1
|
Stein-Merlob AF, Swier R, Vucicevic D. Evolving Strategies in Cardiac Amyloidosis: From Mechanistic Discoveries to Diagnostic and Therapeutic Advances. Cardiol Clin 2025; 43:93-110. [PMID: 39551565 PMCID: PMC11819944 DOI: 10.1016/j.ccl.2024.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Diagnosis and treatment of cardiac amyloidosis have rapidly evolved over the past decade by harnessing mechanisms of disease pathogenesis. Cardiac amyloidosis is caused by myocardial deposition of fibrils formed by misfolded proteins, namely transthyretin (ATTR) and immunoglobulin light chains (AL). Advances in noninvasive imaging have revolutionized diagnosis of ATTR cardiomyopathy (CM). Novel treatments for ATTR-CM utilize a range of therapeutic techniques, including protein stabilizers, interfering RNA, gene editing, and monoclonal antibodies. AL-CM, primarily driven by plasma cell dyscrasias, requires treatment with chemotherapy and consideration for autologous stem cell transplant. These incredible advances aim to improve patient outcomes in cardiac amyloidosis.
Collapse
Affiliation(s)
- Ashley F. Stein-Merlob
- Division of Cardiology, Department of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
- UCLA Cardio-Oncology Program, Division of Cardiology, Department of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Rachel Swier
- Department of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Darko Vucicevic
- Division of Cardiology, Department of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
- Ahmanson-UCLA Cardiomyopathy Center, Department of Medicine, Ronald Reagan UCLA Medical Center, Los Angeles, CA, USA
| |
Collapse
|
2
|
Afjadi MN, Dabirmanesh B, Uversky VN. Therapeutic approaches in proteinopathies. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2024; 206:341-388. [PMID: 38811085 DOI: 10.1016/bs.pmbts.2024.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
A family of maladies known as amyloid disorders, proteinopathy, or amyloidosis, are characterized by the accumulation of abnormal protein aggregates containing cross-β-sheet amyloid fibrils in many organs and tissues. Often, proteins that have been improperly formed or folded make up these fibrils. Nowadays, most treatments for amyloid illness focus on managing symptoms rather than curing or preventing the underlying disease process. However, recent advances in our understanding of the biology of amyloid diseases have led to the development of innovative therapies that target the emergence and accumulation of amyloid fibrils. Examples of these treatments include the use of small compounds, monoclonal antibodies, gene therapy, and others. In the end, even if the majority of therapies for amyloid diseases are symptomatic, greater research into the biology behind these disorders is identifying new targets for potential therapy and paving the way for the development of more effective treatments in the future.
Collapse
Affiliation(s)
- Mohsen Nabi Afjadi
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Bahareh Dabirmanesh
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Vladimir N Uversky
- Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Institute for Biological Instrumentation, Pushchino, Moscow, Russia; Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, United States.
| |
Collapse
|
3
|
Wang Y, Huang C, Liou G, Hsueh H, Liang C, Tseng H, Huang S, Chao C, Hsieh S, Tzeng S. A molecular basis for tetramer destabilization and aggregation of transthyretin Ala97Ser. Protein Sci 2023; 32:e4610. [PMID: 36851846 PMCID: PMC10037696 DOI: 10.1002/pro.4610] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 02/02/2023] [Accepted: 02/23/2023] [Indexed: 03/01/2023]
Abstract
Transthyretin (TTR)-related amyloidosis (ATTR) is a syndrome of diseases characterized by the extracellular deposition of fibrillar materials containing TTR variants. Ala97Ser (A97S) is the major mutation reported in Taiwanese ATTR patients. Here, we combine atomic resolution structural information together with the biochemical data to demonstrate that substitution of polar Ser for a small hydrophobic side chain of Ala at residue 97 of TTR largely influences the local packing density of the FG-loop, thus leading to the conformational instability of native tetramer, the increased monomeric species, and thus the enhanced amyloidogenicity of apo-A97S. Based on calorimetric studies, the tetramer destabilization of A97S can be substantially altered by interacting with native stabilizers via similarly energetic patterns compared to that of wild-type (WT) TTR; however, stabilizer binding partially rearranges the networks of hydrogen bonding in TTR variants while FG-loops of tetrameric A97S still remain relatively flexible. Moreover, TTR in complexed with holo-retinol binding protein 4 is slightly influenced by the structural and dynamic changes of FG-loop caused by A97S substitution with an approximately five-fold difference in binding affinity. Collectively, our findings suggest that the amyloidogenic A97S mutation destabilizes TTR by increasing the flexibility of the FG-loop in the monomer, thus modulating the rate of amyloid fibrillization.
Collapse
Affiliation(s)
- Yi‐Shiang Wang
- Institute of Biochemistry and Molecular BiologyCollege of Medicine, National Taiwan UniversityTaipeiTaiwan
| | - Chun‐Hsiang Huang
- Protein diffraction group, Experimental instrumentation divisionNational Synchrotron Radiation Research CenterHsinchuTaiwan
| | - Gunn‐Guang Liou
- Office of Research and Development, College of MedicineNational Taiwan UniversityTaipeiTaiwan
| | - Hsueh‐Wen Hsueh
- Department of Anatomy and Cell Biology, College of MedicineNational Taiwan UniversityTaipeiTaiwan
| | - Chi‐Ting Liang
- Institute of Biochemistry and Molecular BiologyCollege of Medicine, National Taiwan UniversityTaipeiTaiwan
| | - Hsi‐Ching Tseng
- Instrumentation CenterNational Taiwan UniversityTaipeiTaiwan
| | | | - Chi‐Chao Chao
- Department of NeurologyNational Taiwan University HospitalTaipeiTaiwan
| | - Sung‐Tsang Hsieh
- Graduate Institute of Brain and Mind SciencesTaipeiTaiwan
- Graduate Institute of Clinical MedicineTaipeiTaiwan
- Center of Precision MedicineNational Taiwan University College of MedicineTaipeiTaiwan
| | - Shiou‐Ru Tzeng
- Institute of Biochemistry and Molecular BiologyCollege of Medicine, National Taiwan UniversityTaipeiTaiwan
| |
Collapse
|
4
|
Molecular Mechanisms of Cardiac Amyloidosis. Int J Mol Sci 2021; 23:ijms23010025. [PMID: 35008444 PMCID: PMC8744761 DOI: 10.3390/ijms23010025] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 12/18/2021] [Accepted: 12/18/2021] [Indexed: 12/22/2022] Open
Abstract
Cardiac involvement has a profound effect on the prognosis of patients with systemic amyloidosis. Therapeutic methods for suppressing the production of causative proteins have been developed for ATTR amyloidosis and AL amyloidosis, which show cardiac involvement, and the prognosis has been improved. However, a method for removing deposited amyloid has not been established. Methods for reducing cytotoxicity caused by amyloid deposition and amyloid precursor protein to protect cardiovascular cells are also needed. In this review, we outline the molecular mechanisms and treatments of cardiac amyloidosis.
