1
|
Navarro-Garcia F. Serine proteases autotransporter of Enterobacteriaceae: Structures, subdomains, motifs, functions, and targets. Mol Microbiol 2023; 120:178-193. [PMID: 37392318 DOI: 10.1111/mmi.15116] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/12/2023] [Accepted: 06/13/2023] [Indexed: 07/03/2023]
Abstract
Serine protease autotransporters of Enterobacteriaceae (SPATE) constitute a superfamily of virulence factors, resembling the trypsin-like superfamily of serine proteases. SPATEs accomplish multiple functions associated to disease development of their hosts, which could be the consequence of SPATE cleavage of host cell components. SPATEs have been divided into class-1 and class-2 based on structural differences and biological effects, including similar substrate specificity, cytotoxic effects on cultured cells, and enterotoxin activity on intestinal tissues for class-1 SPATEs, whereas most class-2 SPATEs exhibit a lectin-like activity with a predilection to degrade a variety of mucins, including leukocyte surface O-glycoproteins and soluble host proteins, resulting in mucosal colonization and immune modulation. In this review, the structure of class-1 and class-2 are analyzed, making emphasis on their putative functional subdomains as well as a description of their function is provided, including prototypical mechanism of action.
Collapse
Affiliation(s)
- Fernando Navarro-Garcia
- Department of Cell Biology, Centro de Investigación y de Estudios Avanzados del IPN, Mexico, Mexico
| |
Collapse
|
2
|
Flores-Sanchez F, Chavez-Dueñas L, Sanchez-Villamil J, Navarro-Garcia F. Pic Protein From Enteroaggregative E. coli Induces Different Mechanisms for Its Dual Activity as a Mucus Secretagogue and a Mucinase. Front Immunol 2020; 11:564953. [PMID: 33281812 PMCID: PMC7705071 DOI: 10.3389/fimmu.2020.564953] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 10/19/2020] [Indexed: 12/13/2022] Open
Abstract
A hallmark of enteroaggregative Escherichia coli (EAEC) infection is the formation of an intestinal biofilm, which comprises a mucus layer with immersed bacteria. Pic is an autotransporter secreted by EAEC, and other E. coli pathotypes, and has been involved in two apparently contradictory phenotypes, as a mucus secretagogue and as a mucinase. Here, we investigated this Pic dual activity, mucus secretagogue capability and mucinolytic activity, in human goblet cells that secrete MUC2 and MUC5AC. Pic induced mucus hypersecretion directly in the goblet cells, without other intestinal cell types involved. At the same time, Pic exhibited strong proteolytic activity on the secreted mucins. These activities were independent since a mutation in the serine protease motif (PicS258I) abolished mucin degradation while maintaining the mucus secretagogue activity intact. Furthermore, deoxycholic acid (DCA)-induced mucins were proteolytically degraded when goblet cells were co-incubated with DCA/Pic, while co-incubation with DCA/PicS258I induced a synergistic effect on mucus hypersecretion. Pic was more efficient degrading MUC5AC than MUC2, but no degradation was detected with Pic inactivated at the active site by mutation or pharmacological inhibition. Remarkably, Pic cleaved MUC2 and MUC5AC in the C-terminal domain, leaving N-terminal subproducts, impacting the feature of gel-forming mucins and allowing mucus layer penetration by EAEC. Astonishingly, Pic stimulated rapid mucin secretion in goblet-like cells by activating the intracellular calcium pathway resulting from the PLC signal transduction pathway, leading to the production of DAG and releasing IP3, a second messenger of calcium signaling. Therefore, the dual activity of Pic, as a mucus secretagogue and a mucinase, is relevant in the context of carbon source generation and mucus layer penetration, allowing EAEC to live within the layer of mucus but also access epithelial cells.
