqutin chains. LMP1 TES1 signaling induced K63-polyubiquitin chain attachment to TRAF1 complexes, and TRAF2 was identified as K63-Ub chain target. Co-localization of M1- and K63-linked polyubiquitin chains on LMP1 complexes may facilitate downstream canonical NF-kB pathway activation. Our results highlight LUBAC as a novel potential therapeutic target in EBV-associated lymphoproliferative disorders. The linear ubiquitin assembly complex (LUBAC) plays crucial roles in immune receptor-mediated NF-kB and MAP kinase pathway activation. Comparatively little is known about the extent to which microbial pathogens use LUBAC to activate downstream pathways. We demonstrate that TRAF1 enhances EBV oncoprotein LMP1 TES1/CTAR1 domain mediated MAP kinase and canonical NF-kB activation. LMP1 TES1 signaling induces association between TRAF1 and LUBAC, and triggers M1-polyubiquitin chain attachment to TRAF1 complexes. TRAF1 and LMP1 complexes are decorated by M1-polyubiquitin chains in LCL extracts. TRAF2 plays a key role in LMP1-induced LUBAC recruitment and M1-chain attachment to TRAF1 complexes. TRAF1 and LMP1 complexes are modified by lysine 63-linked polyubiquitin chains in LCL extracts, and TRAF2 is a target of LMP1-induced K63-ubiquitin chain attachment. Thus, the TRAF1:TRAF2 heterotrimer may coordinate ubiquitin signaling downstream of TES1. Depletion of TRAF1 or the LUBAC subunit HOIP impairs LCL growth and survival. Thus, although TRAF1 is the only TRAF without a RING finger ubiquitin ligase domain, TRAF1 nonetheless has important roles in ubiqutin-mediated signal transduction downstream of LMP1. Our work suggests that LUBAC is important for EBV-driven B-cell proliferation, and suggests that LUBAC may be a novel therapeutic target in EBV-associated lymphoproliferative disorders.
Collapse
Affiliation(s)
- Hannah Greenfeld
- Division of Infectious Diseases, Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts, United States of America
| | - Kaoru Takasaki
- Division of Infectious Diseases, Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts, United States of America
| | - Michael J. Walsh
- Division of Infectious Diseases, Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts, United States of America
| | - Ina Ersing
- Division of Infectious Diseases, Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts, United States of America
| | - Katharina Bernhardt
- Division of Infectious Diseases, Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts, United States of America
| | - Yijie Ma
- Division of Infectious Diseases, Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts, United States of America
| | - Bishi Fu
- Division of Immunology, Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Camille W. Ashbaugh
- Division of Infectious Diseases, Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts, United States of America
| | - Jackson Cabo
- Division of Infectious Diseases, Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts, United States of America
| | - Sarah B. Mollo
- Division of Infectious Diseases, Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts, United States of America
| | - Hufeng Zhou
- Division of Infectious Diseases, Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts, United States of America
| | - Shitao Li
- Division of Immunology, Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Benjamin E. Gewurz
- Division of Infectious Diseases, Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
26
|
Andersen KA, Martin LJ, Prince JM, Raines RT. Intrinsic site-selectivity of ubiquitin dimer formation. Protein Sci 2015; 24:182-9. [PMID: 25401704 PMCID: PMC4315656 DOI: 10.1002/pro.2603] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Accepted: 11/10/2014] [Indexed: 12/12/2022]
Abstract
The post-translational modification of proteins with ubiquitin can take on many forms, including the decoration of substrates with polymeric ubiquitin chains. These chains are linked through one of the seven lysine residues in ubiquitin, with the potential to form a panoply of linkage combinations as the chain length increases. The ensuing structural diversity of modifications serves a variety of signaling functions. Still, some linkages are present at a much higher level than others in cellulo. Although ubiquitination is an enzyme-catalyzed process, the large disparity of abundancies led us to the hypothesis that some linkages might be intrinsically faster to form than others, perhaps directing the course of enzyme evolution. Herein, we assess the kinetics of ubiquitin dimer formation in an enzyme-free system by measuring the rate constants for thiol-disulfide interchange between appropriate ubiquitin variants. Remarkably, we find that the kinetically expedient linkages correlate with those that are most abundant in cellulo. As the abundant linkages also appear to function more broadly in cellulo, this correlation suggests that the more accessible chains were selected for global roles.
