1
|
Wilson MR, Satapathy S, Vendruscolo M. Extracellular protein homeostasis in neurodegenerative diseases. Nat Rev Neurol 2023; 19:235-245. [PMID: 36828943 DOI: 10.1038/s41582-023-00786-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/02/2023] [Indexed: 02/26/2023]
Abstract
The protein homeostasis (proteostasis) system encompasses the cellular processes that regulate protein synthesis, folding, concentration, trafficking and degradation. In the case of intracellular proteostasis, the identity and nature of these processes have been extensively studied and are relatively well known. By contrast, the mechanisms of extracellular proteostasis are yet to be fully elucidated, although evidence is accumulating that their age-related progressive impairment might contribute to neuronal death in neurodegenerative diseases. Constitutively secreted extracellular chaperones are emerging as key players in processes that operate to protect neurons and other brain cells by neutralizing the toxicity of extracellular protein aggregates and promoting their safe clearance and disposal. Growing evidence indicates that these extracellular chaperones exert multiple effects to promote cell viability and protect neurons against pathologies arising from the misfolding and aggregation of proteins in the synaptic space and interstitial fluid. In this Review, we outline the current knowledge of the mechanisms of extracellular proteostasis linked to neurodegenerative diseases, and we examine the latest understanding of key molecules and processes that protect the brain from the pathological consequences of extracellular protein aggregation and proteotoxicity. Finally, we contemplate possible therapeutic opportunities for neurodegenerative diseases on the basis of this emerging knowledge.
Collapse
Affiliation(s)
- Mark R Wilson
- School of Chemistry and Molecular Bioscience, Molecular Horizons Research Institute, University of Wollongong, Wollongong, New South Wales, Australia.
| | - Sandeep Satapathy
- Blavatnik Institute of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Michele Vendruscolo
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
| |
Collapse
|
2
|
The Emerging Roles of Extracellular Chaperones in Complement Regulation. Cells 2022; 11:cells11233907. [PMID: 36497163 PMCID: PMC9738919 DOI: 10.3390/cells11233907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/01/2022] [Accepted: 12/01/2022] [Indexed: 12/09/2022] Open
Abstract
The immune system is essential to protect organisms from internal and external threats. The rapidly acting, non-specific innate immune system includes complement, which initiates an inflammatory cascade and can form pores in the membranes of target cells to induce cell lysis. Regulation of protein homeostasis (proteostasis) is essential for normal cellular and organismal function, and has been implicated in processes controlling immunity and infection. Chaperones are key players in maintaining proteostasis in both the intra- and extracellular environments. Whilst intracellular proteostasis is well-characterised, the role of constitutively secreted extracellular chaperones (ECs) is less well understood. ECs may interact with invading pathogens, and elements of the subsequent immune response, including the complement pathway. Both ECs and complement can influence the progression of neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease, Huntington's disease and amyotrophic lateral sclerosis, as well as other diseases including kidney diseases and diabetes. This review will examine known and recently discovered ECs, and their roles in immunity, with a specific focus on the complement pathway.
Collapse
|
3
|
Wenzlau JM, DiLisio JE, Barbour G, Dang M, Hohenstein AC, Nakayama M, Delong T, Baker RL, Haskins K. Insulin B-chain hybrid peptides are agonists for T cells reactive to insulin B:9-23 in autoimmune diabetes. Front Immunol 2022; 13:926650. [PMID: 36032090 PMCID: PMC9399855 DOI: 10.3389/fimmu.2022.926650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 07/18/2022] [Indexed: 11/16/2022] Open
Abstract
Insulin is considered to be a key antigenic target of T cells in Type 1 Diabetes (T1D) and autoimmune diabetes in the NOD mouse with particular focus on the B-chain amino acid sequence B:9-23 as the primary epitope. Our lab previously discovered that hybrid insulin peptides (HIPs), comprised of insulin C-peptide fragments fused to other β-cell granule peptides, are ligands for several pathogenic CD4 T cell clones derived from NOD mice and for autoreactive CD4 T cells from T1D patients. A subset of CD4 T cell clones from our panel react to insulin and B:9-23 but only at high concentrations of antigen. We hypothesized that HIPs might also be formed from insulin B-chain sequences covalently bound to other endogenously cleaved ß-cell proteins. We report here on the identification of a B-chain HIP, termed the 6.3HIP, containing a fragment of B:9-23 joined to an endogenously processed peptide of ProSAAS, as a strong neo-epitope for the insulin-reactive CD4 T cell clone BDC-6.3. Using an I-Ag7 tetramer loaded with the 6.3HIP, we demonstrate that T cells reactive to this B-chain HIP can be readily detected in NOD mouse islet infiltrates. This work suggests that some portion of autoreactive T cells stimulated by insulin B:9-23 may be responding to B-chain HIPs as peptide ligands.
Collapse
Affiliation(s)
- Janet M. Wenzlau
- Department of Immunology and Microbiology, School of Medicine, University of Colorado, Aurora, CO, United States
| | - James E. DiLisio
- Department of Immunology and Microbiology, School of Medicine, University of Colorado, Aurora, CO, United States
| | - Gene Barbour
- Department of Immunology and Microbiology, School of Medicine, University of Colorado, Aurora, CO, United States
| | - Mylinh Dang
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy, University of Colorado, Aurora, CO, United States
| | - Anita C. Hohenstein
- Department of Immunology and Microbiology, School of Medicine, University of Colorado, Aurora, CO, United States
| | - Maki Nakayama
- Department of Pediatrics-Barbara Davis Center, School of Medicine, University of Colorado, Aurora, CO, United States
| | - Thomas Delong
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy, University of Colorado, Aurora, CO, United States
| | - Rocky L. Baker
- Department of Immunology and Microbiology, School of Medicine, University of Colorado, Aurora, CO, United States
| | - Kathryn Haskins
- Department of Immunology and Microbiology, School of Medicine, University of Colorado, Aurora, CO, United States
| |
Collapse
|
4
|
Triterpenoids impede the fibrillation and cytotoxicity of human islet amyloid polypeptide. Int J Biol Macromol 2022; 199:189-200. [PMID: 34973981 DOI: 10.1016/j.ijbiomac.2021.12.127] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 12/13/2021] [Accepted: 12/19/2021] [Indexed: 01/05/2023]
Abstract
The inhibition of human islet amyloid polypeptide (hIAPP) deposition to block its toxicity is an important strategy for the prevention and treatment of type II diabetes mellitus (T2DM).Natural compounds with pharmacological properties and low toxicity can serve as a good point to discover potential inhibitors of protein misfolding, which may be useful for the treatment of various amyloidosis-related diseases. Previous studies have reported that triterpenoids, such as maslinic acid (MA) and momordicin I (MI), can modulate glucose metabolism partially by reducing insulin resistance. However, the internal antidiabetic mechanism of these triterpenoids remains unclear. In this study, we examined the inhibition and disaggregation of MAandits isomer MI on the fibrillation of hIAPP using various experimental and computational approaches. The assembly behaviors and peptide-induced cytotoxicity of hIAPP could be effectively resisted by MA and MI. Moreover, the interaction of the two triterpenoids with hIAPP displayed a spontaneous and exothermic process. Moreover, molecular dynamics simulation results of different peptides revealed that MA and MI could bind to Asn and other non-polar residues near the core C-terminal region and reduce the oligomerization of hIAPP. The binding affinity was predominantly contributed by hydrophobic, electrostatic and hydrogen bonding interactions. The present work provides valuable data for MA and MI to treat T2DM and amyloidosis-related diseases.
