1
|
Role of a small GTPase Cdc42 in aging and age-related diseases. Biogerontology 2023; 24:27-46. [PMID: 36598630 DOI: 10.1007/s10522-022-10008-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 12/13/2022] [Indexed: 01/05/2023]
Abstract
A small GTPase, Cdc42 is evolutionarily one of the most ancient members of the Rho family, which is ubiquitously expressed and involved in a wide range of fundamental cellular functions. The crucial role of Cdc42 includes regulation of the actin cytoskeleton, cell polarity, morphology and migration, endocytosis and exocytosis, cell cycle, and proliferation in many different cell types. Many studies have provided compelling yet contradicting evidence that Cdc42 dysregulation plays an important role in cellular and tissue aging. Furthermore, Cdc42 is a critical factor in the development and progression of aging-related pathologies, such as neurodegenerative and cardiovascular disorders, diabetes type 2, and aging-related disorders of the joints and bones, and the inhibition of the Cdc42 demonstrates potentially significant therapeutic and anti-aging effects in animal models of aging and disease. However, regulation of Cdc42 expression and activity is very complex and depends on many factors, such as the origin and complexity of the tissues, hormonal status, etc. Therefore, this review is focused on current advances in understanding the underlying cellular and molecular mechanisms associated with Cdc42 activity and regulation of senescence in different cell types since they may provide a foundation for novel therapeutic strategies and targeted drugs to reverse the aging process and treat aging-associated disorders.
Collapse
|
2
|
Long T, Abbasi N, Hernandez JE, Li Y, Sayed IM, Ma S, Iemolo A, Yee BA, Yeo GW, Telese F, Ghosh P, Das S, Huang WJM. RNA binding protein DDX5 directs tuft cell specification and function to regulate microbial repertoire and disease susceptibility in the intestine. Gut 2022; 71:1790-1802. [PMID: 34853057 PMCID: PMC9156727 DOI: 10.1136/gutjnl-2021-324984] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 11/12/2021] [Indexed: 12/30/2022]
Abstract
OBJECTIVE Tuft cells residing in the intestinal epithelium have diverse functions. In the small intestine, they provide protection against inflammation, combat against helminth and protist infections, and serve as entry portals for enteroviruses. In the colon, they had been implicated in tumourigenesis. Commitment of intestinal progenitor cells to the tuft cell lineage requires Rho GTPase Cell Division Cycle 42 (CDC42), a Rho GTPase that acts downstream of the epidermal growth factor receptor and wingless-related integration site signalling cascades, and the master transcription factor POU class 2 homeobox 3 (POU2F3). This study investigates how this pathway is regulated by the DEAD box containing RNA binding protein DDX5 in vivo. DESIGN We assessed the role of DDX5 in tuft cell specification and function in control and epithelial cell-specific Ddx5 knockout mice (DDX5ΔIEC) using transcriptomic approaches. RESULTS DDX5ΔIEC mice harboured a loss of intestinal tuft cell populations, modified microbial repertoire, and altered susceptibilities to ileal inflammation and colonic tumourigenesis. Mechanistically, DDX5 promotes CDC42 protein synthesis through a post-transcriptional mechanism to license tuft cell specification. Importantly, the DDX5-CDC42 axis is parallel but distinct from the known interleukin-13 circuit implicated in tuft cell hyperplasia, and both pathways augment Pou2f3 expression in secretory lineage progenitors. In mature tuft cells, DDX5 not only promotes integrin signalling and microbial responses, it also represses gene programmes involved in membrane transport and lipid metabolism. CONCLUSION RNA binding protein DDX5 directs tuft cell specification and function to regulate microbial repertoire and disease susceptibility in the intestine.