Collapse
|
5
|
Gião T, Saavedra J, Vieira JR, Pinto MT, Arsequell G, Cardoso I. Neuroprotection in early stages of Alzheimer's disease is promoted by transthyretin angiogenic properties. ALZHEIMERS RESEARCH & THERAPY 2021; 13:143. [PMID: 34429155 PMCID: PMC8385857 DOI: 10.1186/s13195-021-00883-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 08/05/2021] [Indexed: 12/12/2022]
Abstract
Background While still controversial, it has been demonstrated that vascular defects can precede the onset of other AD hallmarks features, making it an important therapeutic target. Given that the protein transthyretin (TTR) has been established as neuroprotective in AD, here we investigated the influence of TTR in the vasculature. Methods We evaluated the thickness of the basement membrane and the length of brain microvessels, by immunohistochemistry, in AβPPswe/PS1A246E (AD) transgenic mice and non-transgenic mice (NT) bearing one (TTR+/−) or two (TTR+/+) copies of the TTR gene. The angiogenic potential of TTR was evaluated in vitro using the tube formation assay, and in vivo using the chick chorioallantoic membrane (CAM) assay. Results AD transgenic mice with TTR genetic reduction, AD/TTR+/−, exhibited a thicker BM in brain microvessels and decreased vessel length than animals with normal TTR levels, AD/TTR+/+. Further in vivo investigation, using the CAM assay, revealed that TTR is a pro-angiogenic molecule, and the neovessels formed are functional. Also, TTR increased the expression of key angiogenic molecules such as proteins interleukins 6 and 8, angiopoietin 2, and vascular endothelial growth factor, by endothelial cells, in vitro, under tube formation conditions. We showed that while TTR reduction also leads to a thicker BM in NT mice, this effect is more pronounced in AD mice than in NT animals, strengthening the idea that TTR is a neuroprotective protein. We also studied the effect of TTR tetrameric stabilization on BM thickness, showing that AD mice treated with the TTR tetrameric stabilizer iododiflunisal (IDIF) displayed a significant reduction of BM thickness and increased vessel length, when compared to non-treated littermates. Conclusion Our in vivo results demonstrate the involvement of TTR in angiogenesis, particularly as a modulator of vascular alterations occurring in AD. Since TTR is decreased early in AD, its tetrameric stabilization can represent a therapeutic avenue for the early treatment of AD through the maintenance of the vascular structure. Supplementary Information The online version contains supplementary material available at 10.1186/s13195-021-00883-8.
Collapse
Affiliation(s)
- Tiago Gião
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal.,IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal.,Instituto de Ciências Biomédicas Abel Salazar (ICBAS), 4050-013, Porto, Portugal
| | - Joana Saavedra
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal.,IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal
| | - José Ricardo Vieira
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal.,IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal.,Faculdade de Medicina, Universidade do Porto, Alameda Prof. Hernâni Monteiro, 4200-319, Porto, Portugal
| | - Marta Teixeira Pinto
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal.,IPATIMUP - Instituto de Patologia e Imunologia Molecular, Universidade do Porto, Rua Júlio Amaral de Carvalho,45-, 4200-135, Porto, Portugal
| | - Gemma Arsequell
- Institut de Química Avançada de Catalunya (I.Q.A.C.-C.S.I.C.), 08034, Barcelona, Spain
| | - Isabel Cardoso
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal. .,IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal. .,Instituto de Ciências Biomédicas Abel Salazar (ICBAS), 4050-013, Porto, Portugal.
| |
Collapse
|
6
|
Satapathy S, Wilson MR. The Dual Roles of Clusterin in Extracellular and Intracellular Proteostasis. Trends Biochem Sci 2021; 46:652-660. [PMID: 33573881 DOI: 10.1016/j.tibs.2021.01.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 01/04/2021] [Accepted: 01/19/2021] [Indexed: 02/06/2023]
Abstract
Clusterin (CLU) was the first reported secreted mammalian chaperone and impacts on serious diseases associated with inappropriate extracellular protein aggregation. Many studies have described intracellular CLU in locations outside the secretory system and recent work has shown that CLU can be released into the cytosol during cell stress. In this article, we critically evaluate evidence relevant to the proposed origins of cellular CLU found outside the secretory system, and advance the hypothesis that the cytosolic release of CLU induced by stress serves to facilitate the trafficking of misfolded proteins to the proteasome and autophagy for degradation. We also propose future research directions that could help establish CLU as a unique chaperone performing critical and synergic roles in both intracellular and extracellular proteostasis.