Collapse
Affiliation(s)
- Kristen A Andersen
- Molecular and Cellular Pharmacology Graduate Training Program, University of Wisconsin–MadisonMadison, Wisconsin
| | - Langdon J Martin
- Department of Biochemistry, University of Wisconsin–MadisonMadison, Wisconsin
| | - Joel M Prince
- Department of Biochemistry, University of Wisconsin–MadisonMadison, Wisconsin
| | - Ronald T Raines
- Department of Biochemistry, University of Wisconsin–MadisonMadison, Wisconsin
- Department of Chemistry, University of Wisconsin–MadisonMadison, Wisconsin
| |
Collapse
|
27
|
Scott D, Oldham NJ, Strachan J, Searle MS, Layfield R. Ubiquitin-binding domains: mechanisms of ubiquitin recognition and use as tools to investigate ubiquitin-modified proteomes. Proteomics 2014; 15:844-61. [PMID: 25327553 DOI: 10.1002/pmic.201400341] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Revised: 09/05/2014] [Accepted: 10/13/2014] [Indexed: 12/17/2022]
Abstract
Ubiquitin-binding domains (UBDs) are modular units found within ubiquitin-binding proteins that mediate the non-covalent recognition of (poly)ubiquitin modifications. A variety of mechanisms are employed in vivo to achieve polyubiquitin linkage and chain length selectivity by UBDs, the structural basis of which have in some instances been determined. Here, we review current knowledge related to ubiquitin recognition mechanisms at the molecular level and explore how such information has been exploited in the design and application of UBDs in isolation or artificially arranged in tandem as tools to investigate ubiquitin-modified proteomes. Specifically, we focus on the use of UBDs to directly purify or detect (poly)ubiquitin-modified proteins and more broadly for the targeted manipulation of ubiquitin-mediated processes, highlighting insights into ubiquitin signalling that have been provided.
Collapse
Affiliation(s)
- Daniel Scott
- School of Life Sciences, Queen's Medical Centre, University of Nottingham, Nottingham, UK
| | | | | | | | | |
Collapse
|
28
|
Targeting the ubiquitin proteasome system in haematological malignancies. Blood Rev 2013; 27:297-304. [PMID: 24183816 DOI: 10.1016/j.blre.2013.10.002] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Revised: 10/14/2013] [Accepted: 10/15/2013] [Indexed: 02/07/2023]
Abstract
The ubiquitin proteasome system (UPS) plays a central role in cellular protein homeostasis through the targeted destruction of damaged/misfolded proteins and regulatory proteins that control critical cellular functions. The UPS comprises a sequential series of enzymatic activities to covalently attach ubiquitin to proteins to target them for degradation through the proteasome. Aberrancies within this system have been associated with transformation and tumourigenesis and thus, the UPS represents an attractive target for the development of anti-cancer therapies. The use of the first-in-class proteasome inhibitor, bortezomib, in the treatment of Plasma Cell Myeloma and Mantle Cell Lymphoma has validated the UPS as a therapeutic target. Following on its success, efforts are focused on the development of second-generation proteasome inhibitors and small molecule inhibitors of other components of the UPS. This review will provide an overview of the UPS and discuss current and novel therapies targeting the UPS.
Collapse
|
29
|
Clague MJ, Barsukov I, Coulson JM, Liu H, Rigden DJ, Urbé S. Deubiquitylases from genes to organism. Physiol Rev 2013; 93:1289-315. [PMID: 23899565 DOI: 10.1152/physrev.00002.2013] [Citation(s) in RCA: 354] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Ubiquitylation is a major posttranslational modification that controls most complex aspects of cell physiology. It is reversed through the action of a large family of deubiquitylating enzymes (DUBs) that are emerging as attractive therapeutic targets for a number of disease conditions. Here, we provide a comprehensive analysis of the complement of human DUBs, indicating structural motifs, typical cellular copy numbers, and tissue expression profiles. We discuss the means by which specificity is achieved and how DUB activity may be regulated. Generically DUB catalytic activity may be used to 1) maintain free ubiquitin levels, 2) rescue proteins from ubiquitin-mediated degradation, and 3) control the dynamics of ubiquitin-mediated signaling events. Functional roles of individual DUBs from each of five subfamilies in specific cellular processes are highlighted with an emphasis on those linked to pathological conditions where the association is supported by whole organism models. We then specifically consider the role of DUBs associated with protein degradative machineries and the influence of specific DUBs upon expression of receptors and channels at the plasma membrane.