Collapse
Affiliation(s)
- Fernando Flores-Sanchez
- Department of Cell Biology, Centro de Investigación y de Estudios Avanzados del IPN (CINVESTAV-IPN), México DF, México
| | - Lucia Chavez-Dueñas
- Department of Cell Biology, Centro de Investigación y de Estudios Avanzados del IPN (CINVESTAV-IPN), México DF, México
| | - Javier Sanchez-Villamil
- Department of Cell Biology, Centro de Investigación y de Estudios Avanzados del IPN (CINVESTAV-IPN), México DF, México
| | - Fernando Navarro-Garcia
- Department of Cell Biology, Centro de Investigación y de Estudios Avanzados del IPN (CINVESTAV-IPN), México DF, México
| |
Collapse
|
3
|
Intranasal Immunization of Mice with Multiepitope Chimeric Vaccine Candidate Based on Conserved Autotransporters SigA, Pic and Sap, Confers Protection against Shigella flexneri. Vaccines (Basel) 2020; 8:vaccines8040563. [PMID: 33019492 PMCID: PMC7712744 DOI: 10.3390/vaccines8040563] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 09/10/2020] [Accepted: 09/11/2020] [Indexed: 11/24/2022] Open
Abstract
Shigellosis is a diarrheal disease and the World Health Organization prompts the development of a vaccine against Shigella flexneri. The autotransporters SigA, Pic and Sap are conserved among Shigella spp. We previously designed an in silico vaccine with immunodominat epitopes from those autotransporters, and the GroEL protein of S. typhi as an adjuvant. Here, we evaluated the immunogenicity and protective efficacy of the chimeric multiepitope protein, named rMESF, in mice against lethal infection with S. flexneri. rMESF was administered to mice alone through the intranasal (i.n.) route or accompanied with Complete Freund’s adjuvant (CFA) intradermically (i.d.), subcutaneously (s.c.), and intramuscular (i.m.), as well as with Imject alum (i.m.). All immunized mice increased IgG, IgG1, IgG2a, IgA and fecal IgA titers compared to PBS+CFA and PBS+alum control groups. Furthermore, i.n. immunization of mice with rMESF alone presented the highest titers of serum and fecal IgA. Cytokine levels (IFN-γ, TNF-α, IL-4, and IL-17) and lymphocyte proliferation increased in all experimental groups, with the highest lymphoproliferative response in i.n. mice immunized with rMESF alone, which presented 100% protection against S. flexneri. In summary, this vaccine vests protective immunity and highlights the importance of mucosal immunity activation for the elimination of S. flexneri.
Collapse
|
4
|
Mucus layer modeling of human colonoids during infection with enteroaggragative E. coli. Sci Rep 2020; 10:10533. [PMID: 32601325 PMCID: PMC7324601 DOI: 10.1038/s41598-020-67104-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 06/02/2020] [Indexed: 12/25/2022] Open
Abstract
EAEC is a common cause of diarrheal illness worldwide. Pathogenesis is believed to occur in the ileum and colon, where the bacteria adhere and form a robust aggregating biofilm. Among the multiple virulence factors produced by EAEC, the Pic serine protease has been implicated in bacterial colonization by virtue of its mucinolytic activity. Hence, a potential role of Pic in mucus barrier disruption during EAEC infection has been long postulated. In this study, we used human colonoids comprising goblet cells and a thick mucin barrier as an intestinal model to investigate Pic's roles during infection with EAEC. We demonstrated the ability of purified Pic, but not a protease defective Pic mutant to degrade MUC2. Western blot and confocal microscopy analysis revealed degradation of the MUC2 layer in colonoids infected with EAEC, but not with its isogenic EAECpic mutant. Wild-type and MUC2-knockdown colonoids infected with EAEC strains exposed a differential biofilm distribution, greater penetration of the mucus layer and increased colonization of the colonic epithelium by Wild-type EAEC than its isogenic Pic mutant. Higher secretion of pro-inflammatory cytokines was seen in colonoids infected with EAEC than EAECpic. Although commensal E. coli expressing Pic degraded MUC2, it did not show improved mucus layer penetration or colonization of the colonic epithelium. Our study demonstrates a role of Pic in MUC2 barrier disruption in the human intestine and shows that colonoids are a reliable system to study the interaction of pathogens with the mucus layer.
Collapse
|
5
|
León Y, Zapata L, Salas-Burgos A, Oñate A. In silico design of a vaccine candidate based on autotransporters and HSP against the causal agent of shigellosis, Shigella flexneri. Mol Immunol 2020; 121:47-58. [DOI: 10.1016/j.molimm.2020.02.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 02/10/2020] [Accepted: 02/12/2020] [Indexed: 12/19/2022]
|
6
|
Ndungo E, Randall A, Hazen TH, Kania DA, Trappl-Kimmons K, Liang X, Barry EM, Kotloff KL, Chakraborty S, Mani S, Rasko DA, Pasetti MF. A Novel Shigella Proteome Microarray Discriminates Targets of Human Antibody Reactivity following Oral Vaccination and Experimental Challenge. mSphere 2018; 3:e00260-18. [PMID: 30068560 PMCID: PMC6070737 DOI: 10.1128/msphere.00260-18] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 07/10/2018] [Indexed: 12/14/2022] Open
Abstract
Shigella spp. are a major cause of diarrhea and dysentery in children under 5 years old in the developing world. The development of an effective vaccine remains a public health priority, necessitating improved understanding of immune responses to Shigella and identification of protective antigens. We report the development of a core Shigella proteome microarray consisting of 2,133 antigen targets common to all Shigella species. We evaluated the microarray with serum samples from volunteers immunized with either an inactivated whole-cell S. flexneri serotype 2a (Sf2aWC) vaccine or a live attenuated S. flexneri 2a vaccine strain (CVD 1204) or challenged with wild-type S. flexneri 2a (Sf2a challenge). Baseline reactivities to most antigens were detected postintervention in all three groups. Similar immune profiles were observed after CVD 1204 vaccination and Sf2a challenge. Antigens with the largest increases in mean reactivity postintervention were members of the type three secretion system (T3SS), some of which are regarded as promising vaccine targets: these are the invasion plasmid antigens (Ipas) IpaB, IpaC, and IpaD. In addition, new immunogenic targets (IpaA, IpaH, and SepA) were identified. Importantly, immunoreactivities to antigens in the microarray correlated well with antibody titers determined by enzyme-linked immunosorbent assay (ELISA), validating the use of the microarray platform. Finally, our analysis uncovered an immune signature consisting of three conserved proteins (IpaA, IpaB, and IpaC) that was predictive of protection against shigellosis. In conclusion, the Shigella proteome microarray is a robust platform for interrogating serological reactivity to multiple antigens at once and identifying novel targets for the development of broadly protective vaccines.IMPORTANCE Each year, more than 180 million cases of severe diarrhea caused by Shigella occur globally. Those affected (mostly children in poor regions) experience long-term sequelae that severely impair quality of life. Without a licensed vaccine, the burden of disease represents a daunting challenge. An improved understanding of immune responses to Shigella is necessary to support ongoing efforts to identify a safe and effective vaccine. We developed a microarray containing >2,000 proteins common to all Shigella species. Using sera from human adults who received a killed whole-cell or live attenuated vaccine or were experimentally challenged with virulent organisms, we identified new immune-reactive antigens and defined a T3SS protein signature associated with clinical protection.