Collapse
|
5
|
Identifying new molecular players in extracellular proteostasis. Biochem Soc Trans 2021; 50:321-334. [PMID: 34940856 DOI: 10.1042/bst20210369] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 12/07/2021] [Accepted: 12/09/2021] [Indexed: 02/02/2023]
Abstract
Proteostasis refers to a delicately tuned balance between the processes of protein synthesis, folding, localization, and the degradation of proteins found inside and outside cells. Our understanding of extracellular proteostasis is rather limited and largely restricted to knowledge of 11 currently established extracellular chaperones (ECs). This review will briefly outline what is known of the established ECs, before moving on to discuss experimental strategies used to identify new members of this growing family, and an examination of a group of putative new ECs identified using one of these approaches. An observation that emerges from an analysis of the expanding number of ECs is that all of these proteins are multifunctional. Strikingly, the armory of activities each possess uniquely suit them as a group to act together at sites of tissue damage, infection, and inflammation to restore homeostasis. Lastly, we highlight outstanding questions to guide future research in this field.
Collapse
|
6
|
Geraghty NJ, Satapathy S, Kelly M, Cheng F, Lee A, Wilson MR. Expanding the family of extracellular chaperones: Identification of human plasma proteins with chaperone activity. Protein Sci 2021; 30:2272-2286. [PMID: 34553437 PMCID: PMC8521303 DOI: 10.1002/pro.4189] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/14/2021] [Accepted: 09/17/2021] [Indexed: 12/14/2022]
Abstract
Proteostasis, the balance of protein synthesis, folding and degradation, is essential to maintain cellular function and viability, and the many known intracellular chaperones are recognized as playing key roles in sustaining life. In contrast, the identity of constitutively secreted extracellular chaperones (ECs) and their physiological roles in extracellular proteostasis is less completely understood. We designed and implemented a novel strategy, based on the well-known propensity of chaperones to bind to regions of hydrophobicity exposed on misfolding proteins, to discover new ECs present in human blood. We used a destabilized protein that misfolds at 37°C as "bait" to bind to potential ECs in human serum and captured the complexes formed on magnetic beads. Proteins eluted from the beads were identified by mass spectrometry and a group of seven abundant serum proteins was selected for in vitro analysis of chaperone activity. Five of these proteins were shown to specifically inhibit protein aggregation. Vitronectin and plasminogen activator-3 inhibited both the in vitro aggregation of the Alzheimer's β peptide (Aβ1-42 ) to form fibrillar amyloid, and the aggregation of citrate synthase (CS) to form unstructured (amorphous) aggregates. In contrast, prothrombin, C1r, and C1s inhibited the aggregation of Aβ1-42 but did not inhibit CS aggregation. This study thus identified five novel and abundant putative ECs which may play important roles in the maintenance of extracellular proteostasis, and which apparently have differing abilities to inhibit the amorphous and amyloid-forming protein aggregation pathways.
Collapse
Affiliation(s)
- Nicholas J. Geraghty
- Molecular Horizons and School of Chemistry and Molecular BioscienceUniversity of WollongongWollongongAustralia
- Illawarra Health and Medical Research InstituteWollongongAustralia
| | - Sandeep Satapathy
- Molecular Horizons and School of Chemistry and Molecular BioscienceUniversity of WollongongWollongongAustralia
- Blavatnik Institute of Cell Biology, Harvard Medical SchoolBostonMassachusettsUSA
| | - Megan Kelly
- Molecular Horizons and School of Chemistry and Molecular BioscienceUniversity of WollongongWollongongAustralia
- School of MedicineUniversity of WollongongWollongongAustralia
| | - Flora Cheng
- Department of Biomedical Sciences, Centre for Motor Neuron Disease ResearchMacquarie UniversityNorth RydeAustralia
| | - Albert Lee
- Department of Biomedical Sciences, Centre for Motor Neuron Disease ResearchMacquarie UniversityNorth RydeAustralia
| | - Mark R. Wilson
- Molecular Horizons and School of Chemistry and Molecular BioscienceUniversity of WollongongWollongongAustralia
- Illawarra Health and Medical Research InstituteWollongongAustralia
| |
Collapse
|
7
|
Marmentini C, Branco RCS, Boschero AC, Kurauti MA. Islet amyloid toxicity: From genesis to counteracting mechanisms. J Cell Physiol 2021; 237:1119-1142. [PMID: 34636428 DOI: 10.1002/jcp.30600] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 09/09/2021] [Accepted: 10/01/2021] [Indexed: 11/11/2022]
Abstract
Islet amyloid polypeptide (IAPP or amylin) is a hormone co-secreted with insulin by pancreatic β-cells and is the major component of islet amyloid. Islet amyloid is found in the pancreas of patients with type 2 diabetes (T2D) and may be involved in β-cell dysfunction and death, observed in this disease. Thus, investigating the aspects related to amyloid formation is relevant to the development of strategies towards β-cell protection. In this sense, IAPP misprocessing, IAPP overproduction, and disturbances in intra- and extracellular environments seem to be decisive for IAPP to form islet amyloid. Islet amyloid toxicity in β-cells may be triggered in intra- and/or extracellular sites by membrane damage, endoplasmic reticulum stress, autophagy disruption, mitochondrial dysfunction, inflammation, and apoptosis. Importantly, different approaches have been suggested to prevent islet amyloid cytotoxicity, from inhibition of IAPP aggregation to attenuation of cell death mechanisms. Such approaches have improved β-cell function and prevented the development of hyperglycemia in animals. Therefore, counteracting islet amyloid may be a promising therapy for T2D treatment.
Collapse
Affiliation(s)
- Carine Marmentini
- Laboratory of Endocrine Pancreas and Metabolism, Obesity and Comorbidities Research Center (OCRC), University of Campinas (UNICAMP), Campinas, Brazil
| | - Renato C S Branco
- Laboratory of Endocrine Pancreas and Metabolism, Obesity and Comorbidities Research Center (OCRC), University of Campinas (UNICAMP), Campinas, Brazil
| | - Antonio C Boschero
- Laboratory of Endocrine Pancreas and Metabolism, Obesity and Comorbidities Research Center (OCRC), University of Campinas (UNICAMP), Campinas, Brazil
| | - Mirian A Kurauti
- Laboratory of Endocrine Pancreas and Metabolism, Obesity and Comorbidities Research Center (OCRC), University of Campinas (UNICAMP), Campinas, Brazil.,Department of Physiological Sciences, Biological Sciences Center, State University of Maringa (UEM), Maringa, Brazil
| |
Collapse
|
8
|
Rahman MM, Lendel C. Extracellular protein components of amyloid plaques and their roles in Alzheimer's disease pathology. Mol Neurodegener 2021; 16:59. [PMID: 34454574 PMCID: PMC8400902 DOI: 10.1186/s13024-021-00465-0] [Citation(s) in RCA: 120] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Accepted: 06/11/2021] [Indexed: 12/20/2022] Open
Abstract
Alzheimer's disease (AD) is pathologically defined by the presence of fibrillar amyloid β (Aβ) peptide in extracellular senile plaques and tau filaments in intracellular neurofibrillary tangles. Extensive research has focused on understanding the assembly mechanisms and neurotoxic effects of Aβ during the last decades but still we only have a brief understanding of the disease associated biological processes. This review highlights the many other constituents that, beside Aβ, are accumulated in the plaques, with the focus on extracellular proteins. All living organisms rely on a delicate network of protein functionality. Deposition of significant amounts of certain proteins in insoluble inclusions will unquestionably lead to disturbances in the network, which may contribute to AD and copathology. This paper provide a comprehensive overview of extracellular proteins that have been shown to interact with Aβ and a discussion of their potential roles in AD pathology. Methods that can expand the knowledge about how the proteins are incorporated in plaques are described. Top-down methods to analyze post-mortem tissue and bottom-up approaches with the potential to provide molecular insights on the organization of plaque-like particles are compared. Finally, a network analysis of Aβ-interacting partners with enriched functional and structural key words is presented.