Collapse
Affiliation(s)
- Sandeep Satapathy
- School of Chemistry and Molecular Biosciences, University of Wollongong, Northfields Avenue, Wollongong, NSW 2522, Australia; Molecular Horizons Research Institute, University of Wollongong, Northfields Avenue, Wollongong, NSW 2522, Australia; Illawarra Health and Medical Research Institute, University of Wollongong, Northfields Avenue, Wollongong, NSW 2522, Australia
| | - Mark R Wilson
- School of Chemistry and Molecular Biosciences, University of Wollongong, Northfields Avenue, Wollongong, NSW 2522, Australia; Molecular Horizons Research Institute, University of Wollongong, Northfields Avenue, Wollongong, NSW 2522, Australia; Illawarra Health and Medical Research Institute, University of Wollongong, Northfields Avenue, Wollongong, NSW 2522, Australia.
| |
Collapse
|
7
|
Xu G, Fromholt SE, Chakrabarty P, Zhu F, Liu X, Pace MC, Koh J, Golde TE, Levites Y, Lewis J, Borchelt DR. Diversity in Aβ deposit morphology and secondary proteome insolubility across models of Alzheimer-type amyloidosis. Acta Neuropathol Commun 2020; 8:43. [PMID: 32252825 PMCID: PMC7137436 DOI: 10.1186/s40478-020-00911-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 03/02/2020] [Indexed: 12/30/2022] Open
Abstract
A hallmark pathology of Alzheimer's disease (AD) is the formation of amyloid β (Aβ) deposits that exhibit diverse localization and morphologies, ranging from diffuse to cored-neuritic deposits in brain parenchyma, with cerebral vascular deposition in leptomeningeal and parenchymal compartments. Most AD brains exhibit the full spectrum of pathologic Aβ morphologies. In the course of studies to model AD amyloidosis, we have generated multiple transgenic mouse models that vary in the nature of the transgene constructs that are expressed; including the species origin of Aβ peptides, the levels and length of Aβ that is deposited, and whether mutant presenilin 1 (PS1) is co-expressed. These models recapitulate features of human AD amyloidosis, but interestingly some models can produce pathology in which one type of Aβ morphology dominates. In prior studies of mice that primarily develop cored-neuritic deposits, we determined that Aβ deposition is associated with changes in cytosolic protein solubility in which a subset of proteins become detergent-insoluble, indicative of secondary proteome instability. Here, we survey changes in cytosolic protein solubility across seven different transgenic mouse models that exhibit a range of Aβ deposit morphologies. We find a surprisingly diverse range of changes in proteome solubility across these models. Mice that deposit human Aβ40 and Aβ42 in cored-neuritic plaques had the most robust changes in proteome solubility. Insoluble cytosolic proteins were also detected in the brains of mice that develop diffuse Aβ42 deposits but to a lesser extent. Notably, mice with cored deposits containing only Aβ42 had relatively few proteins that became detergent-insoluble. Our data provide new insight into the diversity of biological effects that can be attributed to different types of Aβ pathology and support the view that fibrillar cored-neuritic plaque pathology is the more disruptive Aβ pathology in the Alzheimer's cascade.
Collapse
Affiliation(s)
- Guilian Xu
- Department of Neuroscience, Center for Translational Research in Neurodegenerative Disease, McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL, 32610, USA
| | - Susan E Fromholt
- Department of Neuroscience, Center for Translational Research in Neurodegenerative Disease, McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL, 32610, USA
| | - Paramita Chakrabarty
- Department of Neuroscience, Center for Translational Research in Neurodegenerative Disease, McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL, 32610, USA
| | - Fanchao Zhu
- The Interdisciplinary Center for Biotechnology Research (ICBR), University of Florida, Gainesville, FL, 32610, USA
| | - Xuefei Liu
- Department of Neuroscience, Center for Translational Research in Neurodegenerative Disease, McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL, 32610, USA
| | - Michael C Pace
- Department of Neuroscience, Center for Translational Research in Neurodegenerative Disease, McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL, 32610, USA
| | - Jin Koh
- The Interdisciplinary Center for Biotechnology Research (ICBR), University of Florida, Gainesville, FL, 32610, USA
| | - Todd E Golde
- Department of Neuroscience, Center for Translational Research in Neurodegenerative Disease, McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL, 32610, USA
| | - Yona Levites
- Department of Neuroscience, Center for Translational Research in Neurodegenerative Disease, McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL, 32610, USA
| | - Jada Lewis
- Department of Neuroscience, Center for Translational Research in Neurodegenerative Disease, McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL, 32610, USA
| | - David R Borchelt
- Department of Neuroscience, Center for Translational Research in Neurodegenerative Disease, McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL, 32610, USA.
- SantaFe Healthcare Alzheimer's Disease Research Center, Gainesville, FL, USA.
| |
Collapse
|
8
|
Ran LX, Zheng ZY, Xie B, Nie XM, Chen XW, Su G, Cai SJ. A mouse model of a novel missense mutation (Gly83Arg) in a Chinese kindred manifesting vitreous amyloidosis only. Exp Eye Res 2018; 169:13-19. [PMID: 29360446 DOI: 10.1016/j.exer.2018.01.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2017] [Revised: 01/18/2018] [Accepted: 01/18/2018] [Indexed: 12/24/2022]
Abstract
The purpose of this study is to establish a mouse model of transthyretin (TTR) Gly83Arg gene mutation by the technique of gene targeting for research on hereditary vitreous amyloidosis (HVA) and to confirm whether this point mutation is a genetic feature of HVA. A vector (pBR322-MK-TTR) was constructed to target ES cells. The successfully transfected ES cells were used for blastocyst injection, thus generating F0. F0 and Flp mice were mated to generate F1 (TTR+/-, Flp +/-) mice that lacked the neo gene but carried the Flp gene. F1 mice were mated with C57BL/6N wild type mice to generate F2 (TTR+/-) mice. F3 homozygous and heterozygous mice were generated by mating F2 mice with each other. PCR and sequencing were performed for F3 mice. Amyloid was detected using Congo red stain and polarized light. Immunohistochemistry was used to detect the expression of TTR in the tissues. Quantitative fluorescent PCR and Western blotting were used to detect the expression of TTR mRNA and TTR protein, respectively. Two F0-generation, 2 F1-generation and 15 F3-generation mice were obtained. The gene sequencing of F3 mice showed TTR Gly83Arg mutation. When examined with Congo red and polarized light, the vitreous of TTR Gly83Arg mutant mice tested positive for amyloid. The hearts, livers, brains and kidneys of the experimental group and control group were all negative by Congo red staining. Immunohistochemical staining showed that the vitreous of TTR Gly83Arg mutant mice and the livers of the control mice were positive, but the kidneys, hearts and brains of both groups were negative. Quantitative fluorescent PCR showed that the mRNA expression of mutant mice was significantly lower than that of wild-type mice (F = 0.295, P = 0.023). Western blotting showed that the expression of TTR protein was significantly lower in the model mice than in the wild-type mice (t = 3.224, P = 0.018). TTR gene mutation is indeed a molecular characteristic of HVA and manifest in the eye disease only. A C57BL/6 mouse line carrying the TTR Gly83Arg gene mutation was successfully established. This strain of mice can be used for the study of HVA.