Collapse
Affiliation(s)
- Esther Ndungo
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Arlo Randall
- Antigen Discovery, Inc., Irvine, California, USA
| | - Tracy H Hazen
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Dane A Kania
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | | | - Xiaowu Liang
- Antigen Discovery, Inc., Irvine, California, USA
| | - Eileen M Barry
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Karen L Kotloff
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Subhra Chakraborty
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | | | - David A Rasko
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Marcela F Pasetti
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
7
|
Novel Segment- and Host-Specific Patterns of Enteroaggregative Escherichia coli Adherence to Human Intestinal Enteroids. mBio 2018; 9:mBio.02419-17. [PMID: 29463660 PMCID: PMC5821088 DOI: 10.1128/mbio.02419-17] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Enteroaggregative Escherichia coli (EAEC) is an important diarrheal pathogen and a cause of both acute and chronic diarrhea. It is a common cause of pediatric bacterial diarrhea in developing countries. Despite its discovery in 1987, the intestinal tropism of the pathogen remains unknown. Cell lines used to study EAEC adherence include the HEp-2, T-84, and Caco-2 lines, but they exhibit abnormal metabolism and large variations in gene expression. Animal models either do not faithfully manifest human clinical symptoms or are cumbersome and expensive. Using human intestinal enteroids derived from all four segments of the human intestine, we find that EAEC demonstrates aggregative adherence to duodenal and ileal enteroids, with donor-driven differences driving a sheet-like and layered pattern. This contrasts with the colon, where segment-specific tropisms yielded a mesh-like adherence pattern dominated by interconnecting filaments. Very little to no aggregative adherence to jejunal enteroids was observed, regardless of the strain or donor, in contrast to a strong duodenal association across all donors and strains. These unique patterns of intestinal segment- or donor-specific adherence, but not the overall numbers of associated bacteria, were dependent on the major subunit protein of aggregative adherence fimbriae II (AafA), implying that the morphology of adherent clusters and the overall intestinal cell association of EAEC occur by different mechanisms. Our results suggest that we must give serious consideration to inter- and intrapatient variations in what is arguably the first step in pathogenesis, that of adherence, when considering the clinical manifestation of these infections. EAEC is a leading cause of pediatric bacterial diarrhea and a common cause of diarrhea among travelers and immunocompromised individuals. Heterogeneity in EAEC strains and lack of a good model system are major roadblocks to the understanding of its pathogenesis. Utilizing human intestinal enteroids to study the adherence of EAEC, we demonstrate that unique patterns of adherence are largely driven by unidentified factors present in different intestinal segments and from different donors. These patterns are also dependent on aggregative adherence fimbriae II encoded by EAEC. These results imply that we must also consider the contribution of the host to understand the pathogenesis of EAEC-induced inflammation and diarrhea.
Collapse
|
8
|
Vázquez-Iglesias L, Estefanell-Ucha B, Barcia-Castro L, Páez de la Cadena M, Álvarez-Chaver P, Ayude-Vázquez D, Rodríguez-Berrocal FJ. A simple electroelution method for rapid protein purification: isolation and antibody production of alpha toxin from Clostridium septicum. PeerJ 2017; 5:e3407. [PMID: 28652930 PMCID: PMC5483040 DOI: 10.7717/peerj.3407] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 05/11/2017] [Indexed: 12/16/2022] Open
Abstract
Clostridium septicum produces a number of diseases in human and farm animals which, in most of the cases, are fatal without clinical intervention. Alpha toxin is an important agent and the unique lethal virulent factor produced by Clostridium septicum. This toxin is haemolytic, highly lethal and necrotizing activities but is being used as an antigen to develop animal vaccines. The aim of this study was to isolate the alpha toxin of Clostridium septicum and produce highly specific antibodies against it. In this work, we have developed a simple and efficient method for alpha toxin purification, based on electroelution that can be used as a time-saving method for purifying proteins. This technique avoids contamination by other proteins that could appear during other protein purification techniques such chromatography. The highly purified toxin was used to produce polyclonal antibodies. The specificity of the antibodies was tested by western blot and these antibodies can be applied to the quantitative determination of alpha toxin by slot blot.