Collapse
Affiliation(s)
- M Mahafuzur Rahman
- Department of Chemistry, KTH Royal Institute of Technology, SE-100 44, Stockholm, Sweden.
| | - Christofer Lendel
- Department of Chemistry, KTH Royal Institute of Technology, SE-100 44, Stockholm, Sweden.
| |
Collapse
|
9
|
Ramzy A, Kieffer TJ. Altered islet prohormone processing: A cause or consequence of diabetes? Physiol Rev 2021; 102:155-208. [PMID: 34280055 DOI: 10.1152/physrev.00008.2021] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Peptide hormones are first produced as larger precursor prohormones that require endoproteolytic cleavage to liberate the mature hormones. A structurally conserved but functionally distinct family of nine prohormone convertase enzymes (PCs) are responsible for cleavage of protein precursors of which PC1/3 and PC2 are known to be exclusive to neuroendocrine cells and responsible for prohormone cleavage. Differential expression of PCs within tissues define prohormone processing; whereas glucagon is the major product liberated from proglucagon via PC2 in pancreatic α-cells, proglucagon is preferentially processed by PC1/3 in intestinal L cells to produce glucagon-like peptides 1 and 2 (GLP-1, GLP-2). Beyond our understanding of processing of islet prohormones in healthy islets, there is convincing evidence that proinsulin, proIAPP, and proglucagon processing is altered during prediabetes and diabetes. There is predictive value of elevated circulating proinsulin or proinsulin : C-peptide ratio for progression to type 2 diabetes and elevated proinsulin or proinsulin : C-peptide is predictive for development of type 1 diabetes in at risk groups. After onset of diabetes, patients have elevated circulating proinsulin and proIAPP and proinsulin may be an autoantigen in type 1 diabetes. Further, preclinical studies reveal that α-cells have altered proglucagon processing during diabetes leading to increased GLP-1 production. We conclude that despite strong associative data, current evidence is inconclusive on the potential causal role of impaired prohormone processing in diabetes, and suggest that future work should focus on resolving the question of whether altered prohormone processing is a causal driver or merely a consequence of diabetes pathology.
Collapse
Affiliation(s)
- Adam Ramzy
- Laboratory of Molecular and Cellular Medicine, Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| | - Timothy J Kieffer
- Laboratory of Molecular and Cellular Medicine, Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada.,Department of Surgery, University of British Columbia, Vancouver, BC, Canada.,School of Biomedical Engineering, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
10
|
Xie H, Guo C. Albumin Alters the Conformational Ensemble of Amyloid-β by Promiscuous Interactions: Implications for Amyloid Inhibition. Front Mol Biosci 2021; 7:629520. [PMID: 33708792 PMCID: PMC7940760 DOI: 10.3389/fmolb.2020.629520] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Accepted: 12/30/2020] [Indexed: 12/15/2022] Open
Abstract
Human serum albumin (HSA) is a key endogenous inhibitor of amyloid-β (Αβ) aggregation. In vitro HSA inhibits Aβ fibrillization and targets multiple species along the aggregation pathway including monomers, oligomers, and protofibrils. Amyloid inhibition by HSA has both pathological implications and therapeutic potential, but the underlying molecular mechanism remains elusive. As a first step towards addressing this complex question, we studied the interactions of an Aβ42 monomer with HSA by molecular dynamics simulations. To adequately sample the conformational space, we adapted the replica exchange with solute tempering (REST2) method to selectively heat the Aβ42 peptide in the absence and presence of HSA. Aβ42 binds to multiple sites on HSA with a preference to domain III and adopts various conformations that all differ from the free state. The β-sheet abundances of H14-E22 and A30-M33 regions are significantly reduced by HSA, so are the β-sheet lengths. HSA shifts the conformational ensemble towards more disordered states and alters the β-sheet association patterns. In particular, the frequent association of Q15-V24 and N27-V36 regions into β-hairpin which is critical for aggregation is impeded. HSA primarily interacts with the latter β-region and the N-terminal charged residues. They form promiscuous interactions characterized by salt bridges at the edge of the peptide-protein interface and hydrophobic cores at the center. Consequently, intrapeptide interactions crucial for β-sheet formation are disrupted. Our work builds the bridge between the modification of Aβ conformational ensemble and amyloid inhibition by HSA. It also illustrates the potential of the REST2 method in studying interactions between intrinsically disordered peptides and globular proteins.
Collapse
Affiliation(s)
| | - Cong Guo
- Department of Physics and International Centre for Quantum and Molecular Structures, College of Sciences, Shanghai University, Shanghai, China
| |
Collapse
|
11
|
Shakya M, Yildirim T, Lindberg I. Increased expression and retention of the secretory chaperone proSAAS following cell stress. Cell Stress Chaperones 2020; 25:929-941. [PMID: 32607937 PMCID: PMC7591655 DOI: 10.1007/s12192-020-01128-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 06/05/2020] [Accepted: 06/10/2020] [Indexed: 11/25/2022] Open
Abstract
The secretory pathway of neurons and endocrine cells contains a variety of mechanisms designed to combat cellular stress. These include not only the unfolded protein response pathways but also diverse chaperone proteins that collectively work to ensure proteostatic control of secreted and membrane-bound molecules. One of the least studied of these chaperones is the neural- and endocrine-specific molecule known as proSAAS. This small chaperone protein acts as a potent anti-aggregant both in vitro and in cellulo and also represents a cerebrospinal fluid biomarker in Alzheimer's disease. In the present study, we have examined the idea that proSAAS, like other secretory chaperones, might represent a stress-responsive protein. We find that exposure of neural and endocrine cells to the cell stressors tunicamycin and thapsigargin increases cellular proSAAS mRNA and protein in Neuro2A cells. Paradoxically, proSAAS secretion is inhibited by these same drugs. Exposure of Neuro2A cells to low concentrations of the hypoxic stress inducer cobalt chloride, or to sodium arsenite, an oxidative stressor, also increases cellular proSAAS content and reduces its secretion. We conclude that the cellular levels of the small secretory chaperone proSAAS are positively modulated by cell stress.
Collapse
Affiliation(s)
- Manita Shakya
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, 20 Penn St, HSF2, S267, Baltimore, MD, 21201, USA
| | - Taha Yildirim
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, 20 Penn St, HSF2, S267, Baltimore, MD, 21201, USA
| | - Iris Lindberg
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, 20 Penn St, HSF2, S267, Baltimore, MD, 21201, USA.
| |
Collapse
|
12
|
Chaplot K, Jarvela TS, Lindberg I. Secreted Chaperones in Neurodegeneration. Front Aging Neurosci 2020; 12:268. [PMID: 33192447 PMCID: PMC7481362 DOI: 10.3389/fnagi.2020.00268] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 08/03/2020] [Indexed: 12/11/2022] Open
Abstract
Protein homeostasis, or proteostasis, is a combination of cellular processes that govern protein quality control, namely, protein translation, folding, processing, and degradation. Disruptions in these processes can lead to protein misfolding and aggregation. Proteostatic disruption can lead to cellular changes such as endoplasmic reticulum or oxidative stress; organelle dysfunction; and, if continued, to cell death. A majority of neurodegenerative diseases involve the pathologic aggregation of proteins that subverts normal neuronal function. While prior reviews of neuronal proteostasis in neurodegenerative processes have focused on cytoplasmic chaperones, there is increasing evidence that chaperones secreted both by neurons and other brain cells in the extracellular - including transsynaptic - space play important roles in neuronal proteostasis. In this review, we will introduce various secreted chaperones involved in neurodegeneration. We begin with clusterin and discuss its identification in various protein aggregates, and the use of increased cerebrospinal fluid (CSF) clusterin as a potential biomarker and as a potential therapeutic. Our next secreted chaperone is progranulin; polymorphisms in this gene represent a known genetic risk factor for frontotemporal lobar degeneration, and progranulin overexpression has been found to be effective in reducing Alzheimer's- and Parkinson's-like neurodegenerative phenotypes in mouse models. We move on to BRICHOS domain-containing proteins, a family of proteins containing highly potent anti-amyloidogenic activity; we summarize studies describing the biochemical mechanisms by which recombinant BRICHOS protein might serve as a therapeutic agent. The next section of the review is devoted to the secreted chaperones 7B2 and proSAAS, small neuronal proteins which are packaged together with neuropeptides and released during synaptic activity. Since proteins can be secreted by both classical secretory and non-classical mechanisms, we also review the small heat shock proteins (sHsps) that can be secreted from the cytoplasm to the extracellular environment and provide evidence for their involvement in extracellular proteostasis and neuroprotection. Our goal in this review focusing on extracellular chaperones in neurodegenerative disease is to summarize the most recent literature relating to neurodegeneration for each secreted chaperone; to identify any common mechanisms; and to point out areas of similarity as well as differences between the secreted chaperones identified to date.