Collapse
Affiliation(s)
- Michael J Clague
- Cellular and Molecular Physiology, Institute of Translational Medicine, and Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom.
| | | | | | | | | | | |
Collapse
|
30
|
Lysine 63-linked polyubiquitination is required for EGF receptor degradation. Proc Natl Acad Sci U S A 2013; 110:15722-7. [PMID: 24019463 DOI: 10.1073/pnas.1308014110] [Citation(s) in RCA: 99] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Ubiquitination mediates endocytosis and endosomal sorting of various signaling receptors, transporters, and channels. However, the relative importance of mono- versus polyubiquitination and the role of specific types of polyubiquitin linkages in endocytic trafficking remain controversial. We used mass spectrometry-based targeted proteomics to show that activated epidermal growth factor receptor (EGFR) is ubiquitinated by one to two short (two to three ubiquitins) polyubiquitin chains mainly linked via lysine 63 (K63) or conjugated with a single monoubiquitin. Multimonoubiquitinated EGFR species were not found. To directly test whether K63 polyubiquitination is necessary for endocytosis and post-endocytic sorting of EGFR, a chimeric protein, in which the K63 linkage-specific deubiquitination enzyme AMSH [associated molecule with the Src homology 3 domain of signal transducing adaptor molecule (STAM)] was fused to the carboxyl terminus of EGFR, was generated. MS analysis of EGFR-AMSH ubiquitination demonstrated that the fraction of K63 linkages was substantially reduced, whereas relative amounts of monoubiquitin and K48 linkages increased, compared with that of wild-type EGFR. EGFR-AMSH was efficiently internalized into early endosomes, but, importantly, the rates of ligand-induced sorting to late endosomes and degradation of EGFR-AMSH were dramatically decreased. The slow degradation of EGFR-AMSH resulted in the sustained signaling activity of this chimeric receptor. Ubiquitination patterns, rate of endosomal sorting, and signaling kinetics of EGFR fused with the catalytically inactive mutant of AMSH were reversed to normal. Altogether, the data are consistent with the model whereby short K63-linked polyubiquitin chains but not multimonoubiquitin provide an increased avidity for EGFR interactions with ubiquitin adaptors, thus allowing rapid sorting of activated EGFR to the lysosomal degradation pathway.
Collapse
|
31
|
Abstract
Conjugation of ubiquitin (ubiquitination) to substrate proteins is a widespread modification that ensures fidelity of many cellular processes. During mitosis, different dynamic morphological transitions have to be coordinated in a temporal and spatial manner to allow for precise partitioning of the genetic material into two daughter cells, and ubiquitination of key mitotic factors is believed to provide both directionality and fidelity to this process. While directionality can be achieved by a proteolytic type of ubiquitination signal, the fidelity is often determined by various types of ubiquitin conjugation that does not target substrates for proteolysis by the proteasome. An additional level of complexity is provided by various ubiquitin-interacting proteins that act downstream of the ubiquitinated substrate and can serve as "decoders" for the ubiquitin signal. They may, specifically reverse ubiquitin attachment (deubiquitinating enzymes, DUBs) or, act as a receptor for transfer of the ubiquitinated substrate toward downstream signaling components and/or subcellular compartments (ubiquitin-binding proteins, UBPs). In this review, we aim at summarizing the knowledge and emerging concepts about the role of ubiquitin decoders, DUBs, and UBPs that contribute to faithful regulation of mitotic division.
Collapse
Affiliation(s)
- Sadek Fournane
- Institute of Genetics and Molecular and Cellular Biology (IGBMC), Illkirch, France
| | | | | | | |
Collapse
|