1
|
Tayfur P, Palabiyik O, Meric B, Tastekin E, Vardar SA. Voluntary physical activity suppresses adipocyte hypertrophy through the activation of cGMP mediated pathway in a fructose-induced metabolic syndrome model in rat. Eur J Nutr 2025; 64:91. [PMID: 39954126 PMCID: PMC11829920 DOI: 10.1007/s00394-025-03613-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 02/06/2025] [Indexed: 02/17/2025]
Abstract
PURPOSE A high-fructose diet is supposed to induce the so-called metabolic syndrome, associated with increased fat deposition in adipose tissue. Physical exercise may counteract the induction of the metabolic syndrome. The present study aims to investigate the effect of voluntary physical activity (VPA) on cGMP-mediated lipolysis in retroperitoneal adipose tissue in a metabolic syndrome model induced in rats by a high-fructose diet. METHODS Male Sprague-Dawley rats in control and fructose (F) groups had free access to either plain drinking water or a solution of 20% D-fructose, combined with a standard diet for 8 wk. Rats in the fructose + activity (F + A) group performed voluntary physical activity with a running wheel. Blood pressure, serum glucose, lipids and natriuretic peptide levels were measured on the last day of the feeding period. In retroperitoneal adipose tissue, cGMP, hormone-sensitive lipase (HSL), perilipin-1, aquaglyceroporin levels, and adipocyte diameter were analyzed. RESULTS Systolic blood pressure, glucose, and triacylglycerol were higher in the F groups compared to the control. The C-type natriuretic peptide was higher in the F group compared to the control. The cGMP level in retroperitoneal adipose tissue was higher in the F + A group than F group. Higher HSL and perilipin-1 levels were observed in the F + A group compared to the F and control groups. Adipocyte diameter was lower in the F + A group compared to the F group. CONCLUSION Regular physical exercise triggers lipolytic effects in adipose tissue through cGMP, HSL, and perilipin-1-mediated pathway in fructose-induced metabolic syndrome model in rats, preventing the increase in adipocyte diameter.
Collapse
Affiliation(s)
- Pınar Tayfur
- Department of Physiology, Medical Faculty, Bahçeşehir University, İstanbul, Türkiye
- Institute of Health Sciences Trakya University, Edirne, Türkiye
| | - Orkide Palabiyik
- Institute of Health Sciences Trakya University, Edirne, Türkiye
- Department of Medical Services and Techniques, Trakya University Health Services Vocational College, Edirne, Türkiye
| | - Burcu Meric
- Institute of Health Sciences Trakya University, Edirne, Türkiye
| | - Ebru Tastekin
- Department of Pathology, Medical Faculty, Trakya University, Edirne, Türkiye
| | - Selma Arzu Vardar
- Institute of Health Sciences Trakya University, Edirne, Türkiye.
- Department of Physiology, Medical Faculty, Trakya University, Edirne, Türkiye.
| |
Collapse
|
2
|
Elsaid S, Wu X, Tee SS. Fructose vs. glucose: modulating stem cell growth and function through sugar supplementation. FEBS Open Bio 2024; 14:1277-1290. [PMID: 38923793 PMCID: PMC11301265 DOI: 10.1002/2211-5463.13846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/17/2024] [Accepted: 05/30/2024] [Indexed: 06/28/2024] Open
Abstract
In multicellular organisms, stem cells are impacted by microenvironmental resources such as nutrient availability and oxygen tension for their survival, growth, and differentiation. However, the accessibility of these resources in the pericellular environment greatly varies from organ to organ. This divergence in resource availability leads to variations in the potency and differentiation potential of stem cells. This study aimed to explore the distinct effects of glucose and fructose, as well as different oxygen tensions, on the growth dynamics, cytokine production, and differentiation of stem cells. We showed that replacing glucose with fructose subjected stem cells to stress, resulting in increased Hif1α expression and stability, which in turn led to a reduction in cell proliferation, and alterations in cytokine production. However, fructose failed to induce differentiation of human mesenchymal stem cells (hMSCs) as well as mouse fibroblasts into mature adipocytes compared to glucose, despite the upregulation of key markers of adipogenesis, including C/EBPβ, and PPARγ. Conversely, we showed that fructose induced undifferentiated mouse fibroblasts to release cytokines associated with senescence, including IL1α1, IL6, IL8, MCP1, and TNF1α, suggesting that these cells were undergoing lipolysis. Taken together, our results suggest that altering the culture conditions through changes in hexose levels and oxygen tension places considerable stress on stem cells. Additional research is required to further characterize the mechanisms governing stem cell response to their microenvironments.
Collapse
Affiliation(s)
- Salaheldeen Elsaid
- Department of Diagnostic Radiology and Nuclear MedicineUniversity of Maryland School of MedicineBaltimoreMDUSA
| | - Xiangdong Wu
- Department of Diagnostic Radiology and Nuclear MedicineUniversity of Maryland School of MedicineBaltimoreMDUSA
| | - Sui Seng Tee
- Department of Diagnostic Radiology and Nuclear MedicineUniversity of Maryland School of MedicineBaltimoreMDUSA
| |
Collapse
|
3
|
Azevedo-Martins AK, Santos MP, Abayomi J, Ferreira NJR, Evangelista FS. The Impact of Excessive Fructose Intake on Adipose Tissue and the Development of Childhood Obesity. Nutrients 2024; 16:939. [PMID: 38612973 PMCID: PMC11013923 DOI: 10.3390/nu16070939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/16/2024] [Accepted: 01/19/2024] [Indexed: 04/14/2024] Open
Abstract
Worldwide, childhood obesity cases continue to rise, and its prevalence is known to increase the risk of non-communicable diseases typically found in adults, such as cardiovascular disease and type 2 diabetes mellitus. Thus, comprehending its multiple causes to build healthier approaches and revert this scenario is urgent. Obesity development is strongly associated with high fructose intake since the excessive consumption of this highly lipogenic sugar leads to white fat accumulation and causes white adipose tissue (WAT) inflammation, oxidative stress, and dysregulated adipokine release. Unfortunately, the global consumption of fructose has increased dramatically in recent years, which is associated with the fact that fructose is not always evident to consumers, as it is commonly added as a sweetener in food and sugar-sweetened beverages (SSB). Therefore, here, we discuss the impact of excessive fructose intake on adipose tissue biology, its contribution to childhood obesity, and current strategies for reducing high fructose and/or free sugar intake. To achieve such reductions, we conclude that it is important that the population has access to reliable information about food ingredients via food labels. Consumers also need scientific education to understand potential health risks to themselves and their children.
Collapse
Affiliation(s)
- Anna Karenina Azevedo-Martins
- Group of Study in Endocrinology and Metabolism, School of Arts, Sciences and Humanities, University of São Paulo, São Paulo 03828-000, Brazil; (M.P.S.); (N.J.R.F.); (F.S.E.)
| | - Matheus Pedro Santos
- Group of Study in Endocrinology and Metabolism, School of Arts, Sciences and Humanities, University of São Paulo, São Paulo 03828-000, Brazil; (M.P.S.); (N.J.R.F.); (F.S.E.)
| | - Julie Abayomi
- School of Medicine and Nutrition, Faculty of Health, Social Care and Medicine, Edge Hill University, Ormskirk L39 4QP, UK;
| | - Natália Juliana Ramos Ferreira
- Group of Study in Endocrinology and Metabolism, School of Arts, Sciences and Humanities, University of São Paulo, São Paulo 03828-000, Brazil; (M.P.S.); (N.J.R.F.); (F.S.E.)
| | - Fabiana S. Evangelista
- Group of Study in Endocrinology and Metabolism, School of Arts, Sciences and Humanities, University of São Paulo, São Paulo 03828-000, Brazil; (M.P.S.); (N.J.R.F.); (F.S.E.)
| |
Collapse
|
4
|
Kruse M, Hornemann S, Ost AC, Frahnow T, Hoffmann D, Busjahn A, Osterhoff MA, Schuppelius B, Pfeiffer AFH. An Isocaloric High-Fat Diet Regulates Partially Genetically Determined Fatty Acid and Carbohydrate Uptake and Metabolism in Subcutaneous Adipose Tissue of Lean Adult Twins. Nutrients 2023; 15:nu15102338. [PMID: 37242220 DOI: 10.3390/nu15102338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 05/09/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023] Open
Abstract
BACKGROUND The dysfunction of energy metabolism in white adipose tissue (WAT) induces adiposity. Obesogenic diets that are high in saturated fat disturb nutrient metabolism in adipocytes. This study investigated the effect of an isocaloric high-fat diet without the confounding effects of weight gain on the gene expression of fatty acid and carbohydrate transport and metabolism and its genetic inheritance in subcutaneous (s.c.) WAT of healthy human twins. METHODS Forty-six healthy pairs of twins (34 monozygotic, 12 dizygotic) received an isocaloric carbohydrate-rich diet (55% carbohydrates, 30% fat, 15% protein; LF) for 6 weeks followed by an isocaloric diet rich in saturated fat (40% carbohydrates, 45% fat, 15% protein; HF) for another 6 weeks. RESULTS Gene expression analysis of s.c. WAT revealed that fatty acid transport was reduced after one week of the HF diet, which persisted throughout the study and was not inherited, whereas intracellular metabolism was decreased after six weeks and inherited. An increased inherited gene expression of fructose transport was observed after one and six weeks, potentially leading to increased de novo lipogenesis. CONCLUSION An isocaloric dietary increase of fat induced a tightly orchestrated, partially inherited network of genes responsible for fatty acid and carbohydrate transport and metabolism in human s.c. WAT.