Collapse
Affiliation(s)
- Lorena Vázquez-Iglesias
- Department of Biochemistry, Genetics and Immunology, Facultad de Biología, Universidad de Vigo, Vigo, Spain
| | - Borja Estefanell-Ucha
- Department of Biochemistry, Genetics and Immunology, Facultad de Biología, Universidad de Vigo, Vigo, Spain
| | - Leticia Barcia-Castro
- Department of Biochemistry, Genetics and Immunology, Facultad de Biología, Universidad de Vigo, Vigo, Spain
| | - María Páez de la Cadena
- Department of Biochemistry, Genetics and Immunology, Facultad de Biología, Universidad de Vigo, Vigo, Spain
| | - Paula Álvarez-Chaver
- Unidad de Proteómica, Servicio de Determinación Estructural, Proteómica y Genómica, CACTI, Universidad de Vigo, Spain
| | - Daniel Ayude-Vázquez
- Department of Biochemistry, Genetics and Immunology, Facultad de Biología, Universidad de Vigo, Vigo, Spain
| | | |
Collapse
|
9
|
Abreu AG, Barbosa AS. How Escherichia coli Circumvent Complement-Mediated Killing. Front Immunol 2017; 8:452. [PMID: 28473832 PMCID: PMC5397495 DOI: 10.3389/fimmu.2017.00452] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 04/03/2017] [Indexed: 12/19/2022] Open
Abstract
Complement is a crucial arm of the innate immune response against invading bacterial pathogens, and one of its main functions is to recognize and destroy target cells. Similar to other pathogens, Escherichia coli has evolved mechanisms to overcome complement activation. It is well known that capsular polysaccharide may confer resistance to complement-mediated killing and phagocytosis, being one of the strategies adopted by this bacterium to survive in serum. In addition, proteases produced by E. coli have been shown to downregulate the complement system. Pic, an autotransporter secreted by different pathogens in the Enterobacteriaceae family, is able to cleave C2, C3/C3b, and C4/C4b and works synergistically with human Factor I and Factor H (FH), thereby promoting inactivation of C3b. Extracellular serine protease P, a serine protease of enterohemorrhagic E. coli (EHEC), downregulates complement activation by cleaving C3/C3b and C5. StcE, a metalloprotease secreted by EHEC, inhibits the classical complement-mediated cell lysis by potentiating the action of C1 inhibitor, and the periplasmic protease Prc contributes to E. coli complement evasion by interfering with the classical pathway activation and by preventing membrane attack complex deposition. Finally, it has been described that E. coli proteins interact with negative complement regulators to modulate complement activation. The functional consequences resulting from the interaction of outer membrane protein A, new lipoprotein I, outer membrane protein W, and Stx2 with proteins of the FH family and C4b-binding protein (C4BP) are discussed in detail. In brief, in this review, we focused on the different mechanisms used by pathogenic E. coli to circumvent complement attack, allowing these bacteria to promote a successful infection.
Collapse
Affiliation(s)
- Afonso G Abreu
- Programa de Pós-Graduação em Biologia Parasitária, CEUMA University, São Luís, Brazil.,Programa de Pós-Graduação em Ciências da Saúde, Federal University of Maranhão, São Luís, Brazil
| | - Angela S Barbosa
- Laboratory of Bacteriology, Butantan Institute, São Paulo, Brazil
| |
Collapse
|
10
|
Gomes TAT, Elias WP, Scaletsky ICA, Guth BEC, Rodrigues JF, Piazza RMF, Ferreira LCS, Martinez MB. Diarrheagenic Escherichia coli. Braz J Microbiol 2016; 47 Suppl 1:3-30. [PMID: 27866935 PMCID: PMC5156508 DOI: 10.1016/j.bjm.2016.10.015] [Citation(s) in RCA: 282] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Accepted: 10/27/2016] [Indexed: 12/22/2022] Open
Abstract
Most Escherichia coli strains live harmlessly in the intestines and rarely cause disease in healthy individuals. Nonetheless, a number of pathogenic strains can cause diarrhea or extraintestinal diseases both in healthy and immunocompromised individuals. Diarrheal illnesses are a severe public health problem and a major cause of morbidity and mortality in infants and young children, especially in developing countries. E. coli strains that cause diarrhea have evolved by acquiring, through horizontal gene transfer, a particular set of characteristics that have successfully persisted in the host. According to the group of virulence determinants acquired, specific combinations were formed determining the currently known E. coli pathotypes, which are collectively known as diarrheagenic E. coli. In this review, we have gathered information on current definitions, serotypes, lineages, virulence mechanisms, epidemiology, and diagnosis of the major diarrheagenic E. coli pathotypes.