Collapse
MESH Headings
- Amyloid/metabolism
- Amyloidosis, Familial/genetics
- Amyloidosis, Familial/metabolism
- Amyloidosis, Familial/pathology
- Animals
- Blotting, Western
- Disease Models, Animal
- Embryonic Stem Cells
- Eye Diseases, Hereditary/genetics
- Eye Diseases, Hereditary/metabolism
- Eye Diseases, Hereditary/pathology
- Female
- Immunohistochemistry
- Male
- Mice
- Mice, Inbred C57BL
- Mutation, Missense/genetics
- Plasmids
- Point Mutation
- Prealbumin/genetics
- RNA, Messenger/genetics
- Real-Time Polymerase Chain Reaction
- Transfection
- Vitreous Body/metabolism
- Vitreous Body/pathology
Collapse
Affiliation(s)
- Ling-Xia Ran
- Department of Ophthalmology, Shunde Hospital of Southern Medical University, Foshan, Guangdong, China
| | - Zhi-Yong Zheng
- Department of Ophthalmology, The Fifth Affiliated Hospital of Zunyi Medical University, Zhuhai, China
| | - Bing Xie
- Zunyi Medical University, Zunyi, Guizhou, China; Department of Ophthalmology, Guizhou Eye Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Xiao-Mei Nie
- Zunyi Medical University, Zunyi, Guizhou, China; Department of Ophthalmology, Guizhou Eye Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Xing-Wang Chen
- Zunyi Medical University, Zunyi, Guizhou, China; Department of Ophthalmology, Guizhou Eye Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Gang Su
- Zunyi Medical University, Zunyi, Guizhou, China; Department of Ophthalmology, Guizhou Eye Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Shan-Jun Cai
- Zunyi Medical University, Zunyi, Guizhou, China; Department of Ophthalmology, Guizhou Eye Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China.
| |
Collapse
|
9
|
Chiti F, Dobson CM. Protein Misfolding, Amyloid Formation, and Human Disease: A Summary of Progress Over the Last Decade. Annu Rev Biochem 2017; 86:27-68. [DOI: 10.1146/annurev-biochem-061516-045115] [Citation(s) in RCA: 1807] [Impact Index Per Article: 225.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Abstract
Peptides and proteins have been found to possess an inherent tendency to convert from their native functional states into intractable amyloid aggregates. This phenomenon is associated with a range of increasingly common human disorders, including Alzheimer and Parkinson diseases, type II diabetes, and a number of systemic amyloidoses. In this review, we describe this field of science with particular reference to the advances that have been made over the last decade in our understanding of its fundamental nature and consequences. We list the proteins that are known to be deposited as amyloid or other types of aggregates in human tissues and the disorders with which they are associated, as well as the proteins that exploit the amyloid motif to play specific functional roles in humans. In addition, we summarize the genetic factors that have provided insight into the mechanisms of disease onset. We describe recent advances in our knowledge of the structures of amyloid fibrils and their oligomeric precursors and of the mechanisms by which they are formed and proliferate to generate cellular dysfunction. We show evidence that a complex proteostasis network actively combats protein aggregation and that such an efficient system can fail in some circumstances and give rise to disease. Finally, we anticipate the development of novel therapeutic strategies with which to prevent or treat these highly debilitating and currently incurable conditions.
Collapse
Affiliation(s)
- Fabrizio Chiti
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio,” Section of Biochemistry, Università di Firenze, 50134 Firenze, Italy
| | - Christopher M. Dobson
- Department of Chemistry, Centre for Misfolding Diseases, University of Cambridge, Cambridge CB2 1EW, United Kingdom
| |
Collapse
|
10
|
Hakobyan S, Harding K, Aiyaz M, Hye A, Dobson R, Baird A, Liu B, Harris CL, Lovestone S, Morgan BP. Complement Biomarkers as Predictors of Disease Progression in Alzheimer's Disease. J Alzheimers Dis 2016; 54:707-16. [PMID: 27567854 DOI: 10.3233/jad-160420] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
There is a critical unmet need for reliable markers of disease and disease course in mild cognitive impairment (MCI) and early Alzheimer's disease (AD). The growing appreciation of the importance of inflammation in early AD has focused attention on inflammatory biomarkers in cerebrospinal fluid or plasma; however, non-specific inflammation markers have disappointed to date. We have adopted a targeted approach, centered on an inflammatory pathway already implicated in the disease. Complement, a core system in innate immune defense and potent driver of inflammation, has been implicated in pathogenesis of AD based on a confluence of genetic, histochemical, and model data. Numerous studies have suggested that measurement of individual complement proteins or activation products in cerebrospinal fluid or plasma is useful in diagnosis, prediction, or stratification, but few have been replicated. Here we apply a novel multiplex assay to measure five complement proteins and four activation products in plasma from donors with MCI, AD, and controls. Only one complement analyte, clusterin, differed significantly between control and AD plasma (controls, 295 mg/l; AD, 388 mg/l: p < 10- 5). A model combining clusterin with relevant co-variables was highly predictive of disease. Three analytes (clusterin, factor I, terminal complement complex) were significantly different between MCI individuals who had converted to dementia one year later compared to non-converters; a model combining these three analytes with informative co-variables was highly predictive of conversion. The data confirm the relevance of complement biomarkers in MCI and AD and build the case for using multi-parameter models for disease prediction and stratification.