Collapse
Affiliation(s)
- Michael Kruse
- Department of Endocrinology, Diabetes and Nutrition, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117 Berlin, Germany
- German Institute of Human Nutrition Potsdam-Rehbruecke, Arthur-Scheunert-Allee 114-116, 14558 Nuthetal, Germany
| | - Silke Hornemann
- Department of Endocrinology, Diabetes and Nutrition, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117 Berlin, Germany
- German Institute of Human Nutrition Potsdam-Rehbruecke, Arthur-Scheunert-Allee 114-116, 14558 Nuthetal, Germany
| | - Anne-Cathrin Ost
- German Institute of Human Nutrition Potsdam-Rehbruecke, Arthur-Scheunert-Allee 114-116, 14558 Nuthetal, Germany
| | - Turid Frahnow
- German Institute of Human Nutrition Potsdam-Rehbruecke, Arthur-Scheunert-Allee 114-116, 14558 Nuthetal, Germany
| | - Daniela Hoffmann
- German Institute of Human Nutrition Potsdam-Rehbruecke, Arthur-Scheunert-Allee 114-116, 14558 Nuthetal, Germany
| | - Andreas Busjahn
- Health TwiSt GmbH, Robert-Rössle-Strasse 10, 13125 Berlin, Germany
| | - Martin A Osterhoff
- Department of Endocrinology, Diabetes and Nutrition, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117 Berlin, Germany
- German Institute of Human Nutrition Potsdam-Rehbruecke, Arthur-Scheunert-Allee 114-116, 14558 Nuthetal, Germany
| | - Bettina Schuppelius
- Department of Endocrinology, Diabetes and Nutrition, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117 Berlin, Germany
| | - Andreas F H Pfeiffer
- Department of Endocrinology, Diabetes and Nutrition, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117 Berlin, Germany
- German Institute of Human Nutrition Potsdam-Rehbruecke, Arthur-Scheunert-Allee 114-116, 14558 Nuthetal, Germany
- German Center for Diabetes Research (DZD), Ingolstädter Landstrasse 1, 85764 Neuherberg, Germany
| |
Collapse
|
5
|
Liu X, Li G, Zhong J, Rang O, Ou G, Qin X, Tang Y, Wang M. Impact of combined chronic exposure to low-dose bisphenol A and fructose on serum adipocytokines and the energy target metabolome in white adipose tissue. Hum Exp Toxicol 2023; 42:9603271231217992. [PMID: 37990541 DOI: 10.1177/09603271231217992] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2023]
Abstract
Background: Adipose tissue is a dynamic endocrine organ that plays a key role in regulating metabolic homeostasis. Previous studies confirmed that bisphenol A (BPA) or fructose can interfere with the function of adipose tissue. Nonetheless, knowledge on how exposure to BPA and fructose impacts energy metabolism in adipose tissue remains limited.Purpose: To determine impact of combined chronic exposure to low-dose bisphenol A and fructose on serum adipocytokines and the energy target metabolome in white adipose tissue.Method: 57 energy metabolic intermediates in adipose tissue and 7 adipocytokines in serum from Sprague Dawley rats were examined after combined exposure to two levels of BPA (lower dose: 0.25, and higher dose: 25 μg/kg every other day) and 5% fructose for 6 months.Results: combined exposure to lower-dose BPA and fructose significantly increased omentin-1, pyruvic acid, adenosine triphosphate (ATP), adenosine monophosphate (AMP), inosine monophosphate (IMP), inosine, and l-lactate; however, these parameters were not significantly affected by higher-dose BPA combined with fructose. Interestingly, the level of succinate (an intermediate of the citric acid cycle) increased dose-dependently in adipose tissue, and the level of apelin 13 (a versatile adipocytokine) decreased dose-dependently in serum after combined exposure to BPA and fructose. Phosphoenolpyruvic acid, phenyl-lactate, and ornithine were significantly correlated with asprosin, omentin-1, apelin, apelin 13, and adiponectin, while l-tyrosine was significantly correlated with irisin and a-FABP under combined exposure to BPA and fructose.Conclusions: these findings indicated that lower-dose BPA combined with fructose could amplify the impact on glycolysis, energy storage, and purine nucleotide biosynthesis in adipose tissue, and adipocytokines, such as omentin-1 and apelin 13, may be related to metabolic interference induced by BPA and fructose exposure.
Collapse
Affiliation(s)
- Xiaocheng Liu
- Clinical Mass Spectrometry Laboratory, Clinical Research Institute, Affiliated Nanhua Hospital, University of South China, Hengyang, PR China
| | - Guojuan Li
- Endocrine Department, Affiliated Nanhua Hospital, University of South China, Hengyang, PR China
| | - Jing Zhong
- Institute of Clinical Medicine, Cancer Research Institute, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, PR China
| | - Ouyan Rang
- Department of Basic Medicine, Nuclear Industrial Hygiene School, Affiliated Nanhua Hospital, University of South China, Hengyang, PR China
| | - Guifang Ou
- Clinical Mass Spectrometry Laboratory, Clinical Research Institute, Affiliated Nanhua Hospital, University of South China, Hengyang, PR China
| | - Xinru Qin
- Clinical Mass Spectrometry Laboratory, Clinical Research Institute, Affiliated Nanhua Hospital, University of South China, Hengyang, PR China
| | - Yonghong Tang
- Clinical Mass Spectrometry Laboratory, Clinical Research Institute, Affiliated Nanhua Hospital, University of South China, Hengyang, PR China
| | - Mu Wang
- Clinical Mass Spectrometry Laboratory, Clinical Research Institute, Affiliated Nanhua Hospital, University of South China, Hengyang, PR China
| |
Collapse
|
6
|
Campos-Maldonado F, González-Dávalos ML, Piña E, Anaya-Loyola MA, Shimada A, Varela-Echavarria A, Mora O. Fructose promotes more than glucose the adipocytic differentiation of pig mesenchymal stem cells. J Food Biochem 2022; 46:e14429. [PMID: 36153825 DOI: 10.1111/jfbc.14429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 08/23/2022] [Accepted: 09/12/2022] [Indexed: 01/13/2023]
Abstract
The goal of this study was to evaluate how glucose and fructose affected the adipose differentiation of pig newborn mesenchymal stem cells (MSCs). Cells were grown with or without inosine in 7.5 mM glucose (substituted with 1.5 or 6 mM fructose). MSCs displayed adipose morphology after 70 days of differentiation. Fructose stimulated the highest levels of PPARγ and C/EBPβ. Fructose at 6 mM, but not glucose at 7.5 mM or fructose at 1.5 mM, promotes differentiation of MSCs into adipocytes and increases 11-hydroxysteroid dehydrogenase (11β-HSD1) and NADPH oxidase 4 (NOX4) mRNA in the absence of hepatic effects (as simulated by the inosine). Fructose and glucose increased xanthine oxide-reductase (XOR) catalytic activity almost 10-fold and elevated their products: intracellular reactive oxygen species (ROS) pool, extracellular H2 O2 pool by 4 orders of magnitude, and uric acid by a factor of 10. Therefore, in our experimental model, differentiation of MSCs into adipocytes occurs exclusively at the blood concentration of fructose detected after ingestion by people on a high fructose diet. PRACTICAL APPLICATIONS: The results of this study provide new evidence for fructose's adipogenic potential in mesenchymal stem cells, a model in which its effects on XOR activity had not been studied. The increased expression of genes such as C/EBPβ, PPARγ, and NOX4, as well as the increased XOR activity and high production of ROS during the differentiation process in the presence of fructose, coincides in pointing to this hexose as an important factor in the development of adipogenesis in young animals, which could have a great impact on the development of future obesity.
Collapse
Affiliation(s)
- Francisco Campos-Maldonado
- Maestría en Ciencias de la Nutrición Humana, Facultad de Ciencias Naturales, Universidad Autónoma de Querétaro, Querétaro, Mexico
| | - María L González-Dávalos
- Laboratorio de Rumiología y Metabolismo Nutricional (RuMeN), Facultad de Estudios Superiores-Cuautitlán (FES-Cuautitlán), UNAM, Cuautitlan Izcalli, Mexico
| | | | | | - Armando Shimada
- Laboratorio de Rumiología y Metabolismo Nutricional (RuMeN), Facultad de Estudios Superiores-Cuautitlán (FES-Cuautitlán), UNAM, Cuautitlan Izcalli, Mexico
| | | | - Ofelia Mora
- Laboratorio de Rumiología y Metabolismo Nutricional (RuMeN), Facultad de Estudios Superiores-Cuautitlán (FES-Cuautitlán), UNAM, Cuautitlan Izcalli, Mexico
| |
Collapse
|
7
|
Endo- and Exometabolome Crosstalk in Mesenchymal Stem Cells Undergoing Osteogenic Differentiation. Cells 2022; 11:cells11081257. [PMID: 35455937 PMCID: PMC9024772 DOI: 10.3390/cells11081257] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/03/2022] [Accepted: 04/05/2022] [Indexed: 02/04/2023] Open
Abstract
This paper describes, for the first time to our knowledge, a lipidome and exometabolome characterization of osteogenic differentiation for human adipose tissue stem cells (hAMSCs) using nuclear magnetic resonance (NMR) spectroscopy. The holistic nature of NMR enabled the time-course evolution of cholesterol, mono- and polyunsaturated fatty acids (including ω-6 and ω-3 fatty acids), several phospholipids (phosphatidylcholine, phosphatidylethanolamine, sphingomyelins, and plasmalogens), and mono- and triglycerides to be followed. Lipid changes occurred almost exclusively between days 1 and 7, followed by a tendency for lipidome stabilization after day 7. On average, phospholipids and longer and more unsaturated fatty acids increased up to day 7, probably related to plasma membrane fluidity. Articulation of lipidome changes with previously reported polar endometabolome profiling and with exometabolome changes reported here in the same cells, enabled important correlations to be established during hAMSC osteogenic differentiation. Our results supported hypotheses related to the dynamics of membrane remodelling, anti-oxidative mechanisms, protein synthesis, and energy metabolism. Importantly, the observation of specific up-taken or excreted metabolites paves the way for the identification of potential osteoinductive metabolites useful for optimized osteogenic protocols.