Collapse
Affiliation(s)
- Tânia A T Gomes
- Universidade Federal de São Paulo, Escola Paulista de Medicina, Departamento de Microbiologia, Imunologia e Parasitologia, São Paulo, SP, Brazil.
| | - Waldir P Elias
- Instituto Butantan, Laboratório de Bacterologia, São Paulo, SP, Brazil
| | - Isabel C A Scaletsky
- Universidade Federal de São Paulo, Escola Paulista de Medicina, Departamento de Microbiologia, Imunologia e Parasitologia, São Paulo, SP, Brazil
| | - Beatriz E C Guth
- Universidade Federal de São Paulo, Escola Paulista de Medicina, Departamento de Microbiologia, Imunologia e Parasitologia, São Paulo, SP, Brazil
| | - Juliana F Rodrigues
- Universidade de São Paulo, Instituto de Ciências Biomédicas, Departamento de Microbiologia, São Paulo, SP, Brazil
| | - Roxane M F Piazza
- Instituto Butantan, Laboratório de Bacterologia, São Paulo, SP, Brazil
| | - Luís C S Ferreira
- Universidade de São Paulo, Instituto de Ciências Biomédicas, Departamento de Microbiologia, São Paulo, SP, Brazil
| | - Marina B Martinez
- Universidade de São Paulo, Faculdade de Ciências Farmacêuticas, Departamento de Análises Clínicas e Toxicológicas, São Paulo, SP, Brazil
| |
Collapse
|
11
|
Hebbelstrup Jensen B, Stensvold CR, Struve C, Olsen KEP, Scheutz F, Boisen N, Röser D, Andreassen BU, Nielsen HV, Schønning K, Petersen AM, Krogfelt KA. Enteroaggregative Escherichia coli in Daycare-A 1-Year Dynamic Cohort Study. Front Cell Infect Microbiol 2016; 6:75. [PMID: 27468409 PMCID: PMC4942469 DOI: 10.3389/fcimb.2016.00075] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2016] [Accepted: 06/29/2016] [Indexed: 12/24/2022] Open
Abstract
Enteroaggregative Escherichia coli (EAEC) has been associated with persistent diarrhea, reduced growth acceleration, and failure to thrive in children living in developing countries and with childhood diarrhea in general in industrialized countries. The clinical implications of an EAEC carrier-status in children in industrialized countries warrants clarification. To investigate the pathological significance of an EAEC carrier-state in the industrialized countries, we designed a 1-year dynamic cohort study and performed follow-up every second month, where the study participants submitted a stool sample and answered a questionnaire regarding gastrointestinal symptoms and exposures. Exposures included foreign travel, consumption of antibiotics, and contact with a diseased animal. In the capital area of Denmark, a total of 179 children aged 0–6 years were followed in a cohort study, in the period between 2009 and 2013. This is the first investigation of the incidence and pathological significance of EAEC in Danish children attending daycare facilities. Conventional microbiological detection of enteric pathogens was performed at Statens Serum Institute, Copenhagen, Denmark, and at Hvidovre Hospital, Copenhagen, Denmark. Parents completed questionnaires regarding gastrointestinal symptoms. The EAEC strains were further characterized by serotyping, phylogenetic analysis, and susceptibility testing. EAEC was detected in 25 (14%) of the children during the observational period of 1 year. One or more gastrointestinal symptoms were reported from 56% of the EAEC-positive children. Diarrhea was reported in six (24%) of the EAEC positive children, but no cases of weight loss, and general failure to thrive were observed. The EAEC strains detected comprised a large number of different serotypes, confirming the genetic heterogeneity of this pathotype. EAEC was highly prevalent (n = 25, 14%) in Danish children in daycare centers and was accompanied by gastrointestinal symptoms in 56% of the infected children. No serotype or phylogenetic group was specifically linked to children with disease.