Collapse
Affiliation(s)
| | | | - Iris Lindberg
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, University of Maryland, Baltimore, Baltimore, MD, United States
| |
Collapse
|
13
|
Ramzy A, Asadi A, Kieffer TJ. Revisiting Proinsulin Processing: Evidence That Human β-Cells Process Proinsulin With Prohormone Convertase (PC) 1/3 but Not PC2. Diabetes 2020; 69:1451-1462. [PMID: 32291281 DOI: 10.2337/db19-0276] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 04/03/2020] [Indexed: 11/13/2022]
Abstract
Insulin is first produced in pancreatic β-cells as the precursor prohormone proinsulin. Defective proinsulin processing has been implicated in the pathogenesis of both type 1 and type 2 diabetes. Though there is substantial evidence that mouse β-cells process proinsulin using prohormone convertase 1/3 (PC1/3) and then prohormone convertase 2 (PC2), this finding has not been verified in human β-cells. Immunofluorescence with validated antibodies revealed that there was no detectable PC2 immunoreactivity in human β-cells and little PCSK2 mRNA by in situ hybridization. Similarly, rat β-cells were not immunoreactive for PC2. In all histological experiments, PC2 immunoreactivity in neighboring α-cells acted as a positive control. In donors with type 2 diabetes, β-cells had elevated PC2 immunoreactivity, suggesting that aberrant PC2 expression may contribute to impaired proinsulin processing in β-cells of patients with diabetes. To support histological findings using a biochemical approach, human islets were used for pulse-chase experiments. Despite inhibition of PC2 function by temperature blockade, brefeldin A, chloroquine, and multiple inhibitors that blocked production of mature glucagon from proglucagon, β-cells retained the ability to produce mature insulin. Conversely, suppression of PC1/3 blocked processing of proinsulin but not proglucagon. By demonstrating that healthy human β-cells process proinsulin by PC1/3 but not PC2, we suggest that there is a need to revise the long-standing theory of proinsulin processing.
Collapse
Affiliation(s)
- Adam Ramzy
- Laboratory of Molecular and Cellular Medicine, Department of Cellular and Physiological Sciences, Life Sciences Institute, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Ali Asadi
- Laboratory of Molecular and Cellular Medicine, Department of Cellular and Physiological Sciences, Life Sciences Institute, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Timothy J Kieffer
- Laboratory of Molecular and Cellular Medicine, Department of Cellular and Physiological Sciences, Life Sciences Institute, The University of British Columbia, Vancouver, British Columbia, Canada
- Department of Surgery, The University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
14
|
Pedrero-Prieto CM, García-Carpintero S, Frontiñán-Rubio J, Llanos-González E, Aguilera García C, Alcaín FJ, Lindberg I, Durán-Prado M, Peinado JR, Rabanal-Ruiz Y. A comprehensive systematic review of CSF proteins and peptides that define Alzheimer's disease. Clin Proteomics 2020; 17:21. [PMID: 32518535 PMCID: PMC7273668 DOI: 10.1186/s12014-020-09276-9] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 04/09/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND During the last two decades, over 100 proteomics studies have identified a variety of potential biomarkers in CSF of Alzheimer's (AD) patients. Although several reviews have proposed specific biomarkers, to date, the statistical relevance of these proteins has not been investigated and no peptidomic analyses have been generated on the basis of specific up- or down- regulation. Herein, we perform an analysis of all unbiased explorative proteomics studies of CSF biomarkers in AD to critically evaluate whether proteins and peptides identified in each study are consistent in distribution; direction change; and significance, which would strengthen their potential use in studies of AD pathology and progression. METHODS We generated a database containing all CSF proteins whose levels are known to be significantly altered in human AD from 47 independent, validated, proteomics studies. Using this database, which contains 2022 AD and 2562 control human samples, we examined whether each protein is consistently present on the basis of reliable statistical studies; and if so, whether it is over- or under-represented in AD. Additionally, we performed a direct analysis of available mass spectrometric data of these proteins to generate an AD CSF peptide database with 3221 peptides for further analysis. RESULTS Of the 162 proteins that were identified in 2 or more studies, we investigated their enrichment or depletion in AD CSF. This allowed us to identify 23 proteins which were increased and 50 proteins which were decreased in AD, some of which have never been revealed as consistent AD biomarkers (i.e. SPRC or MUC18). Regarding the analysis of the tryptic peptide database, we identified 87 peptides corresponding to 13 proteins as the most highly consistently altered peptides in AD. Analysis of tryptic peptide fingerprinting revealed specific peptides encoded by CH3L1, VGF, SCG2, PCSK1N, FBLN3 and APOC2 with the highest probability of detection in AD. CONCLUSIONS Our study reveals a panel of 27 proteins and 21 peptides highly altered in AD with consistent statistical significance; this panel constitutes a potent tool for the classification and diagnosis of AD.
Collapse
Affiliation(s)
- Cristina M. Pedrero-Prieto
- Department of Medical Sciences, Ciudad Real Medical School, Oxidative Stress and Neurodegeneration Group, Regional Center for Biomedical Research, University of Castilla-La Mancha, Ciudad Real, Spain
| | - Sonia García-Carpintero
- Department of Medical Sciences, Ciudad Real Medical School, Oxidative Stress and Neurodegeneration Group, Regional Center for Biomedical Research, University of Castilla-La Mancha, Ciudad Real, Spain
| | - Javier Frontiñán-Rubio
- Department of Medical Sciences, Ciudad Real Medical School, Oxidative Stress and Neurodegeneration Group, Regional Center for Biomedical Research, University of Castilla-La Mancha, Ciudad Real, Spain
| | - Emilio Llanos-González
- Department of Medical Sciences, Ciudad Real Medical School, Oxidative Stress and Neurodegeneration Group, Regional Center for Biomedical Research, University of Castilla-La Mancha, Ciudad Real, Spain
| | - Cristina Aguilera García
- Department of Medical Sciences, Ciudad Real Medical School, Oxidative Stress and Neurodegeneration Group, Regional Center for Biomedical Research, University of Castilla-La Mancha, Ciudad Real, Spain
| | - Francisco J. Alcaín
- Department of Medical Sciences, Ciudad Real Medical School, Oxidative Stress and Neurodegeneration Group, Regional Center for Biomedical Research, University of Castilla-La Mancha, Ciudad Real, Spain
| | - Iris Lindberg
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, University of Maryland, Baltimore, MD 21201 USA
| | - Mario Durán-Prado
- Department of Medical Sciences, Ciudad Real Medical School, Oxidative Stress and Neurodegeneration Group, Regional Center for Biomedical Research, University of Castilla-La Mancha, Ciudad Real, Spain
| | - Juan R. Peinado
- Department of Medical Sciences, Ciudad Real Medical School, Oxidative Stress and Neurodegeneration Group, Regional Center for Biomedical Research, University of Castilla-La Mancha, Ciudad Real, Spain
| | - Yoana Rabanal-Ruiz
- Department of Medical Sciences, Ciudad Real Medical School, Oxidative Stress and Neurodegeneration Group, Regional Center for Biomedical Research, University of Castilla-La Mancha, Ciudad Real, Spain
| |
Collapse
|
15
|
Altamirano-Bustamante MM, Altamirano-Bustamante NF, Larralde-Laborde M, Lara-Martínez R, Leyva-García E, Garrido-Magaña E, Rojas G, Jiménez-García LF, Revilla-Monsalve C, Altamirano P, Calzada-León R. Unpacking the aggregation-oligomerization-fibrillization process of naturally-occurring hIAPP amyloid oligomers isolated directly from sera of children with obesity or diabetes mellitus. Sci Rep 2019; 9:18465. [PMID: 31804529 PMCID: PMC6895187 DOI: 10.1038/s41598-019-54570-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Accepted: 11/14/2019] [Indexed: 12/14/2022] Open
Abstract
The formation of amyloid oligomers and fibrils of the human islet amyloid polypeptide (hIAPP) has been linked with β- cell failure and death which causes the onset, progression, and comorbidities of diabetes. We begin to unpack the aggregation-oligomerization-fibrillization process of these oligomers taken from sera of pediatric patients. The naturally occurring or real hIAPP (not synthetic) amyloid oligomers (RIAO) were successfully isolated, we demonstrated the presence of homo (dodecamers, hexamers, and trimers) and hetero-RIAO, as well as several biophysical characterizations which allow us to learn from the real phenomenon taking place. We found that the aggregation/oligomerization process is active in the sera and showed that it happens very fast. The RIAO can form fibers and react with anti-hIAPP and anti-amyloid oligomers antibodies. Our results opens the epistemic horizon and reveal real differences between the four groups (Controls vs obesity, T1DM or T2DM) accelerating the process of understanding and discovering novel and more efficient prevention, diagnostic, transmission and therapeutic pathways.