Collapse
|
8
|
Kansal R. Fructose Metabolism and Acute Myeloid Leukemia. EXPLORATORY RESEARCH AND HYPOTHESIS IN MEDICINE 2022; 7:25-38. [DOI: 10.14218/erhm.2021.00042] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
9
|
Lodha D, Subramaniam JR. High Fructose Negatively Impacts Proliferation of NSC-34 Motor Neuron Cell Line. J Neurosci Rural Pract 2022; 13:114-118. [PMID: 35110930 PMCID: PMC8803527 DOI: 10.1055/s-0041-1742120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
Abstract
Objectives The main aim of this study is to identify the deleterious effects of indiscriminately consumed high fructose on motor neurons that are critically affected in many neurological conditions causing movement disorders including paralysis.
Materials and Methods Neuroblastoma x mouse spinal cord motor neuron cell line (NSC-34) motor neuron cell lines were treated with high fructose and oxygen supplementation (18.8%) and assayed for cell proliferation/death, reactive oxygen species (ROS) generation, and oxidative stress response induction
Statistical Analysis Mean and standard deviation, significance with and without high fructose (F)-5%, were estimated by t-tests using GraphPad Prism ver. 8.2.1
Results F-5% along with O2 (18.8%) annihilates the cells (∼85%) by day10 and inhibits cell division as observed by the presence of multinucleated cells. Unexpectedly, 1 to 2% of cells that survived, differentiated and displayed progressive neurite extension. Though not healthy, they were viable up to 80 days. F-5% increased ROS levels (∼34%) not accompanied by concomitant enhanced expression of oxidative stress response regulator, the transcription factor, nrf-2, or downstream effector, sod-1.
Conclusion High fructose is extremely harmful to NSC-34 motor neuron cell line.
Collapse
Affiliation(s)
- Divya Lodha
- Center for Preclinical and Translational Medical Research (CPTMR), Sri Ramachandra Institute of Higher Education and Research, Chennai, Tamil Nadu, India
| | - Jamuna R. Subramaniam
- Center for Preclinical and Translational Medical Research (CPTMR), Sri Ramachandra Institute of Higher Education and Research, Chennai, Tamil Nadu, India
| |
Collapse
|
10
|
Abu Bakar MH, Mohamad Khalid MSF, Nor Shahril NS, Shariff KA, Karunakaran T. Celastrol attenuates high-fructose diet-induced inflammation and insulin resistance via inhibition of 11β-hydroxysteroid dehydrogenase type 1 activity in rat adipose tissues. Biofactors 2022; 48:111-134. [PMID: 34676604 DOI: 10.1002/biof.1793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Accepted: 09/27/2021] [Indexed: 11/10/2022]
Abstract
High fructose consumption has been linked to low-grade inflammation and insulin resistance that results in increased intracellular 11ß-hydroxysteroid dehydrogenase type 1 (11β-HSD1) activity. Celastrol, a pentacyclic triterpene, has been demonstrated to exhibit multifaceted targets to attenuate various metabolic diseases associated with inflammation. However, the underlying mechanisms by which celastrol exerts its attributive properties on high fructose diet (HFrD)-induced metabolic syndrome remain elusive. Herein, the present study was aimed to elucidate the mechanistic targets of celastrol co-administrations upon HFrD in rats and evaluate its potential to modulate 11β-HSD1 activity. Celastrol remarkably improved glucose tolerance, lipid profiles, and insulin sensitivity along with suppression of hepatic glucose production. In rat adipose tissues, celastrol attenuated nuclear factor-kappa B (NF-κB)-driven inflammation, reduced c-Jun N-terminal kinases (JNK) phosphorylation, and mitigated oxidative stress via upregulated genes expression involved in mitochondrial biogenesis. Furthermore, insulin signaling pathways were significantly improved through the restoration of Akt phosphorylation levels at Ser473 and Thr308 residues. Celastrol exhibited a potent, selective and specific inhibitor of intracellular 11β-HSD1 towards oxidoreductase activity (IC50 value = 4.3 nM) in comparison to other HSD-related enzymes. Inhibition of 11β-HSD1 expression in rat adipose microsomes reduced the availability of its cofactor NADPH and substrate H6PDH in couple to upregulated mRNA and protein expressions of glucocorticoid receptor. In conclusion, our results underscore the most likely conceivable mechanisms exhibited by celastrol against HFrD-induced metabolic dysregulations mainly through attenuating inflammation and insulin resistance, at least via specific inhibitions on 11β-HSD1 activity in adipose tissues.
Collapse
Affiliation(s)
- Mohamad Hafizi Abu Bakar
- Bioprocess Technology Division, School of Industrial Technology, Universiti Sains Malaysia, 11800, Gelugor, Penang, Malaysia
| | | | - Nor Shafiqah Nor Shahril
- Bioprocess Technology Division, School of Industrial Technology, Universiti Sains Malaysia, 11800, Gelugor, Penang, Malaysia
| | - Khairul Anuar Shariff
- School of Materials and Mineral Resources Engineering, Universiti Sains Malaysia, 14300, Nibong Tebal, Penang, Malaysia
| | | |
Collapse
|
11
|
Guan H, Wang Y, Li H, Zhu Q, Li X, Liang G, Ge RS. 5-Bis-(2,6-difluoro-benzylidene) Cyclopentanone Acts as a Selective 11β-Hydroxysteroid Dehydrogenase one Inhibitor to Treat Diet-Induced Nonalcoholic Fatty Liver Disease in Mice. Front Pharmacol 2021; 12:594437. [PMID: 33912032 PMCID: PMC8072159 DOI: 10.3389/fphar.2021.594437] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 02/18/2021] [Indexed: 12/14/2022] Open
Abstract
Background: 11β-Hydroxysteroid dehydrogenase one is responsible for activating inert glucocorticoid cortisone into biologically active cortisol in humans and may be a novel target for the treatment of nonalcoholic fatty liver disease. Methods: A series of benzylidene cyclopentanone derivatives were synthesized, and the selective inhibitory effects on rat, mouse and human 11β-hydroxysteroid dehydrogenase one and two were screened. The most potent compound [5-bis-(2,6-difluoro-benzylidene)-cyclopentanone] (WZS08), was used to treat nonalcoholic fatty liver disease in mice fed a high-fat-diet for 100 days. Results: WZS08 was the most potent inhibitor of rat, mouse, and human 11β-hydroxysteroid dehydrogenase 1, with half maximum inhibitory concentrations of 378.0, 244.1, and 621.1 nM, respectively, and it did not affect 11β-hydroxysteroid dehydrogenase two at 100 μM. When mice were fed WZS08 (1, 2, and 4 mg/kg) for 100 days, WZS08 significantly lowered the serum insulin levels and insulin index at 4 mg/kg. WZS08 significantly reduced the levels of serum triglycerides, cholesterol, low-density lipoprotein, and hepatic fat ratio at low concentration of 1 mg/kg. It down-regulated Plin2 expression and up-regulated Fabp4 expression at low concentration of 1 mg/kg. It significantly improved the morphology of the non-alcoholic fatty liver. Conclusion: WZS08 selectively inhibits rat, mouse, and human 11β-hydroxysteroid dehydrogenase 1, and can treat non-alcoholic fatty liver disease in a mouse model.