Collapse
Affiliation(s)
| | - Christen R Stensvold
- Department of Microbiology and Infection Control, Statens Serum Institute Copenhagen, Denmark
| | - Carsten Struve
- Department of Microbiology and Infection Control, Statens Serum Institute Copenhagen, Denmark
| | - Katharina E P Olsen
- Department of Microbiology and Infection Control, Statens Serum Institute Copenhagen, Denmark
| | - Flemming Scheutz
- Department of Microbiology and Infection Control, Statens Serum Institute Copenhagen, Denmark
| | - Nadia Boisen
- Department of Microbiology and Infection Control, Statens Serum Institute Copenhagen, Denmark
| | - Dennis Röser
- Department of Microbiology and Infection Control, Statens Serum InstituteCopenhagen, Denmark; Department of Pediatrics, Copenhagen University Hospital HvidovreCopenhagen, Denmark
| | - Bente U Andreassen
- Department of Pediatrics, H.C. Andersen's Hospital, University of Odense Odense, Denmark
| | - Henrik V Nielsen
- Department of Microbiology and Infection Control, Statens Serum Institute Copenhagen, Denmark
| | - Kristian Schønning
- Department of Clinical Microbiology, Copenhagen University Hospital Hvidovre Copenhagen, Denmark
| | - Andreas M Petersen
- Department of Microbiology and Infection Control, Statens Serum InstituteCopenhagen, Denmark; Department of Clinical Microbiology, Copenhagen University Hospital HvidovreCopenhagen, Denmark; Department of Gastroenterology, Copenhagen University Hospital HvidovreCopenhagen, Denmark
| | - Karen A Krogfelt
- Department of Microbiology and Infection Control, Statens Serum Institute Copenhagen, Denmark
| |
Collapse
|
12
|
Epidemiology and clinical manifestations of enteroaggregative Escherichia coli. Clin Microbiol Rev 2015; 27:614-30. [PMID: 24982324 DOI: 10.1128/cmr.00112-13] [Citation(s) in RCA: 132] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Enteroaggregative Escherichia coli (EAEC) represents a heterogeneous group of E. coli strains. The pathogenicity and clinical relevance of these bacteria are still controversial. In this review, we describe the clinical significance of EAEC regarding patterns of infection in humans, transmission, reservoirs, and symptoms. Manifestations associated with EAEC infection include watery diarrhea, mucoid diarrhea, low-grade fever, nausea, tenesmus, and borborygmi. In early studies, EAEC was considered to be an opportunistic pathogen associated with diarrhea in HIV patients and in malnourished children in developing countries. In recent studies, associations with traveler's diarrhea, the occurrence of diarrhea cases in industrialized countries, and outbreaks of diarrhea in Europe and Asia have been reported. In the spring of 2011, a large outbreak of hemolytic-uremic syndrome (HUS) and hemorrhagic colitis occurred in Germany due to an EAEC O104:H4 strain, causing 54 deaths and 855 cases of HUS. This strain produces the potent Shiga toxin along with the aggregative fimbriae. An outbreak of urinary tract infection associated with EAEC in Copenhagen, Denmark, occurred in 1991; this involved extensive production of biofilm, an important characteristic of the pathogenicity of EAEC. However, the heterogeneity of EAEC continues to complicate diagnostics and also our understanding of pathogenicity.
Collapse
|
13
|
The Serine Protease Pic From Enteroaggregative Escherichia coli Mediates Immune Evasion by the Direct Cleavage of Complement Proteins. J Infect Dis 2015; 212:106-15. [DOI: 10.1093/infdis/jiv013] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Accepted: 12/22/2014] [Indexed: 01/18/2023] Open
|
14
|
Distribution of classical and nonclassical virulence genes in enterotoxigenic Escherichia coli isolates from Chilean children and tRNA gene screening for putative insertion sites for genomic islands. J Clin Microbiol 2011; 49:3198-203. [PMID: 21775541 DOI: 10.1128/jcm.02473-10] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Enterotoxigenic Escherichia coli (ETEC) is an important cause of diarrhea. Three adhesins (Tia, TibA, EtpA), an iron acquisition system (Irp1, Irp2, and FyuA), a GTPase (LeoA), and an autotransporter (EatA) are ETEC virulence-related proteins that, in contrast to the classical virulence factors (enterotoxins and fimbrial colonization factors) have not heretofore been targets in characterizing isolates from epidemiological studies. Here, we determined the occurrence of these nonclassical virulence genes in 103 ETEC isolates from Chilean children with diarrhea and described their association with O serogroups and classical virulence determinants. Because tia, leoA, irp2, and fyuA are harbored by pathogenicity islands inserted into the selC and asnT tRNA genes (tDNAs), we analyzed the regions flanking these loci. Ten additional tDNAs were also screened to identify hot spots for genetic insertions. Associations between the most frequent serogroups and classical colonization factor (CF)-toxin profiles included O6/LT-STh/CS1-CS3-CS21 (i.e., O6 serogroup, heat-labile [LT] and human heat-stable [STh] enterotoxins, and CFs CS1, -3 and -21), O6/LT-STh/CS2-CS3-CS21, and O104-O127/STh/CFAI-CS21. The eatA and etpA genes were detected in more than 70% of the collection, including diverse serogroups and virulence profiles. Sixteen percent of the ETEC strains were negative for classical and nonclassical adhesins, suggesting the presence of unknown determinants of adhesion. The leuX, thrW, and asnT tDNAs were disrupted in more than 65% of strains, suggesting they are hot spots for the insertion of mobile elements. Sequences similar to integrase genes were identified next to the thrW, asnT, pheV, and selC tDNAs. We propose that the eatA and etpA genes should be included in characterizations of ETEC isolates in future epidemiological studies to determine their prevalence in other geographical regions. Sequencing of tDNA-associated genetic insertions might identify new ETEC virulence determinants.