Collapse
Affiliation(s)
| | - Katharine Harding
- Division of Neurosciences and Mental Health, Cardiff University, Cardiff, UK
| | - Mohammed Aiyaz
- King's College London, Institute of Psychology, Psychiatry and Neuroscience, London, UK
| | - Abdul Hye
- King's College London, Institute of Psychology, Psychiatry and Neuroscience, London, UK
| | - Richard Dobson
- King's College London, Institute of Psychology, Psychiatry and Neuroscience, London, UK
| | - Alison Baird
- Department of Psychiatry, University of Oxford, Oxford, UK
| | - Benjamine Liu
- Department of Psychiatry, University of Oxford, Oxford, UK
| | | | | | | |
Collapse
|
11
|
Ortore G, Orlandini E, Braca A, Ciccone L, Rossello A, Martinelli A, Nencetti S. Targeting Different Transthyretin Binding Sites with Unusual Natural Compounds. ChemMedChem 2016; 11:1865-74. [PMID: 27159149 DOI: 10.1002/cmdc.201600092] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 03/14/2016] [Indexed: 11/10/2022]
Abstract
Misfolding and aggregation of the transthyretin (TTR) protein leads to certain forms of amyloidosis. Some nutraceuticals, such as flavonoids and natural polyphenols, have recently been investigated as modulators of the self-assembly process of TTR, but they generally suffer from limited bioavailability. To discover innovative and more bioavailable natural compounds able to inhibit TTR amyloid formation, a docking study was performed using the crystallographic structure of TTR. This computational strategy was projected as an ad hoc inspection of the possible relationship between binding site location and modulation of the assembly process; interactions with the as-yet-unexplored epigallocatechin gallate (EGCG) sites and with the thyroxine (T4) pocket were simultaneously analyzed. All the compounds studied seem to prefer the traditional T4 binding site, but some interesting results emerged from the screening of an in-house database, used for validating the computational protocol, and of the Herbal Ingredients Targets (HIT) catalogue available on the ZINC database.
Collapse
Affiliation(s)
- Gabriella Ortore
- Dipartimento di Farmacia, Università di Pisa, V. Bonanno 6, 56126, Pisa, Italy.
| | | | - Alessandra Braca
- Dipartimento di Farmacia, Università di Pisa, V. Bonanno 6, 56126, Pisa, Italy
| | - Lidia Ciccone
- Dipartimento di Farmacia, Università di Pisa, V. Bonanno 6, 56126, Pisa, Italy
| | - Armando Rossello
- Dipartimento di Farmacia, Università di Pisa, V. Bonanno 6, 56126, Pisa, Italy
| | - Adriano Martinelli
- Dipartimento di Farmacia, Università di Pisa, V. Bonanno 6, 56126, Pisa, Italy
| | - Susanna Nencetti
- Dipartimento di Farmacia, Università di Pisa, V. Bonanno 6, 56126, Pisa, Italy.
| |
Collapse
|
12
|
Stenvang M, Christiansen G, Otzen DE. Epigallocatechin Gallate Remodels Fibrils of Lattice Corneal Dystrophy Protein, Facilitating Proteolytic Degradation and Preventing Formation of Membrane-Permeabilizing Species. Biochemistry 2016; 55:2344-57. [DOI: 10.1021/acs.biochem.6b00063] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Marcel Stenvang
- Interdisciplinary
Nanoscience Center
(iNANO), Department of Molecular Biology and Genetics, Center for
Insoluble Protein Structures (inSPIN), Aarhus University, Aarhus, Denmark
| | | | - Daniel E. Otzen
- Interdisciplinary
Nanoscience Center
(iNANO), Department of Molecular Biology and Genetics, Center for
Insoluble Protein Structures (inSPIN), Aarhus University, Aarhus, Denmark
| |
Collapse
|
13
|
Mangione PP, Deroo S, Ellmerich S, Bellotti V, Kolstoe S, Wood SP, Robinson CV, Smith MD, Tennent GA, Broadbridge RJ, Council CE, Thurston JR, Steadman VA, Vong AK, Swain CJ, Pepys MB, Taylor GW. Bifunctional crosslinking ligands for transthyretin. Open Biol 2015; 5:150105. [PMID: 26400472 PMCID: PMC4593668 DOI: 10.1098/rsob.150105] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Wild-type and variant forms of transthyretin (TTR), a normal plasma protein, are amyloidogenic and can be deposited in the tissues as amyloid fibrils causing acquired and hereditary systemic TTR amyloidosis, a debilitating and usually fatal disease. Reduction in the abundance of amyloid fibril precursor proteins arrests amyloid deposition and halts disease progression in all forms of amyloidosis including TTR type. Our previous demonstration that circulating serum amyloid P component (SAP) is efficiently depleted by administration of a specific small molecule ligand compound, that non-covalently crosslinks pairs of SAP molecules, suggested that TTR may be also amenable to this approach. We first confirmed that chemically crosslinked human TTR is rapidly cleared from the circulation in mice. In order to crosslink pairs of TTR molecules, promote their accelerated clearance and thus therapeutically deplete plasma TTR, we prepared a range of bivalent specific ligands for the thyroxine binding sites of TTR. Non-covalently bound human TTR-ligand complexes were formed that were stable in vitro and in vivo, but they were not cleared from the plasma of mice in vivo more rapidly than native uncomplexed TTR. Therapeutic depletion of circulating TTR will require additional mechanisms.