Collapse
Affiliation(s)
- Tianyun Long
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, California, USA
| | - Nazia Abbasi
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, California, USA
| | - Juan E Hernandez
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, California, USA
| | - Yuxin Li
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, California, USA
| | - Ibrahim M Sayed
- Department of Pathology, University of California San Diego, La Jolla, California, USA
| | - Shengyun Ma
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, California, USA
| | - Attilio Iemolo
- Department of Medicine, University of California, San Diego, La Jolla, California, USA
| | - Brian A Yee
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, California, USA
| | - Gene W Yeo
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, California, USA
| | - Francesca Telese
- Department of Medicine, University of California, San Diego, La Jolla, California, USA
| | - Pradipta Ghosh
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, California, USA
- Department of Medicine, University of California, San Diego, La Jolla, California, USA
| | - Soumita Das
- Department of Pathology, University of California San Diego, La Jolla, California, USA
| | - Wendy Jia Men Huang
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, California, USA
| |
Collapse
|
3
|
Wurzer H, Filali L, Hoffmann C, Krecke M, Biolato AM, Mastio J, De Wilde S, François JH, Largeot A, Berchem G, Paggetti J, Moussay E, Thomas C. Intrinsic Resistance of Chronic Lymphocytic Leukemia Cells to NK Cell-Mediated Lysis Can Be Overcome In Vitro by Pharmacological Inhibition of Cdc42-Induced Actin Cytoskeleton Remodeling. Front Immunol 2021; 12:619069. [PMID: 34108958 PMCID: PMC8181408 DOI: 10.3389/fimmu.2021.619069] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 04/23/2021] [Indexed: 01/24/2023] Open
Abstract
Natural killer (NK) cells are innate effector lymphocytes with strong antitumor effects against hematologic malignancies such as chronic lymphocytic leukemia (CLL). However, NK cells fail to control CLL progression on the long term. For effective lysis of their targets, NK cells use a specific cell-cell interface, known as the immunological synapse (IS), whose assembly and effector function critically rely on dynamic cytoskeletal changes in NK cells. Here we explored the role of CLL cell actin cytoskeleton during NK cell attack. We found that CLL cells can undergo fast actin cytoskeleton remodeling which is characterized by a NK cell contact-induced accumulation of actin filaments at the IS. Such polarization of the actin cytoskeleton was strongly associated with resistance against NK cell-mediated cytotoxicity and reduced amounts of the cell-death inducing molecule granzyme B in target CLL cells. Selective pharmacological targeting of the key actin regulator Cdc42 abrogated the capacity of CLL cells to reorganize their actin cytoskeleton during NK cell attack, increased levels of transferred granzyme B and restored CLL cell susceptibility to NK cell cytotoxicity. This resistance mechanism was confirmed in primary CLL cells from patients. In addition, pharmacological inhibition of actin dynamics in combination with blocking antibodies increased conjugation frequency and improved CLL cell elimination by NK cells. Together our results highlight the critical role of CLL cell actin cytoskeleton in driving resistance against NK cell cytotoxicity and provide new potential therapeutic point of intervention to target CLL immune escape.
Collapse
Affiliation(s)
- Hannah Wurzer
- Cytoskeleton and Cancer Progression, Department of Oncology, Luxembourg Institute of Health, Luxembourg City, Luxembourg.,Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Liza Filali
- Cytoskeleton and Cancer Progression, Department of Oncology, Luxembourg Institute of Health, Luxembourg City, Luxembourg
| | - Céline Hoffmann
- Cytoskeleton and Cancer Progression, Department of Oncology, Luxembourg Institute of Health, Luxembourg City, Luxembourg
| | - Max Krecke