Collapse
|
15
|
Dautin N. Serine protease autotransporters of enterobacteriaceae (SPATEs): biogenesis and function. Toxins (Basel) 2010; 2:1179-206. [PMID: 22069633 PMCID: PMC3153244 DOI: 10.3390/toxins2061179] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2010] [Revised: 05/17/2010] [Accepted: 05/27/2010] [Indexed: 01/19/2023] Open
Abstract
Serine Protease Autotransporters of Enterobacteriaceae (SPATEs) constitute a large family of proteases secreted by Escherichia coli and Shigella. SPATEs exhibit two distinct proteolytic activities. First, a C-terminal catalytic site triggers an intra-molecular cleavage that releases the N-terminal portion of these proteins in the extracellular medium. Second, the secreted N-terminal domains of SPATEs are themselves proteases; each contains a canonical serine-protease catalytic site. Some of these secreted proteases are toxins, eliciting various effects on mammalian cells. Here, we discuss the biogenesis of SPATEs and their function as toxins.
Collapse
Affiliation(s)
- Nathalie Dautin
- Department of Biology, The Catholic University of America, 620 Michigan Avenue N.E., Washington, DC, 20064, USA.
| |
Collapse
|
16
|
Enteroaggregative Escherichia coli: An Emerging Enteric Food Borne Pathogen. Interdiscip Perspect Infect Dis 2010; 2010:254159. [PMID: 20300577 PMCID: PMC2837894 DOI: 10.1155/2010/254159] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2009] [Revised: 11/30/2009] [Accepted: 01/21/2010] [Indexed: 01/21/2023] Open
Abstract
Enteroaggregative Escherichia coli (EAEC) are quite heterogeneous category of an emerging enteric pathogen associated with cases of acute or persistent diarrhea worldwide in children and adults, and over the past decade has received increasing attention as a cause of watery diarrhea, which is often persistent. EAEC infection is an important cause of diarrhea in outbreak and non-outbreak settings in developing and developed countries. Recently, EAEC has been implicated in the development of irritable bowel syndrome, but this remains to be confirmed. EAEC is defined as a diarrheal pathogen based on its characteristic aggregative adherence (AA) to HEp-2 cells in culture and its biofilm formation on the intestinal mucosa with a “stacked-brick” adherence phenotype, which is related to the presence of a 60 MDa plasmid (pAA). At the molecular level, strains demonstrating the aggregative phenotype are quite heterogeneous; several virulence factors are detected by polymerase chain reaction; however, none exhibited 100% specificity. Although several studies have identified specific virulence factor(s) unique to EAEC, the mechanism by which EAEC exerts its pathogenesis is, thus, far unknown. The present review updates the current knowledge on the epidemiology, chronic complications, detection, virulence factors, and treatment of EAEC, an emerging enteric food borne pathogen.
Collapse
|
17
|
Al-Hasani K, Navarro-Garcia F, Huerta J, Sakellaris H, Adler B. The immunogenic SigA enterotoxin of Shigella flexneri 2a binds to HEp-2 cells and induces fodrin redistribution in intoxicated epithelial cells. PLoS One 2009; 4:e8223. [PMID: 20011051 PMCID: PMC2785471 DOI: 10.1371/journal.pone.0008223] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2009] [Accepted: 11/16/2009] [Indexed: 12/04/2022] Open
Abstract
Background We have previously shown that the enterotoxin SigA which resides on the she pathogenicity island (PAI) of S. flexneri 2a is an autonomously secreted serine protease capable of degrading casein. We have also demonstrated that SigA is cytopathic for HEp-2 cells and plays a role in the intestinal fluid accumulation associated with S. flexneri infections. Methods/Principal Findings In this work we show that SigA binds specifically to HEp-2 cells and degrades recombinant human αII spectrin (α-fodrin) in vitro, suggesting that the cytotoxic and enterotoxic effects mediated by SigA are likely associated with the degradation of epithelial fodrin. Consistent with our data, this study also demonstrates that SigA cleaves intracellular fodrin in situ, causing its redistribution within cells. These results strongly implicate SigA in altering the cytoskeleton during the pathogenesis of shigellosis. On the basis of these findings, cleavage of fodrin is a novel mechanism of cellular intoxication for a Shigella toxin. Furthermore, information regarding immunogenicity to SigA in infected patients is lacking. We studied the immune response of SigA from day 28 post-challenge serum of one volunteer from S. flexneri 2a challenge studies. Our results demonstrate that SigA is immunogenic following infection with S. flexneri 2a. Conclusions This work shows that SigA binds to epithelial HEp-2 cells as well as being able to induce fodrin degradation in vitro and in situ, further extending its documented role in the pathogenesis of Shigella infections.