Collapse
Affiliation(s)
- P Patrizia Mangione
- Wolfson Drug Discovery Unit, Centre for Amyloidosis and Acute Phase Proteins, Division of Medicine, University College London, Royal Free Campus, Rowland Hill Street, London NW3 2PF, UK Department of Molecular Medicine, Institute of Biochemistry, University of Pavia, Pavia, Italy
| | - Stéphanie Deroo
- Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, UK
| | - Stephan Ellmerich
- Wolfson Drug Discovery Unit, Centre for Amyloidosis and Acute Phase Proteins, Division of Medicine, University College London, Royal Free Campus, Rowland Hill Street, London NW3 2PF, UK
| | - Vittorio Bellotti
- Wolfson Drug Discovery Unit, Centre for Amyloidosis and Acute Phase Proteins, Division of Medicine, University College London, Royal Free Campus, Rowland Hill Street, London NW3 2PF, UK Department of Molecular Medicine, Institute of Biochemistry, University of Pavia, Pavia, Italy
| | - Simon Kolstoe
- Wolfson Drug Discovery Unit, Centre for Amyloidosis and Acute Phase Proteins, Division of Medicine, University College London, Royal Free Campus, Rowland Hill Street, London NW3 2PF, UK
| | - Stephen P Wood
- Wolfson Drug Discovery Unit, Centre for Amyloidosis and Acute Phase Proteins, Division of Medicine, University College London, Royal Free Campus, Rowland Hill Street, London NW3 2PF, UK
| | - Carol V Robinson
- Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, UK
| | - Martin D Smith
- Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, UK
| | - Glenys A Tennent
- Wolfson Drug Discovery Unit, Centre for Amyloidosis and Acute Phase Proteins, Division of Medicine, University College London, Royal Free Campus, Rowland Hill Street, London NW3 2PF, UK
| | - Robert J Broadbridge
- Peptide Protein Research Ltd, Claylands Road, Bishops Waltham, Southampton, Hampshire SO32 1QD, UK
| | - Claire E Council
- Peptide Protein Research Ltd, Claylands Road, Bishops Waltham, Southampton, Hampshire SO32 1QD, UK
| | - Joanne R Thurston
- Peptide Protein Research Ltd, Claylands Road, Bishops Waltham, Southampton, Hampshire SO32 1QD, UK
| | | | | | - Christopher J Swain
- Cambridge MedChem Consulting, 8 Mangers Lane, Duxford, Cambridge CB22 4RN, UK
| | - Mark B Pepys
- Wolfson Drug Discovery Unit, Centre for Amyloidosis and Acute Phase Proteins, Division of Medicine, University College London, Royal Free Campus, Rowland Hill Street, London NW3 2PF, UK
| | - Graham W Taylor
- Wolfson Drug Discovery Unit, Centre for Amyloidosis and Acute Phase Proteins, Division of Medicine, University College London, Royal Free Campus, Rowland Hill Street, London NW3 2PF, UK
| |
Collapse
|
14
|
Grasso G, Bonnet S. Metal complexes and metalloproteases: targeting conformational diseases. Metallomics 2015; 6:1346-57. [PMID: 24870829 DOI: 10.1039/c4mt00076e] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
In recent years many metalloproteases (MPs) have been shown to play important roles in the development of various pathological conditions. Although most of the literature is focused on matrix MPs (MMPs), many other MPs have been demonstrated to be involved in the degradation of peptides or proteins whose accumulation and dyshomeostasis are considered as being responsible for the development of conformational diseases, i.e., diseases where non-native protein conformations lead to protein aggregation. It seems clear that, at least in principle, it must be possible to control the levels of many aggregation-prone proteins not only by reducing their production, but also by enhancing their catabolism. Metal complexes that can perform this function were designed and tested according to at least two different strategies: (i) intervening on the endogenous MPs by directly or indirectly modulating their activity; (ii) acting as artificial MPs, replacing or synergistically functioning with endogenous MPs. These two different bioinorganic approaches are widely represented in the current literature and the aim of this review is to rationally organize and discuss both of them so as to give a critical insight into these approaches and highlighting their limitations and future perspectives.
Collapse
Affiliation(s)
- Giuseppe Grasso
- Chemistry Department, Dipartimento di Scienze Chimiche, Università di Catania, Viale Andrea Doria 6, 95125, Catania, Italy.
| | | |
Collapse
|
15
|
Kintsler S, Jäkel J, Brandenburg V, Kersten K, Knuechel R, Röcken C. Cardiac amyloidosis in a heart transplant patient - A case report and retrospective analysis of amyloidosis evolution. Intractable Rare Dis Res 2015; 4:60-4. [PMID: 25674390 PMCID: PMC4322597 DOI: 10.5582/irdr.2014.01036] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2014] [Accepted: 01/07/2015] [Indexed: 12/23/2022] Open
Abstract
Cardiac amyloidosis is a very rare cause of heart failure in heart transplant recipients but an important differential diagnosis in cases of progressive cardiac failure. We report a 72-year-old male patient with the diagnosis of senile systemic amyloidosis (SSA) in a transplanted heart 15 years after transplantation by the initial diagnosis of the dilated cardiomyopathy. Additionally performed immunohistochemical analysis with anti-transthyretin antibody of the cardiac biopsies of the last 15 years enabled the possibility to show the evolution of this disease with characteristic biphasic pattern.