- Cytoskeleton and Cancer Progression, Department of Oncology, Luxembourg Institute of Health, Luxembourg City, Luxembourg.,Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Andrea Michela Biolato
- Cytoskeleton and Cancer Progression, Department of Oncology, Luxembourg Institute of Health, Luxembourg City, Luxembourg.,Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Jérôme Mastio
- Cytoskeleton and Cancer Progression, Department of Oncology, Luxembourg Institute of Health, Luxembourg City, Luxembourg
| | - Sigrid De Wilde
- Department of Hemato-Oncology, Central Hospitalier du Luxembourg, Luxembourg City, Luxembourg
| | - Jean Hugues François
- Laboratory of Hematology, Centre Hospitalier de Luxembourg, Luxembourg City, Luxembourg
| | - Anne Largeot
- Tumor-Stroma Interactions, Department of Oncology, Luxembourg Institute of Health, Luxembourg City, Luxembourg
| | - Guy Berchem
- Department of Hemato-Oncology, Central Hospitalier du Luxembourg, Luxembourg City, Luxembourg.,Department of Oncology, Luxembourg Institute of Health, Luxembourg City, Luxembourg
| | - Jérôme Paggetti
- Tumor-Stroma Interactions, Department of Oncology, Luxembourg Institute of Health, Luxembourg City, Luxembourg
| | - Etienne Moussay
- Tumor-Stroma Interactions, Department of Oncology, Luxembourg Institute of Health, Luxembourg City, Luxembourg
| | - Clément Thomas
- Cytoskeleton and Cancer Progression, Department of Oncology, Luxembourg Institute of Health, Luxembourg City, Luxembourg
| |
Collapse
|
4
|
Patra T, Bose SK, Kwon YC, Meyer K, Ray R. Inhibition of p70 isoforms of S6K1 induces anoikis to prevent transformed human hepatocyte growth. Life Sci 2021; 265:118764. [PMID: 33189822 DOI: 10.1016/j.lfs.2020.118764] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 11/04/2020] [Accepted: 11/11/2020] [Indexed: 12/21/2022]
Abstract
AIMS The mTOR/S6K1 signaling axis, known for cell growth regulation, is hyper-activated in multiple cancers. In this study, we have examined the mechanisms for ribosomal protein p70-S6 kinase 1 (S6K1) associated transformed human hepatocyte (THH) growth regulation. MAIN METHODS THH were treated with p70-S6K1 inhibitor and analyzed for cell viability, cell cycle distribution, specific marker protein expression by western blot, and tumor inhibition in a xenograft mouse model. We validated our results by knockdown of p70-S6K1 using specific siRNA. KEY FINDINGS p70-S6K1 inhibitor treatment caused impairment of in vitro hepatocyte growth, and arrested cell cycle progression at the G1 phase. Further, p70-S6K1 inhibitor treatment exhibited a decrease in FAK and Erk activation, followed by altered integrin-β1 expression, caspase 8, and PARP cleavage appeared to be anoikis like growth inhibition. p70-S6K1 inhibitor also depolymerized actin microfilaments and diminished active Rac1/Cdc42 complex formation for loss of cellular attachment. Similar results were obtained with other transformed human hepatocyte cell lines. p70-S6K1 inhibition also resulted in a reduced phospho-EGFR, Slug and Twist; implicating an inhibition of epithelial-mesenchymal transition (EMT) state. A xenograft tumor model, generated from implanted THH in nude mice, following intraperitoneal injection of S6K1 inhibitor prevented further tumor growth. SIGNIFICANCE Our results suggested that p70-S6K1 inhibition alters orchestration of cell cycle progression, induces cell detachment, and sensitizes hepatocyte growth impairment. Targeting p70 isoform of S6K1 by inhibitor may prove to be a promising approach together with other therapies for hepatocellular carcinoma (HCC) treatment.
Collapse
Affiliation(s)
- Tapas Patra
- Departments of Internal Medicine, Saint Louis University, MO, USA.
| | - Sandip K Bose
- Departments of Internal Medicine, Saint Louis University, MO, USA; Molecular Microbiology & Immunology, Saint Louis University, MO, USA
| | - Young-Chan Kwon
- Departments of Internal Medicine, Saint Louis University, MO, USA
| | - Keith Meyer
- Departments of Internal Medicine, Saint Louis University, MO, USA
| | - Ranjit Ray
- Departments of Internal Medicine, Saint Louis University, MO, USA; Molecular Microbiology & Immunology, Saint Louis University, MO, USA.