Collapse
Affiliation(s)
- Hongguo Guan
- Department of Pharmacy, Zhejiang Hospital, Hangzhou, China
| | - Yiyan Wang
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China
| | - Huitao Li
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China
| | - Qiqi Zhu
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China
| | - Xiaoheng Li
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China
| | - Guang Liang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Ren-Shan Ge
- Department of Pharmacy, Zhejiang Hospital, Hangzhou, China.,Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
12
|
Mehta R, Sonavane M, Migaud ME, Gassman NR. Exogenous exposure to dihydroxyacetone mimics high fructose induced oxidative stress and mitochondrial dysfunction. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2021; 62:185-202. [PMID: 33496975 PMCID: PMC7954877 DOI: 10.1002/em.22425] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 01/20/2021] [Accepted: 01/22/2021] [Indexed: 05/09/2023]
Abstract
Dihydroxyacetone (DHA) is a three-carbon sugar that is the active ingredient in sunless tanning products and a by-product of electronic cigarette (e-cigarette) combustion. Increased use of sunless tanning products and e-cigarettes has elevated exposures to DHA through inhalation and absorption. Studies have confirmed that DHA is rapidly absorbed into cells and can enter into metabolic pathways following phosphorylation to dihydroxyacetone phosphate (DHAP), a product of fructose metabolism. Recent reports have suggested metabolic imbalance and cellular stress results from DHA exposures. However, the impact of elevated exposure to DHA on human health is currently under-investigated. We propose that exogenous exposures to DHA increase DHAP levels in cells and mimic fructose exposures to produce oxidative stress, mitochondrial dysfunction, and gene and protein expression changes. Here, we review cell line and animal model exposures to fructose to highlight similarities in the effects produced by exogenous exposures to DHA. Given the long-term health consequences of fructose exposure, this review emphasizes the pressing need to further examine DHA exposures from sunless tanning products and e-cigarettes.
Collapse
Affiliation(s)
- Raj Mehta
- Department of Physiology and Cell Biology, University of South Alabama, College of Medicine, Mobile, AL USA
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL USA
| | - Manoj Sonavane
- Department of Physiology and Cell Biology, University of South Alabama, College of Medicine, Mobile, AL USA
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL USA
| | - Marie E. Migaud
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL USA
- Department of Pharmacology, University of South Alabama, College of Medicine, Mobile, AL USA
| | - Natalie R. Gassman
- Department of Physiology and Cell Biology, University of South Alabama, College of Medicine, Mobile, AL USA
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL USA
| |
Collapse
|
13
|
Shepherd EL, Saborano R, Northall E, Matsuda K, Ogino H, Yashiro H, Pickens J, Feaver RE, Cole BK, Hoang SA, Lawson MJ, Olson M, Figler RA, Reardon JE, Nishigaki N, Wamhoff BR, Günther UL, Hirschfield G, Erion DM, Lalor PF. Ketohexokinase inhibition improves NASH by reducing fructose-induced steatosis and fibrogenesis. JHEP Rep 2020; 3:100217. [PMID: 33490936 PMCID: PMC7807164 DOI: 10.1016/j.jhepr.2020.100217] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 10/30/2020] [Accepted: 11/08/2020] [Indexed: 02/07/2023] Open
Abstract
Background & Aims Increasing evidence highlights dietary fructose as a major driver of non-alcoholic fatty liver disease (NAFLD) pathogenesis, the majority of which is cleared on first pass through the hepatic circulation by enzymatic phosphorylation to fructose-1-phosphate via the ketohexokinase (KHK) enzyme. Without a current approved therapy, disease management emphasises lifestyle interventions, but few patients adhere to such strategies. New targeted therapies are urgently required. Methods We have used a unique combination of human liver specimens, a murine dietary model of NAFLD and human multicellular co-culture systems to understand the hepatocellular consequences of fructose administration. We have also performed a detailed nuclear magnetic resonance-based metabolic tracing of the fate of isotopically labelled fructose upon administration to the human liver. Results Expression of KHK isoforms is found in multiple human hepatic cell types, although hepatocyte expression predominates. KHK knockout mice show a reduction in serum transaminase, reduced steatosis and altered fibrogenic response on an Amylin diet. Human co-cultures exposed to fructose exhibit steatosis and activation of lipogenic and fibrogenic gene expression, which were reduced by pharmacological inhibition of KHK activity. Analysis of human livers exposed to 13C-labelled fructose confirmed that steatosis, and associated effects, resulted from the accumulation of lipogenic precursors (such as glycerol) and enhanced glycolytic activity. All of these were dose-dependently reduced by administration of a KHK inhibitor. Conclusions We have provided preclinical evidence using human livers to support the use of KHK inhibition to improve steatosis, fibrosis, and inflammation in the context of NAFLD. Lay summary We have used a mouse model, human cells, and liver tissue to test how exposure to fructose can cause the liver to store excess fat and become damaged and scarred. We have then inhibited a key enzyme within the liver that is responsible for fructose metabolism. Our findings show that inhibition of fructose metabolism reduces liver injury and fibrosis in mouse and human livers and thus this may represent a potential route for treating patients with fatty liver disease in the future.
Collapse
Key Words
- ALD, alcohol-related cirrhosis
- ALT, alanine transaminase
- APRI, AST to Platelet Ratio Index
- AST, aspartate transaminase
- BEC, biliary epithelial cells
- BSA, bovine serum albumin
- CT, computed tomography
- DNL, de novo lipogenesis
- FIB4, fibrosis-4
- Fibrosis
- Fructose
- G/F, glucose/fructose
- HSCs, hepatic stellate cells
- HSECs, hepatic sinusoidal endothelial cells
- HSQC, heteronuclear single quantum coherence
- IGF, insulin-like growth factor
- KHK, ketohexokinase
- KO, knockout
- LGLI, low glucose and insulin
- Metabolism
- NAFLD
- NAFLD, non-alcoholic fatty liver disease
- NASH
- NASH, non-alcoholic steatohepatitis
- NPCs, non-parenchymal cells
- PBC, primary biliary cholangitis
- PDGF, platelet-derived growth factor
- PSC, primary sclerosing cholangitis
- TG, triglyceride
- TGFB, transforming growth factor beta
- TIMP-1, Tissue Inhibitor of Matrix metalloproteinase-1
- Treatment
- WT, wild-type
- aLMF, activated liver myofibroblasts
Collapse
Affiliation(s)
- Emma L Shepherd
- Centre for Liver and Gastroenterology Research and National Institute for Health Research (NIHR) Birmingham Biomedical Research Centre, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - Raquel Saborano
- Centre for Liver and Gastroenterology Research and National Institute for Health Research (NIHR) Birmingham Biomedical Research Centre, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - Ellie Northall
- Centre for Liver and Gastroenterology Research and National Institute for Health Research (NIHR) Birmingham Biomedical Research Centre, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - Kae Matsuda
- Takeda Pharmaceuticals Cardiovascular and Metabolic Drug Discovery Unit, Kanagawa, Japan
| | - Hitomi Ogino
- Takeda Pharmaceuticals Cardiovascular and Metabolic Drug Discovery Unit, Kanagawa, Japan
| | - Hiroaki Yashiro
- Takeda Pharmaceuticals Gastroenterology Drug Discovery Unit, Cambridge, MA, USA
| | - Jason Pickens
- Takeda Pharmaceuticals Gastroenterology Drug Discovery Unit, Cambridge, MA, USA
| | | | | | | | | | | | | | | | - Nobuhiro Nishigaki
- Takeda Pharmaceuticals Cardiovascular and Metabolic Drug Discovery Unit, Kanagawa, Japan
| | | | - Ulrich L Günther
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | - Gideon Hirschfield
- Centre for Liver and Gastroenterology Research and National Institute for Health Research (NIHR) Birmingham Biomedical Research Centre, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK.,Toronto Centre for Liver Disease, University of Toronto, Toronto General Hospital, Toronto, Canada
| | - Derek M Erion
- Takeda Pharmaceuticals Gastroenterology Drug Discovery Unit, Cambridge, MA, USA
| | - Patricia F Lalor
- Centre for Liver and Gastroenterology Research and National Institute for Health Research (NIHR) Birmingham Biomedical Research Centre, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| |
Collapse
|
14
|
Post-weaning exposure to high-sucrose diet induces early non-alcoholic fatty liver disease onset and progression in male mice: role of dysfunctional white adipose tissue. J Dev Orig Health Dis 2020; 11:509-520. [PMID: 32594969 DOI: 10.1017/s2040174420000598] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the hepatic manifestation of metabolic syndrome, ranging from simple steatosis to non-alcoholic steatohepatitis (NASH) particularly among chronic consumers of added sugar-rich diets. However, the impact of early consumption of such diets on NAFLD onset and progression is unclear. Thus, this study sought to characterise metabolic factors involved in NAFLD progression in young mice fed with a high-sucrose diet (HSD). Male Swiss mice were fed HSD or regular chow (CTR) from weaning for up to 60 or 90 days. Obesity development, glucose homeostasis and serum biochemical parameters were determined at each time-point. At day 90, mice were euthanised and white adipose tissue (WAT) collected for lipolytic function assessment and liver for histology, gene expression and cytokines quantification. At day 60, HSD mice presented increased body mass, hypertriglyceridemia, peripheral insulin resistance (IR) and simple steatosis. Upon 90 days on diet, WAT from HSD mice displayed impaired insulin sensitivity, which coincided with increased fasting levels of glucose and free fatty acids (FFA), as well as NAFLD progression to NASH. Transcriptional levels of lipogenic genes, particularly stearoyl-CoA desaturase-1, were consistently increased, leading to hepatic leukocyte infiltration and pro-inflammatory cytokines spillover. Therefore, our dataset supports IR triggering in the WAT as a major factor for dysfunctional release of FFA towards portal circulation and consequent upregulation of lipogenic genes and hepatic inflammatory onset, which decisively concurred for NAFLD-to-NASH progression in young HSD-fed mice. Notwithstanding, this study forewarns against the early introduction of dietary sugars in infant diet, particularly following breastfeeding cessation.