Collapse
Affiliation(s)
- Myriam M Altamirano-Bustamante
- Unidad de Investigación en Enfermedades Metabólicas, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico city, Mexico.
| | | | - Mateo Larralde-Laborde
- Unidad de Investigación en Enfermedades Metabólicas, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico city, Mexico
| | | | - Edgar Leyva-García
- Unidad de Investigación en Enfermedades Metabólicas, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico city, Mexico
| | - Eulalia Garrido-Magaña
- UMAE Hospital de Pediatría, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico city, Mexico
| | - Gerardo Rojas
- UMAE Hospital de Pediatría, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico city, Mexico
| | | | - Cristina Revilla-Monsalve
- Unidad de Investigación en Enfermedades Metabólicas, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico city, Mexico
| | - Perla Altamirano
- Unidad de Investigación en Enfermedades Metabólicas, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico city, Mexico
| | | |
Collapse
|
16
|
Yang W, Tan P, Fu X, Hong L. Prediction of amyloid aggregation rates by machine learning and feature selection. J Chem Phys 2019; 151:084106. [PMID: 31470712 DOI: 10.1063/1.5113848] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
A novel data-based machine learning algorithm for predicting amyloid aggregation rates is reported in this paper. Based on a highly nonlinear projection from 16 intrinsic features of a protein and 4 extrinsic features of the environment to the protein aggregation rate, a feedforward fully connected neural network (FCN) with one hidden layer is trained on a dataset composed of 21 different kinds of amyloid proteins and tested on 4 rest proteins. FCN shows a much better performance than traditional algorithms, such as multivariable linear regression and support vector regression, with an average accuracy higher than 90%. Furthermore, by the correlation analysis and the principal component analysis, seven key features, folding energy, HP patterns for helix, sheet and helices cross membrane, pH, ionic strength, and protein concentration, are shown to constitute a minimum feature set for characterizing the amyloid aggregation kinetics.
Collapse
Affiliation(s)
- Wuyue Yang
- Zhou Pei-Yuan Center for Applied Mathematics, Tsinghua University, Beijing 100084, China
| | - Pengzhen Tan
- Zhou Pei-Yuan Center for Applied Mathematics, Tsinghua University, Beijing 100084, China
| | - Xianjun Fu
- Institute for Literature and Culture of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Liu Hong
- Zhou Pei-Yuan Center for Applied Mathematics, Tsinghua University, Beijing 100084, China
| |
Collapse
|
17
|
Wentink A, Nussbaum-Krammer C, Bukau B. Modulation of Amyloid States by Molecular Chaperones. Cold Spring Harb Perspect Biol 2019; 11:a033969. [PMID: 30755450 PMCID: PMC6601462 DOI: 10.1101/cshperspect.a033969] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Aberrant protein aggregation is a defining feature of most neurodegenerative diseases. During pathological aggregation, key proteins transition from their native state to alternative conformations, which are prone to oligomerize into highly ordered fibrillar states. As part of the cellular quality control machinery, molecular chaperones can intervene at many stages of the aggregation process to inhibit or reverse aberrant protein aggregation or counteract the toxicity associated with amyloid species. Although the action of chaperones is considered cytoprotective, essential housekeeping functions can be hijacked for the propagation and spreading of protein aggregates, suggesting the cellular protein quality control system constitutes a double-edged sword in neurodegeneration. Here, we discuss the various mechanisms used by chaperones to influence protein aggregation into amyloid fibrils to understand how the interplay of these activities produces specific cellular outcomes and to define mechanisms that may be targeted by pharmacological agents for the treatment of neurodegenerative conditions.
Collapse
Affiliation(s)
- Anne Wentink
- Center for Molecular Biology of Heidelberg University (ZMBH) and German Cancer Research Center (DKFZ), DKFZ-ZMBH Alliance, D-69120 Heidelberg, Germany
| | - Carmen Nussbaum-Krammer
- Center for Molecular Biology of Heidelberg University (ZMBH) and German Cancer Research Center (DKFZ), DKFZ-ZMBH Alliance, D-69120 Heidelberg, Germany
| | - Bernd Bukau
- Center for Molecular Biology of Heidelberg University (ZMBH) and German Cancer Research Center (DKFZ), DKFZ-ZMBH Alliance, D-69120 Heidelberg, Germany
| |
Collapse
|
18
|
Miraee-Nedjad S, Sims PFG, Schwartz JM, Doig AJ. Effect of IAPP on the proteome of cultured Rin-5F cells. BMC BIOCHEMISTRY 2018; 19:9. [PMID: 30419808 PMCID: PMC6233276 DOI: 10.1186/s12858-018-0099-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 10/22/2018] [Indexed: 11/12/2022]
Abstract
Background Islet amyloid polypeptide (IAPP) or amylin deposits can be found in the islets of type 2 diabetes patients. The peptide is suggested to be involved in the etiology of the disease through formation of amyloid deposits and destruction of β islet cells, though the underlying molecular events leading from IAPP deposition to β cell death are still largely unknown. Results We used OFFGEL™ proteomics to study how IAPP exposure affects the proteome of rat pancreatic insulinoma Rin-5F cells. The OFFGEL™ methodology is highly effective at generating quantitative data on hundreds of proteins affected by IAPP, with its accuracy confirmed by In Cell Western and Quantitative Real Time PCR results. Combining data on individual proteins identifies pathways and protein complexes affected by IAPP. IAPP disrupts protein synthesis and degradation, and induces oxidative stress. It causes decreases in protein transport and localization. IAPP disrupts the regulation of ubiquitin-dependent protein degradation and increases catabolic processes. IAPP causes decreases in protein transport and localization, and affects the cytoskeleton, DNA repair and oxidative stress. Conclusions Results are consistent with a model where IAPP aggregates overwhelm the ability of a cell to degrade proteins via the ubiquitin system. Ultimately this leads to apoptosis. IAPP aggregates may be also toxic to the cell by causing oxidative stress, leading to DNA damage or by decreasing protein transport. The reversal of any of these effects, perhaps by targeting proteins which alter in response to IAPP, may be beneficial for type II diabetes. Electronic supplementary material The online version of this article (10.1186/s12858-018-0099-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Samaneh Miraee-Nedjad
- Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK
| | - Paul F G Sims
- Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK
| | - Jean-Marc Schwartz
- Division of Evolution & Genomic Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, M13 9PT, UK
| | - Andrew J Doig
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, M13 9PT, UK.