Collapse
Affiliation(s)
- Svetlana Kintsler
- Institute of Pathology of the University Hospital RWTH Aachen, Aachen, Germany
- Address correspondence to: Dr. Svetlana Kintsler, Insitute of Pathology of the University Hospital RWTH Aachen, Pauwelsstrasse 30, 52074 Aachen, Germany. E-mail:
| | - Jörg Jäkel
- Institute of Pathology of the University Hospital RWTH Aachen, Aachen, Germany
| | - Vincent Brandenburg
- Department of Cardiology, Pulmonology, Angiology and Internal Intensive Care Medicine of the University Hospital RWTH Aachen, Aachen, Germany
| | - Katrin Kersten
- Department of Cardiology, Pulmonology, Angiology and Internal Intensive Care Medicine of the University Hospital RWTH Aachen, Aachen, Germany
| | - Ruth Knuechel
- Institute of Pathology of the University Hospital RWTH Aachen, Aachen, Germany
| | - Christoph Röcken
- Institute of Pathology of the Christian-Albrechts-University Kiel, Kiel, Germany
| |
Collapse
|
16
|
Rao VA. Perspectives on Engineering Biobetter Therapeutic Proteins with Greater Stability in Inflammatory Environments. BIOBETTERS 2015. [DOI: 10.1007/978-1-4939-2543-8_11] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
17
|
Grasso G. Monitoring the biomolecular interactions and the activity of Zn-containing enzymes involved in conformational diseases: experimental methods for therapeutic purposes. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2014; 97:115-42. [PMID: 25458357 DOI: 10.1016/bs.apcsb.2014.08.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Zinc metalloproteases (ZnMPs) participate in diverse biological reactions, encompassing the synthesis and degradation of all the major metabolites in living organisms. In particular, ZnMPs have been recognized to play a very important role in controlling the concentration level of several peptides and/or proteins whose homeostasis has to be finely regulated for the correct physiology of cells. Dyshomeostasis of aggregation-prone proteins causes pathological conditions and the development of several different diseases. For this reason, in recent years, many analytical approaches have been applied for studying the interaction between ZnMPs and their substrates/inhibitors and how environmental factors can affect enzyme activities. In this scenario, nuclear magnetic resonance, X-ray diffraction, mass spectrometric (MS), and optical methods occupy a very important role in elucidating different aspects of the ZnMPs-substrates/inhibitors interaction, ranging from identification of cleavage sites to quantitation of kinetic parameters and inhibition constants. Here, an overview of all the main achievements in the application of different experimental approaches with special attention to MS methods to the investigation of ZnMPs-substrates/inhibitors interaction is given. A general MS experimental protocol which has been proved to be useful to study such interactions is also described.
Collapse
Affiliation(s)
- Giuseppe Grasso
- Dipartimento di Scienze Chimiche, Università degli Studi di Catania, Catania, Italy.
| |
Collapse
|
18
|
Obici L, Merlini G. An overview of drugs currently under investigation for the treatment of transthyretin-related hereditary amyloidosis. Expert Opin Investig Drugs 2014; 23:1239-51. [PMID: 25003808 DOI: 10.1517/13543784.2014.922541] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
INTRODUCTION Transthyretin (TTR)-related hereditary amyloidosis is an adult-onset, dominantly inherited, systemic neurodegenerative disease endemic in some populations. Stabilization of the native structure of TTR by small-molecule ligands has recently proved effective in slowing neurological progression. Two drugs, tafamidis and diflunisal, are now available for most patients, particularly in the early stage of the disease. However, this disorder remains life threatening with several unmet needs. There are great expectations for a number of novel agents undergoing investigation. AREAS COVERED The authors review the current investigational drugs for the treatment of TTR amyloidosis according to the different steps of the fibrillogenesis process they target. Innovative approaches include suppression of TTR secretion, prevention of TTR misfolding by stronger stabilizers identified through structure-based design and high-throughput screening methodologies as well as the redirection of pathogenic aggregates toward nontoxic species and reabsorption of deposits through amyloid disrupters and immunotherapy. EXPERT OPINION Suppression of TTR synthesis by antisense oligonucleotides and small-interfering RNA is presently one of the most promising therapeutic approaches. However, well-designed clinical trials are required to establish their safety and efficacy compared with liver transplantation, tafamidis and diflunisal. With a longer time frame, it may be possible to develop combination therapies that target multiple steps of the aggregation process that could provide the best long-life effective treatments for this devastating disease.
Collapse
Affiliation(s)
- Laura Obici
- Amyloidosis Research and Treatment Center, IRCCS Fondazione Policlinico San Matteo , Viale Golgi, 19, 27100 Pavia , Italy
| | | |
Collapse
|
19
|
Ferreira N, Pereira-Henriques A, Attar A, Klärner FG, Schrader T, Bitan G, Gales L, Saraiva MJ, Almeida MR. Molecular tweezers targeting transthyretin amyloidosis. Neurotherapeutics 2014; 11:450-61. [PMID: 24459092 PMCID: PMC3996111 DOI: 10.1007/s13311-013-0256-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Transthyretin (TTR) amyloidoses comprise a wide spectrum of acquired and hereditary diseases triggered by extracellular deposition of toxic TTR aggregates in various organs. Despite recent advances regarding the elucidation of the molecular mechanisms underlying TTR misfolding and pathogenic self-assembly, there is still no effective therapy for treatment of these fatal disorders. Recently, the "molecular tweezers", CLR01, has been reported to inhibit self-assembly and toxicity of different amyloidogenic proteins in vitro, including TTR, by interfering with hydrophobic and electrostatic interactions known to play an important role in the aggregation process. In addition, CLR01 showed therapeutic effects in animal models of Alzheimer's disease and Parkinson's disease. Here, we assessed the ability of CLR01 to modulate TTR misfolding and aggregation in cell culture and in an animal model. In cell culture assays we found that CLR01 inhibited TTR oligomerization in the conditioned medium and alleviated TTR-induced neurotoxicity by redirecting TTR aggregation into the formation of innocuous assemblies. To determine whether CLR01 was effective in vivo, we tested the compound in mice expressing TTR V30M, a model of familial amyloidotic polyneuropathy, which recapitulates the main pathological features of the human disease. Immunohistochemical and Western blot analyses showed a significant decrease in TTR burden in the gastrointestinal tract and the peripheral nervous system in mice treated with CLR01, with a concomitant reduction in aggregate-induced endoplasmic reticulum stress response, protein oxidation, and apoptosis. Taken together, our preclinical data suggest that CLR01 is a promising lead compound for development of innovative, disease-modifying therapy for TTR amyloidosis.