Collapse
Affiliation(s)
- Keith Al-Hasani
- Australian Research Council Centre of Excellence in Structural and Functional Microbial Genomics, Monash University, Clayton, Australia
| | | | | | | | | |
Collapse
|
18
|
Jenkins C, Chart H, Willshaw GA, Cheasty T, Tompkins DS. Association of putative pathogenicity genes with adherence characteristics and fimbrial genotypes in typical enteroaggregative Escherichia coli from patients with and without diarrhoea in the United Kingdom. Eur J Clin Microbiol Infect Dis 2007; 26:901-6. [PMID: 17899229 DOI: 10.1007/s10096-007-0388-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
The aim of this study was to compare genotypic characteristics seen in typical EAggEC isolated during a study of intestinal infectious disease from cases and controls, and to identify which genes, or combinations of genes, were most associated with diarrhoeal disease. We also investigated the association of genotype with certain characteristics, such as presence of fimbrial genes and adherence to Hep-2 cells. The aafC gene, encoding the usher for AAFII, was the only gene significantly associated with patients with diarrhoea (P < 0.005), and the aggC gene, which encodes the usher for AAFI, was the only gene significantly associated with the healthy control group (P < 0.002). Putative virulence genes significantly associated with aggregative adherence included aafC, aggR, pet, pic and astA. The shf, pet and astA genes were all more likely to be associated with type II fimbriae than with type I. We conclude that in addition to presence and absence of certain genes, studies of EAggEC pathogenicity should investigate the combinations and associations of putative virulence factors.
Collapse
Affiliation(s)
- C Jenkins
- Department of Microbiology, Royal Free Hospital, London, UK.
| | | | | | | | | |
Collapse
|
19
|
Vilhena-Costa AB, Piazza RMF, Nara JM, Trabulsi LR, Martinez MB. Slot blot immunoassay as a tool for plasmid-encoded toxin detection in enteroaggregative Escherichia coli culture supernatants. Diagn Microbiol Infect Dis 2006; 55:101-6. [PMID: 16530374 DOI: 10.1016/j.diagmicrobio.2006.01.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2005] [Revised: 12/13/2005] [Accepted: 01/03/2006] [Indexed: 10/24/2022]
Abstract
Plasmid-encoded toxin (Pet) is a heat-labile enterotoxin encoded in the enteroaggregative Escherichia coli (EAEC) virulence plasmid. Several evidence support the role of this 108-kDa secreted protein in the pathogenesis of EAEC diarrhea. In this study, we standardized a slot blot immunoassay for Pet detection. EAEC culture supernatants were applied onto a polyvinylidene difluoride membrane, and, using rabbit polyclonal Pet antisera, the expression of the toxin by slot blot immunoassay was observed in 9.5% of the isolates studied. In addition, no negative control reacted with Pet antiserum in this assay. This assay is a rapid, specific, reproducible, and low-cost methodology, therefore demonstrating its potential in diagnosing Pet expression. Moreover, we describe for the first time that expression of Pet can be directly detected from EAEC culture supernatants and may be used in clinical laboratorial routine instead of polymerase chain reaction detection of the pet gene, especially in developing countries where the EAEC pathotype has been considered an emerging pathogen.
Collapse
Affiliation(s)
- Andréa Bernardes Vilhena-Costa
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, 05503-900 São Paulo, Brazil
| | | | | | | | | |
Collapse
|
20
|
Woo PCY, Lau SKP, Teng JLL, Yuen KY. Current status and future directions for Laribacter hongkongensis, a novel bacterium associated with gastroenteritis and traveller's diarrhoea. Curr Opin Infect Dis 2005; 18:413-9. [PMID: 16148528 DOI: 10.1097/01.qco.0000180162.76648.c9] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
PURPOSE OF REVIEW Despite extensive investigations, a microbiological cause cannot be found in about half of the patients with infectious disease. Throughout the years, scientists have spent tremendous efforts in looking for microorganisms associated with these "unexplained infectious disease syndromes". Recently, a novel bacterium, Laribacter hongkongensis, was discovered and shown to be associated with gastroenteritis and traveller's diarrhoea. This review summarizes the current status, and shares with the readers the authors' experience in the microbiology, classification, epidemiology, clinical disease, laboratory diagnosis, antibiotic resistance and treatment of L. hongkongensis. It also discusses the importance and perspective of describing novel pathogenic bacterial species. RECENT FINDINGS L. hongkongensis was shown to be associated with gastroenteritis and traveller's diarrhoea. Consumption of fish was associated with recovery of L. hongkongensis. Freshwater fish was a reservoir of L. hongkongensis. Genotypic typing revealed the possibility of virulent clones of L. hongkongensis. The class C beta-lactamase of L. hongkongensis has been cloned and characterized. SUMMARY In 2001, L. hongkongensis, a novel genus and species, was first discovered in Hong Kong from the blood and empyema pus of a patient with alcoholic cirrhosis. Subsequently, it was isolated from patients in other parts of the world. Recently, this bacterium was found to be associated with community-acquired gastroenteritis and traveller's diarrhoea using cefoperazone MacConkey agar as the selective medium. Further studies, including setting up of animal and tissue culture models and characterization of virulence factors, should be performed. For pathogenic microbes, even one strain of a novel species should be described, so that global concerted efforts can be drawn to look for more cases associated with such a pathogen.
Collapse
Affiliation(s)
- Patrick C Y Woo
- Department of Microbiology and Research Centre of Infection and Immunology, Faculty of Medicine, The University of Hong Kong, Hong Kong, ROC
| | | | | | | |
Collapse
|