| |
Collapse
|
19
|
Chen YC, Taylor AJ, Verchere CB. Islet prohormone processing in health and disease. Diabetes Obes Metab 2018; 20 Suppl 2:64-76. [PMID: 30230179 DOI: 10.1111/dom.13401] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 05/30/2018] [Accepted: 05/30/2018] [Indexed: 12/15/2022]
Abstract
Biosynthesis of peptide hormones by pancreatic islet endocrine cells is a tightly orchestrated process that is critical for metabolic homeostasis. Like neuroendocrine peptides, insulin and other islet hormones are first synthesized as larger precursor molecules that are processed to their mature secreted products through a series of proteolytic cleavages, mediated by the prohormone convertases Pc1/3 and Pc2, and carboxypeptidase E. Additional posttranslational modifications including C-terminal amidation of the β-cell peptide islet amyloid polypeptide (IAPP) by peptidyl-glycine α-amidating monooxygenase (Pam) may also occur. Genome-wide association studies (GWAS) have showed genetic linkage of these processing enzymes to obesity, β-cell dysfunction, and type 2 diabetes (T2D), pointing to their important roles in metabolism and blood glucose regulation. In both type 1 diabetes (T1D) and T2D, and in the face of metabolic or inflammatory stresses, islet prohormone processing may become impaired; indeed elevated proinsulin:insulin (PI:I) ratios are a hallmark of the β-cell dysfunction in T2D. Recent studies suggest that genetic or acquired defects in proIAPP processing may lead to the production and secretion of incompletely processed forms of proIAPP that could contribute to T2D pathogenesis, and additionally that impaired processing of both PI and proIAPP may be characteristic of β-cell dysfunction in T1D. In islet α-cells, the prohormone proglucagon is normally processed to bioactive glucagon by Pc2 but may express Pc1/3 under certain conditions leading to production of GLP-1(7-36NH2 ). A better understanding of how β-cell processing of PI and proIAPP, as well as α-cell processing of proglucagon, are impacted by genetic susceptibility and in the face of diabetogenic stresses, may lead to new therapeutic approaches for improving islet function in diabetes.
Collapse
Affiliation(s)
- Yi-Chun Chen
- Department of Surgery, BC Children's Hospital Research Institute and University of British Columbia, Vancouver, British Columbia, Canada
- Department of Pathology and Laboratory Medicine, BC Children's Hospital Research Institute and University of British Columbia, Vancouver, British Columbia, Canada
| | - Austin J Taylor
- Department of Surgery, BC Children's Hospital Research Institute and University of British Columbia, Vancouver, British Columbia, Canada
- Department of Pathology and Laboratory Medicine, BC Children's Hospital Research Institute and University of British Columbia, Vancouver, British Columbia, Canada
| | - C Bruce Verchere
- Department of Surgery, BC Children's Hospital Research Institute and University of British Columbia, Vancouver, British Columbia, Canada
- Department of Pathology and Laboratory Medicine, BC Children's Hospital Research Institute and University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
20
|
Jarvela TS, Womack T, Georgiou P, Gould TD, Eriksen JL, Lindberg I. 7B2 chaperone knockout in APP model mice results in reduced plaque burden. Sci Rep 2018; 8:9813. [PMID: 29955078 PMCID: PMC6023903 DOI: 10.1038/s41598-018-28031-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 06/08/2018] [Indexed: 01/18/2023] Open
Abstract
Impairment of neuronal proteostasis is a hallmark of Alzheimer's and other neurodegenerative diseases. However, the underlying molecular mechanisms leading to pathogenic protein aggregation, and the role of secretory chaperone proteins in this process, are poorly understood. We have previously shown that the neural-and endocrine-specific secretory chaperone 7B2 potently blocks in vitro fibrillation of Aβ42. To determine whether 7B2 can function as a chaperone in vivo, we measured plaque formation and performed behavioral assays in 7B2-deficient mice in an hAPPswe/PS1dE9 Alzheimer's model mouse background. Surprisingly, immunocytochemical analysis of cortical levels of thioflavin S- and Aβ-reactive plaques showed that APP mice with a partial or complete lack of 7B2 expression exhibited a significantly lower number and burden of thioflavin S-reactive, as well as Aβ-immunoreactive, plaques. However, 7B2 knockout did not affect total brain levels of either soluble or insoluble Aβ. While hAPP model mice performed poorly in the Morris water maze, their brain 7B2 levels did not impact performance. Since 7B2 loss reduced amyloid plaque burden, we conclude that brain 7B2 can impact Aβ disposition in a manner that facilitates plaque formation. These results are reminiscent of prior findings in hAPP model mice lacking the ubiquitous secretory chaperone clusterin.
Collapse
Affiliation(s)
- Timothy S Jarvela
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Tasha Womack
- Department of Pharmacology, College of Pharmacy, University of Houston, Houston, TX, USA
| | - Polymnia Georgiou
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Todd D Gould
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Jason L Eriksen
- Department of Pharmacology, College of Pharmacy, University of Houston, Houston, TX, USA
| | - Iris Lindberg
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
21
|
Fernández-Gómez I, Sablón-Carrazana M, Bencomo-Martínez A, Domínguez G, Lara-Martínez R, Altamirano-Bustamante NF, Jiménez-García LF, Pasten-Hidalgo K, Castillo-Rodríguez RA, Altamirano P, Marrero SR, Revilla-Monsalve C, Valdés-Sosa P, Salamanca-Gómez F, Garrido-Magaña E, Rodríguez-Tanty C, Altamirano-Bustamante MM. Diabetes Drug Discovery: hIAPP 1-37 Polymorphic Amyloid Structures as Novel Therapeutic Targets. Molecules 2018; 23:molecules23030686. [PMID: 29562662 PMCID: PMC6017868 DOI: 10.3390/molecules23030686] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 02/20/2018] [Accepted: 02/21/2018] [Indexed: 12/21/2022] Open
Abstract
Human islet amyloid peptide (hIAPP1–37) aggregation is an early step in Diabetes Mellitus. We aimed to evaluate a family of pharmaco-chaperones to act as modulators that provide dynamic interventions and the multi-target capacity (native state, cytotoxic oligomers, protofilaments and fibrils of hIAPP1–37) required to meet the treatment challenges of diabetes. We used a cross-functional approach that combines in silico and in vitro biochemical and biophysical methods to study the hIAPP1–37 aggregation-oligomerization process as to reveal novel potential anti-diabetic drugs. The family of pharmaco-chaperones are modulators of the oligomerization and fibre formation of hIAPP1–37. When they interact with the amino acid in the amyloid-like steric zipper zone, they inhibit and/or delay the aggregation-oligomerization pathway by binding and stabilizing several amyloid structures of hIAPP1–37. Moreover, they can protect cerebellar granule cells (CGC) from the cytotoxicity produced by the hIAPP1–37 oligomers. The modulation of proteostasis by the family of pharmaco-chaperones A–F is a promising potential approach to limit the onset and progression of diabetes and its comorbidities.
Collapse
Affiliation(s)
- Isaac Fernández-Gómez
- Unidad de Investigación en Enfermedades Metabólicas, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Ciudad de México 06720, Mexico.
| | | | | | | | - Reyna Lara-Martínez
- Departamento de Biología Celular, Facultad de Ciencias, UNAM, Ciudad de México 04510, Mexico.
| | | | | | - Karina Pasten-Hidalgo
- Instituto Nacional de Pediatría, Ciudad de México 04530, Mexico.
- Cátedras Conacyt, Instituto Nacional de Pediatría, Ciudad de México 04530, Mexico.
| | - Rosa Angélica Castillo-Rodríguez
- Instituto Nacional de Pediatría, Ciudad de México 04530, Mexico.