| |
Collapse
|
5
|
Wang H, Chen X, Bao L, Zhang X. Investigating potential molecular mechanisms of serum exosomal miRNAs in colorectal cancer based on bioinformatics analysis. Medicine (Baltimore) 2020; 99:e22199. [PMID: 32925795 PMCID: PMC7489663 DOI: 10.1097/md.0000000000022199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 07/11/2020] [Accepted: 08/16/2020] [Indexed: 11/26/2022] Open
Abstract
Colorectal cancer (CRC) is the most common malignant gastrointestinal tumor worldwide. Serum exosomal microRNAs (miRNAs) play a critical role in tumor progression and metastasis. However, the underlying molecular mechanisms are poorly understood.The miRNAs expression profile (GSE39833) was downloaded from Gene Expression Omnibus (GEO) database. GEO2R was applied to screen the differentially expressed miRNAs (DEmiRNAs) between healthy and CRC serum exosome samples. The target genes of DEmiRNAs were predicted by starBase v3.0 online tool. The gene ontology (GO) and Kyoto Encyclopedia of Genomes pathway (KEGG) enrichment analysis were performed using the Database for Annotation, Visualization and Integrated Discovery (DAVID) online tool. The protein-protein interaction (PPI) network was established by the Search Tool for the Retrieval of Interacting Genes (STRING) visualized using Cytoscape software. Molecular Complex Detection (MCODE) and cytohubba plug-in were used to screen hub genes and gene modules.In total, 102 DEmiRNAs were identified including 67 upregulated and 35 downregulated DEmiRNAs, and 1437 target genes were predicted. GO analysis showed target genes of upregulated DEmiRNAs were significantly enriched in transcription regulation, protein binding, and ubiquitin protein ligase activity. While the target genes of downregulated DEmiRNAs were mainly involved in transcription from RNA polymerase II promoter, SMAD binding, and DNA binding. The KEGG pathway enrichment analyses showed target genes of upregulated DEmiRNAs were significantly enriched in proteoglycans in cancer, microRNAs in cancer, and phosphatidylinositol-3 kinases/Akt (PI3K-Akt) signaling pathway, while target genes of downregulated DEmiRNAs were mainly enriched in transforming growth factor-beta (TGF-beta) signaling pathway and proteoglycans in cancer. The genes of the top 3 modules were mainly enriched in ubiquitin mediated proteolysis, spliceosome, and mRNA surveillance pathway. According to the cytohubba plugin, 37 hub genes were selected, and 4 hub genes including phosphoinositide-3-kinase regulatory subunit 1 (PIK3R1), SRC, cell division cycle 42 (CDC42), E1A binding protein p300 (EP300) were identified by combining 8 ranked methods of cytohubba.The study provides a comprehensive analysis of exosomal DEmiRNAs and target genes regulatory network in CRC, which can better understand the roles of exosomal miRNAs in the development of CRC. However, these findings require further experimental validation in future studies.
Collapse
Affiliation(s)
- Haifeng Wang
- Department of Hematology and Oncology, Beilun District People's Hospital, Ningbo, Zhejiang
| | - Xiliang Chen
- Department of Clinical Laboratory, Zhangqiu District People's Hospital, Jinan, Shandong, China
| | - Lingling Bao
- Department of Hematology and Oncology, Beilun District People's Hospital, Ningbo, Zhejiang
| | - Xuede Zhang
- Department of Hematology and Oncology, Beilun District People's Hospital, Ningbo, Zhejiang
| |
Collapse
|
6
|
Porcine Hemagglutinating Encephalomyelitis Virus Activation of the Integrin α5β1-FAK-Cofilin Pathway Causes Cytoskeletal Rearrangement To Promote Its Invasion of N2a Cells. J Virol 2019; 93:JVI.01736-18. [PMID: 30541856 PMCID: PMC6384086 DOI: 10.1128/jvi.01736-18] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 12/05/2018] [Indexed: 12/22/2022] Open
Abstract
PHEV, a member of the Coronaviridae family, is a typical neurotropic virus that primarily affects the nervous system of piglets to produce typical neurological symptoms. However, the mechanism of nerve damage caused by the virus has not been fully elucidated. Actin is an important component of the cytoskeleton of eukaryotic cells and serves as the first obstacle to the entry of pathogens into host cells. Additionally, the morphological structure and function of nerve cells depend on the dynamic regulation of the actin skeleton. Therefore, exploring the mechanism of neuronal injury induced by PHEV from the perspective of the actin cytoskeleton not only helps elucidate the pathogenesis of PHEV but also provides a theoretical basis for the search for new antiviral targets. This is the first report to define a mechanistic link between alterations in