Collapse
Affiliation(s)
- Nelson Ferreira
- IBMC, Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua do Campo Alegre, 823, 4150-180 Porto, Portugal
| | - Alda Pereira-Henriques
- IBMC, Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua do Campo Alegre, 823, 4150-180 Porto, Portugal
| | - Aida Attar
- Department of Neurology, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA USA
- Brain Research Institute, University of California at Los Angeles, Los Angeles, CA USA
| | | | - Thomas Schrader
- Faculty of Chemistry, University of Duisburg-Essen, Essen, Germany
| | - Gal Bitan
- Department of Neurology, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA USA
- Brain Research Institute, University of California at Los Angeles, Los Angeles, CA USA
- Molecular Biology Institute, University of California at Los Angeles, Los Angeles, CA USA
| | - Luís Gales
- IBMC, Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua do Campo Alegre, 823, 4150-180 Porto, Portugal
- ICBAS, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Maria João Saraiva
- IBMC, Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua do Campo Alegre, 823, 4150-180 Porto, Portugal
- ICBAS, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Maria Rosário Almeida
- IBMC, Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua do Campo Alegre, 823, 4150-180 Porto, Portugal
- ICBAS, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| |
Collapse
|
20
|
Nunes RJ, de Oliveira P, Lages A, Becker JD, Marcelino P, Barroso E, Perdigoto R, Kelly JW, Quintas A, Santos SCR. Transthyretin proteins regulate angiogenesis by conferring different molecular identities to endothelial cells. J Biol Chem 2013; 288:31752-60. [PMID: 24030829 DOI: 10.1074/jbc.m113.469858] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Familial amyloidotic polyneuropathy (FAP) has a high prevalence in Portugal, and the most common form of hereditary amyloidosis is caused by an amyloidogenic variant of transthyretin (TTR) with a substitution of methionine for valine at position 30 (V30M). Until now, the available efficient therapy is liver transplantation, when performed in an early phase of the onset of the disease symptoms. However, transplanted FAP patients have a significantly higher incidence of early hepatic artery thrombosis compared with non-FAP transplanted patients. Because FAP was described as an independent risk factor for early hepatic artery thrombosis, more studies to understand the underlying mechanisms involved in this outcome are of the utmost importance. Knowing that the liver is the major site for TTR production, we investigated the biological effects of TTR proteins in the vasculature and on angiogenesis. In this study, we identified genes differentially expressed in endothelial cells exposed to the WT or V30M tetramer. We found that endothelial cells may acquire different molecular identities when exposed to these proteins, and consequently TTR could regulate angiogenesis. Moreover, we show that V30M decreases endothelial survival by inducing apoptosis, and it inhibits migration. These findings provide new knowledge that may have critical implications in the prevention of early hepatic artery thrombosis in FAP patients after liver transplantation.
Collapse
Affiliation(s)
- Raquel J Nunes
- From the Angiogenesis Unit, Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, 1649-028 Lisbon, Portugal
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
|
22
|
Stefani M, Rigacci S. Protein folding and aggregation into amyloid: the interference by natural phenolic compounds. Int J Mol Sci 2013; 14:12411-57. [PMID: 23765219 PMCID: PMC3709793 DOI: 10.3390/ijms140612411] [Citation(s) in RCA: 161] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Revised: 05/29/2013] [Accepted: 06/04/2013] [Indexed: 01/17/2023] Open
Abstract
Amyloid aggregation is a hallmark of several degenerative diseases affecting the brain or peripheral tissues, whose intermediates (oligomers, protofibrils) and final mature fibrils display different toxicity. Consequently, compounds counteracting amyloid aggregation have been investigated for their ability (i) to stabilize toxic amyloid precursors; (ii) to prevent the growth of toxic oligomers or speed that of fibrils; (iii) to inhibit fibril growth and deposition; (iv) to disassemble preformed fibrils; and (v) to favor amyloid clearance. Natural phenols, a wide panel of plant molecules, are one of the most actively investigated categories of potential amyloid inhibitors. They are considered responsible for the beneficial effects of several traditional diets being present in green tea, extra virgin olive oil, red wine, spices, berries and aromatic herbs. Accordingly, it has been proposed that some natural phenols could be exploited to prevent and to treat amyloid diseases, and recent studies have provided significant information on their ability to inhibit peptide/protein aggregation in various ways and to stimulate cell defenses, leading to identify shared or specific mechanisms. In the first part of this review, we will overview the significance and mechanisms of amyloid aggregation and aggregate toxicity; then, we will summarize the recent achievements on protection against amyloid diseases by many natural phenols.
Collapse
Affiliation(s)
- Massimo Stefani
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale Morgagni 50, Florence 50134, Italy; E-Mail:
- Research Centre on the Molecular Basis of Neurodegeneration, Viale Morgagni 50, Florence 50134, Italy
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +39-55-275-8307; Fax: +39-55-275-8905
| | - Stefania Rigacci
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale Morgagni 50, Florence 50134, Italy; E-Mail:
| |
Collapse
|
23
|
Advances in electrochemical detection for study of neurodegenerative disorders. Anal Bioanal Chem 2013; 405:5725-41. [DOI: 10.1007/s00216-013-6904-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2012] [Revised: 03/05/2013] [Accepted: 03/06/2013] [Indexed: 12/30/2022]
|
24
|
Abstract
The amyloidoses are a group of protein misfolding diseases in which the precursor protein undergoes a conformational change that triggers the formation of amyloid fibrils in different tissues and organs, causing cell death and organ failure. Amyloidoses can be either localized or systemic. In localized amyloidosis, amyloid deposits form at the site of precursor protein synthesis, whereas in systemic amyloidosis, amyloid deposition occurs distant from the site of precursor protein secretion. We review the type of proteins and cells involved and what is known about the complex pathophysiology of these diseases. We focus on light chain amyloidosis to illustrate how biochemical and biophysical studies have led to a deeper understanding of the pathogenesis of this devastating disease. We also review current cellular, tissue, and animal models and discuss the challenges and opportunities for future studies of the systemic amyloidoses.
Collapse
Affiliation(s)
- Luis M Blancas-Mejía
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota 55905, USA.
| | | |
Collapse
|