Collapse
|
15
|
Zappaterra M, Gioiosa S, Chillemi G, Zambonelli P, Davoli R. Muscle transcriptome analysis identifies genes involved in ciliogenesis and the molecular cascade associated with intramuscular fat content in Large White heavy pigs. PLoS One 2020; 15:e0233372. [PMID: 32428048 PMCID: PMC7237010 DOI: 10.1371/journal.pone.0233372] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 05/04/2020] [Indexed: 02/07/2023] Open
Abstract
Intramuscular fat content (IMF) is a complex trait influencing the technological and sensorial features of meat products and determining pork quality. Thus, we aimed at analyzing through RNA-sequencing the Semimembranosus muscle transcriptome of Italian Large White pigs to study the gene networks associated with IMF deposition. Two groups of samples were used; each one was composed of six unrelated pigs with extreme and divergent IMF content (0.67 ± 0.09% in low IMF vs. 6.81 ± 1.17% in high IMF groups) that were chosen from 950 purebred individuals. Paired-end RNA sequences were aligned to Sus scrofa genome assembly 11.1 and gene counts were analyzed using WGCNA and DeSeq2 packages in R environment. Interestingly, among the 58 differentially expressed genes (DEGs), several were related to primary cilia organelles (such as Lebercilin 5 gene), in addition to the genes involved in the regulation of cell differentiation, in the control of RNA-processing, and G-protein and ERK signaling pathways. Together with cilia-related genes, we also found in high IMF pigs an over-expression of the Fibroblast Growth Factor 2 (FGF2) gene, which in other animal species was found to be a regulator of ciliogenesis. Four WGCNA gene modules resulted significantly associated with IMF deposition: grey60 (P = 0.003), darkturquoise (P = 0.022), skyblue1 (P = 0.022), and lavenderblush3 (P = 0.030). The genes in the significant modules confirmed the results obtained for the DEGs, and the analysis with “cytoHubba” indicated genes controlling RNA splicing and cell differentiation as hub genes. Among the complex molecular processes affecting muscle fat depots, genes involved in primary cilia may have an important role, and the transcriptional reprogramming observed in high IMF pigs may be related to an FGF-related molecular cascade and to ciliogenesis, which in the literature have been associated with fibro-adipogenic precursor differentiation.
Collapse
Affiliation(s)
- Martina Zappaterra
- Department of Agricultural and Food Sciences (DISTAL), Division of Animal Science, University of Bologna, Bologna, Italy
| | - Silvia Gioiosa
- Super Computing Applications and Innovation Department (SCAI), CINECA, Rome, Italy
| | - Giovanni Chillemi
- Department for Innovation in Biological, Agro-food and Forest systems (DIBAF), University of Tuscia, Viterbo, Italy
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), CNR, Bari, Italy
| | - Paolo Zambonelli
- Department of Agricultural and Food Sciences (DISTAL), Division of Animal Science, University of Bologna, Bologna, Italy
| | - Roberta Davoli
- Department of Agricultural and Food Sciences (DISTAL), Division of Animal Science, University of Bologna, Bologna, Italy
- Interdepartmental Centre of Agri-food Industrial Research (CIRI-AGRO), University of Bologna, Cesena, Italy
- * E-mail:
| |
Collapse
|
16
|
Fryklund C, Borg M, Svensson T, Schumacher S, Negoita F, Morén B, Stenkula KG. Impaired glucose transport in inguinal adipocytes after short-term high-sucrose feeding in mice. J Nutr Biochem 2020; 78:108338. [PMID: 32004930 DOI: 10.1016/j.jnutbio.2019.108338] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Revised: 11/14/2019] [Accepted: 12/20/2019] [Indexed: 02/07/2023]
Abstract
Diets enriched in sucrose severely impair metabolic regulation and are associated with obesity, insulin resistance and glucose intolerance. In the current study, we investigated the effect of 4 weeks high-sucrose diet (HSD) feeding in C57BL6/J mice, with specific focus on adipocyte function. Mice fed HSD had slightly increased adipose tissue mass but displayed similar hepatic triglycerides, glucose and insulin levels, and glucose clearance capacity as chow-fed mice. Interestingly, we found adipose depot-specific differences, where both the non- and insulin-stimulated glucose transports were markedly impaired in primary adipocytes isolated from the inguinal fat depot from HSD-fed mice. This was accompanied by decreased protein levels of both GLUT4 and AS160. A similar but much less pronounced trend was observed in the retroperitoneal depot. In contrast, both GLUT4 expression and insulin-stimulated glucose uptake were preserved in adipocytes isolated from epididymal adipose tissue with HSD. Further, we found a slight shift in cell size distribution towards larger cells with HSD and a significant decrease of ACC and PGC-1α expression in the inguinal adipose tissue depot. Moreover, fructose alone was sufficient to decrease GLUT4 expression in cultured, mature adipocytes. Altogether, we demonstrate that short-term HSD feeding has deleterious impact on insulin response and glucose transport in the inguinal adipose tissue depot, specifically. These changes occur before the onset of systemic glucose dysmetabolism and therefore could provide a mechanistic link to overall impaired energy metabolism reported after prolonged HSD feeding, alone or in combination with HFD.
Collapse
Affiliation(s)
- Claes Fryklund
- Lund University, Department of Experimental Medical Science, 221 84 Lund, Sweden
| | - Madelene Borg
- Lund University, Department of Experimental Medical Science, 221 84 Lund, Sweden
| | - Tobias Svensson
- Lund University, Department of Experimental Medical Science, 221 84 Lund, Sweden
| | - Sara Schumacher
- Lund University, Department of Experimental Medical Science, 221 84 Lund, Sweden
| | - Florentina Negoita
- Lund University, Department of Experimental Medical Science, 221 84 Lund, Sweden
| | - Björn Morén
- Lund University, Department of Experimental Medical Science, 221 84 Lund, Sweden
| | - Karin G Stenkula
- Lund University, Department of Experimental Medical Science, 221 84 Lund, Sweden.
| |
Collapse
|
17
|
Hernández-Díazcouder A, Romero-Nava R, Carbó R, Sánchez-Lozada LG, Sánchez-Muñoz F. High Fructose Intake and Adipogenesis. Int J Mol Sci 2019; 20:E2787. [PMID: 31181590 PMCID: PMC6600229 DOI: 10.3390/ijms20112787] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 06/04/2019] [Accepted: 06/05/2019] [Indexed: 02/06/2023] Open
Abstract
In modern societies, high fructose intake from sugar-sweetened beverages has contributed to obesity development. In the diet, sucrose and high fructose corn syrup are the main sources of fructose and can be metabolized in the intestine and transported into the systemic circulation. The liver can metabolize around 70% of fructose intake, while the remaining is metabolized by other tissues. Several tissues including adipose tissue express the main fructose transporter GLUT5. In vivo, chronic fructose intake promotes white adipose tissue accumulation through activating adipogenesis. In vitro experiments have also demonstrated that fructose alone induces adipogenesis by several mechanisms, including (1) triglycerides and very-low-density lipoprotein (VLDL) production by fructose metabolism, (2) the stimulation of glucocorticoid activation by increasing 11β-HSD1 activity, and (3) the promotion of reactive oxygen species (ROS) production through uric acid, NOX and XOR expression, mTORC1 signaling and Ang II induction. Moreover, it has been observed that fructose induces adipogenesis through increased ACE2 expression, which promotes high Ang-(1-7) levels, and through the inhibition of the thermogenic program by regulating Sirt1 and UCP1. Finally, microRNAs may also be involved in regulating adipogenesis in high fructose intake conditions. In this paper, we propose further directions for research in fructose participation in adipogenesis.
Collapse
Affiliation(s)
- Adrián Hernández-Díazcouder
- Departamento de Inmunología, Instituto Nacional de Cardiología Ignacio Chávez, Mexico city 14080, Mexico.
- Departamento de Ciencias de la Salud, Área de Investigación Médica, Universidad Autónoma Metropolitana Iztapalapa, Mexico city 09340, Mexico.
| | - Rodrigo Romero-Nava
- Departamento de Ciencias de la Salud, Área de Investigación Médica, Universidad Autónoma Metropolitana Iztapalapa, Mexico city 09340, Mexico.
- Laboratorio de investigación en Farmacología, Hospital Infantil de México Federico Gómez, Mexico city 06720, Mexico.
- Sección de Postgraduados, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico city 11340, Mexico.
| | - Roxana Carbó
- Departamento de Biomedicina Cardiovascular, Instituto Nacional de Cardiología Ignacio Chávez, Mexico city 14080, Mexico.
| | - L Gabriela Sánchez-Lozada
- Laboratorio de Fisiopatología Renal, Departamento de Nefrología, Instituto Nacional de Cardiología Ignacio Chávez, Mexico city 14080, Mexico.
| | - Fausto Sánchez-Muñoz
- Departamento de Inmunología, Instituto Nacional de Cardiología Ignacio Chávez, Mexico city 14080, Mexico.