- Cátedras Conacyt, Instituto Nacional de Pediatría, Ciudad de México 04530, Mexico.
| | - Perla Altamirano
- Servicio de Medicina Nuclear, Hospital de Especialidades, CMN, La Raza, Instituto Mexicano del Seguro Social, Ciudad de México 06720, Mexico.
| | | | - Cristina Revilla-Monsalve
- Unidad de Investigación en Enfermedades Metabólicas, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Ciudad de México 06720, Mexico.
| | - Peter Valdés-Sosa
- Departamento de Neuroquímica, Centro de Neurociencias de Cuba, Habana 11600, Cuba.
| | - Fabio Salamanca-Gómez
- Coordinación de Investigación en Salud, Instituto Mexicano del Seguro Social, Ciudad de México 06720, Mexico.
| | - Eulalia Garrido-Magaña
- UMAE Hospital de Pediatría, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Ciudad de México 06720, Mexico.
| | | | - Myriam M Altamirano-Bustamante
- Unidad de Investigación en Enfermedades Metabólicas, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Ciudad de México 06720, Mexico.
| |
Collapse
|
22
|
Pilkington EH, Xing Y, Wang B, Kakinen A, Wang M, Davis TP, Ding F, Ke PC. Effects of Protein Corona on IAPP Amyloid Aggregation, Fibril Remodelling, and Cytotoxicity. Sci Rep 2017; 7:2455. [PMID: 28550295 PMCID: PMC5446405 DOI: 10.1038/s41598-017-02597-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 04/12/2017] [Indexed: 01/24/2023] Open
Abstract
Aggregation of islet amyloid polypeptide (IAPP), a peptide hormone co-synthesized and co-stored with insulin in pancreatic cells and also co-secreted to the circulation, is associated with beta-cell death in type-2 diabetes (T2D). In T2D patients IAPP is found aggregating in the extracellular space of the islets of Langerhans. Although the physiological environments of these intra- and extra-cellular compartments and vascular systems significantly differ, the presence of proteins is ubiquitous but the effects of protein binding on IAPP aggregation are largely unknown. Here we examined the binding of freshly-dissolved IAPP as well as pre-formed fibrils with two homologous proteins, namely cationic lysozyme (Lys) and anionic alpha-lactalbumin (aLac), both of which can be found in the circulation. Biophysical characterizations and a cell viability assay revealed distinct effects of Lys and aLac on IAPP amyloid aggregation, fibril remodelling and cytotoxicity, pointing to the role of protein "corona" in conferring the biological impact of amyloidogenic peptides. Systematic molecular dynamics simulations further provided molecular and structural details for the observed differential effects of proteins on IAPP amyloidosis. This study facilitates our understanding of the fate and transformation of IAPP in vivo, which are expected to have consequential bearings on IAPP glycemic control and T2D pathology.
Collapse
Affiliation(s)
- Emily H Pilkington
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Yanting Xing
- Department of Physics and Astronomy, Clemson University, Clemson, SC, 29634, USA
| | - Bo Wang
- Department of Physics and Astronomy, Clemson University, Clemson, SC, 29634, USA
| | - Aleksandr Kakinen
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Miaoyi Wang
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Thomas P Davis
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia.
- Department of Chemistry, Warwick University, Gibbet Hill, Coventry, CV4 7AL, United Kingdom.
| | - Feng Ding
- Department of Physics and Astronomy, Clemson University, Clemson, SC, 29634, USA.
| | - Pu Chun Ke
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia.
| |
Collapse
|
23
|
The neural chaperone proSAAS blocks α-synuclein fibrillation and neurotoxicity. Proc Natl Acad Sci U S A 2016; 113:E4708-15. [PMID: 27457957 DOI: 10.1073/pnas.1601091113] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Emerging evidence strongly suggests that chaperone proteins are cytoprotective in neurodegenerative proteinopathies involving protein aggregation; for example, in the accumulation of aggregated α-synuclein into the Lewy bodies present in Parkinson's disease. Of the various chaperones known to be associated with neurodegenerative disease, the small secretory chaperone known as proSAAS (named after four residues in the amino terminal region) has many attractive properties. We show here that proSAAS, widely expressed in neurons throughout the brain, is associated with aggregated synuclein deposits in the substantia nigra of patients with Parkinson's disease. Recombinant proSAAS potently inhibits the fibrillation of α-synuclein in an in vitro assay; residues 158-180, containing a largely conserved element, are critical to this bioactivity. ProSAAS also exhibits a neuroprotective function; proSAAS-encoding lentivirus blocks α-synuclein-induced cytotoxicity in primary cultures of nigral dopaminergic neurons, and recombinant proSAAS blocks α-synuclein-induced cytotoxicity in SH-SY5Y cells. Four independent proteomics studies have previously identified proSAAS as a potential cerebrospinal fluid biomarker in various neurodegenerative diseases. Coupled with prior work showing that proSAAS blocks β-amyloid aggregation into fibrils, this study supports the idea that neuronal proSAAS plays an important role in proteostatic processes. ProSAAS thus represents a possible therapeutic target in neurodegenerative disease.
Collapse
|
24
|
Yamamoto H, Ramos-Molina B, Lick AN, Prideaux M, Albornoz V, Bonewald L, Lindberg I. Posttranslational processing of FGF23 in osteocytes during the osteoblast to osteocyte transition. Bone 2016; 84:120-130. [PMID: 26746780 PMCID: PMC4755901 DOI: 10.1016/j.bone.2015.12.055] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Revised: 12/04/2015] [Accepted: 12/09/2015] [Indexed: 11/29/2022]
Abstract
FGF23 is an O-glycosylated circulating peptide hormone with a critical role in phosphate homeostasis; it is inactivated by cellular proprotein convertases in a pre-release degradative pathway. We have here examined the metabolism of FGF23 in a model bone cell line, IDG-SW3, prior to and following differentiation, as well as in regulated secretory cells. Labeling experiments showed that the majority of (35)S-labeled FGF23 was cleaved to smaller fragments which were constitutively secreted by all cell types. Intact FGF23 was much more efficiently stored in differentiated than in undifferentiated IDG-SW3 cells. The prohormone convertase PC2 has recently been implicated in FGF23 degradation; however, FGF23 was not targeted to forskolin-stimulatable secretory vesicles in a regulated cell line, suggesting that it lacks a targeting signal to PC2-containing compartments. In vitro, PC1/3 and PC2, but not furin, efficiently cleaved glycosylated FGF23; surprisingly, PC5/6 accomplished a small amount of conversion. FGF23 has recently been shown to be phosphorylated by the kinase FAM20C, a process which was shown to reduce FGF23 glycosylation and promote its cleavage; our in vitro data, however, show that phosphorylation does not directly impact cleavage, as both PC5/6 and furin were able to efficiently cleave unglycosylated, phosphorylated FGF23. Using qPCR, we found that the expression of FGF23 and PC5/6, but not PC2 or furin, increased substantially following osteoblast to osteocyte differentiation. Western blotting confirmed the large increase in PC5/6 expression upon differentiation. FGF23 has been linked to a variety of bone disorders ranging from autosomal dominant hypophosphatemic rickets to chronic kidney disease. A better understanding of the biosynthetic pathway of this hormone may lead to new treatments for these diseases.