signaling from cytoskeleton pathways and the mechanism of PHEV invading nerve cells. Porcine hemagglutinating encephalomyelitis virus (PHEV) is a highly neurotropic virus that causes diffuse neuronal infection with neurological damage and high mortality. Virus-induced cytoskeletal dynamics are thought to be closely related to this type of nerve damage. Currently, the regulation pattern of the actin cytoskeleton and its molecular mechanism remain unclear when PHEV enters the host cells. Here, we demonstrate that entry of PHEV into N2a cells induces a biphasic remodeling of the actin cytoskeleton and a dynamic change in cofilin activity. Viral entry is affected by the disruption of actin kinetics or alteration of cofilin activity. PHEV binds to integrin α5β1 and then initiates the integrin α5β1-FAK signaling pathway, leading to virus-induced early cofilin phosphorylation and F-actin polymerization. Additionally, Ras-related C3 botulinum toxin substrate 1 (Rac1), cell division cycle 42 (Cdc42), and downstream regulatory gene p21-activated protein kinases (PAKs) are recruited as downstream mediators of PHEV-induced dynamic changes of the cofilin activity pathway. In conclusion, we demonstrate that PHEV utilizes the integrin α5β1-FAK-Rac1/Cdc42-PAK-LIMK-cofilin pathway to cause an actin cytoskeletal rearrangement to promote its own invasion, providing theoretical support for the development of PHEV pathogenic mechanisms and new antiviral targets. IMPORTANCE PHEV, a member of the Coronaviridae family, is a typical neurotropic virus that primarily affects the nervous system of piglets to produce typical neurological symptoms. However, the mechanism of nerve damage caused by the virus has not been fully elucidated. Actin is an important component of the cytoskeleton of eukaryotic cells and serves as the first obstacle to the entry of pathogens into host cells. Additionally, the morphological structure and function of nerve cells depend on the dynamic regulation of the actin skeleton. Therefore, exploring the mechanism of neuronal injury induced by PHEV from the perspective of the actin cytoskeleton not only helps elucidate the pathogenesis of PHEV but also provides a theoretical basis for the search for new antiviral targets. This is the first report to define a mechanistic link between alterations in signaling from cytoskeleton pathways and the mechanism of PHEV invading nerve cells.
Collapse
|
7
|
Sharma P, Saini N, Sharma R. miR-107 functions as a tumor suppressor in human esophageal squamous cell carcinoma and targets Cdc42. Oncol Rep 2017; 37:3116-3127. [PMID: 28393193 DOI: 10.3892/or.2017.5546] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 12/28/2016] [Indexed: 11/06/2022] Open
Abstract
Previously, we reported significantly decreased expression of tissue and circulating miR-107 in esophageal cancer (EC). However, its role in esophageal tumorigenesis still remains elusive. Therefore, the aim of the present study was to analyze the role of miR-107 in esophageal squamous cell carcinoma (ESCC). The role of miR-107 in ESCC was evaluated using MTT assay, cell cycle analysis by flow cytometry, annexin assay, colony formation assay and scratch assay. Overexpression of miR-107 in KYSE-410 cells suppressed cell proliferation at 72 h post-transfection (p=0.0001). Moreover, a significant increase in the G0/G1 population (p<0.001) and a significant decrease in the G2/M (p=0.032) population was also observed in the miR-107-treated cells as compared to the negative control (NC). Notably, miR-107 overexpression attenuated the colony formation potential of ESCC cells by 41.83% as compared to the NC (p=0.007). miR-107 mimic inhibited ESCC cell migration in a time-dependent manner, reducing the wound closure to only 50.41±7.23% at 72 h post-transfection (p=0.041). Further analysis by Matrigel invasion assay revealed a significant decrease in the migratory and invasive abilities of the KYSE-410 cells at 72 h post miR-107 transfection. qRT-PCR analysis showed decreased expression of one of the newly identified targets of miR-107, Cdc42, at the mRNA level. Further validation by western blotting confirmed a significant reduction in the identified target at the protein level. In addition, the relative luciferase activity of the reporter containing Cdc42 3'UTR was significantly decreased upon miR-107 co-transfection, indicating it to be a direct target of miR-107. Our results herein document that miR-107 functions as a tumor suppressor and inhibits the proliferation, migration and invasion of ESCC cells. Moreover, this is the first report showing Cdc42 as a downstream target of miR-107.