- Sección de Postgraduados, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico city 11340, Mexico.
| |
Collapse
|
18
|
Karise I, Bargut TC, Del Sol M, Aguila MB, Mandarim-de-Lacerda CA. Metformin enhances mitochondrial biogenesis and thermogenesis in brown adipocytes of mice. Biomed Pharmacother 2019; 111:1156-1165. [PMID: 30841429 DOI: 10.1016/j.biopha.2019.01.021] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 01/04/2019] [Accepted: 01/06/2019] [Indexed: 11/18/2022] Open
Abstract
AIMS We studied the effect of metformin on the brown adipose tissue (BAT) in a fructose-rich-fed model, focusing on BAT proliferation, differentiation, and thermogenic markers. MAIN METHODS C57Bl/6 mice received isoenergetic diets for ten weeks: control (C) or high-fructose (F). For additional eight weeks, animals received metformin hydrochloride (M, 250 mg/kg/day) or saline. After sacrifice, BAT and white fat pads were prepared for light microscopy and molecular analyses. KEY FINDINGS Body mass gain, white fat pads, and adiposity index were not different among the groups. There was a reduction in energy intake in the F group and energy expenditure in the F and FM groups. Metformin led to a more massive BAT in both groups CM and FM, associated with a higher adipocyte proliferation (β1-adrenergic receptor, proliferating cell nuclear antigen, and vascular endothelial growth factor), and differentiation (PR domain containing 16, bone morphogenetic protein 7), in part by activating 5' adenosine monophosphate-activated protein kinase. Metformin also enhanced thermogenic markers in the BAT (uncoupling protein type 1, peroxisome proliferator-activated receptor gamma coactivator-1 alpha) through adrenergic stimuli and fibroblast growth factor 21. Metformin might improve mitochondrial biogenesis in the BAT (nuclear respiratory factor 1, mitochondrial transcription factor A), lipolysis (perilipin, adipose triglyceride lipase, hormone-sensitive lipase), and fatty acid uptake (lipoprotein lipase, cluster of differentiation 36, adipocyte protein 2). SIGNIFICANCE Metformin effects are not linked to body mass changes, but affect BAT thermogenesis, mitochondrial biogenesis, and fatty acid uptake. Therefore, BAT may be a metformin adjuvant target for the treatment of metabolic disorders.
Collapse
Affiliation(s)
- Iara Karise
- Laboratory of Morphometry, Metabolism and Cardiovascular Disease, Biomedical Center, Institute of Biology, The University of the State of Rio de Janeiro, Rio de Janeiro, Brazil.
| | - Thereza Cristina Bargut
- Laboratory of Morphometry, Metabolism and Cardiovascular Disease, Biomedical Center, Institute of Biology, The University of the State of Rio de Janeiro, Rio de Janeiro, Brazil.
| | - Mariano Del Sol
- Doctoral Program in Morphological Sciences, Universidad de La Frontera, Temuco, Chile.
| | - Marcia Barbosa Aguila
- Laboratory of Morphometry, Metabolism and Cardiovascular Disease, Biomedical Center, Institute of Biology, The University of the State of Rio de Janeiro, Rio de Janeiro, Brazil.
| | - Carlos A Mandarim-de-Lacerda
- Laboratory of Morphometry, Metabolism and Cardiovascular Disease, Biomedical Center, Institute of Biology, The University of the State of Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
19
|
Gauer JS, Tumova S, Lippiat JD, Kerimi A, Williamson G. Differential patterns of inhibition of the sugar transporters GLUT2, GLUT5 and GLUT7 by flavonoids. Biochem Pharmacol 2018; 152:11-20. [PMID: 29548810 DOI: 10.1016/j.bcp.2018.03.011] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 03/09/2018] [Indexed: 11/16/2022]
Abstract
Only limited data are available on the inhibition of the sugar transporter GLUT5 by flavonoids or other classes of bioactives. Intestinal GLUT7 is poorly characterised and no information exists concerning its inhibition. We aimed to study the expression of GLUT7 in Caco-2/TC7 intestinal cells, and evaluate inhibition of glucose transport by GLUT2 and GLUT7, and of fructose transport by GLUT2, GLUT5 and GLUT7, by flavonoids. Differentiated Caco-2/TC7 cell monolayers were used to investigate GLUT7 expression, as well as biotinylation and immunofluorescence to assess GLUT7 location. For mechanistic sugar transport studies, X. laevis oocytes were injected with individual mRNA, and GLUT protein expression on oocyte membranes was confirmed. Oocytes were incubated with D-[14C(U)]-glucose or D-[14C(U)]-fructose in the presence of flavonoids, and uptake was estimated by liquid scintilation counting. In differentiated Caco-2/TC7 cell monolayers, GLUT7 was mostly expressed apically. When applied apically, or to both compartments, sorbitol, galactose, L-glucose or sucrose did not affect GLUT7 mRNA expression. Fructose applied to both sides increased GLUT7 mRNA (13%, p ≤ 0.001) and total GLUT7 protein (2.7-fold, p ≤ 0.05), while the ratio between apical, basolateral and total GLUT7 protein was unchanged. In the X. laevis oocyte model, GLUT2-mediated glucose and fructose transport were inhibited by quercetin, (-)-epigallocatechin gallate (EGCG) and apigenin, GLUT5-mediated fructose transport was inhibited by apigenin and EGCG, but not by quercetin, and GLUT7-mediated uptake of both glucose and fructose was inhibited by apigenin, but not by quercetin nor EGCG. Expression of GLUT7 was increased by fructose, but only when applied to Caco-2/TC7 cells both apically and basolaterally. Since GLUT2, GLUT5 and GLUT7 show different patterns of inhibition by the tested flavonoids, we suggest that they have the potential to be used as investigational tools to distinguish sugar transporter activity in different biological settings.
Collapse
Affiliation(s)
- Julia S Gauer
- School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, UK
| | - Sarka Tumova
- School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, UK
| | - Jonathan D Lippiat
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Asimina Kerimi
- School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, UK
| | - Gary Williamson
- School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, UK.
| |
Collapse
|
20
|
Volpi-Lagreca G, Duckett SK. Supplementation of glycerol or fructose via drinking water to grazing lambs on tissue glycogen level and lipogenesis. J Anim Sci 2018; 95:2558-2575. [PMID: 28727036 DOI: 10.2527/jas.2017.1449] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Lambs ( = 18; 40.1 ± 7.4 kg BW) were used to assess supplementation of glycerol or fructose via drinking water on growth, tissue glycogen levels, postmortem glycolysis, and lipogenesis. Lambs were blocked by BW and allocated to alfalfa paddocks (2 lambs/paddock and 3 paddocks/treatment). Each paddock within a block was assigned randomly to drinking water treatments for 30 d: 1) control (CON), 2) 120 g fructose/L of drinking water (FRU), or 3) 120 g glycerol/L of drinking water (GLY). Lambs grazed alfalfa with free access to water treatments for 28 d and then were fasted in indoor pens for a final 2 d with access to only water treatments. Data were analyzed using the MIXED procedure of SAS with water treatment and time (when appropriate) in the model. During the 28-d grazing period, ADG was greater ( < 0.05) for GLY than for CON or FRU. During the 2-d fasting period, BW shrink was lower ( < 0.05) for GLY compared with CON or FRU. Hot carcass weight was greater ( < 0.05) for GLY than for FRU. The interaction for glycogen content × postmortem time was significant ( = 0.003) in LM and semitendinosus (ST) muscles. Glycogen content in the LM was greater ( < 0.05) for GLY at 2 and 3 h and for FRU at 1 h postmortem compared with CON. Glycogen content in ST did not differ between treatments ( > 0.05). Liver glycogen content was over 14-fold greater ( < 0.05) for GLY compared with FRU or CON. Liver free glucose was greater ( < 0.05) for GLY than for CON, whereas liver lipid content was higher ( < 0.05) for CON than for GLY. Supplementation with GLY increased ( < 0.05) odd-chain fatty acids in LM, subcutaneous fat (SQ), and the liver. Stearic acid (C18:0) concentrations were reduced in LM ( = 0.064) and subcutaneous adipose tissue (SQ; = 0.018), whereas oleic acid (C18:1 -9) concentration tended to be increased ( = 0.066) in SQ with FRU and GLY. Linolenic acid (C18:3 -3) was reduced ( = 0.031) and all long-chain -3 fatty acid (eicosapentaenoic acid, docosapentaenoic acid, and docosahexaenoic acid) concentrations were increased ( < 0.05) with FRU and GLY compared with CON. Glycerol supplementation upregulated ( < 0.05) stearoyl-CoA desaturate () and fatty acid synthase () mRNA by over 40-fold in the SQ and 5-fold in the liver. Glycerol supplementation also upregulated ( < 0.05) glucose transporters and glycogen branching enzyme in the liver. Overall, glycerol supplementation improved growth, reduced BW shrink during fasting, increased glycogen content in muscle and the liver, and stimulated de novo lipogenesis.