Collapse
Affiliation(s)
- Hiroyuki Yamamoto
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Bruno Ramos-Molina
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Adam N Lick
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Matthew Prideaux
- School of Dentistry, Department of Oral and Craniofacial Sciences, University of Missouri-Kansas City, Kansas City, MO 64108, USA
| | - Valeria Albornoz
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Lynda Bonewald
- School of Dentistry, Department of Oral and Craniofacial Sciences, University of Missouri-Kansas City, Kansas City, MO 64108, USA
| | - Iris Lindberg
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| |
Collapse
|
25
|
Ramos-Molina B, Martin MG, Lindberg I. PCSK1 Variants and Human Obesity. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2016; 140:47-74. [PMID: 27288825 DOI: 10.1016/bs.pmbts.2015.12.001] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PCSK1, encoding prohormone convertase 1/3 (PC1/3), was one of the first genes linked to monogenic early-onset obesity. PC1/3 is a protease involved in the biosynthetic processing of a variety of neuropeptides and prohormones in endocrine tissues. PC1/3 activity is essential for the activating cleavage of many peptide hormone precursors implicated in the regulation of food ingestion, glucose homeostasis, and energy homeostasis, for example, proopiomelanocortin, proinsulin, proglucagon, and proghrelin. A large number of genome-wide association studies in a variety of different populations have now firmly established a link between three PCSK1 polymorphisms frequent in the population and increased risk of obesity. Human subjects with PC1/3 deficiency, a rare autosomal-recessive disorder caused by the presence of loss-of-function mutations in both alleles, are obese and display a complex set of endocrinopathies. Increasing numbers of genetic diagnoses of infants with persistent diarrhea has recently led to the finding of many novel PCSK1 mutations. PCSK1-deficient infants experience severe intestinal malabsorption during the first years of life, requiring controlled nutrition; these children then become hyperphagic, with associated obesity. The biochemical characterization of novel loss-of-function PCSK1 mutations has resulted in the discovery of new pathological mechanisms affecting the cell biology of the endocrine cell beyond simple loss of enzyme activity, for example, dominant-negative effects of certain mutants on wild-type PC1/3 protein, and activation of the cellular unfolded protein response by endoplasmic reticulum-retained mutants. A better understanding of these molecular and cellular pathologies may illuminate possible treatments for the complex endocrinopathy of PCSK1 deficiency, including obesity.
Collapse
Affiliation(s)
- B Ramos-Molina
- Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - M G Martin
- Department of Pediatrics, Division of Gastroenterology and Nutrition, Mattel Children's Hospital and the David Geffen School of Medicine, Los Angeles, CA, United States of America
| | - I Lindberg
- Department of Anatomy and Neurobiology, University of Maryland, Baltimore, MD, United States of America.
| |
Collapse
|
26
|
Ramos-Molina B, Lindberg I. Phosphorylation and Alternative Splicing of 7B2 Reduce Prohormone Convertase 2 Activation. Mol Endocrinol 2015; 29:756-64. [PMID: 25811241 DOI: 10.1210/me.2014-1394] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
FAM20C is a secretory kinase responsible for the phosphorylation of multiple secreted proteins in mammalian cells; it has been shown to phosphorylate serine residues within a variety of different bone proteins. In this work we demonstrate that FAM20C also phosphorylates threonines, specifically those within the N-terminal domain of the neuroendocrine chaperone 7B2. Analysis of the primary sequence of 7B2 revealed that three threonine residues in its N-terminal domain are located within FAM20C consensus motifs: Thr73, Thr99, and Thr111. The individual substitution of Thr73 and Thr111 residues by neutral alanines caused a marked decrease in the total phosphorylation of 7B2. Furthermore, the phosphomimetic substitution of Thr111 by Glu clearly diminished the ability of 7B2 to activate pro-prohormone convertase 2 (PC2) in 7B2-lacking SK-N-MC neuroblastoma cells, suggesting that the phosphorylation of this residue critically impacts the 7B2-proPC2 interaction. However, the phosphomimetic mutation did not alter 7B2's ability to function as an antiaggregant for human islet amyloid polypeptide. FAM20C-mediated phosphorylation of a common alternatively spliced variant of human 7B2 that lacks Ala100 (thus eliminating the Thr99 phosphorylation consensus site) was similar to the Ala-containing protein, but this variant did not activate proPC2 as efficiently as the Ala-containing protein. Although threonines within 7B2 were phosphorylated efficiently, FAM20C was incapable of performing the well-known regulatory threonine phosphorylation of the molecular chaperone binding immunoglobulin protein. Taken together, these results indicate that FAM20C plays a role in 7B2-mediated proPC2 activation by phosphorylating residue Thr111; and that 7B2 function is regulated by alternative splicing.
Collapse
Affiliation(s)
- Bruno Ramos-Molina
- Department of Anatomy and Neurobiology, School of Medicine, University of Maryland-Baltimore, Baltimore, Maryland 21201
| | | |
Collapse
|
27
|
Gao M, Estel K, Seeliger J, Friedrich RP, Dogan S, Wanker EE, Winter R, Ebbinghaus S. Modulation of human IAPP fibrillation: cosolutes, crowders and chaperones. Phys Chem Chem Phys 2014; 17:8338-48. [PMID: 25406896 DOI: 10.1039/c4cp04682j] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The cellular environment determines the structure and function of proteins. Marginal changes of the environment can severely affect the energy landscape of protein folding. However, despite the important role of chaperones on protein folding, less is known about chaperonal modulation of protein aggregation and fibrillation considering different classes of chaperones. We find that the pharmacological chaperone O4, the chemical chaperone proline as well as the protein chaperone serum amyloid P component (SAP) are inhibitors of the type 2 diabetes mellitus-related aggregation process of islet amyloid polypeptide (IAPP). By applying biophysical methods such as thioflavin T fluorescence spectroscopy, fluorescence anisotropy, total reflection Fourier-transform infrared spectroscopy, circular dichroism spectroscopy and atomic force microscopy we analyse and compare their inhibition mechanism. We demonstrate that the fibrillation reaction of human IAPP is strongly inhibited by formation of globular, amorphous assemblies by both, the pharmacological and the protein chaperones. We studied the inhibition mechanism under cell-like conditions by using the artificial crowding agents Ficoll 70 and sucrose. Under such conditions the suppressive effect of proline was decreased, whereas the pharmacological chaperone remains active.
Collapse
Affiliation(s)
- Mimi Gao
- Department of Physical Chemistry II, Ruhr-University Bochum, 44780 Bochum, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Fernández MS. Human IAPP amyloidogenic properties and pancreatic β-cell death. Cell Calcium 2014; 56:416-27. [PMID: 25224501 DOI: 10.1016/j.ceca.2014.08.011] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Revised: 08/09/2014] [Accepted: 08/20/2014] [Indexed: 02/07/2023]
Abstract
A hallmark of type 2 diabetes mellitus (T2DM) is the presence of extracellular amyloid deposits in the islets of Langerhans. These deposits are formed by the human islet amyloid polypeptide, hIAPP (or amylin), which is a hormone costored and cosecreted with insulin. Under normal conditions, the hormone remains in solution but, in the pancreas of T2DM individuals, it undergoes misfolding giving rise to oligomers and cross-β amyloid fibrils. Accumulating evidence suggests that the amyloid deposits that accompany type 2 diabetes mellitus are not just a trivial epiphenomenon derived from the disease progression. Rather, hIAPP aggregation induces processes that impair the functionality and viability of β-cells and may lead to apoptosis. The present review article aims to summarize a few aspects of the current knowledge of this amyloidogenic polypeptide. In the first place, the physicochemical properties which condition its propensity to misfold and form aggregates. Secondly, how these properties confer hIAPP the capacity to interfere with some signaling of the pancreatic β-cell, interact with membranes, form channels or affect natural ion channels, including calcium channels. Finally, how misfolded hIAPP cytotoxicity results in apoptosis. A number of pathophysiological changes of the T2DM islet can be related to the amyloidogenic properties of hIAPP. However, in a certain way, the in vivo aggregation of the polypeptide also reflects a failure of chaperones and, in general, of cellular proteostasis, supporting the view that T2DM may also be considered as a conformational disorder.
Collapse
Affiliation(s)
- Marta S Fernández
- Department of Biochemistry, Centro de Investigación y de Estudios Avanzados del I.P.N. (CINVESTAV), Ave, Politécnico 2508, PO Box 14-740, 07000 México D.F., Mexico.
| |
Collapse
|