Collapse
Affiliation(s)
- Priyanka Sharma
- University School of Biotechnology, Guru Gobind Singh Indraprastha University, New Delhi 110078, India
| | - Neeru Saini
- Functional Genomics Unit, CSIR Institute of Genomics and Integrative Biology, Mall Road, Delhi 110007, India
| | - Rinu Sharma
- University School of Biotechnology, Guru Gobind Singh Indraprastha University, New Delhi 110078, India
| |
Collapse
|
8
|
Rho GTPases operating at the Golgi complex: Implications for membrane traffic and cancer biology. Tissue Cell 2016; 49:163-169. [PMID: 27720426 DOI: 10.1016/j.tice.2016.09.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 09/09/2016] [Accepted: 09/26/2016] [Indexed: 11/20/2022]
Abstract
The Golgi complex is the central unit of the secretory pathway, modifying, processing and sorting proteins and lipids to their correct cellular localisation. Changes to proteins at the Golgi complex can have deleterious effects on the function of this organelle, impeding trafficking routes through it, potentially resulting in disease. It is emerging that several Rho GTPase proteins, namely Cdc42, RhoBTB3, RhoA and RhoD are at least in part localised to the Golgi complex, and a number of studies have shown that dysregulation of their levels or activity can be associated with cellular changes which ultimately drive cancer progression. In this mini-review we highlight some of the recent work that explores links between form and function of the Golgi complex, Rho GTPases and cancer.
Collapse
|
9
|
Chen J, Zeng F, Forrester SJ, Eguchi S, Zhang MZ, Harris RC. Expression and Function of the Epidermal Growth Factor Receptor in Physiology and Disease. Physiol Rev 2016; 96:1025-1069. [DOI: 10.1152/physrev.00030.2015] [Citation(s) in RCA: 103] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The epidermal growth factor receptor (EGFR) is the prototypical member of a family of membrane-associated intrinsic tyrosine kinase receptors, the ErbB family. EGFR is activated by multiple ligands, including EGF, transforming growth factor (TGF)-α, HB-EGF, betacellulin, amphiregulin, epiregulin, and epigen. EGFR is expressed in multiple organs and plays important roles in proliferation, survival, and differentiation in both development and normal physiology, as well as in pathophysiological conditions. In addition, EGFR transactivation underlies some important biologic consequences in response to many G protein-coupled receptor (GPCR) agonists. Aberrant EGFR activation is a significant factor in development and progression of multiple cancers, which has led to development of mechanism-based therapies with specific receptor antibodies and tyrosine kinase inhibitors. This review highlights the current knowledge about mechanisms and roles of EGFR in physiology and disease.
Collapse
Affiliation(s)
- Jianchun Chen
- Departments of Medicine, Cancer Biology, and Molecular Physiology and Biophysics, Vanderbilt University School of Medicine and Nashville Veterans Affairs Hospital, Nashville, Tennessee; and Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| | - Fenghua Zeng
- Departments of Medicine, Cancer Biology, and Molecular Physiology and Biophysics, Vanderbilt University School of Medicine and Nashville Veterans Affairs Hospital, Nashville, Tennessee; and Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| | - Steven J. Forrester
- Departments of Medicine, Cancer Biology, and Molecular Physiology and Biophysics, Vanderbilt University School of Medicine and Nashville Veterans Affairs Hospital, Nashville, Tennessee; and Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| | - Satoru Eguchi
- Departments of Medicine, Cancer Biology, and Molecular Physiology and Biophysics, Vanderbilt University School of Medicine and Nashville Veterans Affairs Hospital, Nashville, Tennessee; and Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| | - Ming-Zhi Zhang
- Departments of Medicine, Cancer Biology, and Molecular Physiology and Biophysics, Vanderbilt University School of Medicine and Nashville Veterans Affairs Hospital, Nashville, Tennessee; and Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| | - Raymond C. Harris
- Departments of Medicine, Cancer Biology, and Molecular Physiology and Biophysics, Vanderbilt University School of Medicine and Nashville Veterans Affairs Hospital, Nashville, Tennessee; and Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| |
Collapse
|