Collapse
|
21
|
Bargut TCL, Santos LP, Machado DGL, Aguila MB, Mandarim-de-Lacerda CA. Eicosapentaenoic acid (EPA) vs. Docosahexaenoic acid (DHA): Effects in epididymal white adipose tissue of mice fed a high-fructose diet. Prostaglandins Leukot Essent Fatty Acids 2017; 123:14-24. [PMID: 28838556 DOI: 10.1016/j.plefa.2017.07.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2017] [Revised: 07/19/2017] [Accepted: 07/27/2017] [Indexed: 12/14/2022]
Abstract
BACKGROUND Eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) have been demonstrated to be beneficial for many diseases, including those associated with the metabolic syndrome (e.g. insulin resistance and hypertension). Nevertheless, not only their actions are not entirely understood, but also their only effects were not yet elucidated. Therefore, we aimed to compare the effects of EPA and DHA, alone or in combination, on the epididymal white adipose tissue (WAT) metabolism in mice fed a high-fructose diet. METHODS 3-mo-old C57Bl/6 mice were fed a control diet (C) or a high-fructose diet (HFru). After three weeks on the diets, the HFru group was subdivided into four new groups for another five weeks: HFru, HFru+EPA, HFru+DHA, and HFru-EPA+DHA (n=10/group). Besides evaluating biometric and metabolic parameters of the animals, we measured the adipocyte area and performed molecular analyses (inflammation and lipolysis) in the epididymal WAT. RESULTS The HFru group showed adipocyte hypertrophy, inflammation, and uncontrolled lipolysis. The treated animals showed a reversion of adipocyte hypertrophy, inhibition of inflammation with activation of anti-inflammatory mediators, and regularization of lipolysis. Overall, the beneficial effects were more marked with DHA than EPA. CONCLUSION Although the whole-body metabolic effects were similar between EPA and DHA, DHA appeared to be the central actor in WAT metabolism, modulating pro and anti-inflammatory pathways and alleviating adipocytes abnormalities. Therefore, when considering fructose-induced adverse effects in WAT, the most prominent actions were observed with DHA.
Collapse
Affiliation(s)
- Thereza Cristina Lonzetti Bargut
- Laboratory of Morphometry, Metabolism and Cardiovascular Diseases, Biomedical Center, Institute of Biology, State University of Rio de Janeiro, Rio de Janeiro, Brazil; Basic Science Department, Nova Friburgo Health Institute, Fluminense Federal University, Nova Friburgo, Brazil.
| | - Larissa Pereira Santos
- Laboratory of Morphometry, Metabolism and Cardiovascular Diseases, Biomedical Center, Institute of Biology, State University of Rio de Janeiro, Rio de Janeiro, Brazil.
| | - Daiana Guimarães Lopes Machado
- Laboratory of Morphometry, Metabolism and Cardiovascular Diseases, Biomedical Center, Institute of Biology, State University of Rio de Janeiro, Rio de Janeiro, Brazil.
| | - Marcia Barbosa Aguila
- Laboratory of Morphometry, Metabolism and Cardiovascular Diseases, Biomedical Center, Institute of Biology, State University of Rio de Janeiro, Rio de Janeiro, Brazil.
| | - Carlos Alberto Mandarim-de-Lacerda
- Laboratory of Morphometry, Metabolism and Cardiovascular Diseases, Biomedical Center, Institute of Biology, State University of Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
22
|
Legeza B, Marcolongo P, Gamberucci A, Varga V, Bánhegyi G, Benedetti A, Odermatt A. Fructose, Glucocorticoids and Adipose Tissue: Implications for the Metabolic Syndrome. Nutrients 2017; 9:nu9050426. [PMID: 28445389 PMCID: PMC5452156 DOI: 10.3390/nu9050426] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 04/16/2017] [Accepted: 04/20/2017] [Indexed: 12/13/2022] Open
Abstract
The modern Western society lifestyle is characterized by a hyperenergetic, high sugar containing food intake. Sugar intake increased dramatically during the last few decades, due to the excessive consumption of high-sugar drinks and high-fructose corn syrup. Current evidence suggests that high fructose intake when combined with overeating and adiposity promotes adverse metabolic health effects including dyslipidemia, insulin resistance, type II diabetes, and inflammation. Similarly, elevated glucocorticoid levels, especially the enhanced generation of active glucocorticoids in the adipose tissue due to increased 11β-hydroxysteroid dehydrogenase 1 (11β-HSD1) activity, have been associated with metabolic diseases. Moreover, recent evidence suggests that fructose stimulates the 11β-HSD1-mediated glucocorticoid activation by enhancing the availability of its cofactor NADPH. In adipocytes, fructose was found to stimulate 11β-HSD1 expression and activity, thereby promoting the adipogenic effects of glucocorticoids. This article aims to highlight the interconnections between overwhelmed fructose metabolism, intracellular glucocorticoid activation in adipose tissue, and their metabolic effects on the progression of the metabolic syndrome.
Collapse
Affiliation(s)
- Balázs Legeza
- Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland.
- Department of Medical Chemistry, Molecular Biology and Pathobiochemistry, Semmelweis University, Budapest 1085, Hungary.
- First Department of Pediatrics, Semmelweis University, Budapest 1085, Hungary.
| | - Paola Marcolongo
- Department of Molecular and Developmental Medicine, University of Siena, 53100 Siena, Italy.
| | - Alessandra Gamberucci
- Department of Molecular and Developmental Medicine, University of Siena, 53100 Siena, Italy.
| | - Viola Varga
- Department of Medical Chemistry, Molecular Biology and Pathobiochemistry, Semmelweis University, Budapest 1085, Hungary.
| | - Gábor Bánhegyi
- Department of Medical Chemistry, Molecular Biology and Pathobiochemistry, Semmelweis University, Budapest 1085, Hungary.
- Pathobiochemistry Research Group of the Hungarian Academy of Sciences and Semmelweis University, Budapest 1085, Hungary.
| | - Angiolo Benedetti
- Department of Molecular and Developmental Medicine, University of Siena, 53100 Siena, Italy.
| | - Alex Odermatt
- Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland.
| |
Collapse
|
23
|
Prince PD, Santander YA, Gerez EM, Höcht C, Polizio AH, Mayer MA, Taira CA, Fraga CG, Galleano M, Carranza A. Fructose increases corticosterone production in association with NADPH metabolism alterations in rat epididymal white adipose tissue. J Nutr Biochem 2017; 46:109-116. [PMID: 28499147 DOI: 10.1016/j.jnutbio.2017.02.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 01/12/2017] [Accepted: 02/25/2017] [Indexed: 12/11/2022]
Abstract
Metabolic syndrome is an array of closely metabolic disorders that includes glucose intolerance/insulin resistance, central obesity, dyslipidemia, and hypertension. Fructose, a highly lipogenic sugar, has profound metabolic effects in adipose tissue, and has been associated with the etiopathology of many components of the metabolic syndrome. In adipocytes, the enzyme 11 β-HSD1 amplifies local glucocorticoid production, being a key player in the pathogenesis of central obesity and metabolic syndrome. 11 β-HSD1 reductase activity is dependent on NADPH, a cofactor generated by H6PD inside the endoplasmic reticulum. Our focus was to explore the effect of fructose overload on epididymal white adipose tissue (EWAT) machinery involved in glucocorticoid production and NADPH and oxidants metabolism. Male Sprague-Dawley rats fed with a fructose solution (10% (w/v) in tap water) during 9 weeks developed some characteristic features of metabolic syndrome, such as hypertriglyceridemia, and hypertension. In addition, high levels of plasma and EWAT corticosterone were detected. Activities and expressions of H6PD and 11 β-HSD1, NAPDH content, superoxide anion production, expression of NADPH oxidase 2 subunits, and indicators of oxidative metabolism were measured. Fructose overloaded rats showed an increased potential in oxidant production respect to control rats. In parallel, in EWAT from fructose overloaded rats we found higher expression/activity of H6PD and 11 β-HSD1, and NADPH/NADP+ ratio. Our in vivo results support that fructose overload installs in EWAT conditions favoring glucocorticoid production through higher H6PD expression/activity supplying NADPH for enhanced 11 β-HSD1 expression/activity, becoming this tissue a potential extra-adrenal source of corticosterone under these experimental conditions.
Collapse
Affiliation(s)
- Paula D Prince
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Química Analítica y Fisicoquímica, Cátedra de Fisicoquímica, Buenos Aires, Argentina; CONICET- Universidad de Buenos Aires, Instituto de Bioquímica y Medicina Molecular (IBIMOL), Buenos Aires, Argentina
| | - Yanina A Santander
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Farmacología, Cátedra de Farmacología, Buenos Aires, Argentina
| | - Estefania M Gerez
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Química Analítica y Fisicoquímica, Cátedra de Fisicoquímica, Buenos Aires, Argentina
| | - Christian Höcht
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Farmacología, Cátedra de Farmacología, Buenos Aires, Argentina
| | - Ariel H Polizio
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Farmacología, Cátedra de Farmacología, Buenos Aires, Argentina; CONICET, Buenos Aires, Argentina
| | - Marcos A Mayer
- CONICET, Buenos Aires, Argentina; Fundación CESIM, Santa Rosa, La Pampa, Argentina; Universidad de La Pampa, Facultad de Ciencias Naturales, Santa Rosa, La Pampa, Argentina
| | - Carlos A Taira
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Farmacología, Cátedra de Farmacología, Buenos Aires, Argentina; CONICET, Buenos Aires, Argentina
| | - Cesar G Fraga
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Química Analítica y Fisicoquímica, Cátedra de Fisicoquímica, Buenos Aires, Argentina; CONICET- Universidad de Buenos Aires, Instituto de Bioquímica y Medicina Molecular (IBIMOL), Buenos Aires, Argentina
| | - Monica Galleano
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Química Analítica y Fisicoquímica, Cátedra de Fisicoquímica, Buenos Aires, Argentina; CONICET- Universidad de Buenos Aires, Instituto de Bioquímica y Medicina Molecular (IBIMOL), Buenos Aires, Argentina
| | - Andrea Carranza
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Farmacología, Cátedra de Farmacología, Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires, Instituto de Investigaciones Cardiológicas (ININCA), Buenos Aires, Argentina.
| |
Collapse
|
24
|
Lu XL, Zhao CH, Yao XL, Zhang H. Quercetin attenuates high fructose feeding-induced atherosclerosis by suppressing inflammation and apoptosis via ROS-regulated PI3K/AKT signaling pathway. Biomed Pharmacother 2016; 85:658-671. [PMID: 27919735 DOI: 10.1016/j.biopha.2016.11.077] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 11/07/2016] [Accepted: 11/16/2016] [Indexed: 12/28/2022] Open
Abstract
Quercetin is a dietary flavonoid compound extracted from various plants, such as apple and onions. Previous studies have revealed its anti-inflammatory, anti-cancer, antioxidant and anti-apoptotic activities. This study investigated the ability of quercetin to inhibit high fructose feeding- or LPS-induced atherosclerosis through regulating oxidative stress, apoptosis and inflammation response in vivo and in vitro experiments. 50 and 100mg/kg quercetin were used in our study, showing significant inhibitory role in high fructose-induced atherosclerosis via reducing reactive oxygen species (ROS) levels, Caspase-3 activation, inflammatory cytokines releasing, the number of terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling (TUNEL)-positive cells and collagen contents as well as modulating apoptosis- and inflammation-related proteins expression. We also explored the protective effects of quercetin on atherosclerosis by phosphatidylinositide 3-kinases (PI3K)/Protein kinase B (AKT)-associated Bcl-2/Caspase-3 and nuclear factor kappa B (NF-κB) signal pathways activation, promoting AKT and Bcl-2 expression and reducing Caspase-3 and NF-κB activation. Quercetin reduced the atherosclerotic plaque size in vivo in high fructose feeding-induced mice assessed by oil red O. Also, in vitro experiments, quercetin displayed inhibitory role in LPS-induced ROS production, inflammatory response and apoptosis, which were linked with PI3K/AKT-regulated Caspase-3 and NF-κB activation. In conclusion, our results showed that quercetin inhibited atherosclerotic plaque development in high fructose feeding mice via PI3K/AKT activation regulated by ROS.
Collapse
Affiliation(s)
- Xue-Li Lu
- Department of Cardiology, Huaihe Hospital, Henan University, Kaifeng 475000, China.
| | - Cui-Hua Zhao
- Department of Cardiology, Huaihe Hospital, Henan University, Kaifeng 475000, China
| | - Xin-Liang Yao
- Department of Cardiology, Huaihe Hospital, Henan University, Kaifeng 475000, China
| | - Han Zhang
- Department of Cardiology, Huaihe Hospital, Henan University, Kaifeng 475000, China
| |
Collapse
|
25
|
Fructose and stress induce opposite effects on lipid metabolism in the visceral adipose tissue of adult female rats through glucocorticoid action. Eur J Nutr 2016; 56:2115-2128. [DOI: 10.1007/s00394-016-1251-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 06/14/2016] [Indexed: 12/16/2022]
|
26
|
Long-Term Fructose Intake Increases Adipogenic Potential: Evidence of Direct Effects of Fructose on Adipocyte Precursor Cells. Nutrients 2016; 8:198. [PMID: 27049396 PMCID: PMC4848667 DOI: 10.3390/nu8040198] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Revised: 03/11/2016] [Accepted: 03/22/2016] [Indexed: 11/22/2022] Open
Abstract
We have previously addressed that fructose rich diet (FRD) intake for three weeks increases the adipogenic potential of stromal vascular fraction cells from the retroperitoneal adipose tissue (RPAT). We have now evaluated the effect of prolonged FRD intake (eight weeks) on metabolic parameters, number of adipocyte precursor cells (APCs) and in vitro adipogenic potential from control (CTR) and FRD adult male rats. Additionally, we have examined the direct fructose effects on the adipogenic capacity of normal APCs. FRD fed rats had increased plasma levels of insulin, triglyceride and leptin, and RPAT mass and adipocyte size. FACS studies showed higher APCs number and adipogenic potential in FRD RPAT pads; data is supported by high mRNA levels of competency markers: PPARγ2 and Zfp423. Complementary in vitro experiments indicate that fructose-exposed normal APCs displayed an overall increased adipogenic capacity. We conclude that the RPAT mass expansion observed in eight week-FRD fed rats depends on combined accelerated adipogenesis and adipocyte hypertrophy, partially due to a direct effect of fructose on APCs.
Collapse
|
27
|
Glycerol Production from Glucose and Fructose by 3T3-L1 Cells: A Mechanism of Adipocyte Defense from Excess Substrate. PLoS One 2015; 10:e0139502. [PMID: 26426115 PMCID: PMC4591265 DOI: 10.1371/journal.pone.0139502] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Accepted: 09/12/2015] [Indexed: 12/28/2022] Open
Abstract
Cultured adipocytes (3T3-L1) produce large amounts of 3C fragments; largely lactate, depending on medium glucose levels. Increased glycolysis has been observed also in vivo in different sites of rat white adipose tissue. We investigated whether fructose can substitute glucose as source of lactate, and, especially whether the glycerol released to the medium was of lipolytic or glycolytic origin. Fructose conversion to lactate and glycerol was lower than that of glucose. The fast exhaustion of medium glucose was unrelated to significant changes in lipid storage. Fructose inhibited to a higher degree than glucose the expression of lipogenic enzymes. When both hexoses were present, the effects of fructose on gene expression prevailed over those of glucose. Adipocytes expressed fructokinase, but not aldolase b. Substantive release of glycerol accompanied lactate when fructose was the substrate. The mass of cell triacylglycerol (and its lack of change) could not justify the comparatively higher amount of glycerol released. Consequently, most of this glycerol should be derived from the glycolytic pathway, since its lipolytic origin could not be (quantitatively) sustained. Proportionally (with respect to lactate plus glycerol), more glycerol was produced from fructose than from glucose, which suggests that part of fructose was catabolized by the alternate (hepatic) fructose pathway. Earlier described adipose glycerophophatase activity may help explain the glycolytic origin of most of the glycerol. However, no gene is known for this enzyme in mammals, which suggests that this function may be carried out by one of the known phosphatases in the tissue. Break up of glycerol-3P to yield glycerol, may be a limiting factor for the synthesis of triacylglycerols through control of glycerol-3P availability. A phosphatase pathway such as that described may have a potential regulatory function, and explain the production of glycerol by adipocytes in the absence of lipolytic stimulation.
Collapse
|
28
|
Ohashi K, Ando Y, Munetsuna E, Yamada H, Yamazaki M, Nagura A, Taromaru N, Ishikawa H, Suzuki K, Teradaira R. Maternal fructose consumption alters messenger RNA expression of hippocampal StAR, PBR, P450(11β), 11β-HSD, and 17β-HSD in rat offspring. Nutr Res 2015; 35:259-64. [DOI: 10.1016/j.nutres.2014.11.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Revised: 11/10/2014] [Accepted: 11/19/2014] [Indexed: 12/19/2022]
|
29
|
Xu H, Wang F, Wang J, Xu J, Wang Y, Xue C. The WNT/β-catenin pathway is involved in the anti-adipogenic activity of cerebrosides from the sea cucumber Cucumaria frondosa. Food Funct 2015; 6:2396-404. [DOI: 10.1039/c5fo00273g] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Both adipocyte hypertrophy and hyperplasia lead to obesity.
Collapse
Affiliation(s)
- Hui Xu
- College of Food Science and Engineering
- Ocean University of China
- Qingdao 266003
- China
| | - Fei Wang
- College of Food Science and Engineering
- Ocean University of China
- Qingdao 266003
- China
| | - Jingfeng Wang
- College of Food Science and Engineering
- Ocean University of China
- Qingdao 266003
- China
| | - Jie Xu
- College of Food Science and Engineering
- Ocean University of China
- Qingdao 266003
- China
| | - Yuming Wang
- College of Food Science and Engineering
- Ocean University of China
- Qingdao 266003
- China
| | - Changhu Xue
- College of Food Science and Engineering
- Ocean University of China
- Qingdao 266003
- China
| |
Collapse
|
30
|
Normal roles for dietary fructose in carbohydrate metabolism. Nutrients 2014; 6:3117-29. [PMID: 25100436 PMCID: PMC4145298 DOI: 10.3390/nu6083117] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Revised: 07/16/2014] [Accepted: 07/24/2014] [Indexed: 01/22/2023] Open
Abstract
Although there are many well-documented metabolic effects linked to the fructose component of a very high sugar diet, a healthy diet is also likely to contain appreciable fructose, even if confined to that found in fruits and vegetables. These normal levels of fructose are metabolized in specialized pathways that synergize with glucose at several metabolic steps. Glucose potentiates fructose absorption from the gut, while fructose catalyzes glucose uptake and storage in the liver. Fructose accelerates carbohydrate oxidation after a meal. In addition, emerging evidence suggests that fructose may also play a role in the secretion of insulin and GLP-1, and in the maturation of preadipocytes to increase fat storage capacity. Therefore, fructose undergoing its normal metabolism has the interesting property of potentiating the disposal of a dietary carbohydrate load through several routes.
Collapse
|